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Abstract. We initiate the study of encryption schemes where the de-
cryption keys are unclonable quantum objects, which we call single de-
cryptor encryption. We give a number of initial results in this area:

– We formalize the notion of single decryptor encryption.

– We show that secret-key single decryptor encryption is possible un-
conditionally, in the setting where a limited number of ciphertexts
are given. However, given an encryption oracle, we show that uncon-
ditional security is impossible.

– We show how to use a very recent notion of one-shot signatures,
together with sufficiently powerful witness encryption, to achieve
public key single decryptor encryption.

– We demonstrate several extensions of our scheme, achieving a num-
ber of interesting properties that are not possible classically.

Keywords: Unclonable decryption · Quantum decryption keys · De-
layed decryption.

1 Introduction

Throughout the vast majority of its history, cryptography has offered all-or-
nothing security: either a party knows the secret key and can do everything —
decrypt ciphertexts, authenticate messages, etc — or the party does not know
the secret key, and can do nothing. The honest users are assumed to know the
key, and the adversary does not.

More recently, nuanced and fine-grained functionalities have emerged, where
users are given varying amounts of power. For example, attribute based encryp-
tion [17] allows for specifying an access policy when generating ciphertexts, and
only users whose attributes satisfy the policy can decrypt. Functional encryp-
tion [7] takes this a step further, by allowing various users to only learn certain
functions of the message. In these settings, the adversary may be one of the
users, who has some amount of power, but desires more than their key allows.

Even if a user is permitted to decrypt a given ciphertext, or learn a certain
function of the plaintext, there are still a number of security guarantees one may
wish for against the secret key holder:



– Perhaps we want to enforce that a secret key holder can only decrypt a
certain number of ciphertexts every day. Such a mechanism could be useful
in subscription broadcasts, in order to allow different subscription tiers that
can consume different amounts of content each day.

– Limiting secret key usage to a single device at a time would be very useful
for digital rights management. For example, traitor tracing [11] attempts to
identify users who may have broadcast their secret keys on the web. Limiting
secret key usage to a single device would circumvent the need for such tracing,
by preventing such behavior in the first place.

– If a key has been compromised and stolen by an intruder, it would be useful
to guarantee the detection of such intrusion.

Concepts like attribute-based encryption say nothing about these scenarios. And
for good reason: it is possible in principle to copy the secret key from one device
to another, leaving the original copy intact. Such copying would enable breaking
each of the described scenarios above.

Quantum Information and the No Cloning Theorem. There has been much
progress recently towards building quantum computers, and it seems inevitable
that full-scale quantum computing will eventually be realized.

Quantum computing suggests a solution to the scenarios above: by the no-
cloning theorem [24] which is implied by the principle that quantum operations
are linear, quantum information cannot be copied. Therefore, if we make the
secret key a quantum state, in principle the key cannot be copied in order to
run on more than a single device.

Actually instantiating this idea, however, is highly non-trivial. While no-
cloning insists that in general a quantum state cannot be copied, in its most
basic form it applies essentially to random states. As shown by Wiesner [22] and
Bennett and Brassard [5], such no-cloning is useful for certain tasks like basic
versions of quantum money or information-theoretic key agreement. However,
these applications need no additional functionality from the quantum state, be-
yond the fact that quantum states cannot be copied. In our case, however, not
only do we need secret keys to be unclonable, we need them to be useful secret
keys. This leads to the following natural question:

Can quantum information be used to force a secret
key to only work on a single device at a time.

In other words, we are looking for very strong variants of the no-cloning the-
orem, where the state is not only unclonable, but also useful. A very general
notion of such no-cloning was first investigated by Aaronson [1], who describe
“quantum copy protection”, namely turning general programs into quantum
states that cannot be copied. Such a general notion would naturally encompass
unclonable secret keys. However, this notion suffers from definitional difficul-
ties [2], and has so far not been meaningfully achievable for more than the
simplest of functionalities.

2



Here we take a different approach, and consider unclonable secret keys for
specific cryptographic tasks. This is the approach very recently taken by Amos
et al. [3], who give initial results for the case of authentication. We will instead
initiate the study of unclonable secret keys for the case of encryption, developing
a variety of new schemes and applications.

1.1 This work

In this paper, we initiate the study of encryption where the encryption keys, the
ciphertexts and the messages are classical whereas the decryption key is quantum
and unclonable; we call such an encryption a single-decryptor encryption.

Definitions (Section 2). We begin by introducing essential security definitions
that capture the notion of single decryptors. These definitions span in two main
dimensions; secret-key versus public-key and honestly versus dishonestly gener-
ated keys. We make comparisons between them as well as between these and
standard security such as indistinguishability under chosen message attacks.

Secret-key encryption with honestly generated keys (Section 4). We then move
on to constructions. We start with the simple scenario where there is a classical
encryption key ek and a corresponding quantum decryption key |dk〉. We imagine
the adversary is given |dk〉, and tries to use it to derive two states |dk0〉, |dk1〉
such that both states are capable of decrypting ciphertexts. In the most basic
setting, the adversary must clone the key without knowledge of ek and without
seeing any ciphertexts. Preserving the standard definition of semantic security,
we require that no adversary, given |dk〉 can output two quantum states such
that both of them can be used to distinguish the encryptions of two messages.
We also allow the |dk b〉 to deviate from honest decryption keys and instead take
any form.

We observe that this definition resembles the definition of unclonable encryp-
tion, defined by Broadbent and Lord [10]. There, the setting is slightly different:
the secret (encryption and decryption) key is classical, whereas the ciphertext
is quantum. Security requires that an adversary, given the quantum ciphertext
(that encrypts mb for a random bit b) and no access to the secret key, can-
not output two ciphertexts such that, if later two isolated adversaries are given
the corresponding ciphertext and the secret key, can both predict b. We show
that selectively secure single decryptor encryption and unclonable encryption
are roughly equivalent, by demonstrating how to swap the roles of ciphertext
and decryption key in the Broadbent-Lord protocol. Luckily, they prove that
unclonable encryption is attainable information theoretically by cleverly manip-
ulating BB84 states [6]. Since our black box transformation does not make any
computational assumptions, the resulting scheme is also secure unconditionally.

Moreover, we show that information-theoretic security is impossible in the
setting where the adversary is given arbitrarily many ciphertexts before perform-
ing the splitting attack, even if the adversary is not given the encryption key.
An essential tool is the gentle measurement lemma that states that deterministic
quantum computations can always be rewound.
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Public-key construction (Section 5). We continue with a public-key construc-
tion, and also in the setting on dishonestly generated keys. This means that the
adversarial decryptor generates his own (classical) encryption key ek , and he
then tries to devise two arbitrary decryption keys |dk1〉, |dk2〉 each capable of
decrypting ciphertexts to ek . The challenging issue here is that the adversary is
free to choose ek , |dk1〉, |dk2〉 all together by whatever means he chooses.

We prove that one-shot signatures [3] and extractable witness encryption
with quantum auxiliary information [13, 15] suffice to build such a primitive.
A one-shot signature is a signature scheme with a quantum signing key that
allows for signing any single message. However, signing two different messages
with respect to the same verification key is computationally infeasible. Witness
encryption allows for encrypting to NP statements, with the guarantee that (1)
any witness allows for decryption, and (2) the only way to decrypt is, intuitively,
to have a witness.

The idea behind such a scheme is to first generate a public key-secret key
pair of a one-shot signature. To encrypt a message, one first picks randomness r
and witness encrypts m with respect to the language {(r, σ)} where σ is a valid
signature of r. Crucially, any adversary who is able to split the decryption key,
should also be able to generate two different signatures with respect to the same
public key, therefore violating security of one-shot signatures.

Curiously, whereas one-shot signatures are inherently a one-time object —
security implies that the secret key is destroyed after signing — we demonstrate
how to implement the above idea so as to preserve the decryption key for future
ciphertexts. In particular, the quantum decryption key in our scheme can be
re-used arbitrarily many times.

Broadcast encryption with unclonable decryption keys (Section 6). Motivated by
the goal of traitor tracing, we consider a variant of broadcast encryption with
unclonable decryption keys. Such a scheme would be useful for digital rights
management, as it would prevent a user from publishing their secret key, allowing
for the decryption of all broadcasts. Classically, it is impossible to prevent such
behavior, and instead a tracing procedure must be performed to identify the
user and take remedial action.

We develop a scheme where the encryptor can specify an arbitrary set S
of recipients. The attacker, who controls some subset T of users, can obviously
create m := |S ∩ T | decryption keys, one for each user in S that they control.
We require that the adversary cannot split his keys into m+ 1 decryption keys
that can decrypt ciphertexts to S. In our scheme, the sizes of public keys, secret
keys, and ciphertexts are all independent of the number of users.

Splittable attribute-based encryption (Section 7). Here we define a version of
attribute-based public-key encryption with dishonestly generated keys, where
the owner of the secret key is able to split the key into two different keys, each
decrypting a disjoint set of ciphertexts. In more detail, we imagine that each
decryption key has an underlying predicate p, initially mapping all attributes to
1, and each message can be encrypted with respect to an attribute x. Given any
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such decryption key and a predicate q, one can split the key into two keys: one
that decrypts ciphertexts with attribute x such that p(x) ∧ q(x) = 1 and one
that decrypts ciphertexts with attribute x such that p(x) ∧ ¬q(x) = 1. Security
is defined very naturally; there is no way for two isolated adversaries to decrypt
an encryption that is done with respect to the same attribute. The construction
in this setting can be thought of in a modular sense. First, we can build a form
of “splittable attribute-based signatures” where one can only sign messages as
long as they satisfy a predicate. Using the delegation mechanism of [3] we can
then split the key into two keys signing messages belonging to two disjoint sets.
Then, using witness encryption we can transform signatures into encryption.

Classically revocable time-released encryption (Section 8). We then introduce
the concept of delay decryption where the decryption key not only is unclonable
but it is also “slow”, in the sense that its holder is forced to wait a specific time
before they can decrypt again. By being unclonable, this also implies a bound on
the rate at which ciphertexts can be decrypted (as in, number of ciphertexts per
period of time). We note that classically, using parallelism it is always possible
to amplify the rate of decryption arbitrarily.

Moreover, we go one step further and allow a revocation mechanism: if the
decryptor has not had enough time to decrypt, they can generate a classical
proof that they revoke a specific ciphertext. As long as this proof is generated
early enough, we are sure that the decryptor will never be able to decrypt this
ciphertext. Toward this, we first make use of delay signatures as defined by Amos
et al. [3] in order to create a notion of revocable delayed signatures 8.1. These
are essentially proofs of sequential work [18, 12], where one can only generate
proofs of work sequentially even if they have a polynomial number of parallel
processors. In other words, one cannot work on two different challenges in paral-
lel, as with regular proofs of work. Moreover, revocation guarantees that we can
either provide a proof of work (which is essentially a signature) for a challenge r
or a proof of revocation for r but not both. We then use this primitive to build
delay decryption.

1.2 Previous Work

Unclonable Signing Keys. Although our work is the first studying unclon-
ability of secret keys in the encryption setting, there has already been some work
in the authentication setting.

Starting with the work of Gavinsky [14] and Pastawski et al. [19], it has been
shown that it is possible to encode a secret message authentication code (MAC)
key into a quantum state that can be used to sign a message, yet cannot be
cloned. Crucially, the MAC key is not revealed to the adversary thus allowing
for information theoretic constructions.

Later, Ben-David and Sattath [4] proved that relative to a classical oracle,
but queried in superposition, there is a signature scheme where the adversary is
also given access to the verification key. Zhandry [25] proved that using indistin-
guishability obfuscation and one-way functions it is possible to obfuscate safely
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this oracle. To be precise, Zhandry proved that public-key quantum money exist
under the same assumptions but his result can also be applied to the construction
of Ben-David and Sattath.

Back to the private key setting, Brakersky et al. [9] showed that, under the
learning-with-errors assumption, there is a way to sample a pair (crs, td), in such
a way that crs can be used to sample a classical public key together with an
unclonable quantum singing key. Using the trapdoor td and the public key one
can verify the validity of a signature. However, security is compromised once the
trapdoor is leaked.

Last, Amos et al. [3] removed the need for a trapdoor in the verification
algorithm and they designed a scheme relative to a classical oracle queried in
superposition. A major open question is whether such a primitive exists under
standard cryptographic assumptions.

Unclonable Ciphertexts. The idea of encrypting messages into quantum
states that offer additional security than classical encryption was introduced
by Gottesman [16], where he designed an encryption scheme such that if the
eavesdropper tried to retrieve information out of it then the receiver would de-
tect it. Recently, Broadbent and Lord [10] extended the above idea to a more
natural definition of unclonable ciphertexts: an adversary who does not know the
secret key cannot split the quantum ciphertext into two states such that both
decrypt correctly. They even gave a stronger indistinguishability definition. Here,
we prove that such a scheme is sufficient to construct selectively secure single-
decryptor encryption and vice-versa. In the same context, Unruh [21] created a
time-released encryption scheme with revocation. In that setting, a message is
encrypted into a quantum state that needs time t to be decrypted. Moreover,
the sender of the ciphertext can ask from the receiver to send the ciphertext
back if less than time t has passed. If this is the case, the sender can verify that
this ciphertext has not been decrypted. Our work can be seen as a modification
of Unruh’s scheme in two ways. First, in our setting the ciphertext is classical
and only the decryption key is quantum. Second, the proof of revocation is also
classical.

1.3 Deterministic Computations

In the remaining of the paper we will make implicit use of the fact that a de-
terministic quantum computation can always be rewound. This lemma, known
in the literature as the information-disturbance trade-off, the gentle measure-
ment lemma [23] or the almost-as-good-as-new lemma [1], will allow us to use
a decryption key to decrypt a message and then rewind to retrieve a key whose
distance from the original key is negligible. Since by correctness of an encryp-
tion scheme, a decryption process succeeds with overwhelming probability, we
can always rewind and get the original key. We thus omit the output of a new
decryption key from the interface of a decryption algorithm.
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1.4 Notation.

A function f is called negligible if f(n) = o(n−c) for any constant c. We say that
an event happens with overwhelming probability if it happens with probability
at least 1−ε(n), where ε is a negligible function. For a set S, we denote by x← S,
the random variable drawn uniformly at random from S. Similarly, for a distri-
bution D, we denote by x ← D the random variable sampled according to D.
We use standard math font for classical variables and classical algorithms (e.g.,
sk or Alg) and calligraphic font for quantum variables and quantum algorithms
(e.g., sk or Alg).

2 New Definitions

In this section, we provide a variety of definitions for single decryptor encryption
in different settings. We start with the simplest scenario where an adversary is
given a quantum decryption key and is asked to clone it. We raise this to the
public key setting where now the adversary is also given access to the encryption
key.

We then move on to the setting where there is a way to generate a classical
common reference string crs together with a classical encryption key ek . The
adversary can use the crs to generate a pair (pk , sk ). Given (ek , pk) one can
generate ciphertexts. We require that the adversary, is not able to clone sk before
seeing any ciphertext. Then, as before, we consider the public-key scenario and
where the adversary is also given ek or, equivalently, crs is sufficient to generate
ciphertexts.

Entanglement of Adversarially Chosen Keys. Unless stated otherwise, in the fol-
lowing, we implicitly assume that adversarially chosen quantum states (s0, s1)←
A can potentially be entangled with a larger system.

2.1 Honest Generation of Keys

In this subsection, we are interested in definitions where the encryption and
decryption keys are generated honestly and later are given to the adversary. In
subsection 2.2, we study a version of them where the adversary is allowed to
generate them.

Definition 1 (Single Decryptor Encryption with Honestly Generated
Keys). A single decryptor encryption with honestly generated keys is a triple of
algorithms (Gen ,Enc,Dec) with the following interface:

– Gen(1n) : (ek , dk ) takes a security parameter n in unary and returns a secret
classical encryption key ek and a quantum decryption key dk .

– Enc(ek ,m) : c takes an encryption key and a message m and returns a
ciphertext c.

– Dec(dk , c) : m takes a quantum decryption key and a ciphertext and output
a message m.
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Correctness. The following holds with overwhelming probability over the ran-
domness of the algorithms. If (ek , dk ) ← Gen(1n), then for any message m,
Dec(dk ,Enc(ek ,m)) = m.

Secret-key Security. For any (computationally unbounded) quantum adversaries
A,A0,A1, there is a negligible function ε such that

Pr

A0(dk 0, c) = b
A1(dk 1, c) = b

∣∣∣∣∣∣
(ek , dk )← Gen(1n)

(m0,m1, dk 0, dk 1)← A(dk )
b← {0, 1}, c← Enc(ek ,mb)

 ≤ 1

2
+ ε(n).

Notice that the above definition potentially allows for information theoretic
constructions. This is because the adversary never gets to see the encryption key
and therefore cannot create valid ciphertexts.

Selective Security. The selective security version of the above definition states
that the adversary has to decide the messages m0,m1 before receiving the de-
cryption key. Formally, for any quantum adversaries A,A0,A1, and messages
m0,m1, there is a negligible function ε such that

Pr

A0(dk 0, c) = b
A1(dk 1, c) = b

∣∣∣∣∣∣
(ek , dk )← Gen(1n)
(dk 0, dk 1)← A(dk )

b← {0, 1}, c← Enc(ek ,mb)

 ≤ 1

2
+ ε(n).

We note that in the above two definitions, the adversary A is asked to clone
the decryption key without having access to any valid ciphertext. Indeed, it
could be the case that if A is also provided with a ciphertext then it could
clone the decryption key. We deal with such stronger scenarios below. However,
even this simplest form has some advantages. As we will see below, it allows
for constructions that do not require high entanglement and perhaps can be
implemented even with today’s technology.

Public-key Security. By giving to the adversary access to the encryption algo-
rithm we move to the computational setting. We require that for any quantum
polynomial time adversaries A,A0,A1, there is a negligible function ε such that

Pr

A0(dk 0, c) = b
A1(dk 1, c) = b

∣∣∣∣∣∣
(ek , dk )← Gen(1n)

(m0,m1, dk 0, dk 1)← A(ek , dk )
b← {0, 1}, c← Enc(ek ,mb)

 ≤ 1

2
+ ε(n).

Remark 1. Hybrids between the two definitions where the adversary is not given
access to ek but instead access to the encryption oracle Enc(ek , ·) can also be
considered. This way one can potentially achieve security against computation-
ally unbounded adversaries, as long as they are restricted to sub-exponential
number of queries to the encryption oracle.
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2.2 Dishonest Generation of Keys

Now we introduce an additional algorithm, ParGen that outputs a common
reference string together with a secret encryption key. Similarly to the work of
Zhandry on quantum lightning [25] and Amos et al. on one-shot signatures [3],
a common reference string is necessary when we deal with dishonestly generated
keys. The reason is that for a fixed encryption scheme that is not parameterized
by a random string, there is always an adversary that can break it.

Definition 2 (Single Decryptor Encryption with Dishonestly Gener-
ated Keys). A single decryptor encryption with dishonestly generated keys is a
tuple of algorithms (ParGen,Gen ,Enc,Dec) with the following interface:

– ParGen(1n) : (crs, ek) takes a security parameter n in unary and returns a
common reference string crs and secret classical encryption key ek.

– Gen(crs) : (pk , dk ) takes a common reference string and returns a secret
classical public key pk and a quantum decryption key dk .

– Enc(ek , pk ,m) : c takes an encryption key ek, a public key pk and a message
m and returns a ciphertext c.

– Dec(dk , c) : m takes a quantum decryption key and a ciphertext and output
a message m.

Correctness. The following holds with overwhelming probability over the ran-
domness of the algorithms. If (crs, ek)← ParGen(1n) and (pk , dk )← Gen(crs),
then for any message m, Dec(dk ,Enc(ek , pk ,m)) = m.

Secret-key Security. For any quantum polynomial time adversaries A,A0,A1,
there is a negligible function ε such that

Pr

A0(dk 0, c) = b
A1(dk 1, c) = b

∣∣∣∣∣∣
(crs, ek)← ParGen(1n)

(m0,m1, dk 0, dk 1, pk)← A(crs)
b← {0, 1}, c← Enc(ek , pk ,mb)

 ≤ 1

2
+ ε(n).

Contrary to the previous scenario, here we cannot hope for an information
theoretic definition. An adversary with unlimited computational power can run
the algorithm Gen continuously until it ends up with the same pk twice. By
correctness, both of the corresponding decryption keys will be valid.

Although the above definition is not as natural as the one below where the
adversary is also given the encryption key, we include it here in an attempt to
exhaustively present all different versions of unclonable decryption. Moreover,
as discussed in Section 5, this version can be achieved from weaker assumptions.

Public-key Security. Here we allow the adversary to also have access to the
encryption key ek . Since, in this scenario, all parties – honest and malicious –
have access to both ek and crs, we can omit ek . Hence, we get the following
definition. For any quantum polynomial time adversaries A,A0,A1, there is a
negligible function ε such that

Pr

A0(dk 0, c) = b
A1(dk 1, c) = b

∣∣∣∣∣∣
crs ← ParGen(1n)

(m0,m1, dk 0, dk 1, pk)← A(crs)
b← {0, 1}, c← Enc(crs, pk ,mb)

 ≤ 1

2
+ ε(n).
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Remark 2. Similarly to the honest key generation setting, we can consider a
hybrid between the above two security definitions where the adversary is given
oracle access to Enc(ek , ·, ·). Additionally, one can consider a selective security
version where the adversary is required to pick the messages m0,m1 before it is
given the common reference string.

2.3 Comparison Between Definitions

In the computational setting the following two implications are straightforward.

– Public-key security implies secret-key security, in both honest and dishonest
key generation settings.

– The existence of a secure scheme with dishonest key generation implies the
existence of a secure scheme with honest key generation, in both the public-
key and the secret-key settings, by incorporating the crs as part of the
encryption key.

IND-CCA1 Security. A comparison between unclonable decryption with hon-
est key generation and standard indistinguishability under chosen ciphertext
attacks (IND-CCA1) is also interesting. We focus on the generalized case of
IND-CCA1 where the adversary is allowed to query the decryption oracle in
superposition, a scenario first studied by Boneh and Zhandry [8].

In the public key setting, it holds that security with honest generation of keys
implies IND-CCA1 security. For the sake of contradiction, assume that there
exist adversaries A ′,A ′′ that can break IND-CCA1 security with non-negligible
probability, where A ′, given the encryption key, asks for decryption queries and
then outputs two messages m0,m1 and a state s that is given as input to A ′′

who, given an encryption of mb is requested to find b (for a random b). We can
create adversaries A,A0,A1 that can break unclonability of the decryption key
as follows. A receives (ek , dk ) and hands a copy of ek to A ′. A responds to the
decryption queries of A ′ using dk and at the end of the first phase A ′ outputs a
state s and two messages m0,m1, which A subsequently forwards as its challenge
messages. Moreover, A outputs dk as an input to A0 and s as an input to A1.
Now A0 receives the original dk and can perform an honest decryption of the
challenge ciphertext and distinguish with overwhelming probability. Moreover,
A1 given the state s and the challenge ciphertext, it forwards both to A ′′ and
returns what A ′′ returns. Since A ′′ distinguishes with non-negligible probability,
A1 will also distinguish with non-negligible probability.

In the secret key setting, the implication is the same as long as the cloning
adversary is also given access to the encryption oracle.

Relation to Quantum Money and Quantum Lightning. Single-decryptor encryp-
tion with honest key generation and public-key security yields immediately quan-
tum money. Similarly, the dishonest version of it yields quantum lightning. In-
deed, an unclonable decryption key can be thought of as a coin (bolt). To verify
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the coin (bolt), we pick a random message m and we encrypt it using the en-
cryption key to a ciphertext c. We then use the decryption key to decrypt c and
finally we verify that we get the original message m. If an adversary A could clone
the coin (bolt) in a way that it is accepted by the above verification process,
then this attack would also break the single-decryption property.

Similarly, the secret-key security versions of single-decryptor encryption im-
ply secret-key quantum money as well as semi-quantum money as defined by
Radian [20]. A semi-quantum money scheme is a secret-key quantum money
scheme where the generation of new quantum coins does not take place on the
bank’s side. Instead a user can run a classical protocol with the bank, at the end
of which, it ends up with a valid coin.

3 Existing tools

In this section we define existing primitives that we use for our constructions. In
particular, we present one-shot signatures, ordered and delayed signatures and
witness encryption.

3.1 Ordered Signatures

In an ordered signature each message comes with a time tag. The holder of
the signing key is forced to produce signatures in the order of increasing tags.
Although Amos et al. [3] constructed a scheme that satisfies a simulation-based
definition, for our purposes it is sufficient to consider a simpler game-based
definition.

Definition 3 (Ordered Signatures). An ordered signature scheme is a tuple
of algorithms (ParGen,Gen , Sign ,Ver) with the following interface:

– ParGen(1n) : crs takes a security parameter n in unary and returns a com-
mon reference string crs.

Gen(crs) : (pk , sk ) takes a common reference string crs and outputs a clas-
sical public key pk and a quantum secret key sk .

Sign(sk ,m, t) : (sk ′, σ) takes a secret key sk , a message m, and tag t, and
outputs an updated secret key sk ′ and a signature σ.

Ver(crs, pk ,m, t, σ) : b takes a common reference string crs, a public key pk,
a message m, a tag t, and a signature σ and outputs a bit b.

Correctness. For any sequence of message/tag pairs (m1, t1), . . . , (mn, tn) such
that t1 < . . . < tn, the following hold with overwhelming probability. Suppose
(pk , sk 0) ← Gen(crs). Then for i = 1, . . . , n, let (sk i, σi) ← Sign(sk i−1,mi, ti).
Then we have that Ver(crs, pk ,mi, ti, σ) = 1 for all i.
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Security. For any quantum polynomial time adversaries A,A ′, there is a negli-
gible function ε such that

Pr

 ∀i ∈ [k + 1] :
Ver(crs, pk ,mi, ti, σi) = 1
∀i ∈ [k] : ti+1 > ti

∣∣∣∣∣∣∣∣
crs ← ParGen(1n)

((mi, σi, ti)i∈[k], pk , sk )← A(crs)
mk+1 ← {0, 1}n

σk+1 ← A ′(sk ,mk+1)

 ≤ ε(n).

Remark 3 (One-shot Signatures). A one-shot signature is an ordered signature
where the verification algorithm also checks that t = ∞; i.e., one cannot sign
more than once. In this case, the signing algorithm does not have to return an
updated key.

Theorem 1 ([3]). Ordered signatures exist relative to a classical oracle.

3.2 Delayed Signatures

In a delayed signature [3], each message comes with a reverse delay rd and a
forward delay fd . The holder of the signing key has to wait at least time rd in
order to sign a message. After signing the message, the holder has to wait at least
time fd before starting to sign any other message. As is the case with ordered
signatures, here we only care about security with respect to random messages.

Remark 4 (Notion of Time). In the descriptions following, we purposefully omit
the exact definition of time, or number of steps, and we prefer to simply maintain
a consistent view of it throughout the paper. In most cases, as is for example in
the setting studied by Döttling, Lai and Malavolta [12], the number of steps is
measured as the number of queries to a random oracle that is available to both
honest and malicious parties.

Definition 4 (Delay Signatures). A delay signature scheme is a tuple of al-
gorithms (ParGen,Gen , Sign ,Ver) with the following syntax:

ParGen(1n) : crs takes a security parameter n in unary and returns a com-
mon reference string crs.
Gen(crs) : (pk , sk ) takes a common reference string crs and outputs a clas-
sical public key pk and a quantum secret key sk .
Sign(sk ,m, rd , fd) : (sk ′, σ) takes a secret key sk , a message m, a reverse
delay rd, and a forward delay fd and outputs an updated secret key sk ′ and
a signature σ.
Ver(crs, pk ,m, rd , fd , σ) : b takes a common reference string crs, a public key
pk, a message m, a reverse delay rd, and a forward delay fd and a signature
σ and outputs a bit b.

Correctness. For any sequence of messages (m1, rd1, fd1), . . . , (mn, rdn, fdn),
the following holds with overwhelming probability. Let (pk , sk 0) ← Gen(crs).
Then for i ∈ [n], let (sk i, σi) ← Sign(sk i−1,mi, rd i, fd i). Then we have that
Ver(crs, pk ,mi, rd i, fd i, σ) = 1 for all i.
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Security. We want the following two properties.

– One cannot sign a message in time less that rd. Formally, for any adversary
A,A ′ and any constant α there exists a negligible function ε such that

Pr

Ver(crs, pk ,m, rd , fd , σ) = 1

∣∣∣∣∣∣∣∣
crs ← ParGen(1n)

(rd , fd , pk , sk )← A(crs)
m← {0, 1}n

σ ← A ′(sk , rd ,m, fd)

 ≤ ε(n),

where A ′ runs in time (1− α)rd.
– One cannot sign all messages in time less that

∑
i rd i + fd i−maxi fd i. For-

mally, for any adversary A,A ′ and constant α there exists a negligible func-
tion ε such that

Pr

 ∀i ∈ [k] :
Ver(crs, pk ,mi, rd i, fd i, σi) = 1

∣∣∣∣∣∣∣∣
crs ← ParGen(1n)

((rd i, fd i)i∈[k], pk , sk )← A(crs)
∀i ∈ [k],mi ← {0, 1}n

(σi)i ← A ′(sk , (rd i,mi, fd i)i)

 ≤ ε(n),

where A ′ runs in time (1− α) (
∑

i rd i + fd i −maxi fd i).

The above properties, ensure that any algorithm has to sign sequentially.
In other words, starting at time t = 0, one has to spend time rd in order to
generate a signature with backward delay rd . After generating a signature, one
has to spend time fd in order to retrieve a key that can be used to continue
signing messages.

3.3 Quantum Tokens for Digital Signatures

The notion of quantum tokens for digital signatures was initiated by Ben-David
and Sattath [4]. They also devised a construction relative to a classical oracle,
but query-able in superposition.

Definition 5 (Quantum Tokens for Digital Signatures [4]). A quantum
token for digital signatures is a tuple of algorithms (Gen , Sign ,Ver) with the fol-
lowing interface:

– Gen(1n) : (pk , sk ) takes a security parameter n in unary and returns a clas-
sical public key pk and a quantum secret key sk .

– Sign(sk ,m) : σ takes quantum secret key sk and a message m and returns a
signatures σ.

– Ver(pk ,m, σ) : b takes a public key, a message and a signature and returns
a bit b.

Correctness. The following holds with overwhelming probability over the ran-
domness of the algorithms. If (pk , sk ) ← Gen(1n) then for any message m,
Ver(pk ,m, Sign(sk ,m)) = 1.
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Security. For any adversary A there is a negligible function ε such that

Pr

[
Ver(pk ,m0, σ0) = 1
Ver(pk ,m1, σ1) = 1

∣∣∣∣ (pk , sk )← Gen(1n)
(m0 6= m1, σ0, σ1)← A(pk , sk )

]
≤ ε(n).

One-shot signatures imply quantum tokens for digital signatures by incorpo-
rating the random crs as part of the public key.

3.4 Witness Encryption

Here we include the definition of witness encryption defined by Garg et al. [13].
Additionally to the standard security notion that requires indistinguishability
of encryptions with respect to instances not in the language, we also present a
stronger version, that of extractable security, first conceived by Goldwasser et
al. [15].

Definition 6 (Witness Encryption [13]). A witness encryption for an NP
language L, is a pair of algorithms (Enc,Dec) with the following interface:

– Enc(1n, x,M) : c takes a security parameter n in unary, an instance x and
a message m and outputs a ciphertext c.

– Dec(c, w) : m takes a ciphertext c and a witness w and outputs a message
m.

Correctness. The following holds with overwhelming probability over the ran-
domness of Enc,Dec. For any (x,w) ∈ RL and any message m, it holds that

Dec(Enc(1n, x,m), w) = m.

Security. For any instance x /∈ L and any two messages m0,m1, it holds that

Enc(1n, x,m0) ∼c Enc(1n, x,m1).

Extractable Security [15]. For any quantum polynomial time adversary A, poly-
nomial p and messages m0,m1, there is a quantum polynomial time extractor E
and polynomial q such that for any mixed state aux potentially entangled with an
external register, if

|Pr[A(aux ,Enc(1n, x,m0)) = 1]− Pr[A(aux ,Enc(1n, x,m1)) = 1]| ≥ 1

p(n)

then

Pr[(x,E(1n, x, aux )) ∈ RL] ≥ 1

q(n)
.
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4 Single-Decryptor Secret-key Encryption with Honestly
Generated Keys

We begin our constructions of single decryptor encryption with the simplest pos-
sible scenario; namely, secret-key encryption with security in the setting where
the honestly generated keys are given to the adversary. The key idea is to swap
the roles of secret key and ciphertext in the construction of Broadbent and
Lord [10].

Definition 7 (Unclonable Encryption [10]). An unclonable secret-key en-
cryption scheme is a triple of algorithms (Gen,Enc,Dec) with the following in-
terface:

– Gen(1n) : sk takes a security parameter n in unary and returns a classical
secret key sk.

– Enc(sk ,m) : c takes a secret key sk and a message m and returns a quantum
ciphertext c.

– Dec(sk , c) : m takes a secret key sk and a quantum ciphertext c and returns
a message m.

Correctness. If sk ← Gen(1n) then for any message m, Dec(sk ,Enc(sk ,m)) = m
with overwhelming probability.

Security. For any adversary A,A0,A1 and messages m0,m1 there is a negligible
function ε such that

Pr

A0(c0, sk) = b
A1(c1, sk) = b

∣∣∣∣∣∣
sk ← Gen(1n)

b← {0, 1}, c ← Enc(sk ,mb)
(c0, c1)← A(c)

 ≤ 1

2
+ ε(n).

Broadbent and Lord have proven that unclonable encryption is possible infor-
mation theoretically in the random oracle model if A0 and A1 are not entangled.

Lemma 1 (Unconditional Unclonable Encryption [10]). There is an un-
conditional unclonable encryption scheme in the random oracle model if A0 and
A1 are not entangled.

Below we prove the equivalence between existence of unclonable encryption
and existence of single-decryptor encryption. We note that we focus on selective
security of single-decryptor encryption; namely, the adversary picks the messages
m0,m1 before seeing the decryption key.

Theorem 2. Single-decryptor selectively secure secret-key encryption in the set-
ting of honestly generated keys exists if and only if unclonable encryption exists.

Proof. We start by constructing a single-decryptor encryption from unclonable
encryption. Let (Gen ′,Enc′,Dec′) be an unclonable encryption scheme. We define
the single-decryptor scheme (Gen ,Enc,Dec) as follows:
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– Gen(1n) : Sample sk ← Gen ′(1n) and a randomness r. Let ek = (sk , r) and
dk ← Enc′(sk , r) and return (ek , dk ).

– Enc(ek ,m) : Parse ek = (sk , r) and return c = (sk ,m⊕ r).
– Dec(dk , c = (sk , d)) : Run r ← Dec′(sk , dk ) and return d⊕ r.

Correctness is implied by the correctness of the underlying unclonable en-
cryption scheme. We go on to prove selective security. Assume that there exist
adversaries A,A0,A1, messages m0,m1 and non-negligible function µ such that

Pr

A0(dk 0, c) = b
A1(dk 1, c) = b

∣∣∣∣∣∣
(ek , dk )← Gen(1n)
(dk 0, dk 1)← A(dk )

b← {0, 1}, c← Enc(ek ,mb)

 ≥ 1

2
+ µ(n).

For random r, let m′b = mb ⊕ r and A ′,A ′0,A ′1 be the following:

– A ′(c) : Run (c0, c1)← A(c).
– A ′0(c0, sk) : Return b← A0(c0, (sk , r)).
– A ′1(c1, sk) : Return b← A1(c1, (sk , r)).

In the above adversaries, if c = Enc′(sk ,m′b), then (sk , r) = Enc((sk ,m′b),mb)
and follows the correct distribution since m′b is random and independent of mb.
Therefore, we get that there are messages m′0,m

′
1 and adversaries A ′,A ′0,A ′1 that

break unclonable encryption with probability 1
2 + µ(n).

For the opposite direction, assume that there exists a secure single-decryptor
encryption scheme (Gen ,Enc,Dec). We define the following unclonable encryption
scheme (Gen ′,Enc′,Dec′):

– Gen ′(1n) : Sample sk ← {0, 1}n and return sk .
– Enc′(sk ,m) : Sample (ek , dk ) ← Gen(1n) and compute c ← Enc(ek ,m).

Return ct = (c⊕ sk , dk ).
– Dec′(sk , ct = (d, dk )) : Return Dec(dk , d⊕ sk).

Correctness is implied by the correctness of the underlying single-decryptor en-
cryption. For security, assume that there are adversaries A ′,A ′0,A ′1 and messages
m′0,m

′
1 that can break the unclonability of ciphertexts with non-negligible prob-

ability. Let mb = m′b and define adversaries A,A0,A1 against single-decryptor
security as follows:

– A(dk ) : Sample random sk ← {0, 1}n, set ct = (sk , dk ), run (ct0, ct1) ←
A ′(ct) and return ((sk , ct0), (sk , ct1)).

– A0((sk , ct0), c): Return b = A ′0(ct0, c⊕ sk).
– A1((sk , ct1), c): Return b = A ′1(ct1, c⊕ sk).

In the above, we note that the states ct0, ct1 are the quantum ciphertexts out-
put by A ′ as attempted copies of the ciphertext ct = (sk , dk ). It holds that if
c = Enc(ek ,mb) then ct = (sk , dk ) = Enc′(c ⊕ sk ,mb) and follows the correct
distribution since sk is uniformly random. Therefore, there are messages m0,m1

and adversaries A,A0,A1 that break single-decryptor security with the same non-
negligible probability. ut
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From the above reductions, if A0,A1 do not share any entanglement then
A ′0,A ′1 do not share any entanglement either.

Corollary 1. There exists an unconditional selectively secure single-decryptor
secret-key encryption in the random oracle model as long as A0 and A1 do not
share any entanglement.

We note that in the above equivalence we only deal with adversaries who
do not have access to a ciphertext when they attempt to clone the decryption
key. In fact, in our construction of single-decryptor encryption from unclonable
encryption, a single ciphertext can be combined with the decryption key to
retrieve both sk and r and hence create more copies of the decryption key.

Impossibility of Unconditional Security. A natural question is whether one
can achieve unconditional security given access to the encryption oracle (but
queried polynomially many times). Unfortunately, unconditional decryption un-
clonability is impossible even in a weaker form where the adversary is only given
access to arbitrarily many valid ciphertexts of random messages and no access to
the encryption oracle. Notice that by correctness of the encryption scheme and
by the information-disturbance trade-off, an adversary, given several ciphertexts
c1, . . . , ck can efficiently find the corresponding plaintexts m1, . . . ,mk, such that
ci = Enc(ek ,mi). This is done by decrypting a ciphertext to get the correspond-
ing plaintext and subsequently rewinding to retrieve the original ciphertext and
decryption key. Continuing this way, one can decrypt all given ciphertexts. How-
ever, the computational security of Enc implies that it should behave like a
pseudo-random function which does not exist information theoretically. An in-
teresting question is whether we can achieve single-decryption encryption given
many ciphertexts from standard cryptographic assumptions.

5 Single-Decryptor Public-key Encryption with
Dishonestly Generated Keys

In this section we aim for a construction that satisfies security against dishon-
estly generated keys in the public-key setting. Toward this, we assume the ex-
istence of one-shot signatures [3]; i.e., signatures where no adversary, given a
common reference string, can output a public key, two different messages and
a valid signature for each of the messages. We also assume extractable witness
encryption [13, 15].

Theorem 3. If one-shot signatures and extractable witness encryption exist,
then unclonable decryption with dishonest generation of keys exists.

Proof. Let (ParGen ′,Gen ′, Sign ′,Ver ′) be a one-shot signature. We define our
encryption scheme (ParGen,Gen ,Enc,Dec) as follows:

– ParGen(1n) : Return crs ← ParGen ′(1n).
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– Gen(crs) : Return (pk , sk )← Gen ′(crs).
– Enc(crs, pk ,m) : Pick a random x← {0, 1}n, run c← Enc′(x,m) and return

(x, c), where (Enc′,Dec′) is a witness encryption scheme with respect to the
language RL = {(x, σ) : Ver(crs, pk , x, σ) = 1}.

– Dec(sk , (x, c)) : Run on superposition s ← Sign(sk , x) and do not measure
s . Then run on superposition m ← Dec′(c, s) and measure m to retrieve a
classical value m. Finally, rewind the computation and retrieve sk .

The correctness of the construction is implied by the underlying correctness
of one-shot signatures and witness encryption.

To argue security, assume that there exist algorithms A,A0,A1 that break
unclonability with dishonestly generated keys with non-negligible probability.
In the original game, call it H0, the challenge ciphertext c is chosen such that
c← Enc′(x,mb) for randomly chosen x.

Let H1 be a hybrid where we generate two ciphertexts c0, c1 with correspond-
ing language instances x0, x1 chosen uniformly at random such that x0 6= x1.
The ciphertext cb is given to the adversary Ab. Since the two adversaries are
isolated, the winning probabilities in H0 and H1 differ by a negligible amount.

By assumption, we know that Pr[A0(sk 0,Enc(crs, pk ,mb)) = b0] ≥ 1/2 +
ε(n) for some non-negligible function ε. Thus, by invoking the witness extractor
E(1n, sk 0, x0) we can get a witness σ0 such that Ver(crs, pk , x0, σ0) = 1 with
non-negligible probability. Similarly, we can get a witness σ1 for x1. Hence, we
can break security of one-shot signatures with non-negligible probability.

Remark 5 (Running Dec′ on Superposition). The above construction has a de-
sirable property that the secret key can remain unchanged after arbitrarily many
decryptions. As we described above, this is a result of the gentle measurement
lemma that states that a deterministic computation does not disturb the system
and hence we can rewind to our original key. On the negative side, this con-
struction has the disadvantage that the honest decryptor is required to run the
decryption algorithm of the witness encryption scheme Dec′ on superposition. A
way to avoid this, is to start with a single-signer signature as defined by Amos
et al. [3] instead of a one-shot signature. Such a signature guarantees that two
isolated adversaries cannot sign messages with respect to the same verification
key. In this case, the secret key has to evolve after every signature and the signa-
ture and secret key sizes increase with the number of applications of the signing
algorithm. On the positive side, by using such a signature scheme we can run
Dec′ classically and without the need to rewind to retrieve the original key.

Secret key Security. In the case of secret key security, while still in the scenario
of dishonestly generated keys (Definition 2), one can use a weaker cryptographic
primitive than one-shot signatures, namely privately verifiable one-shot signa-
tures. Here, together with the crs the verifier outputs also a secret trapdoor td
that can be used to verify a signature. Since Brakersky et al. [9] have shown
that privately-verifiable one-shot signatures exist under the learning-with-errors
(LWE) assumption, we can conclude that:
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Corollary 2. If LWE holds and extractable witness encryption exists, then un-
clonable secret-key decryption with dishonestly generated keys exists.

Honestly Generated Keys. In the case of honestly generated keys, it is enough to
use tokens for digital signatures as defined by Ben-David and Sattath [4], instead
of one-shot signatures, which can be thought of as the honest key generation
variant of one-shot signatures. Ben-David and Sattath have shown that such
signatures are possible from a classical oracle. Later Zhandry [25] showed how
to securely obfuscate the classical oracle using indistinguishability obfuscation
and one-way functions.

Corollary 3. If indistinguishability obfuscation, one-way functions and witness-
extractable witness encryption exist, then unclonable decryption with honestly
generated keys exists.

6 Broadcast Encryption with Unclonable Decryption

In a broadcast encryption scheme, there is a way to generate a public key to-
gether with a set of N decryption keys in an way that allows us to encrypt a
message with respect to any subset S ⊆ [N ] of the holders of these keys. Security
guarantees that only the authorized holders can decrypt. Here we impose the
requirement that the decryption keys are unclonable.

Definition 8 (Broadcast Encryption with Unclonable Decryption). A
broadcast encryption scheme with unclonable decryption is a tuple of algorithms
(Gen ,Enc,Dec) with the following interface:

– Gen(1n, N) : (pk , sk 1, . . . , sk N ) takes a security parameter n in unary and an
integer N and returns a master public key mpk and N quantum secret keys.

– Enc(mpk , S,m) : c takes a master public key mpk, a set S ⊆ [N ] and a
message m and returns a ciphertext c.

– Dec(S, i, sk , c) : m takes a set S, an index i, a quantum secret key sk and a
ciphertext c and returns a message m.

Correctness. The following holds with overwhelming probability. For all messages
m, sets S ⊆ [N ] and i ∈ S, if c ← Enc(mpk , S,m) then Dec(S, i, sk i, c) = m,
where (mpk , sk 1, . . . , sk N )← Gen(1n, N).

Security. For any integer N and any quantum polynomial time adversaries
A,A1, . . . ,AN , there is a negligible function ε such that

Pr

 k > |S ∩ T |∀i ∈ [k],
Ai(si, c) = b

∣∣∣∣∣∣
(mpk , sk 1, . . . , sk N )← Gen(1n, N)

(S,m0,m1, s1, . . . , sk)← AKDer (mpk)
b← {0, 1}, c← Enc(mpk , S,mb)

 ≤ 1

2
+ ε(n),

where KDer queried classically on an index i, returns sk i and adds i to the ini-
tially empty set T .
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Succinctness. The size of the master public key mpk and the size of the cipher-
texts c is independent of N ; the size of the decryption keys sk i is logarithmic in
N .

Security can be interpreted as follows. The adversary picks a set S that he
will be challenged on. He also gets to query secret keys for a number of users
through the KDer algorithm; call this set T . He may be even be able to query
keys from S, in which case S ∩T 6= ∅. He then creates k quantum states that he
distributes to k non-communicating adversaries. Finally, the challenger encrypts
either m0 or m1 at random, with respect to the set of users S and sends the
ciphertext c to all k adversaries. We require that at most |S ∩T | can distinguish
the encryptions. The intuition is that the adversary could have distributed the k
secret keys he possesses in S ∩ T to different adversaries, who would all then be
able to predict b with certainty. But any more, and at least one of the adversaries
will fail.

Theorem 4. Broadcast encryption with unclonable decryption exists if tokens
for digital signatures, extractable witness encryption and collision resistant hash
functions exist.

Proof. First, if we do not require succinctness, then we can trivially create such
a scheme by setting mpk = (pk1, . . . , pkN ) and using a standard single-decryptor
public-key encryption scheme with honestly generated keys.

To achieve succinctness, we make use of Merkle trees. Let (Gen ′, Sign ,Ver)
be a token for signature scheme. For a list l of N elements, let H(l) be the
Merkle hash of l with respect to a collision resistant hash function and let
Open(H(l), i, π) = li be the corresponding opening function; i.e. π contains the
nodes in the path to the root together with their siblings in the Merkle tree. We
create a broadcast encryption scheme with unclonable decryption (Gen ,Enc,Dec)
as follows:

– Gen(1n, N) : For i ∈ [N ], generate (pk i, sk i) ← Gen ′(1n) and set mpk =
H(pk1, . . . , pkN ) and sk i = (pk i, τi, sk i), where τi is a proof that pk i is in
the i’th position in the list of public keys that map to mpk .

– Enc(mpk , S,m) : Let v ∈ {0, 1}N such that vi = 1 if and only if i ∈
S and let h = H(v1, . . . , vN ). Moreover, sample x ← {0, 1}n and return
(h, x,Enc′((mpk , h, x),m)), where Enc′ is a witness encryption for the lan-
guage

L = {((mpk , h, x), (i, pk , τ, π, σ)) : Open(mpk , τ, i) = pk ,
Open(h, π, i) = 1,
Ver(pk , x, σ) = 1}.

– Dec(S, i, (pk , τ, sk ), (h, x, c)) : Use S, i to find π such that Open(h, π, i) = 1.
Moreover, in superposition, generate s ← Sign(sk , x) and again in super-
position run m ← Dec′(c, (i, pk , τ, π, σ)). Measure m to retrieve a classical
message m, return m and rewind to the original decryption key.
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Correctness. Given S, i such that i ∈ S one can easily generate a proof π such
that Open(h, π, i) = 1. Moreover, by construction, Open(mpk , τ, i) = pk and by
correctness of tokens for signatures, Ver(pk , x, Sign(sk , x)) = 1. Hence, decryp-
tion succeeds.

Security. Assume that there exists an adversary A,A1, . . . ,AN that can break
security with non-negligible probability. Let S, T be the corresponding sets and
k > |S ∩ T |. By extractable security, there exist extractors E1, . . . ,Ek, such that
(i, pk i, τi, πi, σi)← Ei(si, (h, x, c)) and Open(mpk , τi, i) = pk i, Open(h, πi, i) = 1
and Ver(pk i, x, σi) = 1 with non-negligible probability. Let R be the set of
indices returned by the extractors and {pk∗i }i∈R the corresponding public keys
returned by the extractors.

Define the following events:

E1 = {R ⊆ S ∩ T and {pk∗i }i∈R ⊆ {pk i}i∈S∩T
E2 = {R ⊆ S ∩ T and {pk∗i }i∈R 6⊆ {pk i}i∈S∩T }

E3 = {R 6⊆ S}
E4 = {R 6⊆ T}

and by assumption, it holds that the sum Pr[E1] + Pr[E2] + Pr[E3] + Pr[E4]
is non-negligible, which implies that at least one of these events happens with
non-negligible probability.

– Suppose Pr[E1] is non-negligible and let pk = pk∗i = pk∗j , for some i 6= j ∈
S∩T . Sampling random x, x′, and running Ei(si, (h, x,Enc′((mpk , h, x),mb))
and Ej(sj , (h, x′,Enc′((mpk , h, x′),mb)), we retrieve two signatures for two
different x under the same public key pk which constitutes an attack against
the tokens for signatures.

– Suppose Pr[E2] is non-negligible and let pk∗ 6= pk i for all i ∈ S ∩ T . It
follows that the adversary was able to open mpk in some position i with two
different public keys, which yields a collision within the Merkle tree of mpk
with non-negligible probability.

– Suppose Pr[E3] is non-negligible and let i ∈ R\S which implies that vi = 0.
Let π∗i be the corresponding opening such that Open(h, π∗i , i) = 1. It follows
that π∗i yields a collision within the Merkle tree of h with non-negligible
probability.

– Suppose Pr[E4] is non-negligible and let i ∈ R\T ; i.e. the adversary never
queried the secret key for i, yet it managed to sign with respect to pk i. This
implies a break in the security of quantum signing tokens. To see this, no-
tice that an adversary could sign two different messages by first running the
extractor defined above and subsequently use the original quantum signing
message to generate a signature for a second message. Formally, our adver-
sary B on input (pk , sk ) first generates N − 1 more pairs and sets up the
master public key. Subsequently he runs the adversary A and the extractors
out of which, one will return a signature under pk with non-negligible prob-
ability. Since Pr[E4] is non-negligible, it holds that B never sent sk to A.
Hence, A can use sk to generate a second signature.
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Succinctness. To argue succinctness notice that |mpk | = n the size of the security
parameter, assuming that our hash function’s co-domain is {0, 1}n. Moreover,
the size of the ciphertext |c| = O(n) assuming the witness encryption ciphertext
grows with the size of the instance. Moreover, the size of the decryption key is
O(n logN), since it includes two hash values for each level in the Merkle trees
and O(n) qubits for the quantum token.

Remark 6. As is the case with all primitives in this work, we can define two
different versions of a primitive: one with honestly generated keys and one with
dishonestly generated keys. For the purpose of defining a generic definition of
broadcast encryption with unclonable decryption and for simplicity of the defi-
nitions, in the above we considered only the version where the decryption keys
are generated honestly by the key generation algorithm Gen . This is exactly the
reason why we can get away with just signing tokens. By replacing the tokens
with one-shot signatures, we can give a more powerful construction where the
adversary gets to pick all decryption keys, yet |S|+1 isolated adversaries cannot
decrypt an encryption with respect to S.

7 Splittable Attribute-based Encryption

Definition 9 (Splittable Attribute-based Encryption). A splittable at-
tribute based encryption is a tuple of algorithms (ParGen,Gen , Split ,Enc,Dec)
with the following interface:

– ParGen(1n) : crs takes a security parameter n in unary and returns a com-
mon reference string crs.

– Gen(crs) : (pk , sk ) takes a common reference string crs and outputs a clas-
sical encryption key pk and a quantum decryption key sk .

– Split(sk , q) : (sk 0, sk 1) takes a quantum decryption key and a predicate q and
outputs two keys sk 0, sk 1.

– Enc(crs, pk ,m, x) : c takes a public key pk, a message m and an attribute x
and outputs a ciphertext c.

– Dec(sk , c) : m takes a quantum secret key sk and a ciphertext c and outputs
a message m.

Correctness. The following hold with overwhelming probability over crs and the
randomness of the algorithms. For a secret key sk , let psk be its predicate such
that if (pk , sk ) ← Gen(crs) then psk (x) = 1 for all attributes x. Moreover, if
(sk 0, sk 1)← Split(sk , q), then psk 0

(x) = psk (x)∧q(x) and psk 1
(x) = psk (x)∧¬q(x).

Last, Dec(sk ,Enc(crs, pk ,m, x)) = m if psk (x) = 1.

Security. For any quantum polynomial time algorithms A,A0,A1 there exists a
negligible function ε such that

Pr

A0(sk 0, c) = b
A1(sk 1, c) = b

∣∣∣∣∣∣
crs ← ParGen(1n)

(m0,m1, sk 0, sk 1, pk , x)← A(crs)
b← {0, 1}, c← Enc (crs, pk ,mb, x)

 ≤ 1

2
+ ε(n),
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where sk 0, sk 1 can potentially be entangled.

Theorem 5. If one-shot signatures and extractable witness encryption exist,
then splittable attribute-based encryption exists.

Proof. Let (ParGen ′,Gen ′, Sign ,Ver) be a one-shot signature. Define splittable
attribute-based encryption as follows:

– ParGen(1n) : Return crs ← ParGen(1n).
– Gen(crs) : Return Gen ′(crs).
– Split(sk , q) :

1. Parse sk = (l, sk ′) where l is a list l = [(pk i, pk ′i, qi, σi)]i∈[k].
2. Sample (pkk+1, sk k+1)← Gen(crs) and (pk ′k+1, sk ′k+1)← Gen(crs).
3. Generate signature σk+1 ← Sign(sk ′, (pkk+1, pk ′k+1, q)).
4. Append (pkk+1, pk ′k+1, qk+1, σk+1) to l.
5. sk 0 = (l, sk k+1) and sk 1 = (l, sk ′k+1).
6. Return (sk 0, sk 1).

– Enc(crs, pk ,m, x) : Let (Enc′,Dec′) be a witness encryption for the language

RL = {((x, r), (l, σ)) : l = [(pk i, pk ′i, qi, σi)]i∈[k],(
Ver(crs, pkk, r, σ) ∨Ver(crs, pk ′k, r, σ)

)
∀i∈[k]

(
(Ver(crs, pk i−1, (pk i, pk ′i, qi), σi) ∧ qi(x) = 1)

∨(Ver(crs, pk ′i−1, (pk i, pk ′i, qi), σi) ∧ ¬qi(x) = 1)
)
},

where pk0 = pk ′0 = pk . Return (r, c = Enc′(x,m)), for random r.
– Dec(sk , (r, c)) :

1. Parse sk = (l, sk ′) where l is a list l = [(pk i, pk ′i, qi, σi)]i∈[k]
2. On superposition, run s ← Sign(sk ′, r), without measuring s .
3. On superposition, run m ← Dec′(c, (l, s)), measure m to retrieve a clas-

sical message m. Rewind to retrieve sk ′ and return m.

Intuitively, our construction can be split into two parts: in the first part,
we create a type of splittable attribute-based signatures where the key, initially
being able to sign a message with any attribute, is split into two keys each being
able to sign messages with attributes x satisfying q(x) and ¬q(x) respectively.
Subsequently, we use witness encryption to turn our scheme into an encryption.
We now go on to prove correctness and security.

Correctness. We will prove correctness by induction. In the base case, for any x,
it holds that (x, ([], Sign(sk , x))) ∈ RL, where (pk , sk )← Gen(crs) and therefore,
psk (x) = 1.

For the induction step, suppose that for a secret key sk = (l, sk ′), with |l| = k,
it holds that Dec(sk ,Enc(crs, pk ,m, x)) = m for any x such that psk (x) = 1. Let
(sk 0, sk 1) ← Split(sk , q). We have that sk 0 = (l|(pkk+1, pk ′k+1, q, σ), sk k+1) and
Ver(crs, pkk, (pkk+1, pk ′k+1, q), σk+1) = 1. Moreover, for any r, we have that
Ver(crs, pkk+1, r, Sign(sk k+1, r)) = 1 with overwhelming probability. It follows
that for any x such that psk (x) = 1 and q(x) = 1, the pair

((l|(pkk+1, pk ′k+1, q, σ)), Sign(sk k+1, r)) ∈ RL

and by correctness of the underlying witness encryption, decryption succeeds.
Similarly for sk 1.
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Security. To argue security, we will use a witness extractor. Assume for the sake
of contradiction, that there exists an adversary A,A0,A1 that breaks unclonabil-
ity with non-negligible probability.

Define a hybrid game in which the two ciphertexts c0, c1 are encrypted us-
ing randomness r0 6= r1 respectively. This hybrid is information theoretically
indistinguishable from the original game, since the probability that r0 = r1 is
negligible.

Using the existence of A0,A1, the extractable security of witness encryption,
and a standard forking lemma, there exist extractors E0,E1 such that

Pr

 ((x, r0),E0(sk 0, c)) ∈ RL

((x, r1),E1(sk 1, c)) ∈ RL

∣∣∣∣∣∣
crs ← ParGen(1n)

(m0,m1, sk 0, sk 1, pk , x)← A(crs)
b← {0, 1}, c← Enc (crs, pk ,mb, x)

 ≥ 1

2
+µ(n),

for some non-negligible function µ. Let (lb, σb) be the output of the extractor
Eb. In case l0 = l1, it holds that Ver(crs, pkk, r0, σ0) = Ver(crs, pkk, r1, σ1) or
Ver(crs, pk ′k, r0, σ0) = Ver(crs, pk ′k, r1, σ1), depending on whether x satisfies the
predicate corresponding to pkk or not. Thus, security of one-shot signatures is
compromised with non-negligible probability.

In case l0 6= l1, let i be the length of the longest common prefix between
l0 and l1 and let qi be the corresponding predicate. If qi(x) = 1, the (i + 1)’th
elements in both lists contain signatures with respect to pk i. If qi(x) = 0, the
(i + 1)’th elements in both lists contain signatures with respect to pk ′i. Thus,
with non-negligible probability the two witnesses contain two signatures with
respect to the same public key, violating security of one-shot signatures.

8 Revocable Time-Released Encryption

There are several potential ways we can strengthen the notion of public-key
encryption with unclonable decryption. In this section we aim for two different
directions. First, we introduce the notion of delay decryption. Here an adversary
not only is unable to clone the decryption key, but in fact, it can decrypt only
once per some time interval t. Subsequently, we further strengthen the definition
to allow revocation. Here one can provide a classical proof that they stopped
decrypting. As long as this proof is generated before time t has passed, we are
sure that no-one can decrypt this ciphertext.

8.1 Revocable Delayed Signatures

To build revocable delayed decryption, we first extend the notion of delayed sig-
natures to support revocation. We can then use this primitive in the encryption
setting.

Definition 10 (Revocable Delayed Signatures). A delay signature scheme
is revocable if there are two additional algorithms (Rev ,RVer) with the following
interface:
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– Rev(sk ,m) : (π, sk ′) takes a quantum secret key sk and a message m and
returns a proof π that m is revoked, and an updated key sk ′.

– RVer(crs, pk ,m, π) : b takes a common reference string crs, a public key pk,
a message m and a proof π and outputs a bit b.

Correctness. We require two properties:

– If a message has not been revoked, then it can be signed.
– If a message has not been signed, then it can be revoked.

Security. A message cannot both be revoked and signed; i.e., for any adversary
A there is a negligible function ε such that

Pr

[
RVer(crs, pk ,m, π) = 1

Ver(crs, pk ,m, rd , fd , σ) = 1

∣∣∣∣ crs ← ParGen(1n)
(pk ,m, rd , fd , σ, π)← A(crs)

]
≤ ε(n).

Notice that security of delayed signatures requires that at least time rd passes
before one signs a message. Therefore, if one is able to generate a revocation proof
before time rd passes, then we can be sure that no one will be able to sign this
message.

Theorem 6 (Revocable Delayed Signatures). Revocable delayed signatures
exist if one-shot signatures and proofs of sequential work exist.

Proof. We make use of the construction of delayed signatures by Amos et al. [3]
from one-shot signatures and proofs of sequential work. In their construction,
they use a delegation mechanism where the signature of one message has to
include the signatures of all previous messages. As a result, their construction is
also an ordered signature where each tag ti = ti−1 + 1.

To revoke a specific message, all we have to do is to sign it along the flag rev
without any delays. In order to verify if a message has been revoked, we check
the chain of signatures to verify that this message is in it. Moreover, we modify
our signature verification scheme to reject a signature of any message m, if m
has been signed with the flag rev . Formally,

– Rev(sk ,m) : Return Sign(sk , (m, rev), 0, 0).
– Ver(crs, pk ,m, rd , fd, σ) : Run the original verification. If it accepts, parse
σ as a list of signatures (mi, σi, rd i, fd i) and accept if mi 6= (m, rev) for all
i.

– RVer(crs, pk ,m, π) : Run the original verification. If it accepts, parse π as a
list of signatures (mi, σi, rd i, fd i) and accept if mi = (m, rev) for some i.

To prove correctness, notice that if (m, rev) has never been signed then by
correctness of the original delayed signature the new verification accepts. More-
over, if (m, rev) has been signed then, again by correctness of the original delayed
signature, RVer accepts. To prove security, we make use of the fact that all pre-
vious signatures have to be included in the new one. Therefore, if RVer accepts
a proof for a message m then (m, rev) is in the list, in which case Ver will reject.
On the other direction, if Ver accepts a signature for a message m then (m, rev)
is not in the list, in which case RVer rejects.
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8.2 Delayed Decryption

We move one to define a delayed decryption scheme. Similarly to the signature
case, the encryption and decryption algorithms are parameterized by two integers
rd , fd , corresponding to time before and after a decryption.

Definition 11 (Delayed Decryption). A delayed decryption scheme is an
unclonable encryption scheme with the following modifications.

– Enc(crs, pk ,m, rd , fd) : c the encryption algorithm takes additionally two
non-negative integers rd , fd and outputs a ciphertext c.

Correctness. The following holds with overwhelming probability. For any integers
rd , fd, Dec(sk ,Enc(crs, pk ,m, rd , fd)) = m.

Security. Similarly to delayed signatures, we want the following two properties:

– One cannot decrypt a message in time less than rd. Formally, for any ad-
versary A,A ′ and any constant α there exists a negligible function ε such
that

Pr

A ′(sk , c) = b

∣∣∣∣∣∣
crs ← ParGen(1n)

(m0,m1, rd , fd , pk , sk )← A(crs)
b← {0, 1}, c← Enc(crs, pk ,mb, rd , fd)

 ≤ 1

2
+ ε(n),

where A ′ runs in time (1− α)rd.
– One cannot decrypt all ciphertexts in time less than

∑
i rd i + fd i−maxi fd i.

Formally, for any adversary A,A ′ and constant α there exists a negligible
function ε such that

Pr

A ′(sk , (ci)i) = (bi)i

∣∣∣∣∣∣∣∣
crs ← ParGen(1n)

((rd i, fd i)i∈[k],m0,m1, pk , sk )← A(crs)
∀i ∈ [k], bi ← {0, 1}

ci ← Enc(crs, pk ,mbi , rd i, fd i)

 ≤ 1

2
+ε(n),

where A ′ runs in time (1− α) (
∑

i rd i + fd i −maxi fd i).

Notice that this definition trivially implies unclonable decryption, since if one
could clone the decryption key then they could decrypt two messages in parallel
in time max{rd1, rd2} < rd1 + rd2.

Proposition 1. An encryption scheme with delayed decryption is also an en-
cryption scheme with unclonable decryption.

8.3 Classically Revocable Decryption

Similarly to delayed signatures, public-key encryption with classically revocable
decryption is a delay encryption scheme equipped with an additional revoking
functionality. By revoking a specific ciphertext, we irreversibly update our secret
key into a new one that is unable to decrypt this ciphertext. For such a definition
to make sense we have to update our key before time t has passed. Otherwise,
we can decrypt and then rewind and revoke this ciphertext.
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Definition 12 (Classically Revocable Decryption). An encryption scheme
with classically revocable decryption is a delay encryption scheme with two ad-
ditional algorithms (Rev ,Ver) with the following interface:

– Rev(sk , c) : (π, sk ′) takes a quantum secret key sk , a ciphertext c and outputs
a proof π and an updated secret key sk ′.

– Ver(crs, pk , c, π) : b takes a common reference string crs, a ciphertext c and
a proof π and outputs a bit b.

Correctness. Additionally, the following hold with overwhelming probability.

– If a ciphertext has not been revoked then it can be decrypted.
– If a ciphertext has not been decrypted then it can be revoked.

Security. A ciphertext cannot be decrypted after being revoked in time; i.e., for
any quantum polynomial time adversary A,A ′,A ′′ and any constant α there is a
negligible function ε such that

Pr

RVer(crs, pk , c, π) = 1
b = b′

∣∣∣∣∣∣∣∣∣∣
b← {0, 1}, crs ← ParGen(1n)

(m0,m1, rd , fd , pk , sk )← A(crs)
c← Enc(crs, pk ,mb, rd , fd)

(π, sk ′)← A ′(sk , c)
b′ ← A ′′(sk ′, c)

 ≤ 1

2
+ ε(n),

where A ′ runs in time (1− α)rd.

Theorem 7. If classically revocable proofs of sequential work and extractable
witness encryption exist, then public key encryption with classically revocable
decryption exists.

Proof. Without loss of generality, we make the assumption that a witness ex-
tractor in our witness encryption scheme, runs in the same time as that of the
distinguisher. This is to simplify the proofs. Without this assumption, we would
have to incorporate any additional delay posed by the extractor into the con-
struction of our encryption scheme.

Let (ParGen ′,Gen ′, Sign ′,Ver ′,Rev ′,RVer ′) be a revocable signature scheme.
We define the corresponding encryption algorithms:

– ParGen(1n) : Return crs ← ParGen ′(1n).
– Gen(crs) : Return (pk , sk )← Gen ′(crs).
– Enc(crs, pk ,m, rd , fd) : Pick randomness r and return (r, rd , fd ,Enc′(m)),

where Enc′ is a witness encryption for {(r, w) : Ver ′(crs, pk , r, rd , fd , w) =
1}.

– Dec(sk , (r, rd , fd , c)) : Generate w ← Sign(sk , r, rd , fd) and return Dec′(c, w).
Subsequently, rewind to retrieve the original key.

– Rev(sk , (r, rd , fd , c)) : Return (π, sk ′)← Rev ′(sk , r).
– RVer(crs, pk , (r, rd , fd , c), pk) : Return b← RVer ′(crs, pk , r, π).

Correctness follows from the correctness of revocable signatures and the cor-
rectness of witness encryption. We go on to prove our two security properties;
namely delayed security and revocable security.
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Delayed Security. Suppose that there is a constant α and an adversary A,A ′

that can distinguish between encryptions of two messages in less than (1−α)rd
time. A ′ implies the existence of an extractor E that can find a signature for the
randomness incorporated in the ciphertext. We create an adversary B,B ′ that
can sign a random message in almost the same time as follows:

– B(crs) : Generate (m0,m1, rd , fd , pk , sk ) ← A(crs) and return the tuple
(rd , fd , pk , (m0,m1, sk )) where the last tuple is the secret key for B ′.

– B ′((m0,m1, sk ), (r, rd , fd , c)) : Run w ← E(r, (m0,m1, c, rd , fd , sk )) and re-
turn w.

By extractable security of the witness encryption, Ver ′(crs, pk , r, fd , rd , w) = 1
with non-negligible probability. Moreover, since the running time of E is that of
A ′, we conclude that B ′ runs in time (1− α)rd + c, for constant c.

Moreover, suppose that there is a constant α and an adversary A,A ′ that
can distinguish encryptions of two messages in time (1 − α)(

∑
i∈[l] rd i + fd i −

maxi∈[l] fd i). Again, by invoking a signature extractor from the distinguisher A ′

we are able to sign all l random messages in time (1 − α)(
∑

i∈[l] rd i + fd i −
maxi∈[l] fd i) + c, for constant c reaching a contradiction.

Revocable Security. Assume adversaries A,A ′,A ′′ such that although A ′ revokes
a ciphertext in time less than rd , A ′′ is still able decrypt it subsequently with
non-negligible probability. We will create an adversary B that can both sign
and revoke a message with non-negligible probability. The adversary B first runs
(m0,m1, rd , fd , pk , sk ) ← A(crs) then picks a randomness b, r and computes
c ← Enc(crs, pk ,mb, rd , fd). Subsequently, it runs (π, sk ′) ← A ′(sk , c). Then,
by security of witness encryption, it uses an extractor E(sk ′, c), corresponding
to the distinguisher A ′′, in order to find a signature σ for r. It finally returns
(pk , r, rd , fd , σ, π) which breaks security with non-negligible probability.

Notice that if A ′ could run for time (1−α)rd , then it could both decrypt and
rewind and subsequently generate a proof of revocation without ever learning a
classical signature for the randomness r.
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