
Smoothing Out Binary Linear Codes and
Worst-case Sub-exponential Hardness for LPN

Yu Yu∗ Jiang Zhang†

Abstract

Learning parity with noise (LPN) is a notorious (average-case) hard problem that has
been well studied in learning theory, coding theory and cryptography since the early 90’s.
It further inspires the Learning with Errors (LWE) problem [Regev, STOC 2005], which
has become one of the central building blocks for post-quantum cryptography and advanced
cryptographic primitives. Unlike LWE whose hardness can be reducible from worst-case
lattice problems, no corresponding worst-case hardness results were known for LPN until
very recently. At Eurocrypt 2019, Brakerski et al. [BLVW19] established the first feasibility
result that the worst-case hardness of nearest codeword problem (NCP) (on balanced linear
code) at the extremely low noise rate log2 n

n implies the quasi-polynomial hardness of LPN
at the extremely high noise rate 1/2− 1/poly(n). It remained open whether a worst-case to
average-case reduction can be established for standard (constant-noise) LPN, ideally with
sub-exponential hardness.

We start with a simple observation that the hardness of high-noise LPN over large fields is
implied by that of the LWE of the same modulus, and is thus reducible from worst-case hard-
ness of lattice problems. We then revisit [BLVW19], which is the main focus of this work.
We first expand the underlying binary linear codes (of the NCP) to not only the balanced
code considered in [BLVW19] but also to another code (with a minimum dual distance). At
the core of our reduction is a new variant of smoothing lemma (for both binary codes) that
circumvents the barriers (inherent in the underlying worst-case randomness extraction) and
admits tradeoffs for a wider spectrum of parameter choices. In addition to similar worst-case
hardness result obtained in [BLVW19], we show that for any constant 0 < c < 1 the constant-
noise LPN problem is (T = 2Ω(n1−c), ϵ = 2−Ω(nmin(c,1−c)), q = 2Ω(nmin(c,1−c)))-hard assuming
that the NCP at the low-noise rate τ = n−c is (T ′ = 2Ω(τn), ϵ′ = 2−Ω(τn),m = 2Ω(τn))-hard
in the worst case, where T , ϵ, q and m are time complexity, success rate, sample complexity,
and codeword length respectively. Moreover, refuting the worst-case hardness assumption
would imply arbitrary polynomial speedups over the current state-of-the-art algorithms for
solving the NCP (and LPN), which is a win-win result. Unfortunately, public-key encryp-
tions and collision resistant hash functions need constant-noise LPN with (T = 2ω(

√
n),

ϵ′ = 2−ω(
√
n),q = 2

√
n)-hardness (Yu et al., CRYPTO 2016 & ASIACRYPT 2019), which is

almost (up to an arbitrary ω(1) factor in the exponent) what is reducible from the worst-case
NCP when c = 0.5. We leave it as an open problem whether the gap can be closed or there
is a separation in place.

Keywords: Foundations of Cryptography, Worst-case to average-case reduction, Learning
Parity with Noise, Smoothing Lemma.

∗Shanghai Jiao Tong University, Shanghai 200240, China. Email: yuyuathk@gmail.com.
†State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China. Email:jiangzhang09@gmail.com.

1

1 Introduction
1.1 Learning Parity with Noise
Learning parity with noise (LPN) [BFKL93] represents a noisy version of the “parity learn-
ing problem” in machine learning as well as the “decoding random linear codes” in coding
theory. The conjectured hardness of the LPN problem implies various cryptographic ap-
plications, such as symmetric encryption and authentication [HB01, JW05, KS06, ACPS09,
KPC+11, DKPW12, LM13, CKT16], zero-knowledge proof for commitment schemes [JKPT12],
oblivious transfer [DDN14], public-key cryptography [Ale03] and collision resistant hash func-
tions [BLVW19,YZW+19]. Regev [Reg05] introduced the problem of learning with errors (LWE)
by generalizing LPN to larger moduli and to a broader choice of noise distributions. Both LPN
and LWE are believed to be hard problems not succumbing to quantum algorithms and thus con-
stitute promising candidates for post-quantum cryptography. For the past fifteen years LWE has
shown great success in founding upon worst-case hard lattice problems [Reg05,Pei09,BLP+13]
and as a versatile building block for advanced cryptographic algorithms (such as fully homo-
morphic encryption [Gen09] and attribute-based encryption [GVW13, BGG+14]). In contrast,
its twelve-year elder cousin LPN remains much less understood. For instance, it was not until
recently did we get the first feasibility result about its root of worst-case hardness [BLVW19].

The computational version of the Learning Parity with Noise (LPN) problem with secret
size n ∈ N and noise rate 0 < µ < 1/2 asks to recover the random secret x given (A, A ·x+e),
where x

$←− Fn
2 , A is a random q×n Boolean matrix, e follows the q-fold Bernoulli distribution

with parameter µ (i.e., taking the value 1 with probability µ and the value 0 with probability
1 − µ), ‘·’ and ‘+’ denote (matrix-vector) multiplication and addition modulo 2 respectively.1
The decisional version of LPN challenges to distinguish (A, A·x+e) from uniform randomness.
In terms of hardness, the two LPN versions are polynomially equivalent [KS06,AIK07].

LPN has been extensively studied in learning theory, and it was shown in [FGKP06] that
an efficient algorithm for LPN would allow to learn several important function classes such
as 2-DNF formulas, juntas, and any function with a sparse Fourier spectrum. Typically,
the noise rate µ of LPN is constant (i.e., independent of secret size n). The BKW (Blum,
Kalai and Wasserman) algorithm [BKW03] solves LPN in time/sample complexity 2O(n/ logn).
Lyubashevsky [Lyu05] introduced “sample amplification” trick to obtain a variant of the BKW
attack with time complexity 2O(n/ log logn) and sample complexity q = n1+ϵ. If further re-
stricted to linearly many samples (i.e., q = O(n)) then the best attacks run in exponential
time [Ste88, MMT11, BJMM12]. Alekhnovich [Ale03] introduced an interesting noise regime
(referred to as low-noise LPN) µ = 1/

√
n (or more generally µ = n−c for 1/2 ≤ c < 1) that

implies public-key cryptography. More recently, Brakerski et al. [BLVW19] shows that LPN for
noise rate µ = log2 n

n (called extremely low-noise LPN) implies collision resistant hash functions.
Note that the best solvers for low-noise LPN runs in time poly(n) · eµn [CC98, BLP11, KF15],
so the LPN at noise rate µ = log2 n

n is still polynomially hard despite the existence of quasi-
polynomial attacks. Alternatively, public-key encryption [YZ16] and collision resistant hash
functions [YZW+19] can be constructed under the assumption that the constant-noise LPN
problem is 2ω(

√
n)-hard given 2

√
n samples, known as the sub-exponential LPN assumption.

1.2 Nearest Codeword Problem and Worst-case Hardness
Quite naturally, the worst-case decoding problem considered in [BLVW19] and this work is the
worst-case analogue of the LPN problem, known as the promise version of the Nearest Codeword
Problem (NCP). Informally, the problem is about finding out sT ∈ Fn

2 given a generator matrix
1Another equivalent formulation is to find out s given as many (up to one’s resource capacity) random noisy

inner product ⟨ai, s⟩+ ei as possible. In this paper we use the Ax+ e representation that is consistent with that
of the decoding problems.

2

C ∈ Fn×m
2 for some [m,n] binary linear code (m > n) and a noisy codeword tT = (sTC +

xT) ∈ Fm
2 with the promise that the error vector x ∈ Fm

2 has exact Hamming weight |x| = w,
as opposed to the general requirement |x| ≤ w. Note that the difference is not substantial
since having smaller weight can only make the problem easier (seen by a simple reduction),
and one can enumerate all possible values for w and invoke the corresponding solver (for the
exact weight). The non-promise version of the NCP problem is known to be NP-hard even to
approximate [ABSS97] and the promise version is also NP-hard in the high-noise regime where
the Hamming weight of error vector |x| ≥ (1/2 + ϵ)d for minimal distance d of the code and
any arbitrarily small constant ϵ [DMS03]. As for the algorithms, Berman and Karpinski [BK02]
showed how to search for the O(n/ log n)-approximate nearest codeword in polynomial time
and Alon, Panigrahy and Yekhanin [APY09] gives a deterministic algorithm with the same
parameters, which is the current state-of-the-art for solving NCP.

1.3 Worst-case to Average-case Reductions for LPN
We start with the “sample amplification” technique [Lyu05] that bears some resemblance to
the smoothing lemma in [BLVW19]. The idea is to use polynomially many LPN samples, say
(C, tT = (sTC+ xT)), as a basis to generate much more samples (with a higher noise), which
enables meaningful tradeoff between sample and time complexities for the BKW algorithm. In
more details, a “sample amplification” oracle take as input (C, tT) and responds with (Cri, tTri
= sTCri+ xTri) as the i-th re-randomized LPN sample, where ri ← R and (C, Cri, xTri) is
statically close to (C, Un, xTri) by the leftover hash lemma. Preferably distribution R should
be maximized with min-entropy (of more than n bits) while keeping as small Hamming weight
as possible (to make xTri biased) at the same time, so a natural candidate can be a random
length-m-weight-d distribution or similar (e.g., m-fold Bernoulli distribution for parameter d

m),
where d ≪ m is a tunable parameter. Döttling [Döt15] used a computational version of this
technique which yields better parameters by relying on the dual-LPN assumption (in place of
the leftover hash lemma) for pseudorandomness generation.

In the context of reducing worst-case hard promise-NCP to average-case hard LPN [BLVW19],
let (C, tT = (sTC+ xT)) be an NCP instance, where C ∈ Fn×m

2 , s ∈ Fn
2 , x ∈ Fm

2 with |x| = w
are all fixed values, and the goal to generate randomized LPN sample (Cri, tTri + uTCri =
(sT + uT)Cri+ xTri) with random u

$←− Fn
2 and each ri drawn from a random weight-d dis-

tribution2. The difference is that C is a generator matrix for a specific code (instead of being
sampled from uniform), and s is masked by random u. Brakerski et al. [BLVW19] showed
that if C belongs to a β-balanced code for β = O(

√
n/m), i.e., the Hamming distance lies in

between (1/2 − β)m and (1/2 + β)m, then (Cri, xTri) is 2
n
2 · (2wm + β)d close to (Un, xTri),

where Pr[xTri = 1] = 1/2− e−Θ(w
m
d) is noise rate of the LPN. As a main result3, the worst-case

hardness of the NCP on balanced code of noise rate w
m = log2 n

n implies the average-case hardness
of LPN of noise rate µ = 1/2 − 1/poly(n). This was the only known result for basing LPN on
worst-case hardness assumptions. It mainly establishes the feasibility result, i.e., assuming poly-
nomial hardness for extremely low-noise NCP (for which quasi-polynomial attacks are known)
only to reach the conservative conclusion that extremely high-noise LPN is quasi-polynomially
hard. Therefore, it remained open whether worst-hardness guarantee can be secured for LPN of
a lower noise, such as constant-noise LPN with sub-exponential hardness shown in this paper.

Curiously, one can investigate existentially (using probabilistic method) the possibility of
extending the reduction to constant-noise LPN. Think of a uniformly random C

$←− Fn×m
2 , and

by the leftover hash lemma (C,Cr,xTr) is 2−n-close to (C,Un,x
Tr) provided that the random

m-choose-d distribution r has sufficient min-entropy d log(m/d) = Ω(n). It follows by Markov
2Strictly speaking, ri is sampled from Rd,m whose definition is deferred to Section 2.1.
3More generally, as an end result [BLVW19] proves the nO(λ)-hardness of LPN at noise rate 1/2− 2−Ω(λ) for

tunable parameter λ = ω(1), see Remark 3.1 for discussions.

3

inequality that there exists at least a (1 − 2−n/2)-fraction of “good” C satisfying (Cr,xTr) is
2−n/2-close to (Un,x

Tr). Take into account that x has
(
m
w

)
possible values, the fraction of

“bad” C amounts up to
(
m
w

)
2−

n
2 . In terms of parameters, we set w

md = Θ(1) for constant-noise
LPN, noise rate w

m = ω(lognn) is necessary for the hardness assumption to hold and recall the
entropy condition d log(m/d) = Ω(n), which implies d = o(n

logn) and thus

log

(
m

w

)
≈ w log(m/w) = Ω(

m

d
log d) = 2Ω(n/d) log d = nω(1) .

This means the upper bound
(
m
w

)
2−O(n) on the fraction of “bad” C is useless (i.e., greater than

1). In other words, we don’t have a straightforward non-constructive proof that the worst-case
hardness of NCP problem (on any binary linear codes) implies the hardness of constant-noise
LPN, and solving this problem needs new ideas to beat the union bound.

1.4 Our Contributions
Prior to our main work, we give a simple worst-case hardness result for LPN over large fields, in-
troduced in [IPS09] and used in various works, e.g., [AAB15,AAB15,ADI+17,DGN+17,GNN17,
BCGI18,BCG+19,JLS20,WYKW20]. Informally, the large-field LPN extends the original LPN
to a prime field Fp with a generalized Bernoulli distribution Br,p, which samples a random
element from Fp with probability r and sets to 0 with probability 1 − r. We show that the
hardness of large-field LPN with noise r = 1 − Ω(1/αp) is implied by that of LWE with the
same dimension n and modulus p and parameter αp for the discrete Gaussian distribution. In
composition with known worst-case to average-case reductions for LWE, this ensures worst-case
hardness for LPN with field size p ≥ poly(n) and high noise rate r = 1−Ω(1/

√
n). To our best

knowledge, this result doesn’t seem to be known previously despite a simple proof. However,
similar to the end result of [BLVW19], it establishes worst-case hardness guarantee for LPN
whose noise is inversely polynomial (i.e. Ω(1/

√
n) or even 1/poly(n)) close to uniform.

Next we start our investigation on the original LPN (over the binary field). We consider
the promise version of NCP on two classes of binary linear codes, i.e., balanced code considered
in [BLVW19] and (a relaxed form of) independent code. Informally, a β-balanced [m,n] code
is a strengthened form of [m,n,m(1/2− β)] code with maximal distance m(1/2 + β), and a k-
independent [m,n] code is dual to a [m,m−n, k+1] code. Instead of sampling r from a random
weight-d distribution, we let r follow Bernoulli distribution Bmd

m

(i.e., with expected Hamming
weight d). While this looks like a weakening of the distribution (r is now only 2−Ω(d)-close
to a random weight-roughly-d distribution), the condition that all bits of r are independent is
crucial for proving a tighter version of smooth lemma that avoids the accumulative loss due
to union bound. For proper parameter choice that guarantees: (1) r is 2−Ω(d)-close to having
min-entropy d log(m/d) = Ω(n) and (2) the code exists in overwhelming abundance, we prove
for each code a corresponding smooth lemma that (Cr,xTr) is 2−Ω(d)

1−2µ -close to (Un,x
Tr), where

µ
def
= Pr[xTr = 1] = 1/2− 2−Θ(w

m
d) is the noise rate of the LPN. Compared to the unconditional

case where (it can be shown that) Cr is 2−Ω(d)-close to Un, the result is worsened by only a
factor of 1

1−2µ , rather than suffering from the multiplicative factor
(
m
w

)
in the aforementioned

non-constructive analysis. The result of [BLVW19] falls into a corollary by setting w
m = log2 n

n ,
m = poly(n), d = 2n/ log n such that µ = 1/2 − 1/poly(n). Furthermore, our smoothing
lemma allows to transform sub-exponential worst-case hardness of NCP into the sub-exponential
average-case hardness for constant-LPN, where the underlying NCP lies in the low-noise regime
w
m = n−c (0 < c < 1). In particular, we assume there exists some constant 0 < ε < 1 such
that NCP problem is 2ε

w
m
n-hard on either code of codeword length, say4 m = 2

ε
8

w
m
n. To our

4We just need T ≥ poly(m,n). One may replace m = 2
ε
8

w
m

n with m = 2δε
w
m

n for any small constant δ. In
general, the hardness of NCP (resp., LPN) is insensitive to codeword length m (resp., sample complexity q).

4

best knowledge, the state-of-the-art algorithms [BK02,APY09] solve the worst-case NCP with
complexity poly(n,m)e

w
m
n, and we are not aware of any algorithms with additional accelerations

for the balanced/independent codes. In fact, we don’t even know a much better algorithm for
its average-case analogue, i.e., the LPN problem of noise rate µ = n−c (0 < c < 1) needs time
poly(n)eµn to solve with overwhelming success [KF15, Appendix C]. Falsifying our assumption
would imply arbitrary polynomial speedups over the current state-of-the-art, i.e., for every
constant ε > 0 there exists an algorithm that runs in time 2ε

w
m
n and solves the problem in worst

case (for at least infinitely many values of n), which is a win-win situation.

Theorem 1.1 (main result, informal) Assume that the NCP problem at noise rate w
m =

n−c, on either balanced code or independent code, is (T = 2Ω(n1−c),m = 2Ω(n1−c))-hard. Then,
(1) for 0 < c < 1/2, the constant-noise LPN is (T = 2Ω(n1−c), ϵ = 2−Ω(nc), q = 2Ω(nc))-hard;
(2) for 1/2 ≤ c < 1, the constant-noise LPN is (T = 2Ω(n1−c), ϵ = 2−Ω(n1−c), q = 2Ω(n1−c))-hard.

Here the (T ,ϵ,q)-hardness of LPN refers to that no algorithm of time T can solve LPN of q
samples with probability better than ϵ. The constant-noise LPN with sub-exponential hard-
ness already implies efficient symmetric-key cryptographic applications, and we further discuss
possibilities of going beyond minicrypt5. Unfortunately, for whatever reason that could be in-
teresting, public-key cryptography and collision resistant hash functions require constant-noise
LPN with (T = 2ω(n

0.5), ϵ = 2−ω(n
0.5), q = 2n

0.5
)-hardness [YZ16, YZW+19], in contrast to the

(T = 2Ω(n0.5), ϵ = 2−Ω(n0.5), q = 2Ω(n0.5
)-hardness we established for LPN when c = 0.5, where

ω(·) omits a (arbitrarily small) super-constant (see more discussions in Section 3.7). One might
try to set c = 0.5 − δ to obtain (T = 2Ω(n0.5+δ), ϵ = 2−Ω(n0.5−δ), q = 2Ω(n0.5−δ

)-hard LPN, and
then rebalance T and 1/ϵ to be of the same order (as in a typical hardness assumption). How-
ever, we don’t know if such a time/success-rate tradeoff for LPN can be obtained in general
(without sacrificing q). We leave it as an open problem whether such a gap can be closed with
tighter proofs or there’s in a strict hierarchy in place. On the other hand, the attempt to use
our reduction for cryptanalysis, i.e., to turn the BKW algorithm (for LPN) into a worst-case
solver for constant-noise NCP (i.e., w

m = O(1)), is not successful again due to some small gap.
We refer to Section 3.7 for further details.

2 Preliminaries
2.1 Notations, Definitions and Inequalities
Column vectors are represented by bold lower-case letters (e.g., s), row vectors are denoted as
their transpose (e.g., sT), and matrices are denoted by bold capital letters (e.g., A). |s| refers
to the Hamming weight of bit string s. We use notations for sets and distributions as follows.

• Rm
d : the uniform distribution over set Rm

d
def
= {r ∈ Fm

2 : |r| = d}.

• Rd,m: the distribution that first samples t1, · · · , tm uniformly and independent from Rm
1

and then produces as output their XOR sum
⊕m

i=1 ti.

• Bqµ def
= Bµ × · · · × Bµ︸ ︷︷ ︸

q

, where Bµ is Bernoulli distribution with parameter µ.

We use e for the natural constant and log(·) for binary logarithm. x
$←− X refers to drawing

x from set X uniformly at random, and x ← X means drawing x according to distribution
X. X ∼ Y denotes that X and Y are identically distributed. The collision probability of

5minicrypt is Impagliazzo’s [Imp95] hypothetical world where one-way functions exist but public-key cryptog-
raphy does not.

5

Y is defined as Col(Y)
def
=
∑

y Pr[Y = y]2. We denote by H∞(Y) the min-entropy of random
variable Y . poly(·) refers to a certain polynomial. The statistical distance between X and Y ,
denoted by SD(X,Y)

def
= 1

2

∑
x |Pr[X = x]− Pr[Y = x]| . We say that X and Y are ε-close if

SD(X,Y) ≤ ε. We refer to Appendix A for proofs omitted in the main body and Appendix B
for the inequalities, lemmas and theorems used in this paper.

2.2 Binary Linear Codes
Coding theory terminology typically refers to a linear code as [n, k]-code or [n, k, d]-code, but
we choose to use [m,n]-code (m > n) in order to be more compatible with the LPN problem
and [BLVW19], where n is the size of message (secret to be decoded) and m is codeword length.

Definition 2.1 (binary linear code) A binary (m,n)-code is a set of codewords C ⊂ Fm
2 with

|C| = 2n (n < m), and a binary linear [m,n]-code C is a binary (m,n)-code that is the row span
of some generator matrix C ∈ Fn×m

2 , i.e., C def
= {sTC ∈ Fm

2 |sT ∈ Fn
2}.

Definition 2.2 (dual code/distance) The dual code of a binary linear [m,n]-code C, denoted
by C⊥, is a binary [m,m − n]-code C⊥ def

= {d ∈ Fm
2 |∀c ∈ C : dTc = 0}. The dual distance of C,

denoted by d⊥, is the minimum distance of C⊥.

Definition 2.3 (minimum/maximum distance) The minimum (resp., maximum) distance
of a binary linear [m,n]-code C is d if for any distinct codewords x,y ∈ C it holds that |x−y| ≥ d
(resp., |x− y| ≤ d). A linear [m,n]-code with minimum distance d is called a [m,n,d]-code.

A β-balanced code is a [m,n,12(1−β)m] code with maximal distance bounded by 1
2(1+β)m.

A binary linear code is k-independent if and only if its minimum dual distance is k+1 (i.e., its
generator matrix has k-wise independent columns). In the extreme case k = n, k-independent
[m,n] code becomes a maximum distance separable (MDS) code, but since binary MDS codes
are trivial we use k < n with further relaxed conditions.

Definition 2.4 (balanced code) A binary linear [m,n] code C ⊆ Fm
2 is β-balanced if its

minimum distance is at least 1
2(1− β)m and maximum distance is at most 1

2(1 + β)m.

Definition 2.5 (independent code) For a binary linear [m,n] code C ⊆ Fm
2 ,

• C is k-independent if every k columns of its generator matrix C are linearly independent,
i.e., ∀i ∈ [1, . . . , k] : Pr[Cr = 0 : r← Rm

i] = 0.

• C is (k,ζ)-independent if ∀i ∈ {k2 ,
k
2 + 1, . . . , k} : Pr[Cr = 0 : r← Rm

i] ≤ 2−n(1 + ζ).

The latter relaxes the independence condition by only enforcing it for i ∈ [k/2, k] (instead of for
all i ∈ (0, k]) and even for i ∈ [k/2, k] a slackness of ζ is allowed, in the spirit of almost universal
hash functions [Sti02]. Note that there is nothing special with the cut-off point k/2, which can
be replaced with δk for any constant 0 < δ < 1 without affecting our results asymptotically.

The following lemmas assert that balanced code and independent code exist in abundance
and they both account for an overwhelming portion of linear code (for the parameter choices
of this paper). In other words, it is very likely that a random matrix is both balanced and
independent at the same time. The proof of Lemma 2.1 follows a simple probabilistic argument
(already given in [BLVW19]) while as for the proof of Lemma 2.2 we exploit the pairwise
independence in order to apply the Chebyshev’s inequality. We refer interested readers to
Appendix A and Remark A.1 for its proof and discussions. A similar result with k ≈ n/2 was
stated in [CCG+07, Theorem 6].

6

Lemma 2.1 (Existence of balanced code [BLVW19]) A random binary linear [n,m]-code
is β-balanced with probability at least 1−2n+1e−

β2m
4 . In particular, for β ≥ 2

√
n/m the random

binary linear code is β-balanced with probability 1− 2−Ω(n).

Remark 2.1 (existence vs. abundance) Lemma 2.1 states that β ≥ 2
√
n/m ensures the

overwhelming abundance rather than the mere existence of balanced codes. We remark that the
difference is not substantial, e.g., for any arbitrarily small ε > 0 by setting β ≥

√
4(n+1+ε log(e))

(log e)m ≈
1.66

√
n/m we derive a corollary of Lemma 2.1 that β-balanced [n,m]-code exists with a fraction

of at least
1− 2n+1e−

β2m
4 ≥ 1− e−ε ≈ ε .

The above is essentially the Gilbert–Varshamov bound that asserts the existence of certain codes6,
and it is almost tight for binary linear codes [Bli16].

Lemma 2.2 (Existence of independent code) A random binary linear [m,n] code C is (k,
ζ)-independent with probability at least (1 − k2n+

logm
2 − k

2 log m
k

ζ2
). In particular, for k log(m/k) ≥

16n and logm = o(n) the random binary linear code is (k, 2−n)-independent with probability at
least 1− 2−4n.

2.3 The NCP and LPN problem
Throughout, n is the main security parameter, and other parameters, e.g., µ = µ(n), q = q(n),
m = m(n) and T = T (n), can be seen as functions of n.

Definition 2.6 (Nearest Codeword Problem (NCP)) The nearest codeword problem NCPn,m,w

for n,m,w ∈ N refers to that given the input of a matrix C ∈ Fn×m
2 of a binary linear code C

and a noisy codeword tT = sTC + xT for some s ∈ Fn
2 and x ∈ Rm

w , and the challenge is to
find out a solution s′ such that sTC + xT = s′TC + x′T for some x′ ∈ Rm

w . In particular, we
consider the NCP on the following codes:

• (Balanced NCP). The balanced nearest codeword problem, referred to as balNCPn,m,w,β,
is the NCPn,m,w on β-balanced linear [m,n]-code.

• (Independent NCP). The independent nearest codeword problem, denoted by indNCPn,m,w,k,ζ ,
refers to the NCPn,m,w on (k, ζ)-independent linear [m,n]-code.

Similar to one-way function, an instance of the NCP is considered solved as long as a decod-
ing algorithm comes up with any legitimate solution x′, which does not necessarily equal the
original x. In general, linear codes have unique solutions except for a 2−m+n+2w logm fraction (see
Lemma 2.3), which is super-exponentially small for our parameter setting w logm = O(n) and
m = Ω(n1+ε). Moreover, balNCPn,m,w,β has unique solution for w < 1

4(1−β)m. Decisional and
computational LPN are polynomially equivalent even for the same sample complexity [AIK07].

Definition 2.7 (Learning Parity with Noise (LPN)) The (computational) LPN problem
with secret length n, noise rate µ ∈ (0, 1/2) and sample complexity q, denoted by LPNn,µ,q,
asks to find out x given (A, A·x+e); and the decisional LPN problem DLPNn,µ,q challenges to
distinguish (A, A·x+e) and (A, Uq), where matrix A

$←− Fq×n
2 , x $←− Fn

2 , y $←− Fq
2, and e← Bqµ.

6Strictly speaking, Gilbert–Varshamov bound concerns with the existence of a code with minimum distance
m(1/2− β) while the balanced code we consider requires minimum/maximum distance m(1/2∓ β) at the same
time, where the difference can be omitted due to the symmetry of binomial coefficient

(
m

m(1/2∓β)

)
centered on

m/2.

7

Computational hardness. We say that a computational/decisional problem is (T ,ϵ)-hard, if
every probabilistic algorithm running in time T solves it with probability/advantage at most ϵ.
We say that NCP (resp., LPN) is (T ,ϵ,q)-hard if the problem is (T ,ϵ)-hard when the codeword
length (resp., sample complexity) does not exceed q. When the success-rate term ϵ = 1/T
we often omit ϵ. Recall that standard polynomial hardness requires that T > poly(n) and
ϵ < 1/poly(n) for every poly and all sufficiently large n’s.

Lemma 2.3 (Unique decoding of binary LPN) For w/m < 1/4,

Pr
C

$←−Fm×n
2

[
∃s1 ̸= s2 ∈ Fn

2 , ∃x1,x2 ∈ Fm
2 : |x1|, |x2| ≤ w ∧

(
sT1C+ xT

1 = sT2C+ xT
2

)]
is upper bounded by 2−m+n+2w logm.

3 Worst-case to Average-case Reductions for LPN
3.1 Worst-case hardness for large-field LPN
Denote with LWEn,p,α and LPNn,r(Fp) the LWE problem and the large-field LPN problem re-
spectively, both of dimension n and over prime modulus p, where the LWE’s noise follows the
discrete Gaussian distribution DZ,αp of standard deviation parameter αp, and the LPN’s noise
distribution returns a random element over Fp with probability r, and is set to 0 otherwise.

Lemma 3.1 (LWE implies high-noise LPN over Fp) Assume that LWEn,p,α with prime p,
α = o(1),αp = ω(log n) is hard, then LPNn,r(Fp) with r = 1− Ω(1

αp) is hard.

Proof. Every LWE sample (ai,⟨ai, s⟩+ei) can be transformed into an LPN sample (a′i,⟨a′i, s⟩+e′i)
(over the same field) by multiplying with a random mi

$←− Fp \ {0}, where a′i is the scalar-vector
product miai, and e′i = miei. For any ei ̸= 0 we have (a′i,e′i) is uniformly distributed over
Fn
p × (Fp \{0}), and for ei = 0 it is uniform over Fn

p ×{0}. Thus, overall (a′i,e′i) is an LPNn,r(Fp)
sample with

1− r = Pr[ei = 0]− 1− Pr[ei = 0]

p− 1
≥ Ω(1/αp)− 2

p
≥ Ω(1/αp) .

□
Lemma 3.1 puts no limits on the size of p, and recall that the LPN problem becomes a special
case of LWE for p = 2 (for which no reductions are needed). However, in order for the LWE to
be quantumly reducible from worst-case lattice problems, we need q = poly(n) and αp = Ω(

√
n).

The reduction can be made classical at the cost of either a much larger modulus q ≥ 2n/2 or
relying on a non-standard variant of GapSVP [Pei09].

Theorem 3.1 ([Reg05]) For any p ≤ 2poly(n), any αp ≥ 2
√
n and 0 < α < 1, solving the

(decisional) LWEn,p,α problem is at least as hard as quantumly solving GapSVPγ and SIVPγ on
arbitrary n-dimensional lattices, for some γ = Õ(n/α).

To summarize, based on the (quantum or even classical) worst-case hardness of lattice problems,
we establish up to 2O(n)-(average-case)-hardness of large-field LPN for modulus p ≥ poly(n) and
noise rate r = 1−Ω(1/

√
n). Next, we will revisit [BLVW19] and show worst-case to average-case

reductions for constant-noise LPN (over the binary field), which is the main focus of this work.

8

3.2 The worst-case to average-case reduction from [BLVW19]
Brakerski et al. [BLVW19] showed that the worst-case hardness of the extremely low-noise NCP
problem on balanced code implies the (average-case) hardness of extremely high-noise LPN.

Theorem 3.2 ([BLVW19]) Assume that balNCPn,m,w,β is hard in the worst case for noise
rate w

m = log2 n
n , m = 4n2, β = 1/

√
n then LPNn,µ,q is hard (in the average case) for µ =

1/2− 1
nO(1) and any q = poly(n).

As detailed in Algorithm 1, the idea is to convert an NCP instance (C, tT) into LPN samples.
By Theorem 3.3, the conversion produces q LPN samples of noise rate µ up to error qδ, where

µ =
1

2
− 1

2
(1− 2w

m
)d, qδ = O(q)2

n
2 · (2w

m
+ β)d .

Thus, the conclusion follows by setting w
m = log2 n

n , β = 2
√

n/m = 1/
√
n, d = 2n/ log n such

that µ = 1/2− 1/nO(1) and qδ = negl(n).

Remark 3.1 (possibilities and limitations) Other possible parameter choices are also dis-
cussed in [BLVW19], e.g., assume that balNCPn,m,w,β is 2Ω(

√
n)-hard for w

m = 1√
n

(while keeping
β = 1√

n
and d = 2n/ log n) then LPNn,µ,q is 2Ω(

√
n)-hard for noise µ = 1/2 − 2−

√
n/ logn and

q = 2Ω(
√
n). This result is non-trivial since the noise rate µ (although quite close to uniform

already) isn’t high enough for the conclusion to hold statistically. However, it does not seem to
yield efficient (a.k.a. polynomial-time) cryptographic applications due to the high noise rate. In
fact, the barriers are inherent in its smoothing lemma Theorem 3.3. Informally, assume that
NCP at noise rate w

m = logn·λ
n is nO(λ)-hard7 on β-balanced code, then the LPN of noise rate

µ = 1
2 −

1
2(1−

2w
m)d is (at most) nO(λ)-hard provided that (2wm +β)d < 2−n/2. Therefore, we need

to set λ = ω(1) for the worst-case hardness assumption to hold. Further, regardless of the value
of β it requires d = Ω(n/ log n) to make (2wm + β)d < 2−n/2. This lower bounds the noise rate
of LPN, i.e., µ = 1

2 −
1
2(1−

2w
m)d = 1/2− 2−Ω(λ). Raising the value of λ brings better hardness,

but at the same time it makes the noise of LPN closer to uniform (and hence renders the result
less interesting). A reasonable compromise seems to let λ = log n which was the main choice
of [BLVW19].

Algorithm 1 Converting an NCP instance to LPN samples.
Input: (C, tT = sTC+ xT), where C ∈ Fn×m

2 , s ∈ Fn
2 , x ∈ Rm

w

u
$←− Fn

2

Sample R
def
= [r1, . . . , rq] ∈ Fm×q

2 , where every column ri ← Rd,m (1 ≤ i ≤ q)
Output: (CR, tTR+ uTCR) = (CR, (sT + uT)CR+ xTR)

Theorem 3.3 (W/A-case reduction via code smoothing [BLVW19]) Assume that balNCPn,m,w,β

is T -hard in the worst case, then LPNn,µ,q is (T − O(nmq), 1T + qδ)-hard (in the average case)
for any w, d ≤ m, any q and

δ = max
x∈Rm,w

SD
(
(Cr,xTr) , (Un,x

Tr)
)
≤ 2

n+1
2 · (2w

m
+ β)d , (1)

µ = max
x∈Rm,w

Pr[xTr = 1] =
1

2
− 1

2
(1− 2w

m
)d . (2)

where r ← Rd,m, C ∈ Fn×m
2 is a generator matrix of any β-balanced [m,n] code and O(mnq)

accounts for the complexity of Algorithm 1.
7We recall the known attacks [BK02,APY09] of time complexity 2O(w

m
n) on NCP of noise rate w

m
.

9

The authors of [BLVW19] proved the above smoothing lemma using harmonic analysis. We
give an alternative proof via Vazirani’s XOR lemma [Vaz86,Gol11]. We stress that the approach
serves to simplify the presentation to readers by establishing the proof under a well-known
theorem. In other words, the proof below is not essentially different from that in [BLVW19]
after unrolling out the proof of the XOR lemma.

Lemma 3.2 (Vazirani’s XOR lemma [Vaz86,Gol11]) For any r.v. v ∈ Fn
2 , we have

SD(v,Un) ≤
√ ∑

0 ̸=a∈Fn
2

SD(aTv,U1)2 .

A simplified proof for Theorem 3.3. We denote with Cx ∈ Fn×(m−w)
2 and rx ∈ Fm−w

2

be the submatrix and substring of C and r respectively by keeping columns and bits that
correspond to the positions of 0’s in xT. Recall that r← Rd,m refers to r := ⊕d

i=1ti for random
weight-1 strings t1, · · · , td ∈ Fm

2 . Similarly, let tx̄i denote ti’s w-bit substring corresponding
to the positions of 1’s in xT. Further, let Ej denote the event that the Hamming weight sum∑d

i=1 |tx̄i | = j, and thus rx conditioned on Ej , denoted by rx,j , follows distribution Rd−j,m−w.

SD
(
(Cr,xTr) , (Un,x

Tr)
)

≤ SD
(
(Cxrx, t

x̄
1 , . . . , t

x̄
d) , (Un, t

x̄
1 , . . . , t

x̄
d)
)

≤
d∑

j=0

Pr[Ej] ·

√√√√ ∑
0 ̸=a∈Fn

2

SD
(
aTCxrx,j , U1

)2

≤
d∑

j=0

Pr[Ej] ·

√√√√2n ·

(
(
w + βm

m− w
)d−j

)2

= 2
n
2

d∑
j=0

(
d

j

)
(
w

m
)j(1− w

m
)d−j︸ ︷︷ ︸

Pr[Ej]

·(w + βm

m− w
)d−j = 2

n
2 (β +

2w

m
)d ,

where the first inequality is due to that xTr is implied by tx̄1 , . . . , t
x̄
d (i.e., xTr is the parity bit

of ⊕d
i=1t

x̄
i), the second inequality follows from Vazirani’s XOR lemma and the third inequality

is due to Piling-up lemma, in particular, aTC ∈ Fm
2 is a balanced string with (1±β)m

2 1’s and
thus its substring aTCx ∈ Fm−w

2 has (m−w2) ± (w+βm
2) 1’s and each bit 1 of rx,j hits the 1’s in

aTCx with probability 1
2 ±

w+βm
2(m−w) . Finally, we compute noise rate µ by the following:

1− 2µ = Pr[xTr = 0]− Pr[xTr = 1] =
d∑

i=0

(
d

i

)
(
−w
m

)i(1− w

m
)d−i = (1− 2w

m
)d .

3.3 On the Non-triviality of Code Smoothing
As discussed in Remark 3.1, the worst-case to average-case reduction in [BLVW19] may only
give rise to the nO(λ)-hardness of LPN on noise rate µ = 1/2− 2−Ω(λ). Ideally, the dependency
of µ on λ would be removed such that the noise rate of LPN µ can be kept constant while
assigning a large value to λ to enjoy sub-exponential hardness for LPN. This will be goal of this
paper.

Before we proceed, it is worth to repeat what we pointed out in the introduction that
a better smoothing lemma is non-trivial without new ideas. The possibilities of smoothing

10

linear binary codes can be investigated existentially using a probabilistic argument. The code
smoothing lemma, as stated in (1), can be seen as deterministic randomness extractor from
Bernoulli-like distributions. Consider C to be uniform over ∈ Fn×m

2 instead of a fixed one,
then r has average min-entropy roughly d log(m/d) even given the single bit leakage xTr, and
thus by the leftover hash lemma SD

(
(C,Cr,xTr), (C,Un,x

Tr)
)
≤ 2−n for d log(m/d) = 3n.

It follows by Markov inequality that there exists at least a (1 − 2−n/2)-fraction of “good” C

satisfying SD
(
(Cr,xTr), (Un,x

Tr)
)
≤ 2−n/2. This seemingly opens new possibilities especially

in the sub-exponential hardness regime. For example, assume the NCP problem on a “good”
code is 2Ω(

√
n)-hard (in the worst case) for noise rate w

m = 1√
n

, d = O(
√
n), and m = 2O(

√
n)

then LPNn,µ,q is 2Ω(
√
n)-hard against constant noise (see (2)). However, so far we only consider a

specific value of x for which there is a 2−n/2 fraction of C that fails the randomness extraction,
and by summing over all the possible x ∈ Rm

w the fraction of “bad” C amounts up to
(
m
w

)
2−n/2,

which is useless since
(
m
w

)
is super-exponential for w = O(2

√
n/
√
n). To summarize, the existence

of more meaningful smoothing lemma for binary linear code crucially relies on tighter proof
techniques and better exploitation of the actual code/distribution in consideration to beat the
union bound (so that “bad” C for different values of x mostly coincide and they jointly constitute
only a negligible fraction).

3.4 Worst-case Sub-exponential Hardness for LPN
We obtain the following worst-case to average-case reductions for LPN, where d log(m/d) = Ω(n)
is a necessary entropy condition (which is implicit in (1) of Theorem 3.3) and the values of β,
k, and ζ are chosen to ensure the existence of respective codes (Lemma 2.1 and Lemma 2.2).

Theorem 3.4 (W/A-reduction for β-balanced codes) Assume that the balNCPn,m,w,β is
(T ,ϵ)-hard in the worst case for β = 2

√
n/m, then LPNn,µ,q is (T −O(nmq), ϵ+ q·2−Ω(d)

1−2µ)-hard
for µ = 1

2 −
1
2(1−

2d
m)w, any q and d satisfying d log(m/d) ≥ 4n.

Theorem 3.5 (W/A-reduction for independent codes) Assume that the indNCPn,m,w,k,ζ

is (T ,ϵ)-hard in the worst case for k = 16d
7 and ζ = 2−n, then LPNn,µ,q is (T − O(nmq),

ϵ+ q·2−Ω(d)

1−2µ)-hard for µ = 1
2 −

1
2(1−

2d
m)w, any q and d satisfying d log(m/d) ≥ 7n.

Proof sketch. The proofs of Theorem 3.4 and Theorem 3.5 use the NCP instance to LPN
sample conversion as described in Algorithm 1 except for sampling every ri ← B d

m
instead of

ri ← Rd,m. The conclusions follow from the respective smoothing lemmas (Lemma 3.6 and
Lemma 3.9). While replacing Rd,m with B d

m
seems equivalent in terms of the resulting noise

rate µ (almost same as (2) except that d and w are swapped), the fact that bits of ri are all
independent is crucial in obtaining more generic security bounds for δ that allow for a wider
range of parameter choices. □

3.4.1 A comparison with [BLVW19].

With appropriate parameter assignment to Theorem 3.4, we obtain comparable results to
[BLVW19] (see Theorem 3.2). Following [BLVW19], we consider balanced code with noise
rate w/m = log2 n/n. As explained in Remark 2.1, while β ≥ 2

√
n/m ensures the overwhelm-

ing abundance of the balanced code, the existence condition does not impose much less, i.e.,
β ≥ 1.66

√
n/m. It is convenient to fix β = 2

√
n/m as larger values for β can only lead to larger

d and renders LPN’s noise µ closer to uniform. We give the comparison in Table 1 with various
values for m ≥ n1+ϵ. Note that the NCP is hard up to T = nO(logn) due to known attacks,

11

Table 1: Restate Theorem 3.4 and its analogue in [BLVW19] as “T -wc-hardness
of “NCP(n,m, w

m) on β-balanced code implies T ′-ac-hardness of LPN(n, q, µ)” for m ∈
{n1.2, n2, . . . , 100}, where w

m = log2 n
n , β = 2

√
n/m, T ′ = T −O(nmq), q = poly(n).

LPN’s noise rate µ from LPN’s noise rate µ
m [BLVW19] (see Theorem 3.2) from Theorem 3.4
n1.2 1

2 − n−14 1
2 − n−58

n2 1
2 − n−3 1

2 − n−12

n3 1
2 − n−1.4 1

2 − n−6

n9 1
2 − n−1.4 1

2 − n−1.4

n10 1
2 − n−1.4 1

2 − n−1.3

n100 1
2 − n−1.4 1

2 − n−0.1

and the reduction requires T ′ = T −O(nmq) > 0, so here we let m = poly(n), and q = poly(n).
In [BLVW19] the constraint on d is implied by (1), i.e.,

2
n+1
2 · (2w

m
+ β)d = 2

n+1
2 · (2 log

2 n

n
+ β)d = negl(n)

while Theorem 3.4 explicitly sets d log(m/d) = 4n. Substituting d into the noise rate of LPN,
which is roughly µ ≈ 1/2− e−

2w
m

d+O(1) in both cases, yields

µ ≈

 1/2− n
−2.88 logn

(logm−logn) for n3

log4 n
> m ≥ n1+ϵ

1/2− n−1.44 for m ≥ n3

log4 n

for [BLVW19], and µ ≈ 1/2−n
−11.54 logm
(logm−logn) for m ≥ n1+ϵ in our case. As we can see from Table 1,

our result is slightly (by a factor of 4 in the exponent) worse than [BLVW19] for m < n3, and
the gap decreases from m ≥ n3. Our result starts to show its advantage for m ≥ n9. In other
words, [BLVW19] stays at µ ≈ 1/2− n−1.4 and ceases to improve for m ≥ n3. This is because
for m ≥ n3 it is 2 log2 n/n (instead of β ≤ 2/n) that dominates the term (1) above, and thus
one can no longer trade β for better µ regardless how small β is.

Our result admits a wider range of trade-offs between m and µ. More importantly, when m
goes beyond poly(n) it enables to guarantee sub-exponential hardness for constant-noise LPN.
In particular, we now assume that there exists constant ε such that the NCP problem is is
2ε

w
m
n-hard at noise rate w

m and codeword length m = 2
ε
8

w
m
n. Note that refuting this assumption

means that we can do arbitrary polynomial speedup over the current best known algorithms in
solving the respective NCPs, which is a win-win situation.

Theorem 3.6 (Sub-exponential hardness for LPN) Assume that either (1) balNCPn,m,w,β

with β = 2
√
n/m, or (2) indNCPn,m,w,k,ζ with k = 16d

7 and ζ = 2−n, is 2Ω(n1−c)-hard at noise
rate w

m = n−c and codeword size m = 2Ω(n1−c), then depending on the value of c we have

Case 0 < c < 1/2: LPNn,µ,q is (2Ω(n1−c), 2−Ω(nc))-hard for 0 < µ = O(1) < 1/2 and q = 2Ω(nc);

Case 1/2 ≤ c < 1: LPNn,µ,q is 2Ω(n1−c)-hard for 0 < µ = O(1) < 1/2 and q = 2Ω(n1−c).

Proof sketch. This is a corollary of Theorem 3.4 and Theorem 3.5 (from the respective
assumptions) for w

m = n−c, µ = O(1) (s.t. w
md = O(1)), d log(m/d) = O(n) and T = Ω(n1−c).

Note that 1/T + q2−Ω(d) = 2−Ω(n1−c) + 2−Ω(nc), which is why the value of c is considered. □

12

3.5 Smoothing balanced codes
Our smoothing lemma benefits from Lemma 3.4 which tightly relates the bound on the condi-
tional case SD

(
(Cr,xTr) , (Un,x

Tr)
)

to that of the unconditional case SD(Cr,Un), regardless
of which x is used. Note that this would not have been possible if r were not sampled from
the Bernoulli distribution that is coordinate-wise independent. We first introduce Lemma 3.3
based on which Lemma 3.4 is built.

Lemma 3.3 Let p be a random variable over Fn
2 , and let c be any constant vector over Fn

2 .
Then, we have

SD(p⊕ (e1c),Un) ≥ (1− 2a) · SD(p,Un) ,

where e1
$←− Ba (0 ≤ a ≤ 1/2) and e1c denotes scalar vector multiplication between e1 and c.

Proof. We use the shorthand px
def
= Pr[p = x]−2−n for any x ∈ Fn

2 . Observe that any non-zero
c divides Fn

2 into two disjoint equal-size subsets S1, S2 ⊂ Fn
2 such that every p ∈ S1 implies

(p+ c) ∈ S2 and vice versa. Therefore,

SD
(
p⊕ (e1c),Un

)
=

1

2

∑
x∈Fn

2

∣∣∣px(1− a) + px⊕ca
∣∣∣

≥ 1

2

∑
x∈Fn

2

(
|px|(1− a)− |px⊕c|a

)
=

1

2

∑
x∈Fn

2

(
|px|(1− 2a)

)
= (1− 2a) · SD(x,Un) .

□

Lemma 3.4 For any matrix C ∈ Fn×m
2 , any x ∈ Rm

w and any 0 ≤ a ≤ 1/2 we have

SD(Cxrx,Un) ≤
SD(Cr,Un)

(1− 2a)w
,

where r← Bma , Cx ∈ Fn×(m−w)
2 (resp., rx ∈ Fm−w

2) denotes the submatrix of C (resp., subvector
of r) by keeping only columns (resp., bits) corresponding to the positions of bit-0 in x respectively.

Proof. We have Cr = Cxrx +
⊕w

i=1 eici where ei ← Ba and ci is the i-th column vector of
C \Cx (i.e., the columns of C that are excluded from Cx). By applying Lemma 3.3 w times
we get

SD(Cr,Un) ≥ (1− 2a)w · SD(Cxrx,Un) .

□
We need the following corollary of two-source extractors to prove the smoothing lemma.

Recall that two-source extractor distills almost uniform randomness from pair-wise independent
sources bT and r, while Corollary 3.1 shows the result holds even when bT is fixed (has no
entropy at all) as long as certain conditioned are met.

Corollary 3.1 For random variable r and distribution D defined over Fm
2 and F2 respectively,

define set BD,r
def
= {bT : bTr ∼ D}, where H∞(r) = kr, and |BD,r| ≥ 2kb. Then, for any

bT ∈ BD,r it holds that
SD(bTr, U1) ≤ 2−(

kb+kr−m

2
+1) .

13

Proof. Fix an arbitrary bT ∈ BD,r, and let b′T be a random variable that is uniform over BD,r,
we have

SD(bTr, U1) = SD(D,U1) = SD
(
(b′T,b′Tr), (b′T, U1)

)
≤ 2−(

kb+kr−m

2
+1) ,

where the equalities are simply by the definitions of BD,r and b′T, and the inequality follows
from the two source extractor lemma below. □

Lemma 3.5 (Two-source extraction via inner product) For independent random vari-
ables bT, r ∈ Fm

2 with H∞(bT) = kb and H∞(r) = kr we have

SD
(
(bT,bTr), (bT, U1)

)
≤ 2−(

kb+kr−m

2
+1) .

Lemma 3.6 (Smoothing lemma for balanced codes) Let β ≤ 2
√
n/m, d log(m/d) ≥ 4n,

d = O(n), and let C ∈ Fn×m
2 be any generator matrix for a β-balanced [m,n]-linear code, then

for every x ∈ Rm
w and r← Bmd

m

it holds that µ = Pr[xTr = 1] = 1
2 −

1
2(1−

2d
m)w and

δC,x = SD
(
(Cr,xTr) , (Un,x

Tr)
)
≤ 2−Ω(d)

1− 2µ
.

Proof. The noise rate µ directly follows from the Piling-up lemma.

SD(Cr,Un)

≤ SD(Cr′,Un) + 2−Ω(d)

≤

√√√√ ∑
0 ̸=a∈Fn

2

SD
(

aTC︸︷︷︸
bT

r′, U1

)2
+ 2−Ω(d)

≤

√√√√ ∑
0 ̸=a∈Fn

2

SD
(
(b′T,b′Tr′), (b′T,U1)

)2
+ 2−Ω(d)

≤ 2
n
2 · 2

(log e)β2

2 m+
logm

2 −d(1−δ) log(m
d(1−δ)

)

2 + 2−Ω(d)

= 2−Ω(d)

where the first inequality follows from a Chernoff bound that r is 2−Ω(d)-close to some r′ that
is a convex combination of Rm

d(1−δ), Rm
d(1−δ)+1, · · · , Rm

d(1+δ) for any small constant δ > 0, the

second is due to Vazirani’s XOR lemma. By the definition of balanced code bT def
= aTC ∈ Fm

2

satisfies (1−β)m
2 ≤ |bT| ≤ (1+β)m

2 and we assume WLOG |bT| = (1−β)m
2 so that bTr′ is maxi-

mally biased. The third and fourth inequalities follow from Corollary 3.1 based on two-source
extractors. In particular, let b′T be a random variable uniformly drawn from Rm

(1−β)m
2

, i.e,

the set of all values with the same Hamming weight as bT. We observe that r′ ∼ Rm
j

implies that every bT
1 and bT

2 with |bT
1 | = |bT

2 | must satisfy bT
1 r
′ ∼ bT

2 r
′ and therefore

SD(bTr′, U1) = SD
(

(b′T,b′Tr′), (b′T, U1)
)

. This allows to apply the strong two-source
extractor, where Fact 2 is used to estimate the entropy of b′T, i.e., log

(m
(1−β)m

2

)
. Finally, we

set β = 2
√
n/m, d log(m/d) = 4n and sufficiently small δ to complete the proof. Following

the proof of Theorem 3.3, let Cx ∈ Fn×(m−w)
2 and Cx̄ ∈ Fn×w

2 denote the submatrices of C
by keeping columns corresponding to the 0’s and 1’s in xT respectively, and let rx ∈ Fm−w

2

14

and rx̄ ∈ Fw
2 denote the subvectors of r that correspond to the positions of 0’s and 1’s in xT

respectively. This allows to complete the proof by

SD
(
(Cr,xTr) , (Un,x

Tr)
)
≤ SD

(
(Cxrx, rx̄) , (Un, rx̄)

)
= SD(Cxrx,Un) ≤

SD(Cr,Un)

(1− 2d
m)w

=
2−Ω(d)

(1− 2d
m)w

.

where the first inequality is due to that (Cr,xTr) is implied by (Cxrx, rx̄), i.e., Cr = Cxrx +
Cx̄rx̄ and xTr = ⟨1w, rx̄⟩, and so is (Un,x

Tr) by (Un, rx̄), the equality is due to the indepen-
dence of rx and rx̄, and the last inequality follows from Lemma 3.4. □

As stated in Lemma 3.7, it is not hard to see a lower bound on smoothing any binary linear
code (i.e., not just the balanced code considered above) with respect to r ← Bmd

m

. This means
that our smoothing lemmas (Lemma 3.6 and Lemma 3.9) are optimal (up to some constant
factor in the exponent) for µ ≤ 1/2− 2−O(d).

Lemma 3.7 (Lower bound on code smoothing) For any C ∈ Fn×m
2 , for any x ∈ Fm

2 and
r← Bmd

m

with d
m = o(1) it holds that

SD
(
(Cr,xTr) , (Un,x

Tr)
)
≥ 2−O(d) .

Proof. Denote the first row of C by cT1

SD
(
(Cr,xTr) , (Un,x

Tr)
)
≥ SD(cT1 r,U1) =

(1− 2d
m)|c

T
1 |

2
≥ 2−O(d) ,

where the equality is the piling-up lemma, and the last inequality is due to |cT1 | ≤ m and
1− x = 2−O(x) for x = o(1). □

3.6 Smoothing Independent Codes
The proof of the smoothing lemma relies on following Lemma 3.8, which is abstracted out from
the leftover hash lemma (see Appendix A for its proof).

Lemma 3.8 (Generalized Hash Lemma) For any function h : Fm
2 → Fn

2 and any random
variable r over Fm

2 we have

SD
(
h(r), Un

)
≤ 1

2

√
2n · Col(h(r))− 1 .

Lemma 3.9 (Smoothing lemma for independent codes) Let d log(m/d) ≥ 7n and logm =
o(n), and let C ∈ Fn×m

2 be any generator matrix for a (k = 16d
7 , 2−n)-independent [m,n]-linear

code C ∈ Fm
2 , then for every x ∈ Rm,w and r← Bmd

m

it holds that

δC,x = SD
(
(Cr,xTr) , (Un,x

Tr)
)
≤ 2−Ω(d)

(1− 2d
m)w

,

µ = Pr[xTr = 1] =
1

2
− 1

2
(1− 2d

m
)w .

Proof. For any constant 0 < δ < 1, r is 2−Ω(d)-close to some convex combination of Rm
d(1−δ),

Rm
d(1−δ)+1, · · · , Rm

d(1+δ), which is denoted by r′. By Lemma 3.8,

SD(Cr , Un) ≤ 2−Ω(d) +
√

2n · Col(Cr′)− 1 .

15

We assume WLOG r′ ← Rm
d(1−δ) and consider i.i.d. r1, r2 ← Rm

d(1−δ) such that

Col(Cr′) = Pr[Cr1 = Cr2] = Pr[Cr̈]

where for constant 0 < ∆ < 1 variable r̈ def
= r1−r2 follows a convex combination of Rm

2d(1−δ)(1−∆),
Rm

2d(1−δ)(1−∆)+1, . . ., Rm
2d(1−δ) whose weights lie in between8

k/2 = 2d(1− δ)(1−∆) ≤ weight ≤ 2d(1 + δ) = k

for δ = 1/7 and ∆ = 1/3 except with error

d(1−δ)∑
i=d(1−δ)∆

(
d(1−δ)

i

)(m−d(1−δ)
d(1−δ)−i

)(
m

d(1−δ)
) ≤ 2

d(1−δ)(1−∆) log m
d(1−δ)(1−∆)

2
d(1−δ) log m

d(1−δ)

≤ 2
−d(1−δ)∆ log m

d(1−δ) .

The error is upper bounded by 2−2n (for δ = 1/7 and ∆ = 1/3). Thus,√
2n · Col(Cr′)− 1 ≤

√
2n · (2−n(1 + 2−n) + 2−2n)− 1 = 2−Ω(n) .

and SD(Cr , Un) ≤ 2−Ω(d). The rest follow the same steps as in the proof of Lemma 3.6. □

3.7 Discussions
We conclude that the constant-noise LPN problem is (T = 2Ω(n1−c), ϵ = 2−Ω(nmin(c,1−c)), q =

2Ω(nmin(c,1−c)))-hard assuming that the NCP (on the balanced/independent code) at the low-noise
rate τ = n−c is (T ′ = 2Ω(τn), ϵ′ = 2−Ω(τn),m = 2Ω(τn))-hard in the worst case. Unfortunately,
we need (T = 2ω(n

0.5), ϵ = 2−ω(n
0.5), q = 2Ω(n0.5))-hardness for constructing collision resistant

hash functions and public-key encryptions [YZ16,YZW+19], where the super-constant omitted
by ω(·) (representing the gap between what we prove for c = 0.5 and what is needed for
PKE/CRH) can be arbitrarily small.9 We explain in details below.

Theorem 3.7 ([YZW+19]) Let n be the security parameter, and let µ = µ(n), k = k(n),
q = q(n), t = t(n) and T = T (n) such that t2 ≤ q ≤ T = 2

8µt
ln 2(1−2µ) . For each A ∈ Fn×q

2 ,
define compressing function hA : Flog(q

t
)t

2 → Fn
2 with log(qt)t > n by hA(x) = A · Expand(x),

where Expand expands any string of length log(qt)t into one of length q with Hamming weight no
greater than t, and hA is computable in time O(q log q) (see [YZW+19, Construction 3.1] for
concrete instantiation of hA). Assume that the DLPNn,µ,q is T -hard, then for every probabilistic
adversary A of running time T ′ = 2

4µt
ln 2(1−2µ)

−1

Pr
A

$←−Fn×q
2

[(y,y′)← A(A) : y ̸= y′ ∧ hA(y) = hA(y′)] ≤ 1

T ′
.

Note that the above theorem does not state “hA is a T ′-hard collision resistant hash (CRH)”
as it is computable in time O(q log q) while q = 2Ω(

√
n) is not polynomial in the security param-

eter n. In particular, length requirement q ≤ T (any adversary making q queries runs in time
at least q) implies, by taking a logarithm, log(q) = O(t) (recall that µ is constant). Since the
compressing condition requires log(qt)t > n we need to set q and t to be at least 2Ω(

√
n) and

Ω(
√
n) respectively. The authors of [YZW+19] offers a remedy to solve this problem. Switch

to a new security parameter λ = q, and let t = log λ · ω(1) for any arbitrarily small ω(1).
8For up limit on |r̈| we need to consider the other extreme case r′ ← Rm

d(1+δ), where the corresponding r̈ is a
convex combination of Rm

2d(1+δ)(1−∆), Rm
2d(1+δ)(1−∆)+1, . . ., Rm

2d(1+δ) up to small error.
9The difference between decisional and computational LPN is omitted since 2p-hard LPNn,µ,q implies 2Ω(p)-

hard DLPNn,µ,q for any p = ω(logn), µ = O(1) and q ≥ poly(n) due to the sample-preserving reduction [AIK07].

16

This ensures that hA is computable in time poly(λ) while remaining λω(1)-collision resistant.
Therefore, we need (T = 2ω(n

0.5), ϵ = 2−ω(n
0.5), q = 2Ω(n0.5))-hardness for constant-noise LPN

to construct collision resistant hash functions, where ω(·) omits an arbitrary super constant.
Neither can we construct public-key encryptions from (T = 2Ω(n0.5), ϵ = 2−Ω(n0.5), q =

2Ω(n0.5))-hard LPN due to the same ω(1) gap factor (see Theorem 3.8). The reason is essentially
similar to the case of CRH. In fact, in some extent CRH and PKE are dual to each when
being constructed from LPN. The authors of [YZ16] already minimized the hardness needed for
LPN to construct PKE, and also used the parameter switching technique. We restate the main
results of [YZ16] below.

Theorem 3.8 ([YZ16]) Assume that DLPNn,µ,q is (T = 2ω(n
0.5), ϵ = 2−ω(n

0.5), q = 2n
0.5)-

hard for any constant 0 < µ ≤ 1/10, there exist IND-CCA secure public-key encryption schemes.

We also mention that our result fails to transform the BKW algorithm (for LPN) into a
worst-case solver for constant-noise NCP (i.e., w

m = O(1)) again due to some small gap. In par-
ticular, we recall the variant of BKW algorithm in Theorem 3.9 below, and we informally state
our reduction results (Theorem 3.4 and Theorem 3.5) in Lemma 3.10. In order for Lemma 3.10
to compose with Theorem 3.9, we need q = n1+ε and d = O(log n) to make q·2−Ω(d)

1−2µ < 1 and thus
µ = 1

2 − e−O(w
m
d) = 1

2 − 2−O(logn), which does not meet the noise rate needed by Theorem 3.9,
i.e., µ = 1/2− 2−(logn)

δ for any constant 0 < δ < 1.

Theorem 3.9 ([Lyu05]) Let q = n1+ε and µ = 1/2 − 2−(logn)
δ for any constants ε > 0 and

0 < δ < 1. LPNn,µ,q can be solved in time 2O(n/ log logn) with overwhelming probability.

Lemma 3.10 (Our reduction, informal) Any algorithm that solves LPNn,µ,q in time T with
success rate p, implies another worst-case algorithm (for the NCP considered in Theorem 3.4 and
Theorem 3.5) of running time T +O(nmq) with success rate p− q·2−Ω(d)

1−2µ , where µ = 1
2−e

−O(w
m
d).

4 Concluding Remarks
We first show that the hardness of high-noise large-field LPN is reducible from the worst-case
hardness of lattice problems via a simple reduction from LWE to LPN over the same modulus.
We then show that constant-noise LPN is (T = 2Ω(n1−c), ϵ = 2−Ω(nmin(c,1−c)), q = 2Ω(nmin(c,1−c)))-
hard assuming that the NCP (on the balanced/independent code) at the low-noise rate τ = n−c

is (T ′ = 2Ω(τn), ϵ′ = 2−Ω(τn),m = 2Ω(τn))-hard in the worst case, improving upon the work
of [BLVW19]. However, the result is not strong enough to imply collision resistant hash functions
or public-key encryptions due to the ω(1) gap term. We leave it as an open problem whether
the gap can be closed.

References
[AAB15] Benny Applebaum, Jonathan Avron, and Christina Brzuska. Arithmetic cryp-

tography: Extended abstract. In Tim Roughgarden, editor, ITCS 2015, pages
143–151, Rehovot, Israel, January 11–13, 2015. ACM.

[ABSS97] Sanjeev Arora, László Babai, Jacques Stern, and Z Sweedyk. The hardness of
approximate optima in lattices, codes, and systems of linear equations. Journal of
Computer and System Sciences, 54(2):317–331, 1997.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In
Advances in Cryptology - CRYPTO 2009, pages 595–618, 2009.

17

[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron.
Secure arithmetic computation with constant computational overhead. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 223–254, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidel-
berg, Germany.

[AIK07] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with con-
stant input locality. In Advances in Cryptology - CRYPTO 2007, pages 92–
110, 2007. Full version available at http://www.eng.tau.ac.il/~bennyap/pubs/
input-locality-full-revised-1.pdf.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In
44th Annual Symposium on Foundations of Computer Science, pages 298–307,
Cambridge, Massachusetts, October 2003. IEEE.

[APY09] Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation
algorithms for the nearest codeword problem. In Algebraic Methods in Computa-
tional Complexity, 2009.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive se-
cure computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 291–308. ACM Press, Novem-
ber 11–15, 2019.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 896–912, Toronto, ON, Canada, October 15–19,
2018. ACM Press.

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryp-
tographic primitives based on hard learning problems. In Douglas R. Stinson,
editor, Advances in Cryptology—CRYPTO ’93, volume 773 of LNCS, pages 278–
291. Springer-Verlag, 22–26 August 1993.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 533–556, Copenhagen, Denmark, May 11–15, 2014. Springer,
Heidelberg, Germany.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set
decoding. In Advances in Cryptology - EUROCRYPT 2012, pages 520–536, 2012.

[BK02] Piotr Berman and Marek Karpinski. Approximating minimum unsatisfiability of
linear equations. In Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 514–516. Society for Industrial and Applied Mathe-
matics, 2002.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. Journal of the ACM, 50(4):506–519,
2003.

18

http://www.eng.tau.ac.il/~bennyap/pubs/input-locality-full-revised-1.pdf
http://www.eng.tau.ac.il/~bennyap/pubs/input-locality-full-revised-1.pdf

[Bli16] Vladimir M. Blinovsky. Proof of tightness of Varshamov - Gilbert bound for binary
codes. CoRR, abs/1606.01592, 2016.

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding expo-
nents: Ball-collision decoding. In Advances in Cryptology - CRYPTO 2011, pages
743–760, 2011.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 575–584, Palo Alto, CA, USA,
June 1–4, 2013. ACM Press.

[BLVW19] Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and Daniel Wichs.
Worst-case hardness for LPN and cryptographic hashing via code smoothing. In
Advances in Cryptology - EUROCRYPT 2019, volume 11478 of Lecture Notes in
Computer Science, pages 619–635. Springer, 2019.

[CC98] Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-
weight words in a linear code: Application to mceliece’s cryptosystem and to
narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory,
44(1):367–378, 1998.

[CCG+07] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and Vinod
Vaikuntanathan. Secure computation from random error correcting codes. In
Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 291–310,
Barcelona, Spain, May 20–24, 2007. Springer, Heidelberg, Germany.

[CKT16] David Cash, Eike Kiltz, and Stefano Tessaro. Two-round man-in-the-middle secu-
rity from LPN. In Proceedings of the 13th Theory of Cryptography (TCC 2016-A),
pages 225–248, 2016.

[DDN14] Bernardo David, Rafael Dowsley, and Anderson C. A. Nascimento. Universally
composable oblivious transfer based on a variant of LPN. In Proceedings of the
13th International Conference on Cryptology and Network Security (CANS 2014),
pages 143–158, 2014.

[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto
Trifiletti. TinyOLE: Efficient actively secure two-party computation from oblivi-
ous linear function evaluation. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2263–2276, Dallas, TX,
USA, October 31 – November 2, 2017. ACM Press.

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message au-
thentication, revisited. In Proceedings of the 31st Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques (EUROCRYPT
2012), pages 355–374, 2012.

[DMS03] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating
the minimum distance of a linear code. IEEE Transactions on Information Theory,
49(1):22–37, 2003.

[Döt15] Nico Döttling. Low noise LPN: KDM secure public key encryption and sample
amplification. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages
604–626, Gaithersburg, MD, USA, March 30 – April 1, 2015. Springer, Heidelberg,
Germany.

19

[FGKP06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Pon-
nuswami. New results for learning noisy parities and halfspaces. In 47th Sym-
posium on Foundations of Computer Science, pages 563–574, Berkeley, CA, USA,
October 21–24 2006. IEEE.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169–178, Bethesda, MD, USA,
May 31 – June 2, 2009. ACM Press.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In D. S. Johnson, editor, Proceedings of the Twenty First Annual ACM
Symposium on Theory of Computing, pages 25–32, Seattle, Washington, 15–17
May 1989.

[GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure obliv-
ious linear function evaluation with constant overhead. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages
629–659, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany.

[Gol11] Oded Goldreich. Three XOR-lemmas - an exposition. In Studies in Complexity
and Cryptography, pages 248–272. 2011.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 545–554, Palo Alto, CA, USA, June 1–4, 2013.
ACM Press.

[HB01] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In
Proceedings of the 7th International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT 2001), pages 52–66, 2001.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in
Complexity Theory Conference, pages 134–147, 1995.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation
with no honest majority. In Omer Reingold, editor, TCC 2009, volume 5444 of
LNCS, pages 294–314. Springer, Heidelberg, Germany, March 15–17, 2009.

[JKPT12] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Commitments
and efficient zero-knowledge proofs from learning parity with noise. In Advances
in Cryptology – ASIACRYPT 2012, pages 663–680, 2012.

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. Cryptology ePrint Archive, Report 2020/1003, 2020.
https://eprint.iacr.org/2020/1003.

[JW05] Ari Juels and Stephen A. Weis. Authenticating pervasive devices with human pro-
tocols. In Victor Shoup, editor, Advances in Cryptology—CRYPTO 2005, volume
3621 of LNCS, pages 293–308. Springer-Verlag, 14–18 August 2005.

[KF15] Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for LWE
with applications to cryptography and lattices. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 43–62,
Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

20

https://eprint.iacr.org/2020/1003

[KPC+11] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi.
Efficient authentication from hard learning problems. In Proceedings of the 30th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT 2011), pages 7–26, 2011.

[KS06] Jonathan Katz and Ji Sun Shin. Parallel and concurrent security of the hb and
hb+ protocols. In Serge Vaudenay, editor, Advances in Cryptology—EUROCRYPT
2006, volume 4004 of LNCS, pages 73–87. Springer-Verlag, 2006.

[LM13] Vadim Lyubashevsky and Daniel Masny. Man-in-the-middle secure authentication
schemes from lpn and weak prfs. In Advances in Cryptology - CRYPTO 2013,
pages 308–325, 2013.

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, decoding ran-
dom linear codes, and the subset sum problem. In Proceedings of the 9th Interna-
tional Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM 2005), pages 378–389, 2005.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear
codes in Õ(20.054n). In Proceedings of the 17th International Conference on the
Theory and Application of Cryptology and Information Security (ASIACRYPT
2011), pages 107–124, 2011.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages
333–342, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages
84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In Coding Theory
and Applications, 3rd International Colloquium, pages 106–113, 1988.

[Sti02] D. R. Stinson. Universal hash families and the leftover hash lemma, and applica-
tions to cryptography and computing. Journal of Combinatorial Mathematics and
Combinatorial Computing, 42:3–31, 2002. Available at http://www.cacr.math.
uwaterloo.ca/~dstinson/publist.html.

[Vaz86] Umesh Virkumar Vazirani. Randomness, Adversaries and Computation (Random
Polynomial Time). PhD thesis, 1986. AAI8718194.

[WYKW20] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast,
scalable, and communication-efficient zero-knowledge proofs for boolean and arith-
metic circuits. Cryptology ePrint Archive, Report 2020/925, 2020. https:
//eprint.iacr.org/2020/925.

[YZ16] Yu Yu and Jiang Zhang. Cryptography with auxiliary input and trapdoor
from constant-noise LPN. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 214–243, Santa Barbara,
CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[YZW+19] Yu Yu, Jiang Zhang, Jian Weng, Chun Guo, and Xiangxue Li. Collision resistant
hashing from sub-exponential learning parity with noise. In Steven D. Galbraith
and Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS,
pages 3–24, Kobe, Japan, December 8–12, 2019. Springer, Heidelberg, Germany.

21

http://www.cacr.math.uwaterloo.ca/~dstinson/publist.html
http://www.cacr.math.uwaterloo.ca/~dstinson/publist.html
https://eprint.iacr.org/2020/925
https://eprint.iacr.org/2020/925

A Proofs Omitted

Proof of Lemma 2.2. For C
$←− Fn×m

2 and every r ∈ Fm
2 define

zC,r
def
=

{
1, if C · r = 0
0, otherwise C · r ̸= 0

For every r ̸= 0, the expectation E
C

$←−Fn×m
2

[zC,r] = 2−n, and for every two distinct r1 ̸= r2

variables zC,r1 and zC,r2 are pair-wise independent. For any k/2 ≤ i ≤ k,

Pr
C

$←−Fn×m
2

[∑
r∈Rm

i

zC,r ≥ N · 2−n(1 + ζ)

]

≤ Pr
C

$←−Fn×m
2

[∣∣∣ ∑
r∈Rm

i

zC,r −N · 2−n
∣∣∣ ≥ N2−nζ

]

≤
V ar

[∑
r∈Rm

i
zC,r

]
(N2−nζ)2

=
N2−n(1− 2−n)

(N2−nζ)2
≤ 1

N2−nζ2
≤ 2n+

logm
2
− k

2
log(m/k)

ζ2
,

where N
def
= |Rm

i | ≥
(
m
k/2

)
, the second inequality is by Chebyshev, and the equality is due to the

following: denote z =
∑

r∈Rm
i
zC,r and µ = E[z] and therefore

V ar[z] = E[(z − µ)2]

= E[z2]− 2µE[z] + µ2

= E[z2]− µ2

= E[z2]−N22−2n ,

E[z2] = E
[
(z1 + z2 + . . .+ zN)2

]
= E

[∑
u̸=v

zu · zv
]
+ E

[∑
u

z2u

]
=

∑
u̸=v

E[Xi] · E[Xj] +
∑
u

2−n

= 2−2n(N2 −N) +N2−n = N22−2n +N2−n(1− 2−n) .

We complete the proof by a union bound on all possible values of i. □

Remark A.1 (Why not i ∈ (0, k/2)) Note that the above considers only i ≥ k/2. As we can
see from the above proof, this is because logN = log |Rm

i | = log
(
m
i

)
needs to be Ω(n) to make

the bound meaningful. For small values of i, it is not possible since m is only sub-exponential.

Proof of Lemma 2.3. Let s def
= s1−s2 and x

def
= x1−x2. For any s ̸= 0 the random variable sTC

is uniform over Fm
2 and thus it hits {x ∈ Fm

2 : |x| ≤ 2w} with probability at most
∑2w

i=0

(
m
i

)
/2m.

The conclusion follows by a union bound on all possible s ∈ Fn
2 . □

22

Proof of Lemma 3.8. We denote S def
= Fn

2 and ps = Pr[h(r) = s].

SD
(
h(r), Un

)
=

1

2

∑
s∈S
|ps −

1

|S|
|

=
1

2

∑
s∈S

√
1

|S|
·
(√
|S| ·

∣∣∣∣ps − 1

|S|

∣∣∣∣)
≤ 1

2

√∑
s∈S

(
1

|S|
) ·
∑
s∈S
|S|(ps −

1

|S|
)2

=
1

2

√
2n(
∑
s∈S

p2s)− 1

=
1

2

√
2n · Col(h(r))− 1 ,

where the first inequality is Cauchy-Schwartz, i.e., |
∑

i aibi| ≤
√
(
∑

i a
2
i) · (

∑
i b

2
i).

□

B Inequalities, Theorems and Lemmas
Lemma B.1 (Piling-up lemma) For 0 < µ < 1/2 and ℓ ∈ N+ we have

Pr
[ℓ⊕

i=1

Ei = 0 : E1, . . . , Eℓ ← Bµ
]
=

1

2
(1 + (1− 2µ)ℓ) .

Lemma B.2 (Chebyshev’s inequality) Let Y be any random variable (taking real values)
with expectation µ and standard deviation σ (i.e., V ar[Y] = σ2 = E[(Y − µ)2]). Then, for any
δ > 0 we have Pr[|Y − µ| ≥ δσ] ≤ 1/δ2.

Lemma B.3 (Chernoff bound) Let X1, . . ., Xn be independent random variables and let
X̄ =

∑n
i=1Xi, where Pr[0≤Xi≤1] = 1 holds for every 1 ≤ i ≤ n. Then, for any ∆1 > 0 and

0 < ∆2 < 1,

Pr[X̄ > (1 + ∆1) · E[X̄]] < e−
min(∆1,∆

2
1)

3
E[X̄] ,

Pr[X̄ < (1−∆2) · E[X̄]] < e−
∆2
2
2

E[X̄] .

Fact 1 For any 0 ≤ x ≤ 1, log(1 + x) ≥ x; and for any x > −1 we have log(1 + x) ≤ x/ ln 2.

Fact 2 For k = o(m) we have log
(
m
k

)
= (1 + o(1))k log m

k ; and for β = o(1), log
(

m
m
2
(1−β)

)
=

m(1− β2

2 (log e+ o(1)))− logm
2 +O(1).

Proof of Fact 2. The first inequality follows from the approximation log(n!) = log
(
O(
√
n(ne)

n)
)

23

= 1
2 log n+ n log n− n log e+O(1) and for the second one we have

log

(
m

m
2 (1− β)

)
= log

m!(
m
2 (1− β)

)
!
(
m
2 (1 + β)

)
!

= m logm− m

2
(1− β) log

(m
2
(1− β)

)
−m

2
(1 + β) log

(m
2
(1 + β)

)
− 1

2
logm+O(1)

= m
(
1− log e

2
(1− β)

(
− β − 1

2
β2 + o(β2)

)
− log e

2
(1 + β)

(
β − 1

2
β2 + o(β2)

))
−1

2
logm+O(1)

= m(1− log e

2
β2 + o(β2))− 1

2
logm+O(1) ,

where we use the approximation of log(n!) and for x = o(1), log(1+x) = log e(x− 1
2x

2+o(x2)).
□

Lemma B.4 (Sample-preserving reduction [AIK07]) Any distinguisher D of running time
T with

Pr
A

$←−Fq×n
2 ,s←S,e←E

[D(A,As+ e) = 1]− Pr[D(A,Un) = 1] ≥ ε

implies another algorithm D′ of running time T +O(nq) such that

Pr
A

$←−Fq×n
2 ,s←S,e←E

[D′(A,As+ e, rT) = rTs] ≥ 1

2
+

ε

2
,

where S and E are any distributions over Fn
2 and Fq

2 respectively.

Lemma B.5 (Goldreich-Levin Theorem [GL89]) Any algorithm D of running time T with

Pr[D(f(s), rT) = rTs] ≥ 1

2
+ ε

implies algorithm A of running time O(n
2

ε2
T) such that Prs←S [A(f(s)) = f−1(f(s)))] = Ω(ε3)

n ,
where f is any function on input s← S ∈ Fn

2 and r
$←− Fn

2 .

24

	Introduction
	Learning Parity with Noise
	Nearest Codeword Problem and Worst-case Hardness
	Worst-case to Average-case Reductions for LPN
	Our Contributions

	Preliminaries
	Notations, Definitions and Inequalities
	Binary Linear Codes
	The NCP and LPN problem

	Worst-case to Average-case Reductions for LPN
	Worst-case hardness for large-field LPN
	The worst-case to average-case reduction from BLVW17
	On the Non-triviality of Code Smoothing
	Worst-case Sub-exponential Hardness for LPN
	A comparison with BLVW17.

	Smoothing balanced codes
	Smoothing Independent Codes
	Discussions

	Concluding Remarks
	Proofs Omitted
	Inequalities, Theorems and Lemmas

