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Abstract. Recently, many profiling side-channel attacks based on Machine Learning
and Deep Learning have been proposed. Most of them focus on reducing the number
of traces required for successful attacks by optimizing the modeling algorithms.
In previous work, relatively sufficient traces need to be used for training a model.
However, in the practical profiling phase, it is difficult or impossible to collect sufficient
traces due to the constraint of various resources. In this case, the performance of
profiling attacks is inefficient even if proper modeling algorithms are used.
In this paper, the main problem we consider is how to conduct more efficient profiling
attacks when sufficient profiling traces cannot be obtained. To deal with this problem,
we first introduce the Conditional Generative Adversarial Network (CGAN) in the
context of side-channel attacks. We show that CGAN can generate new traces to
enlarge the size of the profiling set, which improves the performance of profiling
attacks. For both unprotected and protected cryptographic algorithms, we find that
CGAN can effectively learn the leakage of traces collected in their implementations.
We also apply it to different modeling algorithms. In our experiments, the model
constructed with the augmented profiling set can reduce the required attack traces
by more than half, which means the generated traces can provide useful information
as the real traces.
Keywords: Profiling side-channel attacks · CGAN · Generated traces · Leakage
learning · Insufficient profiling traces

1 Introduction
Side-Channel Attacks (SCA) was first introduced by Paul Kocher [Koc96] in 1996, con-
ducting a timing attack on the cryptographic device to recover the secret information.
This provides a new direction for the security evaluation of the cryptographic algorithm
when considering physical implementation. In addition to timing, the leakages available for
SCA also include power consumption and electromagnetic emanations, etc. SCA mainly
includes two categories: profiling attacks and non-profiling attacks. Non-profiling attacks
mean that we recover secret information directly by analyzing the leakages of an unknown
device and during the process, we need to guess the secret key. Typical non-profiling
attacks include Differential Power Analysis (DPA) [KJJ99], Correlation Power Analysis
(CPA) [BCO04], and Mutual Information Analysis (MIA) [GBTP08], etc. Profiling attacks
(e.g. Template Attacks (TA) [CRR02], and Stochastic Attacks (SA) [SLP05]) happen in
the circumstance where the same fully-controlled profiling device exists before recovering
the secret information used in a targeted device. Then we characterize the leakages of the

mailto:{wangping,cp2017,zmluo,dgf,mczheng}@mail.ustc.edu.cn, {hghu2005,ynh}@ustc.edu.cn


2 Enhancing Practical Profiling Side-Channel Attacks Using CGAN

controlled device by modeling algorithms and recover the secret information through the
constructed model.

With the development of SCA, there appeared profiling attacks based on Machine
Learning (ML) [HGM+11,BL12,LMBM13,LBM14], in which two commonly used models
are SVM [CV95,WW98] and RF [Bre01]. Recently, Deep Learning (DL) based profiling
attacks raises the concern of SCA community [MPP16,CDP17,PSB+18,KPH+19,PHJ+19].
Compared to classical TA, DL-based profiling attack is no need for the Points of Interest
(POI) or the traces alignment, and it can also handle high-dimensional data. However, we
find that these works focus on how to propose better modeling algorithms, or to improve
the current modeling algorithms, in order to reduce the number of traces required for
successful attacks. In fact, the traces they use in the profiling phase are relatively sufficient,
which seems rational. Because the premise of profiling attacks is that the attackers have a
fully-controlled profiling device and are able to obtain sufficient traces to construct the
model.

However, if the profiling attack is applied to a specific application, due to various
constraints like time, resources, and countermeasures, we cannot collect enough traces.
For example, an encryption operation to be attacked may only be a subroutine in the
entire application, but the encryption operation has many pre-operations, so in the process
of collecting traces, it is necessary to wait for the completion of the entire pre-operation.
Even the position of the encryption operation in the entire application is not fixed. In
this case, the trace of the entire process executed by the application needs to be collected,
so each trace collection requires a huge time cost. Besides, in some application scenarios,
the key has a life cycle. For example, the session key used when communicating between
two devices, then the number of traces collected for each session key is limited, depending
on how long the session time is. In such a scenario, the attack performance of the model
constructed with insufficient traces is inefficient, and even an effective attack model cannot
be constructed. Consequently, the attack performance of the model constructed by various
approaches based on ML and DL mentioned above will be greatly decreased when the
traces are lacking during the profiling phase.

Therefore, we consider whether it works by using the existing insufficient profiling
traces to generate new traces with more useful information. If it is possible, we can use
the generated traces to expand the original profiling set, to build a more efficient model.
We find that Generative Adversarial Networks (GAN) [GPM+14] proposed in 2014 has
the ability to generate new data with additional information from raw data. GAN has a
very rapid development in recent years and derives hundreds of different networks. Using
GAN to generate data is mainly utilized in the field of image [ASE17,FKA+18,BCG+18].
For example, Bowles et al. used GAN to generate medical images 1, which obtained
satisfactory results [BCG+18]. Thus, we try to use GAN to generate traces, to deal with
the problem that sufficient profiling traces cannot be collected in the practical profiling
attack. It should be noted that during the profiling phase, each trace has a corresponding
label, thus we use Conditional Generative Adversarial Networks (CGAN) [MO14] which
can specify the labels of the generated traces. To the best of our knowledge, the method
of using CGAN to generate traces has not yet been studied in the context of SCA. In
our experiments, we first explore how to generate effective traces, and propose methods
to evaluate the quality of generated traces. Our results show that CGAN can effectively
learn the leakages of traces and generate traces with additional useful information, thereby
improving the attack performance in scenarios where profiling traces are insufficient.

1Because the annotation of medical images is expensive and time-consuming, it is impossible to get a
lot training samples.
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1.1 Related Work

The method of generating new traces then added to the original profiling set is also called
Data Augmentation (DA) [SSP03]. In recent years, the DA technique has been applied to
profiling attacks. In 2017, Cagli et al. mitigated overfitting and obtained better attack
performance by randomly shifting traces, adding clock jitter, and then adding deformed
traces to the original profiling set [CDP17]. In 2019, Picek et al. used the Synthetic
Minority Oversampling Technique (SMOTE) to process imbalanced data caused by using
Hamming weight (HW) (or the Hamming distance (HD)) [PHJ+19]. At the same time, we
notice that Picek et al. proposed a restricted attacker framework where they restrict the
ability of an attacker to obtain measurements in the profiling phase [PHG19]. Although
we both study similar issues, the methods used are completely different. In fact, the DA
techniques previously mentioned improving attack performance are used in the scenario of
relatively sufficient profiling traces. It should be noted that we concentrate on the problem
of how to build a more efficient model when the collected traces are insufficient during the
profiling phase. We use the limited profiling set to generate new traces with additional
useful information to effectively improve the attack performance.

1.2 Our Contributions

Our contributions mainly include the following aspects:

1. We give a new perspective against the problem that how to build a more efficient
model with insufficient traces in the practical profiling attacks. Then we first introduce
CGAN (GAN) in the SCA context, and use it to generate traces to solve the problem
of insufficient profiling traces, which improves the potential to apply profiling attacks
in real scenarios.

2. We present a detailed discussion on the label used to generated traces and evaluating
the quality of generated traces. Our results show that the number of traces required
for successful attacks can be reduced by more than half in the scenario of insufficient
profiling set.

3. For various types of AES implementations, such as unprotected, first-order masked
protected, and random delay protected ones, we find that CGAN can effectively learn
the leakages contained in traces.

4. We have tried different models based on ML and DL, and find that our method is
suitable for different modeling algorithms.

1.3 Outline

The paper is organized as follows. In Section 2 we give an overview of profiling attacks,
evaluation metrics, DA and CGAN (GAN). In Section 3, we describe the basic steps
of using CGAN to generate traces and improve the attack performance and then verify
the feasibility of the method through simulation experiments. In Section 4, through the
experiments with real datasets, we verify that our method can improve the performance of
profiling attacks in the case of insufficient profiling traces. The applicability of this method
to different AES implementations and different modeling algorithms is also studied. In
Section 5, we give a discussion. Finally, in Section 6 we have a summary of the proposed
method and the future outlook.
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2 Background
2.1 Profiling Side-Channel Attacks
We first briefly introduce the TA which was proposed in 2002 by Chari et al. [CRR02]
and is also the earliest profiling attack. TA consists of two phases: the profiling phase
and the attack phase. During the profiling phase, it assumes that before the secret key of
an unknown device is recovered, an identical device already exists and is fully controlled.
The attackers calculate the intermediate values based on the plaintexts/ciphertexts and
the fixed possible key and then divide the collected traces (or profiling set) according
to the intermediate values. Finally, templates are established by using a Multivariate
Gaussian distribution to characterize the relationship between the intermediate values and
the leakages. In the attack phase, the attackers collect the traces of the unknown device
and use the templates to recover the secret key used 2. Subsequent profiling attacks based
on ML and DL are basically the same as TA except that the modeling algorithms used are
different.

Formally, during the profiling phase, the attackers get a profiling set Tprofiling = {~li|i ≤
Np} with known plaintexts/ciphertexts Pprofiling = {pi|i ≤ Np} and the fixed key k∗

p.
Function ϕ computes the intermediate value zi between pi and k∗

p. Then, the model is
constructed by the modeling algorithm F :

Mz = F (~li) where z = ϕ(pi, k
∗
p). (1)

Mz is a model constructed with all the traces corresponding to the same intermediate
value z, consequently we obtain models for each different intermediate value.

Similarly, we assume the attackers get attack set Tattack = {~lj |j ≤ Na} with known
plaintexts/ciphertexts Pattack = {pj |j ≤ Na} during attack phase. Then we use Maximum
Likelihood strategy to calculate the score S for each guessed key kguess:

Skguess
=

Na∏
j=1

Mϕ(pj ,kguess)(~lj). (2)

The kguess that maximizes S is the key that the model thinks correct:

kreal = arg max
kguess

Skguess
. (3)

Note that, ML and DL-based profiling attacks usually build only one model, but will
output scores (or probability) corresponding to all intermediate values in the attack phase,
which is equivalent to a model including all models Mz.

2.2 Evaluation Metric
In ML and DL, accuracy is often used as an evaluation metric. Although we use the
ML and DL based methods in profiling attacks, some researchers have found that using
accuracy to evaluate SCA is not suitable [PHJ+19]. Hence, we will use Guessing Entropy
(GE) [SMY09], one of the common SCA metrics. In simple terms, GE is to calculate the
averaged rank of the correct key over several experiments, and the term rank refers to the
score ranking of all key hypotheses given by the model. What we usually do is to calculate
the average number of traces required when the rank converges to zero. In our experiments,
after CGAN learns the distribution of the original data, the generated traces each time
are different and the improvement of the attack result also changes slightly. Therefore, in
each experiment, we will generate new traces and the original training set and testing set
are randomly selected. Then we average the attack results of 10 experiments as GE.

2We usually use a divide-and-conquer method to recover the subkey first.
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2.3 Data Augmentation
Data Augmentation [SSP03] is a regularization technique used to deal with the overfitting
problem, in order to build a more robust Model. Naturally, this method is often used in
the field of image. For example, Krizhevsky et al. used two forms of DA techniques to
effectively reduce overfitting, one of which is image translations and horizontal reflections,
and the other is altering the intensities of the RGB channel [KSH12]. Since GAN was
introduced in 2014, some GAN-based Data Augmentation has been proposed and used to
acquire good results [ASE17,FKA+18,BCG+18]. In the field of SCA, there have also been
some researches [CDP17,PYW+17,PHJ+19] on the use of DA technique recently. Besides,
it should be emphasized that our main concern is how to build a more efficient model
when sufficient traces cannot be collected during the profiling phase, instead of reducing
overfitting 3.

2.4 Conditional Generative Adversarial Networks
In this section, we mainly introduce the basic principles of Generative Adversarial Networks
(GAN) and Conditional Generative Adversarial Networks (CGAN). GAN [GPM+14] was
proposed in 2014 and mainly used as a generative model to learn the distribution of data.
GAN includes two parts, generator G and discriminator D. Assuming that the real data is
x and its distribution satisfies pdata, the role of the generator is to learn the distribution of
real data pdata through a non-linear function G(z; θg) which maps a prior noise distribution
pz(z) to pdata. Assuming that the distribution of the learned data through the generator
is pg, all we have to do is to make pg as close to pdata as possible. The discriminator is
also a non-linear function D(x, θd), giving the probability that a sample comes from pdata

rather than pg. Then we alternately train the discriminator and generator, and adjust
the parameters θd and θg to maximize logD(X) and minimize log(1 −D(G(Z))). This
training process can be regarded as a mini-max game between the generator G and the
discriminator D. Using an objective function to express it is:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] . (4)

GAN is actually a kind of unsupervised learning, and the generated data has no label.
However, the profiling SCA based on ML and DL is supervised learning which means every
trace has a corresponding label obtained through the intermediate value and energy model.
Therefore, each generated trace must also have a corresponding label so that the original
profiling set can be expanded. Consequently, we use a conditioned version of GAN, namely
CGAN [MO14], to generate traces. The difference between CGAN and GAN is that in
CGAN when training G and D, we add additional information (or auxiliary information)
y, which can be the label of the data or the data under a certain distribution. Then, the
target function becomes:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x|y)] + Ez∼pz(z) [log (1−D(G(z|y)))] . (5)

Figure 1 simply shows the architecture of CGAN. After using CGAN, we can specify label
and produce the corresponding traces.

3 CGAN on SCA
In this section, we outline the overall process of how to use CGAN to enhance the
performance of profiling attacks when the profiling traces are insufficient and verify the

3In fact, when we use CGAN to generate traces and expand the original profiling set, the overfitting
problem will also be alleviated, but this is not in conflict with the main problem we are aiming at.
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Figure 1: Conditional Generative Adversarial Network.

feasibility of this method by simulation experiments. Then, we discuss some experimental
parameters that need attention when traces are generated.

3.1 The Basic Steps
3.1.1 Choosing an Insufficient Training Set

First, we divide the traces into two parts, a set of training traces and a set of testing traces,
respectively corresponding to the profiling phase and the attack phase. Afterward, we
reduce the size of training set as much as possible to simulate the scenario of insufficient
profiling traces. In our experiments, we use the training sets of different sizes to build
models in advance and compare the attack performance on the same testing set. Then we
select a training set with general attack performance whose set size is relatively small 4.
In fact, when adequate traces cannot be collected during the profiling phase, all traces
would be utilized maximally to construct the model.

3.1.2 The CGAN Structure

For the generator and discriminator, it is mainly composed of fully connected layers, and
no more complex layer is used. However, in the process of CGAN training, instability is
probable to occur. Here we use some techniques: (1) Use Batch Normalization (BN) in both
Generator and Discriminator [RMC16], (2) The prior noise is sampled from the Gaussian
distribution rather than Uniform distribution [Whi16], (3) Use the leaky rectified activation
(LeakyReLU) [MHN13] as the activation function for the hidden layer, (4) Use the Adam
optimizer [KB15] to train the model, (5) Use the Dropout layer in generator during both
training and testing phases [IZZE17]. In addition, tuning CGAN hyperparameters is similar
to tuning classifiers. The difference is that the optimal parameters should be selected
according to the performance of the model constructed with the augmented training set.
At the same time, it should be noted that we should use the evaluation metrics related to
side-channel attacks. The specific model structure of CGAN is given in Appendix A.1.

3.1.3 Evaluating the Generated Traces

After traces are generated, there arises a question of how we evaluate the quality of the
generated traces. When using the technology related to GAN to generate images, there

4We apply the same strategy in subsequent experiments, i.e., to choose the size of the training set
beforehand and use a relatively small training set to simulate the lack of traces during the profiling phase.
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are many common evaluation metrics, such as Accuracy, IS [SGZ+16], FID [HRU+17].
However, these metrics are not necessarily applicable for SCA. For example, paper [PHJ+19]
verified that ML evaluation metrics are not precise for sure in SCA evaluations, such as
accuracy. Even if the generated traces are similar to the real traces, we cannot decide
whether the generated traces can contribute to the model. Therefore, in the final analysis,
we need to add the generated traces to the original profiling set and see if the attack
results are improved, in order that we can determine whether the generated traces are
effective. That is to say, the quality of the generated traces comes down to the extent of
improvement they bring to the attack performance.

Additionally, there are other intuitive methods to estimate the quality of generated
traces. One of them is to visually observe the shapes of generated traces. If the generated
traces seem largely different from the original traces, such generated traces are not expected
to yield better improvement. This is because the purpose of GAN is exactly to learn
the distribution of the original data and the generated objects should be similar to the
original objects. Another method is to use Correlation Power Analysis (CPA) [BCO04] to
separately calculate the correlation of original traces and generated traces, then compare
the location of the leaks and the intensity of the correlation to verify whether the leakages
have been learned. The paper [Tim19] also mentioned that the leakage points make the
greatest contribution to modeling, thus observing the correlation of the generated traces
at the leakage points is the simplest and most effective way to assess the quality of the
generated traces. Based on multiple experiments, we discover that if the CPA results
between the generated traces and the original traces are closer, the enhancement of the
attack performance after data expansion is more obvious.

We also tried to use DPA [KJJ99] to evaluate whether the generated traces have learned
effective leakage, and the experimental results show that it is indeed feasible. See Appendix
A.2 for the detailed results of using DPA to evaluate the generated traces.

3.1.4 The Way to Improve the Attack Performance

We must emphasize that we are talking about the same model, that is, the ways are on
the basis of the premise that the overall structure of the model is unchanged 5. Without
considering various pre-processing methods, then the size of the profiling set used to
construct the model determines the performance of the attack.

The idea of the method is simple, we can utilize the existing insufficient profiling
traces to generate new traces and expand original profiling set to obtain better attack
performance. Let Traw be the original profiling set, Mraw be the model built on Traw,
P (Mraw) be the attack performance of the model Mraw. Let Tgenerated be the traces
generated by Traw. Then we can build model Mraw+generated with Traw and Tgenerated.
Finally, if the generated trace is effective, we can get P (Traw + Tgenerated) > P (Traw).

3.2 Simulation Experiments
Firstly, we generate N = 10000 simulated traces 6, each of which has 50 time samples, and
is related to the fixed key k∗. The plaintext pi related to each trace is randomly generated
between 0 ∼ 255 and the amplitude of each time sample is also a randomly value between
0 ∼ 255. The leakage point is located at tleakage = 25, and the amplitude of the leakage
point is Sbox(k∗ ⊕ pi) +N (0, 1).

In the experiment, two disjoint sets are randomly divided out from the first 5000
simulated traces, the training set with 500 traces and the validation set with 2000 traces.

5Our goal is not to find the optimal model, but to figure out whether using generated traces to expand
original training set in a scenario where profiling traces are insufficient can improve the attack performance.
Therefore, we ought to assume that the model structure remains the same.

6The method of simulated traces generation is referred to in the paper [Tim19].
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Figure 2: Left: original traces. Right: generated traces.
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Figure 3: Left: CPA of 500 original traces. Right: CPA of 400 generated traces.

Besides, 2000 traces are divided out from the last 5000 simulated traces as the testing set.
Secondly, we build an MLP model with two hidden layers and the numbers of neurons

in the two layers are separately 70, 50 and the label is Least Significant Bit (LSB) of
Sbox(k∗⊕pi). Following the steps in Subsubsection 3.1.1, we choose the size of the training
set to be 500 to simulate the scenario where the profiling traces are insufficient.

Thirdly, we use the 500 traces of the original training set to generate 400 traces, among
which 200 traces are with label 0 and another 200 traces are with label 1 7. We randomly
choose two traces from the original training set and the generated traces separately and
they are shown in Figure 2.

Then, we continue to analyze the correlation of the 500 original training traces and
the 400 generated traces, and compare the CPA results in these two cases and determine
whether the leakages have been learned through the currently generated traces. The CPA
results are illustrated in Figure 3.

It indicates that in the CPA using the generated traces, the location of the leakage
point and the amplitude of leakage peak are consistent with the CPA using the original
training set. Meanwhile, we also see that the correlation of other time samples is higher
in the CPA using the generated traces, and we call it leakage noise. The reason for the

7In the later experiments, we will specify that the number of generated traces with labels 0 and 1 are
equal to each other when we use LSB as the label.
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leakage noise may be that when CGAN learns the distribution of the original traces, the
generator would think that it is easier to fool the discriminator when the leakages appear
at more locations. In the later experiments, we will prove that the generated traces with
high leakage noise are unable to improve the performance of the modeling attack, or even
reduce the performance.

Fourthly, as we point out in Subsubsection 3.1.3, although the CPA results of the
generated traces are close to that of the original traces, applying such generated traces for
trace augmentation does not mean that the attack performance will definitely be improved.
As a consequence, we need to decide whether our method is feasible by the practical attack
results. For comparison, we randomly select 400 traces from the original 500 traces and
add the 400 traces to the original training set to confirm that the addition of generated
traces does improve the attack performance. The specific steps of the experiment are
consistent with Subsection 4.1, which we will not repeat here. The attack results are
presented in Figure 4.

It is apparently seen that using the augmented training set to build the model can
achieve better attack performance, where the number of traces required for GE to converge
to 0 is reduced by about 400. The results reveal that the generated traces are capable of
providing additional useful information, which is equivalent to the circumstance where we
collect more traces. Of course, the generated traces would make less contribution due to
leakage noise in most cases.
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Figure 4: The attack results of models built
with {500 original traces, 500 original traces
+ 400 repeated traces, 500 original traces +
400 generated traces}.

0 10 20 30 40 50
Time samples

0.2

0.0

0.2

0.4

0.6

Co
rre

la
tio

n

o 500
g 395 from o 500
g 395 from o 1000

Figure 5: CPA of {500 original traces, 395
generated traces from 500 original traces,
395 generated traces from 1000 original
traces} when using HW as label.

3.3 Labels
We continue to discuss how to select the label in the process of generating traces. In
Subsection 3.2 we have been using the label LSB, next we will apply the same experimental
configuration, except that the label is replaced with HW. Note that for the label HW, there
are 9 categories in total and they satisfy the binomial distribution. Thus, we generate 395
traces according to the distribution, among which the amount of each category conforms
to the binomial distribution. Furthermore, for better comparison, based on the original
training set with 500 traces, we add another 500 traces and then use the 1000 traces to
generate traces. Figure 5 shows the comparison of CPA results.

From Figure 5 we can see that if only 500 traces are used to generate traces, the
correlation coefficient at the leakage points calculated by the generated traces is reduced
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by about 0.2, and the noise of other non-leakage points is more obvious as well. Then we
add three sets of generated traces to the original training set of 500 traces to construct the
models. The attack results are presented in Figure 6.
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Figure 6: The attack results of models built
with {500 original traces, 500 original traces
+ 395 repeated traces, 500 original traces
+ 395 generated traces from 500 original
traces, 500 original traces + 395 generated
traces from 1000 original traces} when using
HW as label.
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Figure 7: CPA of {500 original traces, 400
generated traces from 500 original traces,
400 generated traces from 200 original
traces, 400 generated traces from 50 original
traces}.

We find that the generated traces by using the 500 original traces do not bring about
better attack performance, and even cause the attack result to become worse. We note
that when the label HW is used, there exists a problem called imbalanced data [PHJ+19].
Similarly, when using the label HW for trace generation, we may also be confronted with
this problem. Imagine that using a training set with 500 traces to generate traces, the
amount of the traces with HW = 0, 8 maybe only 1 or 2, which makes it difficult for us
to learn these two categories of traces. Therefore, the addition of these two categories
of corresponding generation traces will not contribute to the model but aggravate the
problem of data imbalance. While using 1000 traces for trace expansion produces slight
enhancement, which indicates that using the label HW to generate traces is relatively
difficult in the situation where the amount of existing original traces is small.

3.4 Sizes of Training Set and Generated Trace Set
In this section, we use training sets of different sizes to generate traces and study how the
amount of traces in the original training set affects the quality of generated traces. We
respectively use the original training sets of size 500, 200, and 50 to generate 400 traces
with label LSB. Figure 7 demonstrates the CPA results of generated traces using distinct
training sets.

The CPA results show that though the correlation at the leakage points is similar, the
noise at the non-leakage points increases as the size of the original training set is reduced.
Especially, when only 50 traces are used for trace generation, the noise is strongly obvious,
which tells us that if the original training traces are quite fewer, the generated traces
would possess poor quality. Then, we add the generated traces above to the same original
training set with 500 traces for modeling and observe whether the attack performance has
been improved. The attack results are shown in Figure 9.
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Figure 9: The attack results of models built
with {500 original traces + 250 generated
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It implies that as the size of the original training set is decreasing, the improvement of the
attack performance brought by the generated traces is constantly weakening. For example,
when we only use 50 traces for trace generation and expansion, it is almost impossible
to produce any amelioration. In the light of the above results and analysis, for effective
generated traces, not only high correlation at the leakage points is required, but also low
correlation at the non-leakage points is needed. In other words, we want the CPA results
of the generated traces and the original traces to be as close as possible.

In addition to observing the effect of the size of original training set on the quality
of the generated traces, we also have studied how the ratio between the size of added
generated trace set and the size of original training set influence the attack performance.
On the basis of previous experimental configuration, we use the 500 original traces to
respectively generate 250, 500, and 1000 traces as three different generated trace sets, then
add them to the 500 original traces in turn for modeling and compare the influence on
attacks. The results are displayed in the following Figure ??.

The comparison of the attack results indicates that the ratio between the size of added
trace set and the size of original training set does not actually affect the attack performance
greatly. Hence, we are not going to discuss this issue in detail subsequently when we
conduct experiments with real traces. Undoubtedly, if adding too few traces, it is hard to
make any improvements. On the other hand, adding too many generated traces would
make the model learn more from the generated traces, which will also reduce the attack
performance.

4 Experiments
In this section, we first discuss the application of using CGAN to generate traces under
three AES implementations: unprotected, first-order masked protected and random delay
protected. Then we test the universality of the proposed method to different modeling
algorithms. Recently, profiling attacks based on DL are becoming very popular, thus we
mainly test common modeling algorithms used in DL.
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4.1 Experiment Setup
In Subsection 4.2, Subsection 4.3 and Subsection 4.4, we will use the public modelMLPbest

in [PSB+18]. The reason why we use it is that our goal is to verify whether adding the
generated traces to the profiling set can enhance the attack performance, rather than to
find out the optimal model. Hence, we do not change the structure of the model, which has
four hidden layers with 200 neurons in each layer. For different implementations of AES,
we just modify the learning rate, epoch and batch size. Besides, we think the experimental
results are more convincing by using public models.

Specifically, we first divide the data set into two parts D1 and D2. Then we ran-
domly divide out the training set Dtraining and the validation set Dvalidation from D1
in each experiment 8, and divide out the testing set Dtesting from D2. Because of the
overall structure of the model is fixed, we only need to fine-tune the learning rate, epoch,
and batch size through Dvalidation to get the best model Moriginal

9 under the original
training set Dtraining. Secondly, we use CGAN to generate trace set Dgenerated through
Dtraining and combine Dgenerated and Dtraining as the new training set Dnew_training.
We then use Dvalidation to fine-tune the above parameters to get the best model Mnew

under Dnew_training. Finally, we attack testing set Dtesting by using Moriginal and Mnew

respectively and get the score ranking of the correct key. We repeat the above experiment
10 times, with the average attack results as the final GE. Moreover, it must be emphasized
that in order to make the final results more credible the number of traces in D1 is greater
than the sum of the number of traces in Dtraining and Dvalidation, and the number of
traces in D2 is also greater than the number of traces in Dtesting in each experiment.

To better verify the effectiveness of the traces generated by CGAN, we added three sets
of comparative experiments for each data set. (1) add the repeated traces to the training
set, (2) use the method of adding noise to the traces to obtain new traces and add them
to the training set [KPH+19], (3) add real traces to the training set. Another point that
needs to be added is the comparison of the shape of the generated trace and the original
trace, which we have placed in Appendix A.3.

4.2 Unprotected AES
In this section, we use two trace sets collected in two implementations of unprotected AES,
one of which is DPAcontest v4 dataset, and the other is power trace set in unprotected AES-
128 implementation running on an Atmel XMEGA128 chip, measured by ChipWhisperer-
Lite (CW) platform [CW]. In the following two subsections we verify that using generated
traces can improve the effectiveness of profiling attacks with insufficient profiling traces.
At the same time, we have found an interesting phenomenon that we can successfully
perform profiling attacks only using generated traces.

4.2.1 DPAcontest v4

DPAcontest v4 dataset provides measurements in software implementation of AES-256
with Rotating Sbox Masking (RSM) protection [NSGD12]. We can directly compute the
masked S-box output through the known masks, thus turning it into an unprotected AES
implementation. Here we only use 10,000 traces in the DPAcontest v4 dataset. We let the
first 6,000 traces as D1 and the remaining 4,000 traces as D2. Then we randomly divide
out 1,000 traces from D1 as the training set and 2,000 traces as the validation set. We
randomly choose 2,000 traces from D2 as the testing set. We perform a CPA to intercept

8Dtraining and Dvalidation are not intersected.
9In fact, the learning rate, epoch and batch size corresponding to Moriginal in each experiment will

be basically unchanged. We do this because we consider that the size of the original training set would
change after adding the generated traces, and the optimal value of the three parameters might also change,
then we add a cross-validation process.
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Figure 10: Left: CPA of 1000 original traces. Right: CPA of 1000 generated traces.

Table 1: The attack results on DPAcontest v4.
Training set Guessing entropy

1000 original traces 550
1000 original traces + 1000 repeated traces 561
1000 original traces + 1000 noisy traces 504

1000 original traces + 1000 generated traces 207
2000 original traces 172

1,000 consecutive time samples related to the masked S-box output in the first round. We
use the LSB of the masked S-box output as the training label, and then use 1,000 traces
of the training set to generate 1,000 new traces.

Then we use CPA to determine whether the generated traces have learned the leakages.
We perform CPA with 1,000 traces of the original training set and 1,000 traces of the
generated trace set respectively, the results are presented in Figure 10.

We can see that there are four main leakage points in the CPA results of original traces
and the generated traces mainly learn the leakages of the far left and far right points,
while the other two leakage points in the middle are not learned obviously. At the same
time, the leakage noise at the non-leakage points is very high, thus learning the leakages
of real traces is more difficult than the simulated traces. We then verify the effectiveness
of the generated traces through the attack results in Table 1.

The attack results have improved significantly after using the generated traces to
augment the original training set in Table 1 and the number of traces required for GE
to converge to 0 is about 300 fewer. The results confirm that the traces we generate can
contribute to the model like the real traces.

4.2.2 CW

We use CW to collect 8000 traces to further prove the effectiveness of the generated traces.
We choose the first 4000 traces as D1, and the remaining 4000 traces as D2. Then we
randomly divide out 100 traces from D1 as the training set, 2000 traces as the validation
set each time, and randomly choose 2000 traces from D2 as the testing set. The target
of the attack is the S-box output in the first round. We intercept 500 consecutive time
samples related to the first S-box output leakage points from the total 3,000 time samples
in the original traces according to CPA. To simulate the profiling phase where few traces
are available, we only use 100 traces as the training set. Next, we use the 100 original
traces to generate 400 traces and give the comparison of CPA results in Figure 11.
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Figure 11: Left: CPA of 100 original traces. Right: CPA of 400 generated traces.

Table 2: The attack results on CW unprotected implementation.
Training set Guessing entropy

100 original traces > 2000
100 original traces + 400 repeated traces > 2000
100 original traces + 400 noisy traces 1859

100 original traces + 400 generated traces 853
500 original traces 548
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Figure 12: The attack results of model built with 400 generated traces only.

Although the leakage noise of the generated trace is very high, the main leakage at the
time samples of 100 to 200 is obvious, and we find that the overall shape of the curves in
the two CPA results is similar. Then we give the attack results in Table 2.

From the attack results, GE can not converge to 0 by using only 100 traces as the
training set when using 2000 attack traces. When we use the augmented training set to
model, GE can converge to 0 by using 853 traces. Therefore, the improvement of the
attack results again proves the validity of the traces generated by CGAN.

In order to further verify that the generated traces contain useful information for
modeling, we try to only use the generated traces to build a model and conduct a successful
attack. Here we only use 400 generated traces from the previous 100 traces to build a
model and the attack results are shown in Figure 12.

We can clearly see that using only 400 generated traces can attack successfully and yield
a better attack performance than the original 100 traces. Therefore, the traces generated
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Figure 13: Left: CPA of 400 original traces. Right: CPA of 395 generated traces.
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Figure 14: The attack results of models built with {400 original traces, 400 original traces
+ 395 repeated traces, 400 original traces + 395 generated traces} when using HW as
label.

by CGAN can contribute to modeling just as real traces do. Besides, we can also evaluate
the effectiveness of the generated traces by only using generated traces to build a model.

In Subsection 3.3, we have mentioned that using HW as a label to generate traces is
difficult, especially when sufficient traces cannot be collected in the profiling phase. Here,
we will test the effectiveness of generating traces using HW label in real experiments. We
randomly select 400 traces from D1 as the training set, 2000 traces as the validation set,
and randomly choose 2000 traces from D2 as the testing set. It need to be emphasized that
minority class may not appear when only 100 traces are used to generate. Then we use 400
traces in the training set to generate 395 traces which still obey the binomial distribution.
First, we perform CPA on the training set and the generated traces respectively. The CPA
results are presented in Figure 13.

The correlation of the generated traces at the main leakage points has decreased, which
was also mentioned in previous simulation experiments. Next, we respectively use the
original training set and the training set augmented with the generated traces to model.
The attack results are presented in Figure 14.

It can be seen that in real experiments, it is feasible to use the HW label to generate
traces, but the improvement of the attack performance is not obvious. This also reflects
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Figure 15: Left: CPA of 100 original traces. Right: CPA of 395 generated traces.

Table 3: The attack results on ASCAD.h5.
Training set Guessing entropy

2000 original traces 878
2000 original traces + 2000 repeated traces 852
2000 original traces + 2000 noisy traces 753

2000 original traces + 2000 generated traces 182
4000 original traces 91

that it is not appropriate to use HW as a label to generate traces when profiling traces are
insufficient.

4.3 First-Order Masked AES Implementation
In this section, we try to expand the application scope of using CGAN to generate traces
and test whether it can still improve the performance of profiling attacks on first-order
masked AES. Here we use dataset ASCAD.h5 in the public database ASCAD. One purpose
of the paper [PSB+18] is to investigate whether a DL model can break masking scheme
protection. Therefore, it does not calculate the output of the masked S-box, but directly
takes the output of the third S-box as the label. In fact, there is no first-order leakage.
Hence, when we generate traces using the label directly related to the S-box output, we can
not see obvious peaks in the CPA results of generated traces. Although it is not possible
to judge whether the generated traces have learned leakages through CPA, we can use the
attack results to verify the effectiveness of the generated traces.

We let the training set of 50000 traces be D1, and the testing set of 10000 traces be
D2. In order to simulate a scenario where sufficient traces cannot be collected in practical
profiling phase, we randomly select 2000 traces from D1 as the training set, 2000 traces as
the validation set, and randomly select 2000 traces from D2 as the testing set. The label
is LSB(Sbox(p [3]⊕ r [3])). Then we use the training set to generate 2000 traces.

First, we still compare the CPA results of the original training set and generated traces.
The results are presented in Figure 15. As mentioned above, the S-box output of the
first-order masked AES has no first-order leakage, and no leakages can be seen in the CPA
results of the original training set or the generated traces. Then we judge the effectiveness
of the generated traces by whether it can improve the attack performance of the model.
The comparison of attack results is shown in Table 3.

Compared with the original training set, the training set expanded with the generated
traces can build a better model, and the traces required for GE to converge to 0 is reduced
by almost four times. In order to further prove that CGAN can learn higher-order leakage,
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Table 4: Based on the known masks, we construct four labels for the training set of CGAN.
LSB(mask) LSB(masked) Gan_label LSB(Sbox_output)

0 0 0 0
1 0 1 1
0 1 2 1
1 1 3 0

we conduct a more detailed trace generation using known masks. As shown in the following
table, we divide the generated traces into four categories in Table 4.

Four labels in the Table 4 have the following relationships:

Gan_label = 2 · LSB(masked) + LSB(mask). (6)

LSB(Sbox_output) = LSB(mask)⊕ LSB(masked). (7)

Based on Eq. (6), we can get LSB(mask) and LSB(masked) from Gan_label10,
to perform a CPA on the generated traces targeting the mask and the masked S-box
output. On the other hand, we can calculate the LSB(Sbox_output) from LSB(mask)
and LSB(masked) through Eq. (7), as the label of generated traces when expanding the
original training set. First, we randomly divide out 2000 traces from D1 as a training set.
Then we generate 2,000 traces using the original training set, with 500 traces in each class.
Finally, the results of CPA targeting mask and masked S-box output which is performed
on the original training set and generated traces respectively are displayed in Figure 16:

From above CPA results, the generated traces can learn major leakage related to both
mask and masked S-box output, which indicates that CGAN can learn high-order leakages.
At the same time, this experiment is also a supplement to previous trace generation only
using LSB of the S-box output. It confirms that the generated traces in the previous
experiment have learned effective leakage. Therefore, even if the mask cannot be obtained
in a real situation, we can directly use the label related to the output of the S-box to
effectively generate traces.

4.4 Desynchronized Traces
In this section, we continue to study the application of using CGAN to generate traces on the
desynchronized traces. We first perform a simulation experiment to verify whether CGAN
can generate effective desynchronized traces. The configuration of the simulation experiment
is the same as that in section 3.2, except that we add a random jitter s ∼ (−2, 2) to the
original leakage point. The location of the leakage point has changed to tleakage = 25 + s,
thus we obtain a desynchronized dataset.

In each repeated experiment, the 500 traces of the original training set are still used to
generate 400 traces. The CPA results of the generated traces and the original traces are
shown in Figure 17.

As a result of desynchronization, the correlation peak at the leakage point of the
original training set not only drops a lot but also becomes wider. While in the CPA results
of generated traces, we find that the correlation at the leakage point is twice as high, but
the leakage noise is also more obvious, which indicates that it is more difficult to generate
desynchronized traces. Next, we give a comparison of the attack results in Figure 18.

The attack performance of the trained model based on desynchronized traces is much
worse than the synchronized traces in section 3.2. Nevertheless, using the generated traces
to augment the original trace set can still effectively improve the attack performance.

Next, we will continue to verify the effectiveness of CGAN on desynchronized traces
by using AES_RD dataset which is collected in the AES implementation with random

10Gan_label refers to the label used during CGAN training.
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Figure 16: Top-left: mask CPA of original traces. Top-right: mask CPA of generated traces.
Bottom-left: masked CPA of original traces. Bottom-right: masked CPA of generated
traces.
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Figure 17: Left: CPA of 500 original traces. Right: CPA of 400 generated traces.

delay countermeasure [CK09]. The original AES_RD dataset contains 50,000 traces. We
choose the first 30,000 traces as D1, the last 20,000 traces as D2. Then we randomly
divide out 10,000 traces from D1 as the training set and 10,000 traces as the validation
set. We randomly divide out 10,000 traces from D2 as the testing set. The label we use is
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Figure 18: The attack results of models built with {500 original traces, 500 original
traces + 400 repeated traces, 500 original traces + 400 generated traces} on the simulated
desynchronization traces.

Table 5: The attack results on AES_RD.
Training set Guessing entropy

10000 original traces 4125
10000 original traces + 10000 repeated traces 3998
10000 original traces + 10000 noisy traces 3365

10000 original traces + 10000 generated traces 1369
20000 original traces 890

also LSB. Finally, we use the training set to generate 10,000 traces. The attack results are
presented in Table 5.

The number of traces required for a successful attack has been reduced by about 2700
when we use the original training set augmented with generated traces to build a model.
And it also shows that CGAN can generate effective traces even when the traces are not
synchronized.

4.5 Application to Other Modeling Algorithms

In previous experiments, the model we have always used is MLP. In this section, we will
verify the universality of our method to different modeling algorithms. We test three
models, SVM, RF, and CNN. The first two are machine learning models, and the last one
is a DL model which is often applied to profiling attacks in recent years.

Here we will test the datasets used in sections 4.2.2 and 4.3 and the experimental
configuration is the same as before, except that the modeling algorithm used is different.
The specific parameters used in the model are given in Appendix A.4. Then, under three
other modeling algorithms, we compare the attack results before and after using the
generated traces to expand the original training set.

From the attack results in Table 6, we can see that even if different modeling algorithms
are used, in scenarios where the profiling traces are insufficient, the traces generated by
CGAN can improve the attack performance. This also confirms the universality of our
method to different modeling algorithms.
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Table 6: The attack results of model SVM, RF, CNN on dataset CW, ASCAD.
Dataset Training set SVM RF CNN

CW

100 original traces > 2000 250 > 2000
100 original traces + 400 repeated traces 1305 259 > 2000
100 original traces + 400 noisy traces 1591 204 1760

100 original traces + 400 generated traces 316 76 171
500 original traces 194 53 86

ASCAD

2000 original traces 1502 625 850
2000 original traces + 2000 repeated traces 1493 874 702
2000 original traces + 2000 noisy traces 941 533 597

2000 original traces + 2000 generated traces 313 380 294
4000 original traces 244 257 232

5 Discussions

1. Compared with the previous profiling attack work, our attack effect im-
provement seems to be smaller. We want to emphasize that our work is in a scene
with insufficient profiling traces, so it is very difficult to improve the attack effect. At
the same time, when we compare some other data augmentation techniques, such as
adding Gaussian noise, the improvement effect is very weak, which also shows that the
generation of the adversarial network is powerful and can produce traces that bring
additional useful information. Of course, we are manually simulating the lack of traces
scenarios to confirm the effectiveness of CGAN and provide a method to solve the
problem of how to better improve profiling attacks in this scenario.

2. In the scenario of insufficient profiling traces, the attack effect of the con-
structed model is not good, does it mean that the model is not optimal?
One thing to note is that the optimal model we use here is relatively in a scene with
sufficient trace, just like the public model we used in this paper. From the perspective
of information theory, in a scenario where the profiling traces are lacking, the current
model cannot extract more information, and a better model may exist. Our work is not
to directly optimize this model, but to generate new traces so that existing profiling
methods can get better profiling.

6 Conclusion

In this paper, we first introduce CGAN(GAN) in the context of side-channel attacks.
When sufficient traces cannot be collected during the profiling phase, CGAN can generate
traces for data augmentation, which effectively improves the performance of profiling
attacks. In the process of using CGAN to generate traces, we summarize some methods
and techniques: By CPA or DPA, we can determine in advance whether the generated
traces have learned effective leakages. It is easy to use the single-bit label to generate
effective traces. We must add a suitable amount of generated traces when augmenting
the original profiling set. We find that CGAN has the ability to learn not only first-order
leakage, but also high-order leakage, and it can also effectively generate desynchronized
traces. Besides, we also test different modeling algorithms, including SVM, RF, MLP, and
CNN, which demonstrates the universality of our method to different modeling algorithms.
In future work, we plan to generate traces collected from other types of cryptographic
implementations by CGAN and improve the quality of generated traces.
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A
A.1 CGAN

Generator Discriminator

Input layer (noise with laten_dim = 100,embedding(label)) (traces, embedding(label))

Hidden layer (Dense,LeakyReLU,BN) * N (Dense, LeakyReLU) * N

Output layer Dense with tanh Dense with sigmoid

A.2 DPA Analysis
From top to bottom, Figure 19, Figure 20 and Figure 21 correspond to the traces used for
CPA analysis in Subsection 3.2, Subsubsection 4.2.1 and Subsubsection 4.2.2 respectively.
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Figure 19: Left: DPA of 500 original traces. Right: DPA of 400 generated traces.
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Figure 20: Left: DPA of 1000 original traces. Right: DPA of 1000 generated traces.
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Figure 21: Left: DPA of 100 original traces. Right: DPA of 400 generated traces.

A.3 The Shape of Generated Traces

The shape of the generated trace is similar to the original one. The difference is that there
are slight amplitude jitters at the peaks of the generated trace, and these slight jitters
contain useful information we need for modeling. The comparison results are shown in
Figure 22, Figure 23 and Figure 24.
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Figure 22: The shape of original trace and
generated trace (DPAv4).
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Figure 23: The shape of original trace and
generated trace (CW).

0 100 200 300 400 500 600 700
Time samples

60

40

20

0

20

40

Am
pl

itu
de

original trace
generated trace

Figure 24: The shape of original trace and generated trace (ASCAD).

A.4 Classifiers

CW ASCAD

SVM Margin: C = 100
kernel parameter: γ = 0.001

Margin: C = 500
kernel parameter: γ = 0.001

RF The number of trees:
n_estimators = 100

The number of trees:
n_estimators = 1000

CNN(filters, size,
stride, padding, activation)

(32, 11, 1, ‘same’, relu)
(64, 11, 1, ‘same’, relu)

Dense output with softmax

(64, 11, 1, ‘same’, relu)
AveragePooling(size=2, stride=2)

(128, 11, 1, ‘same’, relu)
AveragePooling(size=2, stride=2)

(256, 11, 1, ‘same’, relu)
Dense(2048, relu)
Dense(2048, relu)

Dense output with softmax
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