
Second-Order Masked Lookup Table
Compression Scheme

Annapurna Valiveti and Srinivas Vivek

IIIT Bangalore, IN
annapurna@iiitb.org,srinivas.vivek@iiitb.ac.in

Abstract. Masking by lookup table randomisation is a well-known technique used
to achieve side-channel attack resistance for software implementations, particularly,
against DPA attacks. The randomised table technique for first- and second-order
security requires about m ·2n bits of RAM to store an (n, m)-bit masked S-box lookup
table. Table compression helps in reducing the amount of memory required, and this is
useful for highly resource-constrained IoT devices. Recently, Vadnala (CT-RSA 2017)
proposed a randomised table compression scheme for first- and second-order security
in the probing leakage model. This scheme reduces the RAM memory required by
about a factor of 2l, where l is a compression parameter. Vivek (Indocrypt 2017)
demonstrated an attack against the second-order scheme of Vadnala. Hence achieving
table compression at second and higher orders is an open problem.

In this work, we propose a second-order secure randomised table compression scheme
which works for any (n, m)-bit S-box. Our proposal is a variant of Vadnala’s scheme
that is not only secure but also significantly improves the time-memory trade-off.
Specifically, we improve the online execution time by a factor of 2n−l. Our proposed
scheme is proved 2-SNI secure in the probing leakage model. We have implemented
our method for AES-128 on a 32-bit ARM Cortex processor. We are able to reduce
the memory required to store a randomised S-box table for second-order AES-128
implementation to 59 bytes.

Keywords: Masking · S-box · Table compression · Probing leakage model · SNI
security · Side-channel attacks · IoT security · Software implementation.

1 Introduction
IoT involves extending connectivity beyond standard devices, such as desktops, laptops,
smartphones and tablets, to a range of traditionally non-connectivity-enabled and everyday
objects. These devices can communicate and interact over LAN/Internet, and they can be
remotely monitored and controlled. Connected devices are part of a framework in which
every device talks to other related devices to automate tasks, and to communicate sensed
data to users. Technological improvements will make these devices cheaper, smaller and
more energy efficient. The embedded devices deployed within IoT are expected to be
resource constrained and do not necessarily contain the computing resources necessary to
implement strong security protocols. Since IoT devices may be easily physically accessible,
it makes them vulnerable to physical implementation-based attacks, such as side-channel
attacks [Koc96, KJJ99]. Therefore, there is a need to focus on countermeasures that defend
these classes of attacks. In order to protect the implementations of resource constrained
IoT devices one must also keep in mind the memory and other storage capacities of these
devices.

annapurna@iiitb.org, srinivas.vivek@iiitb.ac.in

2 iacrtans class documentation

To counter side-channel attacks against cryptographic implementations, masking is a
technique that is popularly used. In masking, a sensitive variable, say x ∈ {0, 1}n, is split
into t+ 1 shares such that:

x = x1 ⊕⊕ xt+1, (1)

where any subset of t shares are uniform random and independent of x. Here t is typically
referred to as the masking order. Though the cost of performing side-channel attacks
grows exponentially with the number of shares [CJRR99, PR13, DDF14a], lower masking
orders strike a balance between implementation efficiency and security for many real world
applications.

Block ciphers consist of both linear transformations and non-linear functions (for e.g.,
S-boxes). Linear operations are easier to mask since they can be applied on individual
shares to produce a shared output. But processing non-linear components of a block cipher
implementation in the presence of shares is relatively expensive. The overhead compared to
an unmasked implementation is O(t) for linear operations, while it is O(t2) for non-linear
operations [ISW03].

There are many approaches suggested in the literature to securely mask S-box imple-
mentations at arbitrary orders. These S-box masking schemes may be categorised as being
circuit/computation-based [ISW03] or table-based schemes [Cor14]. The polynomial-based
and bitsliced masked implementations belong to the former category [CGP+12, CRV15,
CPRR15, GRVV17, JS17, GR17]. The polynomial-based and bitsliced schemes are suit-
able for masking at higher orders due to better timing and RAM memory requirements
than lookup table-based schemes [Cor14, CRZ18, GTP+20]. However, lookup table-based
methods are more suitable for low orders due to better efficiency and as they also typically
allow pre-processing to achieve better online execution time. By “pre-processing” we mean
the possibility of choosing all but one shares of the secret variables a priori and performing
any associated computation offline, before actual execution of the scheme. The remaining
processing time using secret variables is referred to as the “online” time.

Lookup Table-based S-box Masking Schemes. The first randomised lookup table-
based scheme with a formal analysis and secure at first-order was proposed by Chari et
al. in [CJRR99]. In this method, to implement an (n,m) S-box S, a randomised table T
is created in RAM using a share of the S-box input as the input mask, and then table
entries are also protected with an output mask. The masked table T is computed in RAM
memory as follows:

T (u) = S(u⊕ x1)⊕ y1, 0 ≤ u ≤ 2n − 1, (2)

where the input share x1 is uniform random and independently chosen, while the input
share x2 is computed as x = x1 ⊕ x2 ∈ {0, 1}n, y1 is an output mask ∈ {0, 1}m which is
chosen uniform random and independent of x. The second output share y2 is computed
from T as y2 = T (x2). The above defined S-box masking scheme is secure against first-order
attacks as no intermediate variable is statistically dependent on the secret x, but the pair
x1 and x2 together leak the secret x.

The amount of RAM memory required to store the randomised table T according to (2)
is m ·2n bits. The second-order lookup table-based schemes were proposed by Schramm and
Paar [SP06], and Rivain, Dottax and Prouff [RDP08]. These schemes require a temporary
table in RAM of size 2 ·m · 2n and m · 2n bits, respectively, while the higher-order lookup
table-based scheme suggested by Coron [Cor14] requires (2t+ 1) ·m · 2n bits for t-th order
security. Later, Coron et al. in [CRZ18] proved that the scheme from [Cor14] is indeed
t-SNI secure with number of shares n = t+ 1 instead of n = 2t+ 1 in the original scheme.
Hence an improvement by a factor of two was achieved for both memory and randomness
complexity and the runtime was improved by a factor of 4.8 for AES [FIP] with t = 6.
Therefore, the higher-order masked lookup table scheme [CRZ18] requires (t+ 1) ·m · 2n
bits for t-th order security. Recently, Guo et al. in [GTP+20] proposed a higher-order

Annapurna Valiveti and Srinivas Vivek 3

masking scheme that is also claimed to be resistant against horizontal attacks. Note that
the previously mentioned schemes are not known to be secure against horizontal attacks.
This scheme manages to achieve memory compression by approximately a factor of two
compared to [CRZ18]. But this scheme cannot support pre-processing since the lookup
table compression is dependent on all input shares. Essentially, all the computations
happen during the online phase.

Moreover, we need to note that the above calculations are for masking only a single
S-box. In a typical block cipher that uses S-boxes, there will be several S-box lookups.
For instance, for AES-128 [FIP], in each round there are 16 S-box lookups, and there are
10 rounds. So in total, there will be 160 S-box lookups. If the full pre-processing ability of
the table-based masking schemes is needed to be used, then for first- and second-order
security, we need to store all the 160 masked tables at once in RAM for a total cost of
40 KB. This could be expensive for tiny IoT devices where there are other applications
contending for the RAM memory. Hence there is a motivation to achieve trade-off for the
online execution time vs. the RAM memory for pre-processing even at small orders, while
ensuring that the online execution time is better than the circuit-based masking schemes.

Masked Table Compression Schemes. There has been an increasing demand to design
countermeasures against side-channel attacks for resource constrained devices. Rao et al.
[RRST02] recommended a table compression scheme that requires m · 2n−1 bits to store
the masked table in RAM at first-order security. For the case of AES this means that the
masked table for an S-box needs only 128 bytes. This method can also be extended to
compress the table size to ≈ m · 2n/l bits for an (n,m)-bit S-box, where the compression
parameter l is such that 1 ≤ l ≤ n − 1. Recently, Vadnala [Vad17] proposed a table
compression schemes for first-order and second-order that significantly improved upon the
method of [RRST02]. The memory requirement for the first-order case was reduced to
≈ m · 2n−l + (n − l) · 2l bits, where 1 ≤ l ≤ (n − 1). For the second-order case, it was
shown to be ≈ m · 2n−l + (n− l + 1) · 2l bits. Reasonably efficient first- and second-order
masked implementations of AES-128 were obtained using only about 40 bytes of RAM
memory per S-box [Vad17]. The proposed schemes were argued to be secure in the probing
leakage model [ISW03].

Later, Vivek [Viv17] demonstrated an attack against the second-order table compression
scheme of [Vad17]. Section 3 describes the second-order scheme of [Vad17] and discusses
the attack of [Viv17]. Hence designing masked table compression schemes at second and
higher orders has remained an open problem.

Our Contribution. In this work we propose a secure second-order masked S-box lookup
table compression scheme for arbitrary S-boxes. Our proposal is a variant of the second-
order scheme of [Vad17] that is not only secure but significantly improves upon the online
execution time by a factor 2n−l. Concretely, we also use the technique of [Vad17] to pack
2l entries of the uncompressed table into a single entry of the first compressed table. Then,
securely using n− l most significant bits of x, we generate another masked table of size
2l that is then securely accessed using the remaining l bits. The second-order scheme of
[Vad17] does not allow pre-processing since all the shares of the secret variable are needed
for most of the computation steps. This limitation is inherited from the second-order S-box
masking scheme of Rivain, Dottax and Prouff [RDP08] on which the second-order scheme
of [Vad17] is based.

Our first contribution is to propose a variant of the second-order masking scheme of
[RDP08] that allows pre-processing, where the final share is needed only in the last step
(see Section 2). We prove that our variant is second-order secure in the probing leakage
model under compositions, a.k.a. 2-SNI probing secure [BBD+16]. The original scheme
of [RDP08] was proved to be second-order probing secure only for balanced S-boxes (see

4 iacrtans class documentation

Definition 1). But, this is not a restriction since the balancedness property holds for all the
known cryptographic S-boxes. However, for the sake of completeness, we extend the scheme
of [RDP08] to arbitrary S-boxes that are not necessarily balanced. The cost incurred
for this is only logarithmic (in the size of the table) amount of randomness and memory
for storing this randomness. We achieve this by generating (a part of) the randomness
on-the-fly using a pairwise-independent PRG even when it needs to be reused (see Section
2.2). We would like to note that in spite of the slight increase in the randomness and
memory overhead compared to the original RDP scheme, the randomness and memory
complexity is still nearly 3 times better than the table-based masking scheme of Coron
[Cor14] instantiated at second-order security. Then, we extend this variant to the table
compression scheme in Section 4 and we prove our constructions to be 2-SNI secure in the
probing leakage model.

As far as the technique to make our table compression scheme second-order secure
is concerned, the immediate observation is to protect against the attack mentioned in
[Viv17]. This attack is possible since the same mask was used in [Vad17] for different
rows of each table. To overcome the attack, one would naturally think of only masking
each entry of the second intermediate table with a different mask. But, as we have
observed, we even need to randomise the rows of the offline table as well. On top of
it, we need to even secure the index of the final output share (see Algorithm 6). The
RAM memory required for the proposed compression scheme to mask an (n,m) S-box is
≈ m ·(n− l+1)+2l ·(n− l+m)+m ·(2n−l+2l) bits. We would like to note that, to the best
of our knowledge, there is no direct approach for formal verification of table-based schemes
using the existing tools such as [Cor18, BGR18]. These tools natively support circuit-based
schemes. However, in [BBD+15], the authors managed to verify the table-based scheme
[SP06] indirectly. It will be an interesting future work to extend their technique to formally
verify the security of our proposed scheme.

Finally, in Section 5, we report the performance of our proposed table compression
scheme on a 32-bit ARM micro-controller. We reduce the RAM memory required per S-box
to mask AES-128 at second-order security to 59 bytes (see Table 3 on Page 18) and that
of second-order masked PRESENT 80-bit key variant to 9 bytes (see Table 4 on Page 18).
We compare the online execution time of our second-order compression of AES-128 with
that of the second-order masked implementations of Rivain and Prouf [RP10] and bitsliced
AES, where the latter schemes do not take any advantage of pre-processing. As Tables 5
and 7 suggest, we achieve improved online execution time over both [RP10] and bitsliced
implementations for the compression parameter values up to l = 3. For completeness, we
compare the implementation results of second-order compression of PRESENT with that
of second-order circuit-based implementation of PRESENT using [CRV15]. As Tables
6 and 9 indicate, the online execution time is better than [CRV15] for the compression
parameter values l = 1, 2.

2 Variant of 2-O Scheme of [RDP08] with Pre-processing
In this section, we present our variant of the second-order secure randomised table-based
S-box masking scheme of Rivain, Dottax and Prouff [RDP08, Section 3.1, Algorithm 2].
Unlike the former scheme, our variant allows pre-computing of the masked table offline as
the third share is needed only in the last step.

The second-order scheme in [RDP08] makes use of all the three input shares, say, x1,
x2 and x3, as inputs to the randomised table computation. Because of this requirement the
randomised table, say, T , has to be evaluated only during the online execution phase and
hence cannot benefit from any offline pre-processing. We modify the table construction
in such a way that it can be computed independent of the secret, i.e., using only two
shares x1 and x2. Interestingly, the improvement is possible with only a small tweak to

Annapurna Valiveti and Srinivas Vivek 5

the original algorithm. Hence, instead of recalling the scheme from [RDP08], we right
away present our variant in Algorithm 1. The change from the original scheme is that the
variables υ and x3 in Algorithm 1 have been swapped. We have tried to be consistent with
the notation in [Viv17]. The mapping between the notations of [RDP08] and Algorithm 1
is summarised in Remark 1.
Remark 1. The variables r1, r2, x̃, r3, r′, s1, s2 in [RDP08, Algorithm 2] correspond to
x1, x2, x3, υ, d, y1, y2, respectively, in Algorithm 1.

Algorithm 1: Variant of [RDP08, Algorithm 2]: second-order secure masked
S-box computation with pre-processing.
Input :

• Input shares x1, x2, x3 such that x = x1 ⊕ x2 ⊕ x3.

• An (n,m) S-box lookup table S.

Output :Three output shares: y1, y2, y3, such that S(x) = y1 ⊕ y2 ⊕ y3.

1 υ
$←− {0, 1}n

2 y1
$←− {0, 1}m

3 y2
$←− {0, 1}m

4 d←− (x1 ⊕ υ)⊕ x2
5 for a← 0 to 2n − 1 do
6 b←− a⊕ d
7 T (b)←− (S(υ ⊕ a)⊕ y1)⊕ y2
8 end
9 y3 = T (x3)

Note that in order to construct the table T , only two out of the three input shares
of x are needed. Since two out of three shares can be chosen uniformly at random, the
construction of T is independent of x. The third input share x3 is used only while accessing
the table in the last step. Like the original scheme, a random variable υ is used to mask
x1 while combining with x2. Further, the same υ is used to shift the table and then table
entries are protected using the output masks y1 and y2. Finally, we get the final share
when the table is accessed at T (x3) = S(x1 ⊕ x2 ⊕ x3)⊕ y1 ⊕ y2 = S(x)⊕ y1 ⊕ y2.

2.1 2-SNI Security Proof
We next prove that our scheme is second-order secure in the probing leakage model in the
presence of compositions, i.e., 2-SNI secure (see Definition 2) only if the S-box is balanced.
The original proposal was only known to be second-order secure in the probing leakage
model without compositional security guarantees. In the rest of the paper, we use only
the 2-SNI security notion. To define the balancedness property formally,

Definition 1. Balanced S-box. An (n,m) S-box S, m ≤ n, is balanced if every output
word is the image under S of exactly 2n−m input words.

Let us also recall the compositional security notion of Strong Non-Interference (SNI)
from [BBD+16]. A gadget is said to be t-SNI secure if any set of t intermediate variables
and/or output shares are probed, then probed variables can be simulated only with the
number of shares (of each input variable) equal to the number of probes on the intermediate
variables (including the input shares). Formally,

6 iacrtans class documentation

Definition 2. Strong Non-Interference (t-SNI) Security [BBD+16]. Let x be an
input split into n shares. Let G be a gadget which takes shares of the input x, i.e., xi, and
outputs the shares yi. Let G be probed with t < n probes, out of which, say, a set of t1
intermediate variables (including input shares) and a set of t2 output shares are probed,
and t = t1 + t2. Then G is said to be t-SNI secure if the set of t probes can be perfectly
simulated by using only t1 shares of the input x.

For completeness, we have tabulated the intermediate variables (including inputs,
intermediates and outputs) of Algorithm 1 in Table 1. Further, we partition the variables
into two sets: Set1 consists of input shares and intermediate variables, and Set2 having
only output shares. Each Ik represents input or output or intermediate variables as defined
in Table 1. The basic idea behind the 2-SNI security proof of our variant is as follows:
since two output shares (y1 and y2) to mask S(x) are chosen at random, any two out of
three output shares are easy to simulate without using any input share. As Algorithm 1
uses pre-processing phase that does not involve x3, it can be observed that any pair of
variables from the pre-processing phase can be simulated using a maximum of two input
shares x1 and x2, independent of the secret x. Even though the same output masks are
used across the table, as explained below in the formal proof, the balanced S-box property
comes handy to show the simulation. Pairs of variables depending on all three input shares
can be simulated using the unprobed randomness present in the variables.

Table 1: List of variables of Algorithm 1.

j Ij
Input and intermediate variables

1 input shares x1, x2 and x3= x⊕ x1 ⊕ x2
2 a, a constant
3 υ
4 υ ⊕ a
5 x1 ⊕ υ
6 d = (x1 ⊕ υ)⊕ x2
7 a⊕ d = a⊕ ((x1 ⊕ υ)⊕ x2)
8 S(υ ⊕ a)
9 S(υ ⊕ a)⊕ y1
10 T (b) = (S(υ ⊕ a)⊕ y1)⊕ y2

Output variables
11 y1
12 y2
13 y3 = T (x3) = S(x)⊕ y1 ⊕ y2

Theorem 1. Algorithm 1 is 2-SNI secure if the S-box is balanced.

Proof. Formally, in order to prove the scheme to be 2-SNI secure, note that the gadget is
the S-box S, which takes an input x in the form of three shares x1, x2, x3 = x⊕ x1 ⊕ x2,
and outputs y1, y2, y3 = S(x)⊕y1⊕y2. For convenient representation, we have partitioned
Table 1 into two sets :

Set1 := input and intermediate variables,
Set2 := output shares.

The following are the possible types of combinations for probing pairs of intermediate
variables (including input shares, intermediate variables and output shares).

Annapurna Valiveti and Srinivas Vivek 7

1. Pair of output shares: if the probed output shares are (y1, y2), then this pair can be
assigned random values as this would have happened in the actual implementation.
If the probed pair of output shares are either (y2, y3) or (y1, y3), then the pair can be
simulated with the help of the fact that y1 or y2, respectively, is not probed. Hence,
any pair of output shares can be simulated without the knowledge of input shares.

2. One input/intermediate and one output share: similar to Step 1, the probed output
share can be assigned a uniformly chosen random value.

• Probed intermediate variable depending on at most one input share (including
constants, sampled randomness and input shares) is trivial to simulate. It can
be observed from the Table 1 that the intermediate variable relying on two
input shares is always associated with the uniform random and independent
value υ. Since υ can not be probed in this setting, the intermediate variable
having two input shares can be assigned a uniform random and independent
value without the knowledge of any input share.

• Since the pair of output masks y1 and y2 are common for the final output share
and any row of the table T , to simulate the pair (y3 = S(x) ⊕ y1 ⊕ y2 and
S(υ ⊕ a) ⊕ y1) ⊕ y2), y3 can be assigned a uniform random and independent
value. Then,

y1 ⊕ y2 = y3 ⊕ S(x),
S(υ ⊕ a)⊕ y1 ⊕ y2 = S(υ ⊕ a)⊕ y3 ⊕ S(x).

Since the S-box is balanced, the variable S(υ ⊕ a) is a uniform random and
independent of y3 and x since the input to the S-box, υ ⊕ a, satisfies the same
property (see Definition 1). Therefore, the probed pair can be simulated without
the knowledge of any input share. We can conclude that any pair of intermedi-
ate variables in these cases can be simulated with a maximum of one input share.

3. Two intermediate variables: for this case, we need to prove that Set1 × Set1 is
independent of x. Since pre-processing is independent of x, all the intermediate
variables except the last table access in Step 9 can be simulated using at most two
input shares. To assign values to the pair having the final input share x3 and any
other intermediate variable from Set1, as discussed in Step 2, the probed pair can be
assigned values using the unprobed randomness υ, and x3. Hence, we can conclude
that the simulation in this setting can be done independent of x.

This proves that Algorithm 1 is 2-SNI secure.

2.2 Variant of [RDP08] for Arbitrary S-box
It may be observed that using common output masks across the rows of the masked table
demands the S-box to be balanced in the proof of Algorithm 1. In order to extend our
variant scheme to any arbitrary S-box, the idea is to randomise the table with different
output mask for each row. But to use distinct masks per row, the required randomness
will be exponential in n. Moreover, the generated randomness has to be stored in order to
retrieve one of them as the final output share. It may be noticed that if each row uses
distinct output mask y1 and output masks are never combined together in the scheme,
then it is sufficient to generate y1’s that are pair-wise independent for a second-order secure
implementation.

8 iacrtans class documentation

Therefore, to reduce the randomness complexity and also to reduce the memory
complexity of storing this randomness, we use a slightly tweaked variant of the subset-sum
technique of generating pair-wise independent randomness as suggested in [Viv17, Section
2]. This variant is same as the one suggested in [TV09] that generates 3-wise independent
random values. This construction to compute the output masks y1’s helps to bring down
the randomness complexity of T from 2n to n+ 1 which is linear in n. Further, to reduce
the memory complexity, we do not store the output masks. Instead, we generate the output
masks on-the-fly as part of the construction and the final share y1 is also re-constructed
on-the-fly. An interesting feature of the subset-sum technique which comes handy in our
SNI proofs is that every intermediate variable of subset-sum is an output. Hence there are
no intermediate variables that are not outputs and that can be probed. So we do not need
the robustness property for the PRG [IKL+13, CGZ19]. We recall the 3-wise independent
subset-sum technique in Algorithm 2. By bitsk(i)[j] we mean the jth bit from the least
significant position in a k-bit binary representation of i.

Algorithm 2: s-sum: 3-wise independent PRG [TV09].
Input :

• k, and i ∈ {0, 1}k. // compute subset-sum for k-bit input index i

• γ0, . . . , γk ∈ {0, 1}m. // input seed for PRG

Output : y ∈ {0, 1}m
1 y = γk
2 for j ← 0 to k − 1 do
3 if bitsk(i)[j] 6= 0 then
4 y = y ⊕ γj
5 end
6 end
7 return y

Using Algorithm 2, Algorithm 3 presents the second-order table based scheme that
works for any arbitrary S-box. The 2-SNI proof argument for Algorithm 3 is very similar
to the one provided for Algorithm 1 with the only difference that any row of the Table T
along with y3 can be simulated without the S-box balancedness property (see Definition
1). To be precise, probing the output share y3 along with any other table entry T (i)
can be simulated without using input shares as the pair-wise independent output mask
helps to randomise the table row. As already mentioned above, pair-wise independence of
output masks is sufficient for 2-SNI security since first output masks are not combined as
part of Algorithm 3. This idea of using pair-wise independent output masks presented
in Algorithm 3 serves as the basis to propose the second-order masked table compression
scheme that works for any arbitrary S-box in Section 4.

3 Recap of 2-O Compression Scheme from [Vad17]
In this section, we recall the second-order masked table compression scheme from [Vad17,
Section 3] . We follow the notation used in [Viv17, Remark 1, Section 2].

The table compression method will choose a compression parameter l such that 1 ≤
l ≤ n − 1. The extreme values l = 0 and l = n may also be allowed with the natural
interpretation of vacuous objects. Define the functions Si : {0, 1}n−l → {0, 1}m, for
0 ≤ i ≤ 2l − 1, as

Si(u) = S(u ‖ i), ∀u ∈ {0, 1}n−l. (3)

Annapurna Valiveti and Srinivas Vivek 9

Algorithm 3: Second-order secure masked S-box with pre-processing for arbi-
trary S-box.
Input :

• Input shares x1, x2, x3 such that x = x1 ⊕ x2 ⊕ x3.

• An (n,m) S-box lookup table S.

Output :Three output shares: y1, y2, y3, such that S(x) = y1 ⊕ y2 ⊕ y3.

1 υ
$←− {0, 1}n

2 for i← 0 to n do
3 γi

$←− {0, 1}m
4 end
5 y2

$←− {0, 1}m
6 d←− (x1 ⊕ υ)⊕ x2
7 for a← 0 to 2n − 1 do
8 b←− a⊕ d
9 z ←− s-sum(n, b, γ0, . . . , γn)

10 T (b)←− (S(υ ⊕ a)⊕ z)⊕ y2
11 end
12 y1 = s-sum(n, x3, γ0, . . . , γn)
13 y2 = y2
14 y3 = T (x3)

In order to reduce the space required to store the masked table T in [RDP08], the idea
is to pack 2l table values into a single entry of a table T1. Packing is secured by picking
uniformly distributed random values ri’s independent of x:

ri
$←− {0, 1}n−l, 0 ≤ i ≤ 2l − 1. (4)

Let var be an n-bit variable such that:

var := var(1) ‖ var(2), (5)

where var(1) ∈ {0, 1}n−l and var(2) ∈ {0, 1}l. Each entry of T1 is defined as:

T1(b(1)) :=
((⊕

0≤i≤2l−1

Si(x(1)
3 ⊕ a(1) ⊕ ri)

)
⊕ y1

)
⊕ y2, (6)

where
b(1) = a(1) ⊕ ((x(1)

1 ⊕ υ(1))⊕ x(1)
2), (7)

for all 0 ≤ a(1) ≤ 2n−l − 1, υ(1) ∈ {0, 1}n−l and ri as in (4).
After computing T1 as described in (6), the final share y3 can be obtained as:

y3 = T1(υ(1) ⊕ rx(2))⊕
⊕

0≤j≤2l−1, j 6=x(2)

Sj(x(1) ⊕ rx(2) ⊕ rj).

But y3 cannot be computed directly as indicated above as the secret x(2) is directly
manipulated. Therefore, we construct another Table T2 by accessing T1 with the random
value υ and the same ri’s used in T1 construction. Then, securely combine the value in (6)
with S-box lookup functions Si to obtain the enries of T2. Shares of x(2) are used to index

10 iacrtans class documentation

T2 entries and they are combined using an independent random value υ(2) (see (5)). Each
entry of Table T2 is defined as follows:

T2(b(2)) := (T1(υ(1) ⊕ r(x(2)
3 ⊕a(2)))) ⊕⊕

0≤j≤2l−1, j 6=a(2)

S(x(2)
3 ⊕j)

((((x(1)
3 ⊕ r(x(2)

3 ⊕a(2)))⊕ x
(1)
1)⊕ r(x(2)

3 ⊕j)
)⊕ x(1)

2),

where,
b(2) := a(2) ⊕ ((x(2)

1 ⊕ υ(2))⊕ x(2)
2) ∀ 0 ≤ a(2) ≤ 2l − 1. (8)

Finally, Table T2 is accessed at υ(2) to obtain y3 = S(x)⊕ y1 ⊕ y2.

Instead of storing T2, the output shares can be computed on-the-fly as explained in
[Vad17, Section 3]. Using two registers, say R0 and R1, the output share y3 is stored in
Rk, where k is an independent and random bit. The loop iterates through all possible 2l
values and saves the result in one of the two registers based on the output of the first-order
secure comparison among the shares [RDP08, Appendix]. Finally, Rk contains the third
output share y3. Note that in this scheme, as in the original RDP scheme, all the shares
must be present from the beginning. Hence there is no scope for pre-processing.

3.1 Second-Order Attack from [Viv17]
Vivek [Viv17] presented attacks on both variants of the second-order table compression
scheme of [Vad17]. These attacks target the dependency that many pairs of intermediate
variables depend on the secret which is a violation of the second-order security.

Note that T2 consists of 2l entries. Let i and j represent two indices into table T2. The
following holds for all i and j ∈ {0, 1}l, i 6= j:

T2(i)⊕ T2(j) = S(i⊕x(2)⊕υ(2))(x(1))⊕ S(j⊕x(2)⊕υ(2))(x(1)). (9)

The above relation shows that any pair of values from T2 jointly depends on x(1), the
higher order n− l bits of the secret S-box x. The same attack holds for on-the-fly variant
as well since the two registers used as part of the computation holds the same set of values
as in T2 over different instances of time.

4 2-O Table Compression Scheme with Pre-processing
In this section, we present our second-order secure lookup table compression scheme. Our
approach is to secure the second-order lookup table compression scheme from [Vad17,
Section 3] (see Section 3) by first basing it on the modified RDP scheme from Section 2 to
allow pre-processing, and then by using different output masks for each of the rows of T1
and T2. A part of these output masks are generated using the pair-wise independent PRG
technique discussed in Section 2.2.

4.1 Computing T1 Offline
The first temporary table T1 is computed as follows. For an index a(1) ∈ {0, 1}n−l, we
have

T1(b(1))←− s-sum(b(1))⊕
⊕

0≤i≤2l−1

S(i⊕w)((a(1) ⊕ r(i⊕x(2)
1))⊕ υ

(1)), where (10)

b(1) ←− a(1) ⊕ ((x(1)
1 ⊕ υ(1))⊕ x(1)

2). (11)

Annapurna Valiveti and Srinivas Vivek 11

Similar to the original scheme [Vad17, Algorithm 6], a random variable υ(1) (see (5)) is
used to mask x1 while combining with the second share x2. Random variables ri’s are
assigned values from a set of uniform random distribution that is independent of the secret
x. Each Si lookup function (see (3)) is shifted with a distinct ri, for 0 ≤ i ≤ 2n−l, and
each entry of T1 packs 2l such entries. The same set of ri’s are passed as input to T2 that
will be used to securely extract the required value from the pack of 2l values.

To conceal the mapping between Si and ri, a random variable w ∈ {0, 1}l is used with
x

(2)
1 to shift ri’s (see Remark 2). Moreover, this mapping decides the index of first output

share y1 (see Remark 3). While packing, υ(1) is used in combination with shifted ri’s such
that the third share is needed only while accessing T1 during the construction of T2 in the
online phase. To ensure security, the computation has to be carried out in the same order
as mentioned (see Remark 4). As in Section 2, the output masks are computed using a
pair-wise independent PRG based on the subset-sum technique (Algorithm 2). We stress
here that, as we did in Section 2, we are not storing the output masks, but instead masks
are computed on-the-fly even when they are needed for the second time. Output masks
are used to randomise the rows of T1 (see Remark 5). For compactness, we refer to the
s-sum construction of b(1) as s-sum(b(1)). Since any two out of three shares can be picked
uniform random and independent of x (see (1)), T1 can be constructed offline. Algorithm
4 summarises the steps involved in the construction of T1.

Algorithm 4: Computing T1 offline.
Input :

• Input shares: x1, x2, and υ(1) (see (5))

• ri, 0 ≤ i ≤ 2l − 1

• An (n,m) S-box look up functions Si, where Si(y) = S(y ‖ i)
for 0 ≤ i ≤ 2l − 1

• w ∈ {0, 1}l

• γj ∈ {0, 1}m, for 0 ≤ j ≤ n− l

Output :Table T1

1 d1 ←− (x(1)
1 ⊕ υ(1))⊕ x(1)

2
2 for a(1) ← 0 to 2n−l − 1 do
3 b(1) ←− a(1) ⊕ d1
4 z ←− s-sum(n− l, b(1), γ0, . . . , γn−l)
5 temp←− z
6 for i← 0 to 2l − 1 do
7 temp←− temp ⊕ S(w⊕i)((a(1) ⊕ r(x(2)

1 ⊕i)
)⊕ υ(1))

8 end
9 T1(b(1))←− temp

10 end

Remark 2. The mapping between Si and ri decides which ri to use to lookup T1 while
computing T2. To ensure that the index of r does not leak any information about x, we
shift the ri’s with x(2)

1 ⊕ w. Finally, the same mask is used in T2 to retain the mapping.
Remark 3. If ri’s are used without shifting the indices, the index of r used in first output
share will be x(2), which is a first order leakage of the secret x. To prevent leakage, we
can use the mask (x(2)

1 ⊕ w) to shift index i in ri’s. Then the output share y1’s index is

12 iacrtans class documentation

((x(2)
3 ⊕ w)⊕ x(2)

2). But the pair of intermediate variables (((x(2)
3 ⊕ w)⊕ x(2)

2), x(2)
1 ⊕ w)

together depends on x(2). Therefore, we cannot naïvely combine the values. In the
proposed scheme, we shift ri’s indices with x(2)

1 and lookup functions Si index with w in
T1 construction.
Remark 4. Note that the packing of 2l values of Si, whose inputs are shifted by ri, leaks
the combined sum of all the ri’s. This combined sum can be used with an intermediate
variable from T2 to leak the secret x. We thwart this leakage by using the output mask
y1,i appended while packing the values. Also, the order of evaluation has to be strictly
maintained to prevent such attacks.
Remark 5. Note that we do not use the randomness optimisation for y2’s and ri’s. Since
the compression scheme suggested is efficient in practice only for small values of l = 1, 2, 3
(see Table 5), in such cases we need just a tiny amount of randomness (see Table 3).
Also, because the ri’s are combined as part of the construction of T1 and T2, pair-wise
independence is no longer sufficient, and k-wise independent PRG construction for a large
k will bring in a significant overhead compared to using a TRNG.

4.2 Computing T2 Online
Similar to T1, the lower bits of shares are combined using υ(2) which is derived from
a uniform random and independent value υ (see (5)). Table T2 is indexed by b(2) as
in (8). Out of 2l randomised Si values compressed in T1, we need to extract the value
corresponding to Si(x(1)), 0 ≤ i ≤ 2l − 1. To do this, the idea is to combine all the Si
values except the one with index i. Finally, to construct the Table T2 in such a way that
each row is independent of the secret x, we need to randomise the rows of the table. Since
the same output masks y1 and y2 are used across the Table T2 in [Vad17, Algorithm 8], the
attack mentioned in (9) is possible as two rows of T2 depend on the secret bits x(1). Hence
we use distinct output masks for each row. Algorithm 5 describes the steps of calculating
T2. Third input share x3 combined with ri is used to lookup T1. Index i in ri’s is shifted
the same way as in T1 (see Remark 2):

T1(x(1)
3 ⊕ r(p⊕a(2))), where p = ((x(2)

3 ⊕ w)⊕ x(2)
1), ∀ 0 ≤ a(2) ≤ 2l − 1. (12)

The value obtained in (12) is combined with all except one Si that are indexed by
shares of x(1) and ri’s to obtain the entries of table T2. Finally S(x) ⊕ y1 ⊕ y2 can be
obtained by a table lookup of T2 at υ(2):

y3 = T2(υ(2)). (13)

Algorithm 6 lists the steps of our second-order lookup table compression scheme.
Correctness: the following equations prove that the Algorithm 6 results in the correct
sharing of S-box evaluation. Since the Table T1 uses an output mask that is constructed
using the unique index per row, the index of the first output share when b(2) = υ(2) is
x

(1)
3 ⊕ r((x(2)

3 ⊕w)⊕x(2)
2). The final output share returned by Algorithm 6 satisfies:

y3 := T2(υ(2))

T1(x(1)
3 ⊕ r((x(2)

3 ⊕w)⊕x(2)
2))⊕ y2,υ(2)⊕⊕

0≤j≤2l−1, j 6=(x(2)
1 ⊕x

(2)
2)

S(x(2)
3 ⊕j)

(
x(1) ⊕ r((x(2)

3 ⊕w)⊕x(2)
2) ⊕ r(((x(2)

3 ⊕w)⊕x(2)
1)⊕j)

)

Annapurna Valiveti and Srinivas Vivek 13

Algorithm 5: Computing T2 online.
Input :

• Input shares: x1, x2, x3 := x⊕ x1 ⊕ x2, and υ(2) (see (5))

• ri, 0 ≤ i ≤ 2l − 1

• An (n,m) S-box look up functions Si, where Si(y) = S(y ‖ i)
for 0 ≤ i ≤ 2l − 1

• w ∈ {0, 1}l

• y2,j ∈ {0, 1}m, for 0 ≤ j ≤ 2l − 1

• Table T1

Output :Table T2

1 d2 ←− (x(2)
1 ⊕ υ(2))⊕ x(2)

2

2 p←− (x(2)
3 ⊕ w)⊕ x(2)

1
3 for a(2) ← 0 to 2l − 1 do
4 b(2) ←− a(2) ⊕ d2

5 temp←− T1(x(1)
3 ⊕ r(p⊕a(2)))

6 sxor ←− y2,b(2) ⊕ temp
7 for j ← 0 to 2l − 1 do
8 if j 6= a(2) then
9 sxor ← sxor ⊕

10 S(x(2)
3 ⊕j)

(((
(x(1)

3 ⊕ r(p⊕a(2)))⊕ x
(1)
1
)
⊕ r(p⊕j)

)
⊕ x(1)

2

)
11 end
12 end
13 T2(b(2))←− sxor
14 end

= s-sum(x(1)
3 ⊕ r((x(2)

3 ⊕w)⊕x(2)
2))⊕ y2,υ(2)⊕⊕

0≤i≤2l−1

S(w⊕i)
(
x(1) ⊕ r((x(2)

3 ⊕w)⊕x(2)
2) ⊕ r(x(2)

1 ⊕i)

)
⊕

⊕
0≤j≤2l−1, j 6=(x(2)

1 ⊕x
(2)
2)

S(x(2)
3 ⊕j)

(
x(1) ⊕ r((x(2)

3 ⊕w)⊕x(2)
2) ⊕ r(((x(2)

3 ⊕w)⊕x(2)
1)⊕j)

)
= s-sum(x(1)

3 ⊕ r((x(2)
3 ⊕w)⊕x(2)

2))⊕ y2,υ(2)⊕
0≤k≤2l−1

Sk
(
x(1) ⊕ r((x(2)

3 ⊕w)⊕x(2)
2) ⊕ r(x(2)

1 ⊕w⊕k)

)
⊕

0≤k≤2l−1, k 6=x(2)

Sk
(
x(1) ⊕ r((x(2)

3 ⊕w)⊕x(2)
2) ⊕ r(x(2)

1 ⊕w⊕k)

)
= Sx(2)(x(1))⊕ s-sum(x(1)

3 ⊕ r((x(2)
3 ⊕w)⊕x(2)

2))⊕ y2,υ(2)

which proves the correctness of Algorithm 6.

14 iacrtans class documentation

Algorithm 6: Second-order lookup table compression scheme.
Input :

• Three input shares x1, x2, x3 := x⊕ x1 ⊕ x2

• An (n,m) S-box look up functions Si, where Si(y) = S(y ‖ i)
for 0 ≤ i ≤ 2l − 1

Output :Output shares: y1, y2 and y3 := S(x)⊕ y1 ⊕ y2

1 υ
$←− {0, 1}n

2 w
$←− {0, 1}l

3 for i← 0 to n− l do
4 γi

$←− {0, 1}m
5 end
6 for i← 0 to 2l − 1 do
7 ri

$←− {0, 1}n−l

8 y2,i
$←− {0, 1}m

9 end
10 Create table T1 using Algorithm 4.
11 Create table T2 using Algorithm 5.
12 y1 := s-sum(n− l, (x(1)

3 ⊕ r((x(2)
3 ⊕w)⊕x(2)

2)), γ0, . . . , γn−l)
13 y2 := y2,υ(2)

14 y3 := T2(υ(2))
15 return y1, y2, y3

4.3 2-SNI Security Proof

The intuition behind the proof is that any two output shares are easy to simulate since
the two output masks are chosen uniform random and independent. All the intermediate
variables that are part of pre-processing can be simulated independent of x, i.e., using only
two shares x1 and x2. Any combination of the probed pair of rows from tables T1 and
T2 can be assigned random values as the table rows are randomised by using pair-wise
independent output masks. For the pair of variables involving all three shares, we can use
the fact that any two input shares are always combined with the help of an independent
random value that is not probed. Therefore, the unprobed randomness can act as an
one-time pad in simulation of those pairs that depend on the secret x. But as explained
below, the simulation of pairs of intermediate variables using the shared randomness
(w and ri’s) across T1 and T2, is indeed the non-trivial part of the proof. Though the
shared randomness between T1 and T2 helps reduce the randomness usage and also save
computation time, it prevents us from proving the 2-SNI property of the constructions
of T1 and T2 independently and allow for a trivial composition. However, we are able to
directly show that the composition of T1 and T2 is 2-SNI.

For completeness, the list of intermediate variables of Algorithm 6 are grouped and
tabulated in Table 2. Each Ik represents input or output or intermediate variables as
defined in Table 2. We have partitioned the set of intermediate variables of the scheme

Annapurna Valiveti and Srinivas Vivek 15

into four sets :

Set1 := constants and random variables,
Set2 := variables of T1 Algorithm,
Set3 := variables of T2 Algorithm,
Set4 := output shares.

Theorem 2. Algorithm 6 is 2-SNI secure.

Proof. Formally, to prove our second-order table compression scheme to be 2-SNI secure,
we consider the gadget to be the given S-box S, which takes its input x in the form of
three shares x1, x2, x3 = x⊕ x1 ⊕ x2 and outputs y1, y2, y3 = S(x)⊕ y1 ⊕ y2.

To prove the 2-SNI security (see Definition 2), the following are the possible types
of the combinations for probing pairs of intermediate variables (including input shares,
intermediate variables and output shares).

1. Pair of output variables: if the probed output variables are (y1, y2) or (y2, y3) or
(y1, y3), then the pair can be assigned uniform random and independent values.

2. One input and one output: similar to Step 1, it is trivial to simulate the probed
output share. To simulate the other probed intermediate variable, we must use at
most one input share. If the probed intermediate variable depends on at most one
input share (including constants, sampled randomness and input shares), then it
is straightforward to simulate it using the corresponding input share. It can be
observed from Algorithm 6 (and also Table 2) that any variable depending on two
or more input shares always consists of an unprobed random variable such as v, w,
r’s, subset-sums of γ’s, or y2’s that acts as one-time pad. Hence we can conclude
that any variable from Set1 or Set2 or Set3 can be simulated with a maximum of
one input share.

3. Two intermediate variables: for this combination, by the definition of 2-SNI, we need
to prove that any pair of variables (excluding the output variables) can be assigned
values using at most two input shares. All the probed pairs of intermediate variables
depending on at most two input shares can be trivially simulated, which indeed implies
that any pair from T1 construction (see Algorithm 4) can be assigned/computed
using two input shares. The probed pair depending on all the three shares can
only be simulated with the help of unprobed randomness present in the variables.
But, if the pair of variables are using shared random variables, then the unprobed
randomness can not be treated as one-time pad. Therefore, the simulation of those
pairs depending on all the three input shares along with shared randomness, as one
may encounter in the construction of T2, needs to be addressed separately. Following
is the case by case analysis of simulation of these pairs, ordered by their occurrence
in the construction of T2 (Algorithm 5).

• Probing the pair T1(x(1)
3 ⊕ r(p⊕a(2))) and the output mask for this row of T1 (i.e.

s-sum(x(1)
3 ⊕ r(p⊕a(2)))) is not possible since the index of T1 is randomised.

• Simulation of pair of rows of T1 indexed using x3 in Algorithm 5: assign uniform
random and independent values to ri’s and w as this would have happened
in the actual implementation. Consider the values of a(2) at which the rows
are probed, say i, and j. Then, compute k1 = x

(1)
3 ⊕ r((

(x(2)
3 ⊕w)⊕x(2)

1

)
⊕i
) and

k2 = x
(1)
3 ⊕ r((

(x(2)
3 ⊕w)⊕x(2)

1

)
⊕j
) using two input shares x1 and x3 and return a

16 iacrtans class documentation

Table 2: List of variables of Algorithm 4.

j Ij

Constants and random values
1 c ∈ {constant, loop variable}
2 r, a random value ∈ {υ,w, γi, y(2,j) and rk’s}

Variables of T1 (see Algorithm 4)
3 input shares x1 and x2

4 υ(1)

5 x
(1)
1 ⊕ υ(1)

6 d1 = (x(1)
1 ⊕ υ(1))⊕ x(1)

2

7 b(1) = a(1) ⊕ d1

8 x
(2)
1 ⊕ j

9 r(x(2)
1 ⊕j)

10 (a(1) ⊕ r(x(2)
1 ⊕j)

)⊕ υ(1)

11 S(w⊕j)((a(1) ⊕ r(x(2)
1 ⊕j)

)⊕ υ(1))

12 S(w⊕i)((a(1) ⊕ r(x(2)
1 ⊕i)

)⊕ υ(1)), 0 ≤ j ≤ 2l − 1

13 z ←− s-sum(b(1))
14 (z)⊕

⊕
0≤i≤k

S(w⊕i)((a(1) ⊕ r(x(2)
1 ⊕i)

)⊕ υ(1)), 0 ≤ k ≤ 2l − 1

15 T1(b(1)) = (z)⊕
⊕

0≤j≤2l−1
S(w⊕i)((a(1) ⊕ r(x(2)

1 ⊕i)
)⊕ υ(1))

Variables of T2 (see Algorithm 5)
16 input shares x1, x2 and x3= x⊕ x1 ⊕ x2

17 υ(2)

18 x
(2)
1 ⊕ υ(2)

19 d2 = (x(2)
1 ⊕ υ(2))⊕ x(2)

2

20 b(2) = a(2) ⊕ d2

21 x
(2)
3 ⊕ w

22 p = (x(2)
3 ⊕ w)⊕ x(2)

1

23 q = (x(2)
3 ⊕ w)⊕ x(2)

2

24 r(p⊕a(2))

25 x
(1)
3 ⊕ r(p⊕a(2))

26 (x(1)
3 ⊕ r(p⊕a(2)))⊕ x

(1)
1

27 ((x(1)
3 ⊕ r(p⊕a(2)))⊕ x

(1)
1)⊕ r(p⊕j)

28 x(1) ⊕ r(p⊕a(2)) ⊕ r(p⊕j)

29 S(x(2)
3 ⊕j)

(x(1) ⊕ r(p⊕a(2)) ⊕ r(p⊕j)), j 6= a(2)

30 T1(x(1)
3 ⊕r(p⊕a(2))) = s-sum(x(1)

3 ⊕r(p⊕a(2)))⊕
⊕

0≤i≤2l−1
S(x(2)

3 ⊕a(2))(x
(1)⊕

r(p⊕a(2)) ⊕ ri)

Annapurna Valiveti and Srinivas Vivek 17

31 (y2,b(2))⊕
⊕

0≤j≤k, j 6=a(2)
S(x(2)

3 ⊕j)
(x(1) ⊕ r(p⊕a(2)) ⊕ r(p⊕j)), 0 ≤ k ≤ 2l − 1

32 T2(b(2)) = S(x(2)
3 ⊕a(2))(x

(1))⊕ s-sum(x(1)
3 ⊕ r(p⊕a(2)))⊕ y2,b(2)

Output shares
33 y1 := s-sum(x(1)

3 ⊕ r((x(2)
3 ⊕w)⊕x(2)

2))

34 y2 = y2,υ(2)

35 y3 = T2(υ(2)) = S (x)⊕ y1 ⊕ y2

uniform random and independent value for T (k1) and T (k2) if k1 = k2, return
two uniform random and independent values, otherwise.

• Along with intermediate variable x(1) ⊕ r(p⊕a(2)) ⊕ r(p⊕j), j 6= a(2) either only
r(p⊕a(2)) or r(p⊕j) can be probed, since ri’s are not combined directly as part of
Algorithm 5. Therefore, the unprobed r can be used for the simulation of this
pair. No knowledge of input shares is needed for the simulation of this pair.

• Probing the partial sum of S-box lookup functions Si at two distinct indices, say
i = k1 and i = k2 (see I31) will have the same output mask y2. The simulation
of this pair proceeds as follows: assign uniform random and independent values
to y2 and ri’s. Since ri is unique per S(x(2)

3 ⊕a(2))(x
(1) ⊕ ri ⊕ rj), ri 6= rj lookup

function, ri can be used to randomise x(1)⊕ri⊕rj , an (n−l)-bit value. Compute
x

(2)
3 ⊕ a(2), the lower order l-bits, with the help of the input share x3 and loop

variable a(2). Then evaluate the corresponding S-box values by concatenating
the n− l and l-bit strings. Finally, compute the probed pair using y2 and S-box
values. Note that this argument does not require S-box to be balanced (see
Definition 1). This simulation requires only one input share, x3.

• While computing the indices of ri’s in T2, the shares are combined using the
mask w. And the same w is used while computing the index of final output
share. But, the order of combination is taken care (see I22 and I23), therefore
using the random mask w and two input shares x1 and x2, the indices of ri’s
can be computed.

• Any pair of rows from T2 can be assigned uniform random and independent
values without using input shares since the rows are randomised using distinct
output masks.

This proves our claim that the table compression scheme presented in Algorithm 6 is 2-SNI
secure.

4.4 Memory Complexity
For the scheme proposed in Algorithm 6, the memory requirement for masking a single S-
box lookup table is as follows: Table T1 has 2n−l entries each of size m bits, Table T2 has 2l
entries each of size m bits. The 2l random ri’s are (n− l) bits each. The set of n− l random
values used to generate first output masks are m bits each, and so is the set of 2l second
output masks y2,i. Therefore the total memory needed, parametrised by n and l, for the
compression scheme proposed in Algorithm 6 is m ·(n−l+1)+2l ·(n−l+m)+m ·(2n−l+2l)
bits. Table 3 details the memory requirement for any (8,8)-bit S-box, in particular, for
AES-128. For completeness, Table 4 details the memory requirement for any (4,4)-bit
S-box, in particular, for PRESENT.

18 iacrtans class documentation

Table 3: Estimate of RAM memory required for Algorithm 6 for an (8,8)-bit S-box.
Memory requirement (in no. of bytes) for ri’s, y1’s, y2’s, T1, T2, are also listed separately.
The last column corresponds to the total number of random bytes required for ri, y1 and
y2’s.

l ri y1 y2 T1 T2 Total Memory Randomness
1 2 8 2 128 2 142 12
2 3 7 4 64 4 82 14
3 5 6 8 32 8 59 19
4 8 5 16 16 16 61 29
5 12 4 32 8 32 88 48
6 16 3 64 4 64 151 83
7 16 2 128 2 128 276 146

Table 4: Estimate of RAM memory required for Algorithm 6 for a (4,4)-bit S-box.
Memory requirement (approximated in no. of bytes) for ri’s, y1’s, y2’s, T1, T2, are also
listed separately. The last column corresponds to the total number of random bytes
required for ri, y1 and y2’s.

l ri y1 y2 T1 T2 Total Memory Randomness
1 1 2 1 4 1 9 4
2 1 2 2 2 2 9 5
3 1 1 4 1 4 11 6

5 Implementation Results
We have performed a second-order masked software implementation of the full block ciphers
AES-128 [FIP] and PRESENT 80-bit key variant [BKL+07]. Our source code is available
at [VV]. The randomised S-box table compression is achieved using the compression
scheme we proposed in Section 4. Our target architecture is NXP-FRDM-k64F, an ultra-
low-cost development platform. The FRDM-K64 is supported by various open source
embedded operating systems. The microcontroller used in the development platform is
MK64FN1M0VLL12, a low-power microcontroller based on ARM Cortex-M4 processor
having a 256 KB RAM, 1 MB flash memory and a clock frequency of 120 MHz. For AES,
we have built our code on top of the publicly available masked implementations from
[Cor]. For PRESENT, we referred the publicly available unmasked implementation from
[Klo]. The code size for full cipher implementation of AES-128 and PRESENT using our
proposed scheme is 12.8 KB and 8.5 KB, respectively.

We have computed the ratio of resulting execution times with the respective unmasked
implementations of AES-128 and PRESENT. The computed ratio is expressed as penalty
factor, PF. Since the compression parameter l has an impact on the time vs. memory
requirements of these algorithms, we ran these experiments for l ranging from 1 to n− 1.
In order to achieve security for the full block cipher implementation, the randomness is
sampled using the RNGA module in-built to the micro-controller, which generates 32-bit
random number in approximately 300 clock cycles.

For an efficient implementation, it is better to pre-process T1 for every S-box function
call (see Remark 6). The number of pre-computed T1 tables required are same as the
number of S-box invocations. Hence, the number of tables required are 160 (16/round ·
10 rounds) and 496 (16/round · 31 rounds) for AES-128 and PRESENT block ciphers,
respectively.

The tables are pre-processed and stored on the same chip where the actual execution

Annapurna Valiveti and Srinivas Vivek 19

takes place. It is easy to see that pre-processing helps to reduce the online computation
by about a factor of 2n−l for arbitrary (n,m) S-boxes. For instance, the amount of RAM
memory required to store the pre-processed tables is 8.1 KB for the optimal case l = 3
(see Table 5), while outperforming [RP10] in the online execution time. Needless to say,
for highly resource constrained devices, pre-processing may not be feasible and in this case
all the computations will happen during the online phase to keep the peak memory usage
to a minimum.

There is a trade-off between online execution time and RAM (volatile memory) that
results in the choice between constructing T1 online vs. pre-processing T1. This gives us
two possibilities for time vs. memory trade-offs.

1. Compute T1 online and T2 using table-based computation for each S-box invocation.

2. Pre-process and store T1 for all the S-box invocations, compute T2 using table-based
computation for each S-box invocation.

Tables 5 and 6 presents the implementation results for the Option 2 above for various
levels of compression for AES and PRESENT, respectively. Since the number of bytes
required to store the tables T1 and T2 vary with the compression parameter, the total
memory required for the full cipher execution (that includes the memory required for
pre-processing, online execution) is listed for each value of l. The execution times are
given in seconds. The penalty factor is for the online execution time. We would like to
mention that the time for pre-processing refers to the computation which happens before
the start of block cipher execution (not at the time of compilation), which is independent
of the actual input. By online time, we mean the time required for a single block cipher
execution where the actual inputs are needed.

Table 5: Second-order masked S-box compression using the table-based scheme with
pre-processing (see Algorithm 6). Total memory required for AES-128 in KB and execution
times are in seconds.

l Total
Memory

Offline
Time

Online
Time

Total
Time

Penalty
Factor

1 22.5 0.039241 0.001507 0.040748 11.8363
2 12.7 0.025615 0.002321 0.027936 18.2297
3 8.1 0.019431 0.005719 0.02515 44.9183
4 5.4 0.017248 0.010648 0.027896 83.6318
5 4.6 0.017495 0.010651 0.028146 83.6554
6 4.3 0.020253 0.010638 0.030891 83.5533
7 3.9 0.026813 0.010652 0.037465 83.6632

Table 6: Second-order masked S-box compression using the table-based scheme with pre-
processing (see Algorithm 6). Total memory required for PRESENT in KB and execution
times are in seconds.

l Total
Memory

Offline
Time

Online
Time

Total
Time

Penalty
Factor

1 4.1 0.009156 0.005955 0.015111 8.3873
2 3.2 0.007545 0.008642 0.016187 12.1718
3 2.1 0.007687 0.010713 0.0184 15.0887

For the second-order circuit based scheme, there is no offline computation advantage
which implies the total-time is nothing but the online time. The RAM memory usage

20 iacrtans class documentation

is very little for these schemes. Table 7 indicates the timings for second-order [RP10]
scheme with FullRefresh [DDF14b] that is proven t-SNI secure in [BBD+16]. The table
also indicates timings for the bitsliced masked implementation of AES [RSD06, GR17]
adapted to 8-bit architecture with three shares.

Table 7: Second-order S-box implementation of AES-128 with three input shares using
the second-order circuit based schemes [RP10] with FullRefresh and 8-bit bitslicing. The
execution times are in seconds. The RAM memory required is in bytes.

Scheme Online
Time

Total
Time

Memory Penalty
Factor

[RP10] 0.010638 0.010638 24 83.5533
8-bit bitsliced
masking

0.008108 0.010638 996 63.682

Table 8 presents timings for the second-order masked lookup table scheme [RDP08], its
variant with pre-processing (see Algorithm 1), and the higher-order lookup table scheme
from [CRZ18, Algorithm 3] instantiated at second order. Recall that the original scheme
from [RDP08] does not allow pre-processing and hence its online time is the sum of online
and offline time for Algorithm 1 but the RAM memory needed is very small. It may be
observed that even though the penalty factor is only around 5 for Algorithm 1, the size of
total RAM memory required is about 40 KB.

Table 8: Second-order instantiation of masked lookup table implementation of AES using
[CRZ18], the RDP scheme and its variant with pre-processing (see Algorithm 1). Total
RAM memory required for AES-128 is in KB and the execution times are in seconds.

Scheme Total
Memory

Offline
Time

Online
Time

Total
Time

Penalty
Factor

[RDP08] 0.3 0 0.00721 0.00721 56.629
Algorithm 1 40.6 0.006604 0.000606 0.00721 4.76
Second-order
[CRZ18]

120.4 0.089411 0.017792 0.107203 139.742

In Table 9 we present the implementation results for second-order masked PRESENT
using [CRV15]. We would like to note that for the implementations of second-order
PRESENT using our compression scheme and the circuit-based CRV scheme, we processed
only 4-bit values, one at a time. However, to minimise the memory required for S-box
table compression, we choose to pack two 4-bit values into a byte. Therefore, we assume
that probing any intermediate variable during masked S-box computation will only leak
4-bit values. Since the lookup table compression and circuit-based implementations are
based on 4-bit variants, we think that it may not be fair to compare the results with 8-bit
bitsliced masked implementation of PRESENT.

Table 9: Second-order S-box implementation of PRESENT using the second-order circuit
based scheme [CRV15] with three input shares. The execution times are in seconds. The
memory required is in bytes.

Online
Time

Total
Time

Memory Penalty
Factor

0.008959 0.008959 40 12.6183

Annapurna Valiveti and Srinivas Vivek 21

For the Option 1 above, the execution times are the total time reported in Table 5 and
6. This is essentially the sum of pre-processing and online execution times. Specifically,
for 128-AES, the memory requirement would closely correspond to the figures reported in
Table 3. Note that for this case the online execution time is same as the total time.

It can be concluded from the above results of AES-128 (see Table 5) that pre-processing
helps to reduce the online execution time, for 1 ≤ l ≤ 3. The penalty factors for online
execution times when the compression parameter l ≥ 4 are close to the circuit-based
schemes. Hence l ≤ 3 has practical relevance. In our implementations we have not explored
packing multiple bytes into the 32-bit register. We chose not to do this optimisation
because for architectures with small register size (for e.g., 8-bit microcontrollers) such a
packing is not possible.
Remark 6. To achieve better online timings, T1 can be pre-processed and stored. But, if
the same T1 is used across all S-box function calls, probing x3 across S-box executions is
going to leak the xor of the secrets. Therefore, we compute a separate table T1 per S-box
invocation to secure the full cipher implementation. This also helps to prevent horizontal
side-channel attacks.

6 Conclusion
Since first-order DPA attacks on embedded devices are feasible, in this work we focused
on designing a second-order secure masked table compression scheme for highly resource
constrained embedded devices to achieve time-memory trade-offs. In spite of the RAM
memory reduction, our online execution time is still better than circuit-based masking
schemes. Though higher-order masking is very costly for highly resource-constrained
devices, yet it will be an interesting research direction to design masked table compression
schemes for any order. We saw that our second-order table compression scheme is more
involved than the first-order schemes from [Vad17, Viv17]. This complexity is mainly
because of the compression of table rows and then secure expansion at a particular index,
and this can be challenging to handle at arbitrary orders. It will also be interesting to
explore alternate techniques to achieve time-memory trade-offs at higher orders.

Acknowledgements
This work was funded by the INSPIRE Faculty Award (DST, Govt. of India) for Srinivas
Vivek. We thank K K Subramaniam and Girish S Kumar for their inputs regarding
development platform. We also thank Shyam Murthy for helpful review comments.

References
[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order Masking.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EU-
ROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages
457–485. Springer, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-

22 iacrtans class documentation

Interference and Type-Directed Higher-Order Masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 116–129.
ACM, 2016.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight Private Circuits:
Achieving Probing Security with the Least Refreshing. In Thomas Peyrin and
Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptology
and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part II, volume 11273 of Lecture Notes in Computer Science,
pages 343–372. Springer, 2018.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and
Matthieu Rivain. Higher-Order Masking Schemes for S-Boxes. In Anne Can-
teaut, editor, FSE 2012, volume 7549 of LNCS, pages 366–384. Springer, 2012.

[CGZ19] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel
Masking with Pseudo-Random Generator. IACR Cryptology ePrint Archive,
2019:1106, 2019. To appear at EUROCRYPT 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Wiener [Wie99],
pages 398–412.

[Cor] Jean-Sébastian Coron. Higher-order countermeasures for AES and DES. Avail-
able at https://github.com/coron/htable. Last accessed on April 15, 2020.

[Cor14] Jean-Sébastien Coron. Higher Order Masking of Look-Up Tables. In Nguyen
and Oswald [NO14], pages 441–458.

[Cor18] Jean-Sébastien Coron. Formal Verification of Side-channel Countermeasures via
Elementary Circuit Transformations. In Bart Preneel and Frederik Vercauteren,
editors, Applied Cryptography and Network Security - 16th International Con-
ference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings, volume
10892 of Lecture Notes in Computer Science, pages 65–82. Springer, 2018.

[CPRR15] Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Alge-
braic Decomposition for Probing Security. In Rosario Gennaro and Matthew
Robshaw, editors, CRYPTO 2015, Proc., Part I, volume 9215 of LNCS, pages
742–763. Springer, 2015.

[CRV15] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. Fast Evaluation of
Polynomials over Binary Finite Fields and Application to Side-channel Coun-
termeasures. J. Cryptographic Engineering, 5(2):73–83, 2015.

https://github.com/coron/htable

Annapurna Valiveti and Srinivas Vivek 23

[CRZ18] Jean-Sébastien Coron, Franck Rondepierre, and Rina Zeitoun. High Order
Masking of Look-up Tables with Common Shares. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(1):40–72, 2018.

[DDF14a] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. In Nguyen and Oswald
[NO14], pages 423–440.

[DDF14b] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 -
33rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 423–440. Springer,
2014.

[FH17] Wieland Fischer and Naofumi Homma, editors. Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in
Computer Science. Springer, 2017.

[FIP] NIST FIPS. Advanced Encryption Standard (AES), Federal Information
Processing Standards Publication 197, US Department of Commerce/NIST,
November 26, 2001. Available from the NIST website.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How Fast Can Higher-Order Masking
Be in Software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture
Notes in Computer Science, pages 567–597, 2017.

[GRVV17] Dahmun Goudarzi, Matthieu Rivain, Damien Vergnaud, and Srinivas Vivek.
Generalized Polynomial Decomposition for S-boxes with Application to Side-
Channel Countermeasures. In Fischer and Homma [FH17], pages 154–171.

[GTP+20] Zhipeng Guo, Ming Tang, Emmanuel Prouff, Maixing Luo, and Fei Yan.
Table Recomputation-Based Higher-Order Masking Against Horizontal Attacks.
IEEE Trans. on CAD of Integrated Circuits and Systems, 39(1):34–44, 2020.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran,
Amit Sahai, and David Zuckerman. Robust Pseudorandom Generators. In
Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, ed-
itors, Automata, Languages, and Programming - 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, volume 7965
of Lecture Notes in Computer Science, pages 576–588. Springer, 2013.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, 2003.

[JS17] Anthony Journault and François-Xavier Standaert. Very High Order Masking:
Efficient Implementation and Security Evaluation. In Fischer and Homma
[FH17], pages 623–643.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Wiener [Wie99], pages 388–397.

24 iacrtans class documentation

[Klo] D. Klose. C PRESENT Implementation. Available at http://www.
lightweightcrypto.org/implementations.php. Last accessed on July 5,
2020.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, CRYPTO 1996, Proc.,
volume 1109 of LNCS, pages 104–113. Springer, 1996.

[NO14] Phong Q. Nguyen and Elisabeth Oswald, editors. EUROCRYPT 2014. Proc.,
volume 8441 of LNCS. Springer, 2014.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against Side-Channel Attacks:
A Formal Security Proof. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013. Proc., volume 7881 of LNCS, pages 142–159. Springer,
2013.

[RDP08] Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff. Block Ciphers
Implementations Provably Secure Against Second Order Side Channel Anal-
ysis. In Kaisa Nyberg, editor, Fast Software Encryption, 15th International
Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised
Selected Papers, volume 5086 of Lecture Notes in Computer Science, pages
127–143. Springer, 2008.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES
2010. Proc., volume 6225 of LNCS, pages 413–427. Springer, 2010.

[RRST02] Josyula R. Rao, Pankaj Rohatgi, Helmut Scherzer, and Stephane Tinguely.
Partitioning Attacks: Or How to Rapidly Clone Some GSM Cards. In 2002
IEEE Symposium on Security and Privacy, Berkeley, California, USA, May
12-15, 2002, pages 31–41. IEEE Computer Society, 2002.

[RSD06] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. Bitslice imple-
mentation of AES. In David Pointcheval, Yi Mu, and Kefei Chen, editors,
Cryptology and Network Security, 5th International Conference, CANS 2006,
Suzhou, China, December 8-10, 2006, Proceedings, volume 4301 of Lecture
Notes in Computer Science, pages 203–212. Springer, 2006.

[SP06] Kai Schramm and Christof Paar. Higher Order Masking of the AES. In David
Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS, pages 208–225.
Springer, 2006.

[TV09] Tamir Tassa and Jorge L. Villar. On proper secrets, (t , k)-bases and linear
codes. Des. Codes Cryptogr., 52(2):129–154, 2009.

[Vad17] Praveen Kumar Vadnala. Time-Memory Trade-Offs for Side-Channel Resistant
Implementations of Block Ciphers. In Helena Handschuh, editor, Topics in
Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference
2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings, volume
10159 of Lecture Notes in Computer Science, pages 115–130. Springer, 2017.

[Viv17] Srinivas Vivek. Revisiting a Masked Lookup-Table Compression Scheme. In
Arpita Patra and Nigel P. Smart, editors, Progress in Cryptology - INDOCRYPT
2017 - 18th International Conference on Cryptology in India, Chennai, India,
December 10-13, 2017, Proceedings, volume 10698 of Lecture Notes in Computer
Science, pages 369–383. Springer, 2017.

http://www.lightweightcrypto.org/implementations.php
http://www.lightweightcrypto.org/implementations.php

Annapurna Valiveti and Srinivas Vivek 25

[VV] Annapurna Valiveti and Srinivas Vivek. Implementation of Second-order
Table Compression. Available at https://github.com/annapurna-pvs/
second-order-table-compression. Last accessed on July 7, 2020.

[Wie99] Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science.
Springer, 1999.

https://github.com/annapurna-pvs/second-order-table-compression
https://github.com/annapurna-pvs/second-order-table-compression

	Introduction
	Variant of 2-O Scheme of RivainDP08 with Pre-processing
	2-SNI Security Proof
	Variant of RivainDP08 for Arbitrary S-box

	Recap of 2-O Compression Scheme from DBLP:conf/ctrsa/Vadnala17
	Second-Order Attack from DBLP:conf/indocrypt/Vivek17

	2-O Table Compression Scheme with Pre-processing
	Computing T1 Offline
	Computing T2 Online
	2-SNI Security Proof
	Memory Complexity

	Implementation Results
	Conclusion

