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Abstract4

Regev (2005) introduced the learning with errors (LWE) problem and showed a quantum reduction from5

a worst case lattice problem to LWE. Building on the work of Peikert (2009), a classical reduction from the6

gap shortest vector problem to LWE was obtained by Brakerski et al. (2013). A concrete security analysis7

of Regev’s reduction by Chatterjee et al. (2016) identified a huge tightness gap. The present work performs8

a concrete analysis of the tightness gap in the classical reduction of Brakerski et al. It turns out that the9

tightness gap in the Brakerski et al. classical reduction is even larger than the tightness gap in the quantum10

reduction of Regev. This casts doubts on the implication of the reduction to security assurance of practical11

cryptosystems.12
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1 Introduction16

In a landmark paper, Regev [16] introduced the learning with errors (LWE) problem. Many cryptosystems17

have based their security on the hardness of variants of the LWE problem. Examples of such cyptosystems18

are Frodo [2], Kyber [3], LAC [13], NewHope [1], Round5 [4] and Saber [8] all of which are candidates for19

standardisation as a post-quantum cryptosystem to be selected by the NIST of the USA. A stated reason for20

confidence in the hardness of the LWE problem is a reduction proved by Regev [16] from a worst-case lattice21

problem to LWE. The reduction obtained by Regev was quantum, i.e., the algorithm is required to make some22

quantum computations.23

A problem left open by Regev was whether there is a classical reduction from a worst case lattice problem to24

LWE. The initial answer to this problem was provided by Peikert [15]. While this represented progress, Peikert’s25

reduction was not considered to be satisfactory since either an exponential size modulus is required or, the lattice26

problem considered is not one of the standard problems. Later work by Brakerski et al. [6] built on Peikert’s work27

to show a classical reduction from a standard lattice problem to LWE avoiding the exponential size modulus.28

The works of Regev [16], Peikert [15] and Brakerski et al. [6] are all in the asymptotic setting where the29

lattice dimension is allowed to go to infinity. Practical cryptosystems, on the other hand, have a fixed value of30

the lattice dimension. So, it is of interest to know what kind of security assurance one obtains from the results31

of [16, 15, 6] for practical cryptosystems. Suppose it is believed that a lattice problem P is computationally32

hard. It is desired to translate this into a belief that a particular cryptosystem C is difficult to break, i.e., the33
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difficulty of solving P is reduced to the difficulty of breaking C. In other words, it is required to show that if1

there is an algorithm A to break C, then there is an algorithm B (which uses A as an oracle) to solve P. Suppose2

A takes time T and has success probability PS and further, B takes time T ′ and has success probability P ′S . The3

tightness gap of the reduction is defined to be (T ′/P ′S)/(T/PS). The reduction is said to be tight if the tightness4

gap is one (or, small). On the other hand, if the tightness gap is very large, then the usefulness of the reduction5

for obtaining security assurance of a practical cryptosystem becomes questionable.6

The tightness gap of the reduction given by Regev was first investigated in [7] and in more details in [17].7

The results of [7, 17] indicate that the tightness gap is very large. Based on the analysis in [7], Bernstein [5]8

comments that “the loss of tightness is gigantic” in [16].9

In this paper, we follow up on [7, 17] and perform a concrete security analysis of the tightness gap of the10

reduction in [6]. The reduction of Peikert [15] is a step in the reduction performed by Brakerski et al. [6]. As a11

first step, we work out the tightness gap of Peikert’s reduction. Then we follow the proof strategy in Brakerski12

et al. [6] and finally work out the end-to-end tightness gap of the classical reduction from the gap shortest vector13

problem to the LWE. There are two aspects to the concrete analysis. The first is a quadratic loss in the dimension14

of the lattice and the second is a loss of tightness. The loss of tightness in this classical reduction is more than15

that of the original quantum reduction by Regev [16]. The quadratic loss in the dimension was already pointed16

out in [6]. Due to this quadratic loss, Brakerski et al. put forward the open question of obtaining a reduction17

without such a loss mentioning that this would amount to a full de-quantization of Regev’s reduction. The18

paper [6], however, does not consider the issue of the loss in tightness. Our analysis shows that due to this loss of19

tightness, the reduction is not very meaningful in practice, especially for determining the sizes of the parameters20

of a cryptosystem which would purportedly enjoy the protection offered by the hardness of a well studied worst21

case lattice problem.22

2 Preliminaries23

Fix a positive integer n. Let B be an n × n matrix whose columns are n linearly independent vectors in Rn.24

The lattice L = L(B) generated by B is the set of all vectors Ba where a = (a1, . . . , an)ᵀ ∈ Zn. The columns of25

B (or, more generally B itself) is called a basis of the lattice L. Let b1, . . . ,bn denote the columns of B. The26

Gram-Schmidt orthogonalisation (GSO) of b1, . . . ,bn will be denoted as b̃1, . . . , b̃n.27

The length of a vector in L will be considered to be given by its Euclidean norm. For i ∈ {1, . . . , n}, let λi(L)28

be the least real number r such that L has i linearly independent vectors with the longest having length r. In29

particular, we will be interested in λ1(L), which is the smallest possible length of any non-zero lattice vector.30

The dual of a lattice L is denoted as L∗ and is defined to be the set of all vectors y ∈ Rn such that 〈x,y〉 ∈ Z31

for all x ∈ L. Given a basis B for L, the matrix B∗ = (B−1)ᵀ is a basis for L∗ and is called the dual basis of B.32

Since (Z,+) is a subgroup of (R,+), the quotient group R/Z is represented by the interval T = [0, 1) with33

addition modulo 1. The cyclic subgroup {0, 1/p, . . . , (p − 1)/p} of T of order p will be denoted by Tp. The34

normal distribution with mean µ and standard deviation σ will be denoted as N (µ, σ). For α ∈ (0, 1), Ψα is the35

probability distribution over T obtained by sampling from N (0, α/
√

2π) and reducing the result modulo 1.36

Fix an integer p ≥ 2. Let s be chosen uniformly at random from Znp . Let χ be a probability distribution37

on Zp. The distribution Ap,s,χ on Znp × Zp is defined as follows: choose a uniformly at random from Znp ; e from38

Zp following χ and output (a, 〈a, s〉 + e), where the addition is performed modulo p. Let φ be a probability39

density function on T. The distribution Ap,s,φ is defined as follows: choose a uniformly at random from Znp ; e40

from T following φ and output (a, 〈a, s〉/p + e), where the addition is performed modulo 1. When φ = Ψα, the41

distribution Ap,s,Ψα is written more conveniently as Ap,s,α.42

For x ∈ Rn and s > 0, define ρs(x) = exp
(
−π||x||2/s2

)
. For a lattice L, define ρs(L) =

∑
x∈L ρs(x).43

The discrete Gaussian distribution DL,s on a lattice L assigns to a vector v ∈ L the probability DL,s(v) =44

ρs(v)/ρs(L). For a lattice L and a real number ε > 0, the smoothing parameter ηε(L) is the smallest s such that45
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ρ1/s(L
∗ \ {0}) ≤ ε.1

The origin centered parallelopiped P1/2(B) of a basis B is defined to be P1/2(B) = {Bc : c ∈ [−1/2, 1/2)n}.2

For w ∈ Rn and basis B, the vector x = w mod B is the unique x ∈ P1/2(B) such that w − x ∈ L(B); further,3

x = B(B−1w − bB−1we).4

Let X be a random variable taking values in a set D and S be a subset of D. By fX(S) we denote the5

probability that X takes values in S. Given two random variables X and Y over D, the statistical distance6

between them is denoted as ∆(X,Y ) and is defined to be ∆(X,Y ) = maxS⊆D |fX(S)− fY (S)|.7

By Bn we will denote the open ball in Rn of unit radius, i.e., Bn = {x ∈ Rn : ‖x‖ < 1}. For a real number8

d and z ∈ Rn, the open ball in Rn centered at z and of radius d will be denoted as z + d · Bn. The notation9

w
$←− z + d · Bn denotes the choice of a vector w drawn uniformly from z + d · Bn.10

2.1 Computational Problems11

Let ϕ be a real valued function defined on lattices. The discrete Gaussian sampling (DGSϕ) problem is the12

following: An instance is a pair (B, r), where B is a basis of an n-dimensional lattice L = L(B) and r > ϕ(L) is13

a real number. The task is to obtain a sample from DL,r.14

A variant of the closest vector problem (CVP) was considered in [16]: An instance is a triplet (B, d,x), where15

B is the basis of an n-dimensional lattice L = L(B), d is a positive real number with d < λ1(L)/2, and x ∈ Rn16

which is within distance d of L. The task is to find the closest lattice point to x (since d < λ1(L)/2, there is a17

unique closest vector). This problem is also the bounded distance decoding problem [12].18

The (worst-case) learning with errors problem LWEn,p,χ is the following. Let s be an element of Znp . Given19

samples from Ap,s,χ, it is required to output s. If the number of samples is m, then the problem is denoted as20

LWEn,m,p,χ. Similarly, for a probability density function φ on T, the LWEn,m,p,φ problem is the following. For21

uniform random s in Znp , given samples from Ap,s,φ, it is required to output s. If the number of samples is m,22

then the problem is denoted as LWEn,m,p,φ. Both versions of the LWE problem were introduced by Regev in [16].23

When φ = Ψα, the problem LWEn,m,p,φ is more conveniently written as LWEn,m,p,α.24

Let s be an element of Znq . The (worst-case) decision version of the LWE problem, decLWEn,m,q,α, is to25

distinguish the uniform distribution over Tnq × T from Aq,s,α, where a list of m independent samples of the26

relevant distribution is provided as input. The average-case version of the decision LWE problem is to distinguish27

the uniform distribution Tnq × T from Aq,s,α for a non-negligible fraction of all possible s. Regev [16] showed a28

reduction of the worst-case decision LWE problem to the average-case LWE problem and the tightness gap of29

this reduction has been worked out in [7].30

Let γ(n) ≥ 1 be a function from the naturals to the naturals. The problem SIVPγ is the following: An instance31

is a basis B of an n-dimensional lattice L = L(B) and the task is to obtain a set of n linearly independent vectors32

from L whose lengths are at most γ(n) · λn(L). The problem GapSVPγ is the following: An instance is a pair33

(B, d), where B is a basis of an n-dimensional lattice L = L(B) and d > 0 is a real number. The instance is a34

YES instance if λ1(L) ≤ d and it is a NO instance if λ1(L) ≥ γ(n) · d.35

The problem ζ-to-γ-GapSVP (denoted as GapSVPζ,γ) was introduced in [15]. For functions ζ(n) ≥ γ(n) ≥ 1,36

an instance of GapSVPζ,γ is a pair (B, d), where B is a basis of an n-dimensional lattice L = L(B) for which37

λ1(L) ≤ ζ(n), mini‖b̃i‖ ≥ 1, and 1 ≤ d ≤ ζ(n)/γ(n). The instance is a YES instance if λ1(L) ≤ d and it is NO38

instance if λ1(L) > γ(n) · d. It has been shown in [15] that for ζ(n) ≥ 2n/2, the GapSVPζ,γ problem is equivalent39

to the standard GapSVPγ problem.40

3 Reducing DGS to LWE41

Regev [16] described a quantum algorithm which given access to an LWE oracle can solve the SIVP (or, the42

GapSVP). In the first step, the SIVP is reduced to the DGS problem using a classical algorithm. The main part43
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of the proof is a quantum algorithm which reduces the DGS problem to the LWE problem. The proof given by1

Regev [16] is in an asymptotic setting. A concrete analysis of the tightness gap in the reduction was carried out2

in [7] and in more details in [17]. We provide a brief overview of Regev’s DGS-to-LWE reduction using some of3

the terminology used in [17].4

Let p be a positive integer and α ∈ (0, 1). Assume that an oracle solveLWEn,nc,p,Ψα(I) is available for some5

constant c > 0. The input I to the oracle consists of nc samples from Ap,s,Ψβ for some 0 < β ≤ α. The oracle6

is guaranteed to work correctly if β = α, otherwise it might return an incorrect result. Let B be an n× n basis7

matrix of an n-dimensional lattice L = L(B) and r is a real number satisfying r ≥
√

2n · ηε(L)/α. The goal is8

to design an algorithm solveDGS(B, r) which returns a sample from DL,r using the oracle solveLWEn,nc,p,Ψα(I)9

where αp > 2
√
n.10

Let ri = r · (αp/
√
n)i for i = 1, . . . , 3n. A list L containing samples from DL,r3n can be created without using11

the LWE oracle. The algorithm solveDGS(B, r) starts with such a list and iterates a procedure over 3n steps with12

i going down from 3n to 1. The i-th step updates the list L consisting of nc samples from DL,ri with nc samples13

from DL,ri−1 . At the end of the procedure, a sample from the final list L is returned. Each iteration updates the14

list L using a quantum sampling procedure nc times. Each application of the quantum sampling procedure uses15

a classical algorithm solveCVP(L∗,L, z), where L∗ is the dual lattice of L, L contains nc samples from DL,ri for16

some i ∈ {1, . . . , 3n}, and z is within distance λ1(L∗)/2 of L∗. The algorithm solveCVP solves the CVP problem17

for L∗ mentioned in Section 2.1. It is the algorithm solveCVP which invokes the oracle solveLWEn,nc,p,Ψα(I). So,18

the main part of the DGS-to-LWE reduction is the design of the algorithm solveCVP.19

In Regev’s reduction, solveCVP(L∗,L, z) solves the unique closest vector problem on L∗ using a list L of20

samples from DL,r with r ≥
√

2p · ηε(L), and z is within distance αq/(
√

2r) < λ1(L∗)/2 of L∗. As used in [15],21

by interchanging the roles of L and L∗, it is possible to invoke solveCVP(L,L, z) to solve the unique closest22

vector problem on L using a list L of samples from DL∗,r with r ≥
√

2p · ηε(L∗), and z is within distance23

αq/(
√

2r) < λ1(L)/2 of L. We record this as follows.24

Proposition 1. [16, 15] Let B be an n× n basis matrix for an n-dimensional lattice L = L(B), p be a positive25

integer, r be a real number satisfying r ≥
√

2p · ηε(L∗) and α ∈ (0, 1) be such that αp > 2
√
n. Let c > 0 be26

a constant. Given a list L consisting of nc samples from DL∗,r and an oracle solveLWEn,nc,p,Ψα(I), where I27

consists of nc samples from Ap,s,Ψβ for some 0 < β ≤ α, there is an algorithm solveCVP(L,L, z), where z is28

within distance αq/(
√

2r) < λ1(L)/2 of L, which finds the unique vector in L which is closest to z.29

Following [17], we have the following facts.30

1. Algorithm solveCVP calls the oracle solveLWE a total of n2c+2 times.31

2. The success probability of algorithm solveCVP is at least32 (
1−max(exp

(
−m(µ0 − t)2/2

)
, exp

(
−mt2/2

)
)
)n2c+2

(1)

where µ0 = exp(−πα2), and t ∈ (0, µ0) and m ≤ nc are chosen so as to maximise (1). Setting m = nc and33

t = µ0/2, the expression in (1) becomes34 (
1− exp

(
−nc exp

(
−2πα2

)
/8
))n2c+2

(2)

Using this lower bound for the success probability, it has been shown in [17] that an upper bound on the tightness35

gap of the DGS to LWE reduction is the following.36

3n3c+3 ·
(
1− exp

(
−nc exp(−2πα2)/8

)
)
)−3n3c+3

. (3)
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For most practical cryptosystems1, α is at most 1/
√
n. Considering α = 1/

√
n, the tightness gap given by (3) is1

essentially 3n3c+3 [17]. The tightness gap of the reduction from DGS to LWE has been extended to obtain the2

tightness gap of the reduction from SIVP to average-case decision LWE in [7] and updated in [17] and is given3

by the following expression.4

6pn3c+d1+2d2+9. (4)

Here d1 and d2 are non-negative integers such that average-case decision LWE can be solved for a fraction n−d15

of all the secrets with advantage at least n−d2 .6

4 Reducing GapSVPζ,γ to LWE7

Peikert [15] showed a classical reduction of GapSVPζ,γ to LWEn,nc,q,Ψα , where γ = γ(n) ≥ n/(α
√

log n), q =8

q(n) ≥ ζ(n) · ω(
√

log n/n) and c > 0 is a constant. The reduction makes use of Proposition 1, i.e., it uses an9

LWE oracle to solve CVP.10

Let B be an n × n basis matrix of an n-dimensional lattice L = L(B) and r ≥ maxi‖b̃i‖ · ω(
√

log n). By11

sample(B, r) we denote the sampling algorithm which on input B and r returns a sample which is within negligible12

statistical distance from DL,r. Such an algorithm is described in [9].13

The algorithm for reducing GapSVPζ,γ to LWE given by Peikert [15] is shown in Algorithm 1. The algorithm14

solveCVP in turn calls the LWE oracle solveLWE. So, overall solveGapSVPζ,γ solves GapSVPζ,γ by calling the15

LWE oracle solveLWE. Algorithm solveGapSVPζ,γ calls solveCVP a total of N times.16

Algorithm 1 Reducing GapSVPζ,γ to LWEq,Ψα , where γ = γ(n) ≥ n/(α
√

log n) and q = q(n) ≥ ζ(n) ·
ω(
√

log n/n).

1: function solveGapSVPζ,γ(B, d)
2: Let D be the reverse dual basis of B;
3: d′ = d·

√
n/(4 lnn); r = q

√
2n/(γd);

4: for i← 1 to N do
5: w

$←− d′·Bn; x = w mod B;
6: L ← {};
7: for j ← 1 to nc do
8: L ← L ∪ sample(D, r);
9: end for

10: v← solveCVP(B,L,x)
11: if v 6= x−w then
12: return accept;
13: end if
14: end for
15: return reject;
16: end function

It has been noted in Section 3 that solveCVP calls solveLWE a total of n2c+2 times. So, solveGapSVPζ,γ calls17

solveLWE a total of N · n2c+2 times.18

We now consider the success probability of solveGapSVPζ,γ . As in Section 3, assume that m = nc, α = 1/
√
n19

and t = µ0/2. The probability that a single call to solveCVP is successful is at least ε, where using (2),20

1This was mentioned by Chris Peikert in an email.
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ε =
(
1− exp

(
−nc exp(−2πα2)/8

)
)
)n2c+2

. The N calls to solveCVP in Algorithm solveGapSVPζ,γ are independent.1

Let E be the event that all these calls are successful and so Pr[E] ≥ εN .2

For i = 1, . . . , N , let Si be the event that the event v 6= x − w holds in the i-th iteration. The events3

S1, . . . , SN are independent (even when conditioned on E).4

First consider the instance (B, r) to be NO instance of GapSVPζ,γ . Let succNO be the event that algorithm5

solveGapSVPζ,γ is successful on a NO instance. Then Pr[succNO] = Pr[S1∧· · ·∧SN ] ≥ Pr[S1∧· · ·∧SN |E] Pr[E] =6

Pr[E] ·
(∏N

i=1 Pr[Si|E]
)
≥ εN ·

(∏N
i=1 Pr[Si|E]

)
. It has been shown in [15] that Pr[Si|E] ≈ 1, i = 1, . . . , N , and7

so we may assume that Pr[succNO] is lower bounded by εN .8

Next consider the instance (B, r) to be a YES instance of GapSVPζ,γ . Let succYES be the event that algorithm9

solveGapSVPζ,γ is successful on a YES instance. So, succYES is the event S1∨(S1∧S2)∨· · ·∨(S1∧· · ·∧SN−1∧SN ).10

For i = 1, . . . , N , let δ be the common value of Pr[Si|E]. It follows (using a probability calculation) that11

Pr[succYES] ≥ Pr[succYES|E] Pr[E] = (1− δN ) Pr[E] ≥ (1− δN )εN .

It has been shown in [15], that for a YES instance, δ = Pr[Si|E] ≤ 1− 1/poly(n). The 1− 1/poly(n) term arises12

from the asymptotic form of a result which states that for any constants c1, d > 0 and any z ∈ Rn with ‖z‖ ≤ d13

and d′ = d ·
√
n/(c1 log n) the statistical distance between the uniform distribution on d′ · Bn and the uniform14

distribution on z+d′ ·Bn is at most 1−1/poly(n). This result is proved in [10] and the proof shows that the term15

1−1/poly(n) can be taken to be 1−3/n2. Using this we have δ ≤ 1−3/n2. So, Pr[succYES] ≥ (1−(1−3/n2)N )εN .16

Between the NO and YES instances, the lower bound on the success probability is less for YES instances.17

As a result, the upper bound on the tightness gap for YES instances is higher and this upper bound is taken to18

be the upper bound on the overall tightness gap of the reduction. So, an upper bound on the tightness gap of19

the GapSVPζ,γ to LWE reduction is20 (
N · n2c+2

)
/
(
(1− (1− 3/n2)N )εN

)
. (5)

Following [10], for N = n2, (1− (1− 3/n2)N ) ≈ 1 and so the tightness gap in (5) becomes21

N · n2c+2 · ε−N = n2c+4
(
1− exp

(
−nc exp(−2πα2)/8

)
)
)−n2c+4

. (6)

We note that for c = 1, the expression in (6) is almost the same as the expression in (3). It has been shown22

in [17], that for α ≤ 1/
√
n, ε ≈ 1 and so the tightness gap of GapSVPζ,γ to LWEq,Ψα becomes23

n2c+4. (7)

Remark: It is known [15] that for ζ(n) ≥ 2n/2, the problem GapSVPζ,γ is equivalent to the standard GapSVPγ24

problem. The reduction from GapSVPζ,γ to LWEq,Ψα given in [15] holds under the condition q = q(n) ≥25

ζ(n) ·ω(
√

log n/n). So, for q(n) ≥ 2n/2 ·ω(
√

log n/n), there is a classical reduction from GapSVPγ to LWEq,Ψα ,26

where γ = γ(n) ≥ n/(α
√

log n).27

5 Reducing GapSVPγ to Decision LWE28

The remark at the end of Section 4 shows that there is a classical reduction of GapSVPγ to LWEq,Ψα for29

q(n) ≥ 2n/2 ·ω(
√

log n/n). So, if the modulus of the LWE problem is exponential in the dimension of the lattice,30

then the result from [15] provides a classical reduction of GapSVPγ to LWE. A later work by Brakerski et al. [6]31

showed a reduction of GapSVPγ to a decision version of LWE with polynomial sized modulus. The reduction is32

quite intricate and is built by composing reductions between several pairs of problems. The goal of the present33

section is to perform a concrete security analysis of the reduction provided in [6].34
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The LWE problem considered in Section 2.1 is a search problem. For the classical reduction of GapSVPγ1

to LWE, the following decision version of the LWE problem has been considered. Let s be chosen uniformly at2

random from {0, 1}n. The binLWEn,m,q,α problem is to distinguish the uniform distribution over Tnq × T from3

Aq,s,α, where a list of m independent samples of the relevant distribution is provided as input. The difference4

between the decLWE and the binLWE problem lies in the method to select the secret s. Given n, q ≥ 1 and5

α ∈ (0, 1), binLWEn,m,q,≤α is the problem which requires to solve binLWEn,m,q,β for any β = β(s) ≤ α [6].6

Let D0 be the distribution Aq,s,α and D1 be the uniform distribution over Znq × T. For i = 0, 1, let I m← Di7

denote the selection of a list I of m independent samples from Di. Let A be a distinguisher for decLWEn,m,q,α.8

Let A(I)⇒ 1 denote the event that A produces 1 as output. The advantage of A is the following.9

Adv(A) = |Pr[A(I)⇒ 1 : I
m← D0]− Pr[A(I)⇒ 1 : I

m← D1]|. (8)

Similarly, one defines the advantage of a distinguisher for binLWEn,m,q,α.10

The classical reduction in [6] reduces GapSVP to binLWE. This reduction is done in several steps. The first11

step is Peikert’s reduction of GapSVP to LWE with exponential size modulus. The goal of the following steps is12

to reduce the LWE problem with exponential size modulus to binLWE problem with polynomial size modulus.13

A trade-off is an increase in the dimension. The various steps of the overall reduction are as follows.14

Reducing GapSVPγ to LWEk,m1,q1,α1: This follows from Peikert’s result [15]. Here α1 ∈ (0, 1), q1 ≥15

2k/2 · ω(
√

log k/k), γ ≥ k/(α1
√

log k) and m1 = kc for some constant c ≥ 1. For simplicity, in the following, we16

will assume q1 = 2k/2.17

Suppose W0 is an algorithm to solve LWEk,m1,q1,α1 . Then following the analysis in Section 4, there is an18

algorithm W to solve GapSVPγ where the number of times W calls W0 is k2c+4 (which is obtained from (7) by19

replacing n with k).20

Reducing LWEk,m1,q1,α1 to decLWEk,m1,q1,α2: This follows as a special case of Theorem 3.1 in [14]. Here21

1/q1 < α1 < 1/ω(
√

log n) and α2 = α1 · ω(log k).22

To determine the tightness gap of the reduction, we follow the proof of Theorem 3.1 in the case where23

q1 = 2k/2. Let W1 be an algorithm to solve decLWEk,m1,q1,α2 . The proof of Theorem 3.1 in [14] uses W1 to24

first construct an algorithm W ′1 following the construction used in Lemma 4.1 of [16]. Specifically, Lemma 4.125

of [16] shows how to boost the advantage of a distinguisher for the distributions Aq1,s,χ and U(Znq1 × Zq1). The26

same method can be used to boost the advantage of a distinguisher for the distributions Aq1,s,α2 and the uniform27

distribution on Znq1 × T. This is the situation considered in Theorem 3.1 of [14].28

Let ζ1 be the advantage of W1 and c1 and c2 be such that W1 is successful on a fraction k−c1 of all possible29

secrets and30

ζ1 = k−c2 . (9)

Following the method of Lemma 4.1 in [16] it is possible to construct W ′1 which accepts with probability expo-31

nentially close to one on inputs from Aq1,s,α2 and rejects with probability exponentially close to one on inputs32

from the uniform distribution over Znq1 ×T. From the proof of Lemma 4.1 in [16] we have that the algorithm W ′133

calls the algorithm W1 a total of kc1+2c2+2 times.34

The proof of Theorem 3.1 in [14] uses W ′1 to construct an algorithm W0 which solves LWEk,m1,q1,α1 . The35

secret s = (s1, . . . , sk). The components s1, . . . , sk are determined one by one. Consider the determination of36

s1. This is determined iteratively as s1 mod 2, followed by s1 mod 22, followed by s1 mod 23, up to at most37

s1 mod 2k/2. Given the value of s1 mod 2i, there are only two possible values for s1 mod 2i+1. A single call to38

W ′1 can be used to determine the correct value. So, to find s1, at most k/2 calls to W ′1 are required, and to find39
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the entire vector s, at most k2/2 calls to W ′1 are required. Each call to W ′1 requires kc1+2c2+2 calls to W1. So,1

the number of times W0 calls W1 is2

kc1+2c2+4. (10)

Reducing decLWEk,m1,q1,α2 to binLWEn,m1,q1,≤
√

10nα2
: This reduction follows from Theorem 4.1 of [6].3

Here n ≥ (k+1) log2 q1+2 log2(1/δ), α2 ≥
√

ln(2n(1 + 1/ε1))/π/q1, where δ > 0 and ε1 ∈ (0, 1/2). Suppose there4

is an algorithm W2 for binLWEn,m1,q1,≤
√

10nα2
which has advantage ζ2. Theorem 4.1 of [6] shows an algorithm5

W1 for decLWEk,m1,q1,α2 with advantage ζ1 where6

ζ1 ≥ ζ2 − δ
3m1

− 41ε1

2
− 2−k−1. (11)

From the proof of Theorem 4.1 of [6] one obtains that W1 calls W2 once.7

Remark: We note a peculiarity in (11). The number of samples m1 appears in the denominator of the right8

hand side. If ζ2 is fixed, then as m1 increases, the right hand side decreases. In other words, for a fixed value9

of ζ2, as the number of samples increases, the lower bound on the advantage ζ1 decreases. Intuitively, one may10

expect that as the number of samples increases, more information is obtained, and so the advantage should be11

non-decreasing. This does not seem to hold for ζ1. A possible explanation has been provided by the reviewer. It12

is likely that m1 and ζ2 are positively correlated in which case, if m1 increases, ζ2 will also increase leaving the13

lower bound unchanged. Since the nature of dependence of ζ2 on m1 is unknown, the issue cannot be definitively14

settled.15

Reducing binLWEn,m1,q1,≤
√

10nα2
to binLWEn,m1,q2,≤α3: This reduction follows from Corollary 3.22 of [6].16

Here q1 ≥ q2 ≥
√

2 ln(2n(1 + 1/ε2)) · (
√
n/α2) and α2

3 ≥ 10nα2
2 + (4n/(πq2

2)) ln(2n(1 + 1/ε2)) where ε2 ∈ (0, 1/2).17

Suppose there is an algorithm W3 for binLWEn,m1,q2,≤α3 having advantage ζ3. Corollary 3.2 of [6] shows an18

algorithm W2 for binLWEn,m1,q1,≤
√

10nα2
with advantage ζ2 where19

ζ2 ≥ ζ3 − 14ε2m1. (12)

Further, W2 calls W3 once.20

Reducing binLWEn,m1,q2,≤α3 to binLWEn,m2,q2,α3: This reduction follows from Lemma 2.15 of [6]. Suppose21

there is an algorithm W4 for binLWEn,m2,q2,α3 having advantage ζ4. Lemma 2.15 of [6] states that the algorithm22

W3 for binLWEn,m1,q2,≤α3 has advantage ζ3 where ζ3 ≥ 1/3. Further, in [6] it is stated that both m1 and the23

number of times W3 calls W4 are poly(m2, 1/ζ4, n, log q2). In Lemma 2 (given in the appendix) we show that24

m1 = km2 and the number of times W3 calls W4 is k(1 + 36m2/ζ4) where k ≥ max(32 ln 12, 8 ln(432m2/ζ4))/ζ2
4 .25

For simplicity, we take k = 1/ζ2
4 . We assume that there are constants d1, d2 > 0, such that m2 = nd1 and26

ζ4 = n−d2 .27

Putting together the various reductions, yields a reduction from GapSVPγ on a lattice of dimension k to28

binLWEn,m2,q2,α3 . The number of times C the algorithm W4 (for solving binLWEn,m2,q2,α3) is called by the29

algorithm W (for solving GapSVPγ) is obtained from the above analysis to be the following.30

C = k2c+4 · kc1+2c2+4 · 1

ζ2
4

(
1 +

36m2

ζ4

)
≈ k2c+4 · kc1+2c2+4 · m2

ζ3
4

= k2c+4 · kc1+2c2+4 · nd1+3d2 . (13)

2A distribution D over Zn is (B, δ)-bounded, for B, δ ∈ R, if the probability that x ← D has norm greater than B is at most δ.
Corollary 3.2 of [6] is stated in terms of (B, δ) distribution D. In the present context, D is the uniform distribution over {0, 1} which
is (
√
n, 0)-bounded.
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Let the runtime of W4 be T and the runtime of W be T ′. Then T ′/T ≈ C. The advantage of W4 is ζ4 while the1

success probability of W is almost 1. The tightness gap of the reduction is T ′/(T/ζ4) = Cζ4 which is equal to2

G = k2c+4 · kc1+2c2+4 · nd1+2d2 . (14)

The relations among the various parameters are as follows.3

1. γ ≥ k/(α1
√

log k);4

2. q1 = 2k/2;5

3. m1 = kc for some constant c ≥ 1;6

4. 1/q1 < α1 < 1/ω(
√

log n) and α2 = α1 · ω(log k);7

5. The constants c1 and c2 are such that W1 is successful on a fraction k−c1 of all possible secrets and ζ1 = k−c2 ;8

6. n ≥ (k + 1) log2 q1 + 2 log2(1/δ);9

7. α2 ≥
√

ln(2n(1 + 1/ε1))/π/q1, and ζ1 ≥ ζ2−δ
3m1
− 41ε1

2 − 2−k−1, where δ > 0 and ε1 ∈ (0, 1/2);10

8. q1 ≥ q2 ≥
√

2 ln(2n(1 + 1/ε2)) · (
√
n/α2), α2

3 ≥ 10nα2
2 + (4n/(πq2

2)) ln(2n(1 + 1/ε2)), and ζ2 ≥ ζ3− 14ε2m1,11

where ε2 ∈ (0, 1/2);12

9. ζ3 ≥ 1/3;13

10. m1 = m2/ζ
2
4 ;14

11. m2 = nd1 and ζ4 = n−d2 for constants d1, d2 > 0.15

Note that16

ζ1 ≥ ζ2 − δ
3m1

− 41ε1

2
− 2−k−1 ≥ ζ3

3m1
− 14ε2

3
− δ

3m1
− 41ε1

2
≥ 1

9m1
− 14ε2

3
− δ

3m1
− 41ε1

2
,

α2
3 ≥ 10nα2

2 +
4n

πq2
2

ln(2n(1 + 1/ε2)) ≥ 10nα2
1ω(log2 k) +

4n

πq2
2

ln(2n(1 + 1/ε2)).

Performing a meaningful concrete security analysis with the exact form of the above relations is almost impossible.17

To simplify the analysis, we ignore logarithmic factors. Also, we will assume that the parameters ε1, ε2 and18

δ can be chosen in a manner (say, 1/poly(n)) such that they do not have much effect on the concrete security19

analysis. Using these and other reasonable simplifications, we have the following relations.20

q1 = 2k/2; n = k2;
α1 = α2 = α3/

√
n = α3/k;

γ = k/α1 = k2/α3;
k−c2 = ζ1 = 1/m1 = k−c,
q2 =

√
n/α2 = n/α3;

kc = m1 = nd1+2d2 .

(15)

From (15), we have c2 = c = 2d1 + 4d2. As mentioned earlier, following Theorem 4.1 of [6], algorithm W1 for21

decLWEk,m1,q1,α2 is constructed from the algorithm W2 for binLWEn,m1,q1,≤
√

10nα2
. The reduction shows that22

W1 is successful for almost all secrets and so we take c1 = 0. Using c2 = c = 2d1 + 4d2 and c1 = 0 in (14), the23

overall tightness gap is obtained to be24

n4+5d1+10d2 . (16)

The tightness gap given by (16) is to be compared to the tightness gap of Regev’s reduction given by (4). While25

the numerical values of the tightness gaps for the two reductions can be compared, it should be kept in mind26

that the problems being connected by the two reductions are different.27
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Summary: We have the following concrete form of the reduction of GapSVP to binLWE.1

If there is an algorithm which solves binLWEn,m2,q2,α3 , where q2 = n/α3, for a fraction n−d1 of the2

possible secrets and has advantage n−d2 , then there is an algorithm to solve GapSVPk2/α3
on a lattice3

of dimension k =
√
n. The tightness gap of the reduction is given by n4+5d1+10d2 .4

Regev [16] had described a cryptosystem where the public key is a collection of n1+ε LWE samples and the5

secret key is s ∈ Znq . A successful adversary against the scheme is able to distinguish between encryptions of6

0 and 1 with advantage at least n−d for some d > 0. It was shown in [16] that a successful adversary against7

the cryptosystem can be used to obtain an algorithm for the average case decision LWE problem such that the8

algorithm is successful for a fraction 1/(4nd) of all secrets with advantage at least 1/(8nd).9

The problem binLWEn,m2,q2,α3 would be used as a basis for proving security of cryptosystems. We consider10

α3 = 1/
√
n = 1/k. The security of any such cryptosystem would be given by a reduction of the type given by11

Regev for his cryptosystem. Suppose C is such a cryptosystem and that an adversary is successful in breaking12

C if it can distinguish between encryptions of 0 and 1 with advantage at least 1/nd for some d > 0. Following13

the reduction of Regev for his cryptosystem, we assume that successful adversary for C can be used to build14

algorithm W4 for binLWEn,m2,q2,α3 such that W4 is successful on a fraction ≈ n−d of the secrets with advantage15

at least n−d. This suggests d1 ≈ d ≈ d2. (A similar approximation was made in [7].) As a numerical example,16

consider n = 210. Aiming at 128-bit security, ζ4 would be 2−128 and so for n = 210, d = 12.8. In this case, the17

tightness gap in (16) is 21960. In other words, the quantitative effect of the reduction is the following. If T is18

the time required to solve binLWEn,m2,q2,α3 on a lattice of dimension 210, then there is an algorithm to solve19

GapSVPγ for a lattice of dimension k =
√
n = 25 and γ = k3 = 215 which takes time 21960T . So, the tightness20

gap is 21960. In comparison, for n = 210 and 128-bit security, the tightness gap in [7, 17] has been obtained to21

be 2524.22

Note that the dimension of the lattice for which GapSVP is to be solved is
√
n where n is the dimension of23

the lattice for which binLWE is to be solved. Brakerski et al. [6] mention this point. Due to the drawback of the24

quadratic loss in the dimension, they mention as an open problem the task of obtaining a reduction where such a25

quadratic loss does not occur. In their words, this would constitute a “full dequantization” of Regev’s reduction.26

The issue of tightness gap has not been considered in [6]. For the GapSVP to binLWE reduction to be27

meaningfully used to derive parameters for practical cryptosystems, the tightness gap needs to be taken into28

consideration. So, for a full dequantization of Regev’s reduction which can also be used in practice, one needs a29

tight reduction which does not suffer the quadratic loss in the dimension.30

6 Conclusion31

We have performed a concrete security analysis of the tightness gap in the classical reduction of the shortest32

vector problem to the LWE problem given by Brakerski et al. [6]. Previous works [7, 17] had already pointed out33

that the tightness gap in the quantum reduction of Regev [16] is huge. Our analysis shows that the tightness34

gap of the classical reduction by Brakerski et al. is more than that of Regev’s original quantum reduction. This35

leaves open the question of obtaining a tight reduction of a worst case lattice problem to LWE, or, showing that36

there is no such reduction.37
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A Reducing binLWEn,m1,q,≤α to binLWEn,m2,q,α19

Suppose there is an algorithm A which has advantage θ in solving binLWEn,m2,q,α. Lemma 2.15 of [6] states20

that using A, it is possible to construct an algorithm B which solves binLWEn,m1,q,≤α with advantage at least21

1/3 where both m1 and the runtime of B are poly(m2, 1/θ, n, log q). In [6], it was mentioned that the proof is22

standard and is based on Lemma 3.7 of [16]. The following brief idea of the proof of was provided.23

“The idea is to use Chernoff bound to estimate A’s success probability on the uniform distribution,24

and then add noise in small increments to our given distribution and estimate A’s behavior on the25

resulting distributions. If there is a gap between any of these and the uniform behavior, the input26

distribution is deemed non-uniform.”27

Below we provide the details of the proof based on the above idea and also work out the dependence of m128

on m2 and θ.29

Lemma 2. Let A be an algorithm which has advantage at least θ in solving binLWEn,m2,q,α. Using A, it is30

possible to construct an algorithm B which has advantage 1/3 in solving binLWEn,m1,q,≤α, where m1 = km2 with31

k satisfying k ≥ max(32 ln 12, 8 ln(432m2/θ))/θ
2. Further, B invokes A a total of k(1 + 36m2/θ) times.32

Proof. An input to A is a collection of samples I of size m2. By “I is real” we will mean that the samples are33

drawn independently from Aq,s,α, while by “I is random” we will mean that the samples are drawn independently34

and uniformly from Znq × T. The output of A is a bit. The advantage of A is35

AdvA = |Pr[A(I)⇒ 1 : I is real]− Pr[A(I)⇒ 1 : I is random]|. (17)
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Let p? = Pr[A(I) = 1 : I is real] and p$ = Pr[A(I) = 1 : I is random]. For the sake of convenience of the1

analysis, we will assume that p? > p$, the other case being similar. Since it is given that AdvA is at least θ, we2

have3

θ ≤ p? − p$. (18)

The construction of B using A is shown in Algorithm 2. The input to B is a collection of samples J of size4

m1 where m1 = km2. By “J is real” we will mean that the samples are drawn independently from Aq,s,β for5

some unknown β ≤ α, while by “J is random” we will mean that the samples are drawn independently and6

uniformly from Znq × T.7

Steps 2 to 4 of Algorithm 2 compute an estimate p̂$ of p$. From the additive form of the Chernoff-Hoeffding8

bound [11], we have9

Pr[p$ − θ/4 ≤ p̂$ ≤ p$ + θ/4] ≥ 1− 2 exp(−2k(θ/4)2). (19)

Consider the set Z defined in Step 6 and let t = #Z. Note that t = m2
3. The loop from Step 7 to 18 runs for10

t steps. For i = 1, . . . , t, let preal
i (resp. prnd

i ) be the value of p computed at Step 14 in the i-th iteration of the11

loop when the input J is real (resp. random).12

The loop in Steps 9 to 12 adds a certain amount of noise to the samples in J to obtain J ′. If J is random,13

then J ′ is also random and the inputs J1, . . . ,Jk on which A is invoked are also random. By the additive form14

of the Chernoff-Hoeffding bound, we have15

Pr[p$ − θ/4 ≤ prnd
i ≤ p$ + θ/4] ≥ 1− 2 exp(−2k(θ/4)2). (20)

For the case when J is real, we follow an argument from the proof of Lemma 3.7 of [16]. In this case, the16

samples in J are from Aq,s,β, for some unknown β ≤ α. In other words, each element of J is a pair of the form17

(a, 〈a, s〉/q+ e), where e is drawn from Ψβ. Step 11 converts such a pair to (a, 〈a, s〉/q+ e+ ε), where ε is drawn18

from Ψγ . This creates a pair (a, 〈a, s〉/q+ e′), where e′ = e+ ε and so, e′ follows Ψ√
β2+γ

. Consider the smallest19

γ such that γ ≥ α2 − β2 and so γ ≤ α2 − β2 +m−2
3 α2. Suppose this γ is considered in the `-th iteration of the20

loop in Steps 7 to 18. Let α′ =
√
β2 + γ so that α ≤ α′ ≤

√
α2 +m−2

3 α2 ≤ (1 + m−2
3 )α. By Claim 2.2 of [16],21

the statistical distance between Ψα and Ψα′ is at most 9m−2
3 . Consequently, the statistical distance between22

m2 samples from Ψα and Ψα′ is at most 9m2m
−2
3 . So, in the `-th iteration of the loop in Steps 7 to 18, for23

j = 1, . . . , k, the statistical distance between Jj and m2 samples from Aq,s,α is at most 9m2m
−2
3 .24

Let p̂? be the probability that A outputs 1 when the input consists of m2 samples from a distribution whose25

statistical distance from Aq,s,α is at most 9m2m
−2
3 . So, |p̂? − p?| ≤ 9m2m

−2
3 /2. In the `-th iteration, for26

j = 1, . . . , k, the probability that A outputs 1 on input Jj is p̂?. Let ε1 = θ/4−9m2m
−2
3 /2. By the additive form27

of the Chernoff-Hoeffding bound we have28

Pr[p̂? − ε1 ≤ preal
` ≤ p̂? + ε1] ≥ 1− 2 exp(−2kε21). (21)

Combining (21) with |p̂? − p?| ≤ 9m2m
−2
3 /2, we have29

Pr[p? − ε1 − 9m2m
−2
3 /2 ≤ preal

` ≤ p? + ε1 + 9m2m
−2
3 /2] ≥ 1− 2 exp(−2kε21). (22)

So,30

Pr[p? − θ/4 ≤ preal
` ≤ p? + θ/4] ≥ 1− 2 exp(−2k(θ/4− 9m2m

−2
3 /2)2). (23)

We define two sets of events. Suppose the input J to B is random. For i = 1, . . . , t, let Ei be the event that the31

|prnd
i − p̂$| > θ/2, i.e., the if-condition at Step 15 is satisfied in the i-th iteration on random input. Note that32
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E1, . . . , Et are mutually independent events. Next suppose that the input J to B is real. For i = 1, . . . , t, let Fi1

be the event that the |preal
i − p̂$| > θ/2, i.e., the if-condition at Step 15 is satisfied in the i-th iteration on real2

input.3

We consider the probability of Ei. Let G1 be the event |p̂$− p$| ≤ θ/4 and Hi be the event |prnd
i − p$| ≤ θ/4.4

Note that G1 and Hi are independent. Further, G1 ∧Hi implies Ei and so using (19) and (20), we obtain5

Pr[Ei] ≥ Pr[G1 ∧Hi] ≥ (1− 2 exp(−2k(θ/4)2))2 ≥ 1− 4 exp(−2k(θ/4)2) = 1− δ1 (24)

where δ1 = 4 exp(−2k(θ/4)2). Using k ≥ 8 ln(432m2/θ)/θ
2 and m2

3 = 36m2/θ, we have6

tδ1 = 4m2
3 exp(−2k(θ/4)2) =

144m2

θ
exp(−2k(θ/4)2) ≤ 1/3. (25)

Next we consider the probability of F`. Let G2 be the event |preal
` − p?| < θ/4. Note that G1 and G27

are independent events. We have G2 to be the event p? − θ/4 ≤ preal
` ≤ p? + θ/4; and G1 to be the event8

p$ − θ/4 ≤ p̂$ ≤ p$ + θ/4 which is equivalent to −p$ + θ/4 ≥ −p̂$ ≥ −p$ − θ/4. So, if G1 and G2 both hold, we9

have p?− p$− θ/2 ≤ preal
` − p̂$. Using p?− p$ ≥ θ, the last condition shows that θ/2 ≤ preal

` − p̂$ and so F` holds.10

This shows that G1 ∧G2 implies F` and using (19) and (23), we obtain11

Pr[F`] ≥ Pr[G1 ∧G2] ≥ (1− 2 exp(−2k(θ/4)2))× (1− 2 exp(−2k(θ/4− 9m2m
−2
3 /2)2))

≥ 1− 2 exp(−2k(θ/4)2)− 2 exp(−2k(θ/4− 9m2m
−2
3 /2)2) = 1− δ2 (26)

where δ2 = 2 exp(−2k(θ/4)2)+2 exp(−2k(θ/4−9m2m
−2
3 /2)2). Usingm3 = 6(m2/θ)

1/2, we have θ/4−9m2m
−2
3 /2 =12

θ/8 so, δ2 = 2 exp(−2k(θ/4)2) + 2 exp(−2k(θ/8)2) ≤ 4 exp(−2k(θ/8)2). Using k ≥ 32 ln 12/θ2, we have13

δ2 = 2 exp(−2k(θ/4)2) + 2 exp(−2k(θ/4− 9m2m
−2
3 /2)2) ≤ 4 exp(−2k(θ/8)2) ≤ 1/3. (27)

We now compute the advantage of B.14

AdvB = |Pr[B(J )⇒ 1 : J is real]− Pr[B(J )⇒ 1 : J is random]|
= |Pr[F1 ∨ · · · ∨ Ft]− Pr[E1 ∨ · · · ∨ Et]|
≥ |Pr[F`]− Pr[E1 ∨ · · · ∨ Et]|

= |Pr[F`] +

t∏
i=1

Pr[Ei]− 1|

≥ |1− δ2 + (1− δ1)t − 1|
≥ |1− tδ1 − δ2|

≥ 1

3
. (28)

The last step follows from (25) and (27).15

In Algorithm 2, A is called k times in Step 4 and in each iteration of the loop in Steps 7 to 18, A is invoked k16

times in Step 14. The loop in Steps 7 to 18 runs for t = m2
3 iterations and so the total number of times B invokes17

A is k(m2
3 + 1) = k(1 + 36m2/θ).18
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Algorithm 2 Construction of a distinguisher B for binLWEn,m1,q,≤α using a distinguisher A for binLWEn,m2,q,α.
In the algorithm, θ is a known lower bound on the advantage of A.

1: function B(J )
2: let S be a collection of m1 samples drawn independently and uniformly from Znp×T;

3: partition S as S = ∪ki=1Si, such that #Si = m2, i = 1, . . . , k;
4: let p̂$ = (A(S1) + · · ·+A(Sk))/k;
5: m3 ← 6(m2/θ)

1/2;
6: let Z be the set of all integer multiples of m−2

3 α2 in the range (0, α2];
7: for γ in Z do
8: J ′ ← ∅;
9: for (a, e) ∈ J do

10: sample ε from Ψ√γ ;
11: J ′ ← J ′ ∪ {(a, e+ ε)};
12: end for
13: partition J ′ as J ′ = ∪ki=1Ji, such that #Ji = m2, i = 1, . . . , k;
14: let p = (A(J1) + · · ·+A(Jk))/k;
15: if |p− p̂$| > θ/2 then
16: return 1;
17: end if
18: end for
19: return 0;
20: end function.
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