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Abstract

Revocable identity-based encryption (RIBE) is an extension of IBE with an efficient key re-
vocation mechanism. Revocable hierarchical IBE (RHIBE) is its further extension with key
delegation functionality. Although there are various adaptively secure pairing-based RIBE
schemes, all known hierarchical analogues only satisfy selective security. In addition, the cur-
rently known most efficient adaptively secure RIBE and selectively secure RHIBE schemes rely
on non-standard assumptions, which are referred to as the augmented DDH assumption and q-
type assumptions, respectively. In this paper, we propose a simple but effective design method-
ology for RHIBE schemes. We provide a generic design framework for RHIBE based on an
HIBE scheme with a few properties. Fortunately, several state-of-the-art pairing-based HIBE
schemes have the properties. In addition, our construction preserves the sizes of master public
keys, ciphertexts, and decryption keys, as well as the complexity assumptions of the underlying
HIBE scheme. Thus, we obtain the first RHIBE schemes with adaptive security under the stan-
dard k-linear assumption. We prove adaptive security by developing a new proof technique for
RHIBE. Due to the compactness-preserving construction, the proposed R(H)IBE schemes have
similar efficiencies to the most efficient existing schemes.
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1 Introduction

1.1 Background

Identity-based encryption (IBE), which was proposed by Boneh and Franklin [BF01], is an advanced
form of public-key encryption (PKE), where an arbitrary string (e.g., usernames or e-mail addresses)
can be used as users’ public keys. Thus, unlike traditional PKE, IBE systems do not require a public
key infrastructure (PKI) to create certificates for each public key. A well-known extension of IBE
is hierarchical IBE (HIBE), which has key delegation functionality that allows the decentralization
of the power of key creations from the key generation center (KGC) to users. Specifically, users in
HIBE form a tree structure, and each user can produce their children’s secret keys. As a result,
this functionality realizes efficient management of a large number of users. Departing from other
constructions [ABB10a, ABB10b, CHKP12, DG17, Zha12], pairing-based schemes are only known
constructions for achieving adaptive security in the standard model, e.g., [CG17, CW14, GCTC16,
LP19, LP20, Lew12, LW10, LW11, Wat09]. Furthermore, several adaptively secure pairing-based
schemes have compact ciphertexts [CG17, CW14, LW10, OT15, RS14] or compact master public
keys [GCTC16, Lew12, LW11]. Thus, in this paper, we primarily focus on adaptively secure pairing-
based schemes in the standard model.

The other IBE variant is revocable IBE (RIBE) [BGK08], which enables efficient revocation of
identities as required (e.g., if laptops are corrupted or leak their secret keys). There are long-term
secret and short-term decryption keys per identity in RIBE, and the long-term key is responsible
for updating the decryption keys. Specifically, the decryption key can be updated using the secret
key and key update information, which is broadcast by the KGC; however, updating the decryption
key fails if the KGC revokes the user when generating the key update. Therefore, RIBE realizes
the revocation mechanism. Here, the secret key is only used to generate the decryption key;
thus, it can be stored on a more powerful and secure device. However, since decryption keys are
used frequently, they tend to be stored on more vulnerable devices. Therefore, it is desirable to
ensure security when decryption keys are leaked. Based on this situation, Seo and Emura [SE13b]
introduced a new security notion called the decryption key exposure resistance (DKER) which
has become the standard security notion for RIBE. In fact, RIBE with the DKER ensures that
non-exposed decryption keys can still be used without compromising security even if a number
of decryption keys (except that of the target user and the target time period) are exposed. The
revocation mechanism can also be considered in the hierarchical setting [SE13a], which is referred
to as revocable HIBE (RHIBE). Each RHIBE user is responsible for the key delegation functionality
and revocation of their children users. Thus, each RHIBE user also manages a binary tree. An
RHIBE secret key has an additional component for key delegation (hereafter, delegation key). As
with RIBE, in addition to updating keys, delegation keys can be stored on a more powerful and
secure device because key delegations are not performed frequently. In the RHIBE context, there
are two types of DKER notions from a historical perspective. The primary (or weaker) DKER
notion was proposed by Seo and Emura [SE15b], and then Katsumata et al. [KMT19] introduced
a stronger notion. Generally, both notions give the same security guarantee as the DKER in the
RIBE setting, i.e., non-exposed decryption keys can still be used without compromising security
even if a number of decryption keys are exposed except that of the target user and the target time
period. The difference between the weaker and the stronger DKER is which decryption keys are
exposed. In the stronger notion, a number of decryption keys are exposed except that of the target
user and the target time period, while those of the target-user’s ancestor and the target time period
are not exposed in the weaker notion. The lattice-based RHIBE [WZH+19] considered the stronger
DKER as the standard security notion.
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To date, a number of adaptively secure pairing-based RIBE schemes with the DKER have been
proposed [GW19, ISW17, LLP17, SE13b, SZSM17, WLXZ14, WES17]. Recently, several generic
constructions of RIBE from two-level HIBE [Lee19, ML19a, ML19b] have also been proposed,
although they require large ciphertexts whose sizes depend on a length of identities. Among these
schemes, the scheme proposed by Watanabe et al. [WES17] and its variant [GW19] are the most
efficient because they satisfy prime-order bilinear groups, compact master public keys, and compact
ciphertexts simultaneously. However, the security of these schemes relies on the augmented DDH
assumption, which is a non-standard variant of the traditional DDH assumption. For RHIBE,
the situation is even worse. Although several pairing-based schemes with the weaker (or primary)
DKER [ESY16, LP18, RLPL15, SE15b]1 have been proposed, they only satisfy selective security.
In addition, the security of all schemes (except [ESY16]) is based on q-type assumptions, while
the scheme [ESY16] is less efficient than other schemes [LP18, RLPL15, SE15b]. Unfortunately
unlike the RIBE case, there is no generic construction for RHIBE schemes. Therefore, there are no
adaptively secure RHIBE schemes, even if we ignore the stronger DKER and permit non-standard
assumptions.

1.2 Our Contributions

In this paper, we demonstrate significant progress relative to constructing adaptively secure pairing-
based RHIBE schemes with the stronger DKER. We extract the core essence of existing schemes and
propose a generic construction for an RHIBE scheme from an HIBE scheme with mild requirements
that are satisfied by several state-of-the-art pairing-based HIBE schemes [CG17, CW14, GCTC16].
The primary contributions of the proposed generic construction are summarized as follows.

• We develop a new proof technique such that the construction is adaptiveness-preserving, i.e.,
the proposed scheme achieves adaptive security if the underlying HIBE scheme satisfies the
same security level.

• Our construction is compactness-preserving, i.e., the proposed RHIBE scheme have the same
size master public keys, ciphertexts, and decryption keys as the underlying HIBE scheme.
Note that instantiations of the proposed scheme suffer from larger delegation keys than those
of existing constructions. Informally, each delegation key comprises several sub-delegation
keys, which, in previous RHIBE schemes, comprise only O(1) group elements. In contrast,
that of our instantiations is a secret key of the underlying HIBE scheme; thus, the size of the
latter depends on the level of the given user. However, we can store delegation (and updating)
keys on a powerful device; thus, we believe that the larger secret key-size is not a significant
issue.

Therefore, we obtain the first adaptively secure RHIBE schemes with the stronger DKER from
the standard k-linear assumption in the standard model based on [CG17, CW14, GCTC16]. The
definition of RHIBE is complicated; thus, we provide an overview of our results in Section 2.

Table 1 compares the proposed RHIBE schemes with previous ones.2 Here, we use [CG17, CW14]
and [GCTC16] as the underlying HIBE schemes, and we instantiate the proposed RHIBE schemes
with compact ciphertexts and compact master public keys. Although we omit the details, the secret
key of the proposed schemes based on [CG17, CW14] (resp. [GCTC16]) are larger than those of
other schemes by factors O(L − ℓ) (resp. O(ℓ)). The proposed schemes based on [CG17, CW14]

1To be precise, these works are prior to Katsumata et al. [KMT19]; thus, they do not consider the stronger DKER.
2Note that we consider insider security as the minimum requirement. The definition and necessity of insider

security is discussed in Section 1.3.
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Table 1: Comparison of pairing-based RHIBE schemes

Scheme |MPK| |ctID,T| |dkID,T| adaptive? DKER Assumption

SE15[SE15b] O(L) O(1) O(1) selective strong q-type

RLPL15 [RLPL15] O(1) O(ℓ) O(ℓ) selective weak q-type

LP18 [LP18] O(1) O(ℓ) O(ℓ) selective weak q-type

ESY16 [ESY16] O(L) O(ℓ) O(ℓ) selective weak DBDH

Ours+[CG17, CW14] O(L) O(1) O(1) adaptive strong k-Lin

Ours+[GCTC16] O(1) O(ℓ) O(ℓ) adaptive strong k-Lin

– |MPK|, |ctID,T|, and |dkID,T| denote the sizes of the master public key, ciphertext, and
decryption key of user ID at time T, respectively, in terms of the number of group
elements.

– L and ℓ denote the maximum hierarchical size and level of ID, respectively.

– q-type, DBDH, k-Lin stand for a q-type assumption, the decisional bilinear Diffie-
Hellman assumption, and the k-linear assumption, respectively.

with compact ciphertexts have the same asymptotic efficiency as Seo and Emura’s scheme [SE15b]
in terms of MPK, ctID,T, and dkID,T-size. Similarly, the proposed scheme based on [GCTC16] with
compact master public keys has the same asymptotic efficiency as the scheme proposed by Ryu et
al. [RLPL15] and that proposed by Lee-Park [LP18]. Note that all of these schemes have better
asymptotic efficiencies than the scheme proposed by Emura et al. [ESY16]. As we have claimed,
only the proposed schemes achieve adaptive security. To compare DKER, we evaluate whether the
existing schemes achieve the stronger DKER because they only have security proofs for the weaker
DKER. Note that Seo and Emura’s scheme [SE15b] can be modified to achieve the stronger DKER
under the stronger assumption.3 However, we cannot find analogous modifications for the schemes
proposed by Ryu et al. [RLPL15], Lee-Park [LP18], and Emura et al. [ESY16]. We also note that
there are concrete attacks against these schemes under the stronger DKER model, and that this
fact does not imply that the security proofs of these works [ESY16, LP18, RLPL15] contain bugs.
While all existing schemes (except that proposed by Emura et al. [ESY16]) are based on q-type
assumptions, the proposed schemes are based on the standard k-linear assumption.

Note that the benefit of our results is not limited to RHIBE. Table 2 compares the proposed
RIBE scheme to the scheme proposed by Watanabe et al. [WES17] and its variant [GW19]. These
existing schemes are modifications of Jutla and Roy’s IBE scheme [JR17], we compare them to
the proposed scheme based on Chen-Gong’s HIBE scheme [CG17], which is an extension of the
scheme proposed by Jutla-Roy. Specifically, our instantiation is based on the SXDH assumption,
which is a specific case of the k-linear assumption for k = 1, while the existing schemes rely on a
non-standard augmented DDH assumption. In addition, the reduction loss of the proposed scheme
is better than that of the other schemes. Although our instantiation has slightly larger secret keys
and key updates, the gap is not significant. In contrast, the proposed scheme has shorter master
public keys, ciphertexts, and decryption keys.

3Although the security of Seo and Emura’s original scheme is based on the q-weak bilinear Diffie-Hellman inversion
assumption, that of the modified scheme is based on the q-bilinear Diffie-Hellman exponent assumption [Sha07].
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Table 2: Efficiency comparison of adaptive-identity secure RIBE schemes
with the DKER in prime-order bilinear groups, compact master public
keys, and compact ciphertexts

Scheme
|MPK|

(|G1|, |G2|, |GT |)
|ctID,T|

(|G1|, |GT |, |Zp|)
|skID,θ|

(|G2|, |Zp|)

WES17 [WES17] (6, 10, 1) (4, 1, 1) (5, 0)

GW19 [GW19] (6, 10, 1) (4, 1, 1) (5, 1)

Ours+ [CG17] (5, 7, 1) (3, 1, 1) (7, 0)

Scheme
|kuT,θ|
|G2|

|dkID,T|
(|G2|, |Zp|)

reduction

loss
assumption

WES17 [WES17] 3 (6, 0) O(Q2|T |) ADDH1, DDH2

GW19 [GW19] 3 (6, 1) O(Q2|T |) ADDH1, DDH2

Ours+ [CG17] 7 (5, 0) O(Q(Q+ |T |)) SXDH

– All schemes use asymmetric bilinear maps e : G1 × G2 → GT . Groups G1,G2, and GT

have prime order p.
– |MPK|, |ctID,T|, and |dkID,T| denote the sizes of the master public key, ciphertext, and
decryption key of user ID at time T, respectively, in terms of the number of group
elements and Zp elements.

– |skID,θ| and |kuT,θ| denote the sizes of the secret key of user ID and key update of time
period T associated with a single node θ, respectively, in terms of the number of G2

elements and Zp elements.
– Q and |T | denote the number of secret key generation queries and the size of the time
period space, respectively.

– ADDH1, DDH2, and SXDH represent the augmented decisional Diffie-Hellman assump-
tion in G1, decisional Diffie-Hellman assumption in G2, and symmetric external Diffie-
Hellman assumption, respectively.

1.3 Related Work

The revocation problem of IBE was first considered by Boneh and Franklin [BF01] with naive
and non-scalable solutions, where the size of the key update generated by the KGC is linear
in the number of users. Boldyreva et al. [BGK08] utilized a subset cover framework called the
complete subtree method [NNL01] and proposed the first RIBE scheme with scalable revoca-
tion by reducing the size of the key update logarithmic in the number of users. Libert and
Vergnaud [LV09] constructed the first adaptively secure RIBE scheme. In addition, Seo and
Emura [SE13b] defined the notion of the DKER, and then proposed the first adaptively secure
scheme with the DKER. Note that the above schemes are pairing-based, and various pairing-based
improvements [GW19, ISW17, LLP17, SZSM17, WLXZ14, WES17] have been proposed. The RIBE
scheme is also constructed under the LWE assumption [CLL+12, TW17a, TW17b], code-based as-
sumption [CCKS18], and CDH assumption without pairing or the factoring assumption [HLCL18]
although these schemes do not satisfy the DKER. However, Katsumata et al. [KMT19] proposed
a generic construction of RIBE with the DKER from RIBE without the DKER and 2-level HIBE.
Since IBE implies selectively secure HIBE [DG17], RIBE without the DKER implies selectively
secure RIBE with the DKER. In addition, by extending the concept presented by Katsumata et
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al., several generic constructions of RIBE with the DKER have been proposed. For example, Ma
and Lin [ML19a, ML19b] proposed a generic construction of RIBE with the DKER from 2-level
HIBE, and Lee [Lee19] proposed a generic construction of RIBE with the DKER from 2-level HIBE
and identity-based revocation. However, these schemes suffer from large ciphertexts.

The concept of RHIBE was first discussed by Seo and Emura [SE13a]; however, their definition
was too weak for practical application since it does not satisfy collusion resistance that is the
minimum security requirement of HIBE. Thus, Seo and Emura [SE15b] redefined the notion with
the DKER and insider security that ensures collusion resistance. Then, several selectively secure
pairing-based RHIBE schemes were proposed [ESY16, LP18, RLPL15]. Note that several papers
have claimed to construct adaptively secure RHIBE schemes [Lee16, SE15a, WLJW16, XWW+16,
XWWT18]; however, their security proofs are incorrect or ignore insider security. Katsumata et
al. [KMT19] defined the most strict and rigorous definition of RHIBE and introduced a stronger
definition for the DKER. In addition, Katsumata et al. proposed a selectively secure RHIBE scheme
from the LWE assumption, and Wang et al. [WZH+19] proposed a more efficient selectively secure
scheme in the standard model and adaptively secure scheme in the random oracle model under the
same assumption.

1.4 Organization

The remainder of this paper is organized as follows. Section 2 gives an overview of the proposed
construction. In Section 3, we provide a definition of RHIBE, and in Section 4, we introduce
the additional properties of RHIBE, which are used to construct RHIBE. Section 5 describes the
construction of RHIBE, and, in Section 6, we prove the adaptive security of the scheme.

2 Technical Overview

In this section, we provide a technical overview of our result. We first present an overview of
the definition of RHIBE and the complete subtree (CS) method [NNL01] Section 2.1, which is a
popular technique to efficiently achieve revocation functionality. We then present the selectively
secure RHIBE scheme with the weaker DKER of Seo-Emura (SE) [SE15b] and an overview of its
security proof in Section 2.2. Then, we provide a proof of the adaptive security of Watanabe et al.’s
(WES) RIBE with the DKER and discuss the difficulties related to combining them to construct
adaptively secure RHIBE in Section 2.3.4 In Section 2.4, we present the proposed approach to
construct adaptively secure RHIBE with the weaker DKER. We then discuss how the scheme is
modified to achieve the stronger DKER.

2.1 Preliminaries

Notations. Let N be the set of all natural numbers. For non-negative integers a, b ∈ N with a ≤ b,
we define [a, b] := {a, a + 1, . . . , b} and [a] := [1, a]. In addition, as a special case, [a, b] = ∅ for
a > b. Let lowercase and uppercase bold letters a and A denote a column vector and a matrix,
respectively, where a⊤ and A⊤ denote their transposes. For a finite set S, let x ←R S denote
sampling x from S uniformly at random. For two algorithms A(·) and B(·), let A(·) ≈ B(·) denote
that their outputs follow the same distribution.

Let T denote a time period space. According to convention, the size of T is polynomially
bounded by the security parameter λ. Let ℓ-dimensional vector ID := (id1, . . . , idℓ) denote an

4Recall that the difference between the weaker and the stronger DKER only appears in the hierarchical setting.
Thus, the approach proposed by Watanabe et al. does not provide a pathway to achieve the stronger DKER.
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identity at level-ℓ, and let I be an identity space of level-1, which is determined by only the
security parameter λ; therefore, an identity space at level-ℓ is Iℓ. Here, we use |ID| := ℓ to denote
the hierarchical level of the identity. For convenience, we consider kgc as a “root” user and let
I0 := {kgc}. In addition, IID ⊂ I |ID|+1 denotes a set of level-(|ID| + 1) identities whose direct
ancestor is ID. In other words, IID := {ID′ ∈ I |ID|+1 | ∀id|ID|+1 ∈ I, ID′ = (ID, id|ID|+1)}. We also
define several notations for the prefix of an identity ID = (id1, · · · , id|ID|) in the following. For a
non-negative integer ℓ ≤ |ID|, an ℓ-dimensional prefix of ID is denoted ID[ℓ] := (id1, . . . , idℓ). Here,
a direct ancestor of ID is denoted pa(ID) := ID[|ID|−1], and ID[0] := kgc. In addition, prefix+(ID) :=
{ID[1], ID[2], . . . , ID|ID|−1(= pa(ID)), ID} denotes a set of all prefixes of ID and itself.

Overview of RHIBE. Here, we provide an overview of RHIBE, which appears to be complicated
for beginners. Note that this complexity stems from the existence of three types of keys, i.e.,
secret keys skID, key updates kuID,T, and decryption keys dkID,T. In addition, a secret key contains
a delegation key delkID ∈ skID that is responsible for key delegation in our description, although a
delegation key delkID does not explicitly appear in the syntax. Furthermore, a delegation key delkID
is updated during system execution.

At the time of RHIBE system launch, the KGC creates a master public key MPK and KGC’s
secret key skkgc. The ciphertext ctID,T depends on the receiver’s identity ID ∈ I≤L and time period
T ∈ T , where L denotes the maximum level of the hierarchy. Here, the configuration of level-1
users ID ∈ I is the same as that of RIBE. All level-1 users ID are given their secret key skID by
the KGC, and the secret keys skID are insufficient to decrypt ciphertexts ctID,T. The KGC manages
a revocation list RLkgc,T ⊂ I of level-1 users who will be revoked at time period T. Then, at each
time period T, the KGC broadcasts key update kukgc,T for level-1 users. Here, by combining secret
keys skID and key update kukgc,T, only non-revoked users are able to derive decryption keys dkID,T
that can decrypt ciphertexts ctID,T.

The basic configuration of level-ℓ users ID ∈ Iℓ for ℓ ≥ 2 is essentially the same. Here, all
level-ℓ users ID are given their secret key skID by their level-(ℓ − 1) parent users pa(ID). For this
purpose, parent users pa(ID) may update their delegation keys delkpa(ID), which are parts of the
secret keys, by themselves. Note that the secret keys skID themselves are insufficient to decrypt
ciphertexts ctID,T. The parent users pa(ID) manage the revocation lists RLpa(ID),T ⊂ Ipa(ID) of their
children users who will be revoked at time period T. Then, at each time period T, parent users
pa(ID) attempt to broadcast key update kupa(ID),T for their children users. In this case, parent
users pa(ID) can derive key updates kupa(ID),T only when they are not revoked by their parent users
pa(pa(ID)) in the same time period. Note that parent users pa(ID) may update their delegation
keys delkpa(ID) by themselves to create key updates kupa(ID),T. Given the parent user pa(ID)’s key
update kupa(ID),T, only non-revoked users ID can derive decryption keys dkID,T by combining their
secret keys skID and key updates kupa(ID),T broadcast by parent users pa(ID).

In the following, we briefly describe the security model. Here, let ID⋆ and T⋆ denote the challenge
identity and challenge time period, respectively. An RHIBE adversary can receive all skID (which
contains delkID) and kupa(ID),T under the condition that they cannot derive dkID⋆,T⋆ . Here, all such
secret keys include skID for ID ∈ prefix+(ID⋆) as opposed to non-revocable HIBE. Similarly, all
such key updates include kupa(ID),T for pa(ID) ∈ prefix+(ID⋆) ∧ T = T⋆. To prevent the adversary
from deriving dkID⋆,T⋆ , if an adversary receives skID⋆

[ℓ]
for some ℓ ∈ [|ID⋆|], then the identity ID⋆[ℓ]

or one of its ancestors must be revoked by T⋆. In addition to skID and kupa(ID),T, the adversary
in the weaker/stronger DKER model can also receive dkID,T. In the weaker DKER model, the
adversary can receive all dkID,T except for ID ∈ (ID⋆[ℓ])ℓ∈[|ID⋆|] ∧ T = T⋆. In addition, the adversary

in the stronger DKER model can receive all dkID,T, with the exception of (ID, T) = (ID⋆, T⋆). Thus,
compared to the weaker DKER model, the adversary in the stronger DKER model can receive

6



Figure 1: Diagrams of Path(BT pa(ID), ηID) and Npa(ID),T for the BT pa(ID) with 8 leaves. “✓” in leaf
nodes means that an identity ID′ assigned to the leaf node is revoked, i.e., ID′ ∈ RLpa(ID),T.

additional decryption keys (dkID⋆
[ℓ]
,T⋆)ℓ∈[|ID⋆|−1].

Complete Subtree Method. In our scheme, all parent users pa(ID) ∈ I≤L−1, including the
KGC, manage their own binary trees BT pa(ID) and assign their child ID ∈ Ipa(ID) to a distinct leaf
node denoted ηID. Here, let Path(BT pa(ID), ηID) denote a path from the root node to a leaf node
ηID. The CS method ensures that there is an efficient algorithm that can output a set of nodes
Npa(ID),T ⊆ BT pa(ID) by taking assigned leaves (ηID)ID∈Ipa(ID) of pa(ID)’s child users and a set of child
users RLpa(ID),T ⊆ Ipa(ID) from which a member will be revoked as input. The set Npa(ID),T satisfies
the following properties.

• If ID ∈ RLpa(ID),T, Path(BT pa(ID), ηID) ∩Npa(ID),T = ∅.
• If ID /∈ RLpa(ID),T, Path(BT pa(ID), ηID) ∩Npa(ID),T ̸= ∅.

Figure 1 shows diagrams of Path(BT pa(ID), ηID) and Npa(ID),T.

2.2 Selectively Secure RHIBE Scheme

Here, we present an overview of SE RHIBE and its security proof for selective security.

Construction. The SE RHIBE uses a symmetric bilinear map e : G × G → GT of prime order
p. Here, g denotes the generator of G. First, we present master public key MPK, ciphertext ctID,T,
and decryption key dkID,T.

MPK = (g, g1 := gα, g2, (hi)i∈[L+1], (h
′
i)i∈[2]), skkgc = (gα2 , delkkgc),

// (g2, (hi)i∈[L+1], (h
′
i)i∈[2])←R GL+4, α←R Zp

ctID,T =
(
gs, (hid11 · · ·hid|ID||ID| hL+1)

s, ((h′1)
Th′2)

s,M · e(g1, g2)s
)
, // s←R Zp

dkID,T =
(
gα2 · (h

id1
1 · · ·hid|ID||ID| hL+1)

r · ((h′1)Th′2)t, gr, gt, (hri )i∈[|ID|+1,L]

)
. // (r, t)←R Z2

p

The description of the KGC’s delegation key delkkgc will be given later. Here, we refer toMSK = gα2 a
master secret key. When we write ctID,T = (c1, c2, c3, cT ) and dkID,T = (dk1, dk2, dk3, (dk

′
i)i∈[|ID|+1,L]),

we can recover a plaintext M by computing cT · e(c2, dk2) · e(c3, dk3)/e(c1, dk1). Generally, the
scheme is a concatenation of the Boneh-Boyen-Goh (BBG) HIBE [BBG05] and Boneh-Boyen (BB)
IBE [BB04] with the same generator g, where the former and latter are used to encode an identity
ID and time period T, respectively.

Next, we present secret key skID and key update kuT:

skID =

((
g
αpa(ID),θ

2 · (hid11 · · ·hid|ID||ID| hL+1)
rID,θ , grID,θ , (h

rID,θ
i )i∈[|ID|+1,L]

)
θ∈Path(BT pa(ID),ηID)

, delkID

)
,

7



// rID,θ ←R Zp

delkpa(ID) =
(
g
αpa(ID),θ

2

)
θ∈AN pa(ID)

, // αpa(ID),θ ←R Zp

kupa(ID),T =

(
g
α−αpa(ID),θ

2 · (hid11 · · ·hid|pa(ID)||pa(ID)| hL+1)
rpa(ID),T,θ · ((h′1)Th′2)tpa(ID),T,θ ,

grpa(ID),T,θ , gtpa(ID),T,θ , (h
rpa(ID),T,θ
i )i∈[|pa(ID)|+1,L]

)
θ∈Npa(ID),T

,

// (rpa(ID),T,θ, tpa(ID),T,θ)←R Z2
p

where AN pa(ID) ⊂ BT pa(ID) is a set of all activated nodes θ. Here, the activated nodes denote nodes
θ associated with delkpa(ID),θ used to create all skID,θ and/or kupa(ID),T,θ at least once.5 Each skID
comprises sub-secret keys skID,θ associated with nodes θ in their parent’s binary tree BT pa(ID) and
sub-delegation keys delkID,θ associated with nodes θ in their own binary tree BT ID. Similarly, each
kupa(ID),T comprises sub-key updates kupa(ID),T,θ associated with nodes θ in BT pa(ID).

Correctness. We confirm that the above scheme satisfies correctness as follows.

• All parent users pa(ID) can compute delkpa(ID) by themselves and can compute skID using
delkpa(ID).

• When non-revoked users ID are given skID and kupa(ID),T, they can compute dkID,T. Recall
that the CS method ensures that there is a node θ ∈ Path(BT pa(ID), ηID) ∩ Npa(ID),T for non-
revoked users ID /∈ RLpa(ID),T. Specifically, when we have skID,θ = (sk1, sk2, sk

′
|ID|+1, . . . , sk

′
L)

and kupa(ID),T,θ = (ku1, ku2, ku3, ku
′
|pa(ID)|+1 = ku′|ID|, . . . , ku

′
L), users ID sample (r′, t′)←R Z2

p

and can compute dkID,T as follows:

dk1 = sk1 · ku1 · (ku′|ID|)
id|ID| · (hid11 · · ·hid|ID||ID| hL+1)

r′ · ((h′1)Th′2)t
′

= g
α+αpa(ID),θ−αpa(ID),θ

2 · (hid11 · · ·hid|ID||ID| hL+1)
rID,θ+rpa(ID),T,θ+r′ · ((h′1)Th′2)tpa(ID),T,θ+t′

= gα2 · (h
id1
1 · · ·hid|ID||ID| hL+1)

r · ((h′1)Th′2)t

and

dk2 = sk2 · ku2 · gr
′
= grID,θ+rpa(ID),T,θ+r′ = gr, dk3 = ku3 · gt

′
= gtpa(ID),T,θ+t′ = gt

dk′i = sk′i · ku′i · hr
′

i = h
rID,θ+rpa(ID),T,θ+r′

i = hri for i ∈ [|ID|+ 1, L].

• When non-revoked users ID are given skID and kupa(ID),T, they can compute kuID,T. Specifically,
users ID derive dkID,T, sample (r′θ′ , t

′
θ′)←R Z2

p, and then compute for each θ′ ∈ NID,T,

ku1 = delk−1
ID,θ′ · dk1 · (h

id1
1 · · ·hid|ID||ID| hL+1)

r′
θ′ · ((h′1)Th′2)

t′
θ′

= g
α−αpa(ID),θ

2 · (hid11 · · ·hid|ID||ID| hL+1)
r+r′

θ′ · ((h′1)Th′2)
t+t′

θ′

= g
α−αpa(ID),θ

2 · (hid11 · · ·hid|ID||ID| hL+1)
rID,T,θ′ · ((h′1)Th′2)tID,T,θ′

and

ku2 = dk2 · gr
′
θ′ = gr+r′

θ′ = grID,T,θ′ , ku3 = dk3 · gt
′
θ′ = gt+t′

θ′ = gtID,T,θ′ ,

ku′i = dk′i · h
r′
θ′
i = h

r+r′
θ′

i = h
rID,T,θ′
i for i ∈ [|ID|+ 1, L].

5In other words, each parent user pa(ID) updates delkpa(ID) = (delkpa(ID),θ)θ∈AN pa(ID)
by adding delkpa(ID),θ′ when

they create skID,θ′ and/or kupa(ID),T,θ′ for θ′ /∈ AN pa(ID). This procedure also updates AN pa(ID) ← AN pa(ID) ∪ {θ′}.
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Security. Intuitively, the scheme is secure because revoked users ID do not appear to be able to
compute dk1 correctly because the randomness αpa(ID),θ in the exponents between skID and kupa(ID),T
do not vanish. Seo and Emura formally proved selective security by reducing the security of the
BBG HIBE [BBG05] to that of SE RHIBE. Given the BBG master public key (g, g1, g2, (hi)i∈[L+1]),
the reduction algorithm creates the BB master public key (h′i)i∈[2] with the BB trapdoor, which
allows the reduction algorithm to create BB secret key for T ̸= T⋆ in the same manner as the security
proof [BB04]. Note that the reduction algorithm does not know the master secret key gα2 , i.e., the
BBG maser secret key.

SE Node Division. The most crucial point of the proof is node division. Specifically, the reduction
algorithm creates skID,θ, delkpa(ID),θ, and kupa(ID),T,θ in distinct ways depending on the division.
Here, let AN denote a set of all activated nodes that appear during the security game, i.e., AN
is the union of AN pa(ID) for all parent users pa(ID), including kgc, that appear during the game.
Let (ID⋆, T⋆) be the target identity and target time period that the reduction algorithm knows at
the beginning of the security game. Let ℓ⋆ be the minimum hierarchical level of the target user’s
ancestor whose secret key skID⋆

[ℓ⋆]
is received by the RHIBE adversary.6 To prevent trivial attacks,

the adversary must not be able to receive kupa(ID⋆
[ℓ]
),T⋆,θ if it shares the same θ with skID⋆

[ℓ]
,θ for

ℓ ∈ [ℓ⋆, |ID⋆|].7 Here, the user ID⋆[ℓ⋆] (or one of its ancestors) must be revoked by time period T⋆. At
the beginning of the game, the reduction algorithm guesses the ℓ⋆ value and determines leaf nodes
ηID⋆

[ℓ]
∈ BT pa(ID⋆

[ℓ]
) for ℓ ∈ [ℓ⋆] to which ℓ⋆ users ID⋆[1], ID

⋆
[2], . . . , ID

⋆
[ℓ⋆] will be assigned. Then, the

reduction algorithm divides AN into three mutually exclusive subsets SE(1)ℓ⋆ ,SE(2)ℓ⋆ , and SE(3)ℓ⋆ as
follows:

SE(1)ℓ⋆ :=
{
θ :
(
θ ∈ BT pa(ID⋆

[ℓ]
) for ℓ ∈ [ℓ⋆ − 1]

)
∨
(
θ ∈ BT pa(ID⋆

[ℓ⋆]
) \ Path(BT pa(ID⋆

[ℓ⋆]
), ηID⋆[ℓ⋆])

)}
,

SE(2)ℓ⋆ :=
{
θ :
(
θ ∈ BT ID⋆

[ℓ]
for ℓ ∈ [ℓ⋆, |ID⋆|]

)
∨
(
θ ∈ Path(BT pa(ID⋆

[ℓ⋆]
), ηID⋆[ℓ⋆])

)}
,

SE(3)ℓ⋆ := AN \ (SE(1)ℓ⋆ ∪ SE
(2)
ℓ⋆ ) = AN \

( |ID⋆|⋃
ℓ=0

BT ID⋆
[ℓ]

)
.

Note that BT pa(ID⋆
[ℓ⋆]

) = BT ID⋆
[ℓ⋆−1]

. A graphical overview of SE node division is presented in

Appendix A (Figure 2). Note that the reduction algorithm can perform this division only when
it knows ID⋆. In addition, all skID⋆

[ℓ]
,θ for ℓ ∈ [ℓ⋆ − 1] and ℓ ∈ [ℓ⋆, |ID⋆|] are associated with nodes

θ ∈ SE(1)ℓ⋆ and θ ∈ SE(2)ℓ⋆ , respectively. We summarize the properties of the node division as follows.

• All (skID,θ)θ∈SE(1)
ℓ⋆

received by the RHIBE adversary satisfy ID /∈ prefix+(ID⋆). The ad-

versary receives no (delkpa(ID),θ)θ∈SE(1)
ℓ⋆
. The adversary may receive (kupa(ID),T,θ)θ∈SE(1)

ℓ⋆
for

ID ∈ prefix+(ID⋆) ∧ T = T⋆.

• All (kuID,T,θ)θ∈SE(2)
ℓ⋆

received by the RHIBE adversary satisfy T ̸= T⋆. The adversary may

receive (skID,θ, delkpa(ID),θ)θ∈SE(2)
ℓ⋆

for ID ∈ prefix+(ID⋆).

6Note that there may be an adversary that does not receive skID for any ID ∈ prefix+(ID⋆). Here, we ignore such
adversaries and assume that an adversary always receives skID for some ID ∈ prefix+(ID⋆).

7Otherwise, the adversary can create dkID⋆,T⋆ from kupa(ID⋆
[ℓ]

),T⋆,θ and skID⋆
[ℓ]

,θ. Note that, according to the definition

of ℓ⋆, the adversary can receive kupa(ID⋆
[ℓ]

),T⋆,θ even if it shares the same θ with skID⋆
[ℓ]

,θ for ℓ ∈ [ℓ⋆ − 1] because the

adversary does not know the secret keys.
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• All (skID,θ, delkpa(ID),θ, kupa(ID),T,θ)θ∈SE(3)
ℓ⋆

received by the RHIBE adversary satisfy ID /∈
prefix+(ID⋆).

Here, we do not analyze why the properties hold for the node division. Refer to [SE15b] for the
corresponding analysis.

Key Creations. Then, the reduction algorithm changes the distribution of (delkpa(ID),θ)θ∈SE(1)
ℓ⋆

as

g
α−αpa(ID),θ

2 , which cannot be computed by the reduction algorithm. Although the reduction al-

gorithm cannot compute delkpa(ID),θ = g
α−αpa(ID),θ

2 , this is not a problem because the adversary
cannot obtain (delkpa(ID),θ)θ∈SE(1)

ℓ⋆
. Note that an adversary cannot detect the change because the

distributions of g
αpa(ID),θ

2 and g
α−αpa(ID),θ

2 are the same, where αpa(ID),θ ←R Zp. As a result, the

g
αpa(ID),θ

2 of (skID,θ)θ∈SE(1)
ℓ⋆

and g
α−αpa(ID),θ

2 terms of (kupa(ID),T,θ)θ∈SE(1)
ℓ⋆

are replaced by g
α−αpa(ID),θ

2

and g
αpa(ID),θ

2 , respectively. Therefore, the reduction algorithm can create (kupa(ID),T,θ)θ∈SE(1)
ℓ⋆

using

g
αpa(ID),θ

2 sampled by itself. To compute (skID,θ)θ∈SE(1)
ℓ⋆
, the reduction algorithm receives BBG secret

keys
(
gα2 · (h

id1
1 · · ·hid|ID||ID| hL+1)

r, gr, (hri )i∈[|ID|+1,L]

)
and modifies them using g

αpa(ID),θ

2 . The reduc-

tion algorithm can receive the BBG secret key because all (skID,θ)θ∈SE(1)
ℓ⋆

received by the RHIBE

adversary satisfy ID /∈ prefix+(ID⋆). Here, (delkpa(ID),θ)θ∈SE(2)
ℓ⋆

∪SE(3)
ℓ⋆

is not changed; thus, the reduc-

tion algorithm can create (skID,θ, delkpa(ID),θ)θ∈SE(2)
ℓ⋆

∪SE(3)
ℓ⋆

in the same manner as the real scheme.

The rest of information that the reduction algorithm should be able to create is (kupa(ID),T,θ)θ∈SE(2)
ℓ⋆

and (kupa(ID),T,θ)θ∈SE(3)
ℓ⋆
. To broadcast (kupa(ID),T,θ)θ∈SE(3)

ℓ⋆
, the reduction algorithm proceeds in the

same manner as (skID,θ)θ∈SE(1)
ℓ⋆
, i.e., it receives BBG secret keys and modifies them using g

αpa(ID),θ

2 .

As in the case of (skID,θ)θ∈SE(1)
ℓ⋆
, this operation is effective because all (kupa(ID),T,θ)θ∈SE(3)

ℓ⋆
received

by the RHIBE adversary satisfy ID /∈ prefix+(ID⋆). To broadcast (kuID,T,θ)θ∈SE(2)
ℓ⋆
, the reduction

algorithm first creates BB secret keys
(
gα2 · ((h′1)Th′2)t, gt

)
with the BB trapdoor and modifies them

using g
αID,θ

2 . The operation is effective because all (kuID,T,θ)θ∈SE(2)
ℓ⋆

received by the RHIBE adversary

satisfy T ̸= T⋆.

2.3 Adaptively Secure RIBE Scheme

Adaptively secure non-hierarchical RIBE schemes have been constructed in the same manner. For
example, Watanabe et al. [WES17] constructed the WES RIBE by concatenating the modified
Jutla-Roy (JR) IBE [JR17] and BB IBE [BB04] with the same generators (g1, g2) of asymmetric
bilinear groups, where the former and latter are used to encode ID and time period T, respectively.
They proved adaptive security by reducing the security of the JR IBE to that of the WES RIBE.8.
Although the BB IBE only achieves selective security, they exploited the fact that the time period
space T is polynomially bounded, and their reduction algorithm guessed the target time period
T⋆ with reduction loss |T | at the beginning of the game. To perform node division without the
knowledge of ID⋆, the reduction algorithm guesses the number Q⋆ on which the RIBE adversary
makes a secret key query on ID⋆ with reduction loss Q, which is the number of the RIBE adversary’s
key queries, and assigns the Q⋆-th queried user to uniformly selected predetermined node η⋆. Here,

8Note that the original JR IBE, which is secure under the SXDH assumption, is not compatible with the reduction.
Here, Watanabe et al. had to modify the scheme and rely on the non-standard variant of the DDH assumption.
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the operation can divide all nodes in the same way as the SE node division for L = 1 and prove
adaptive security in the same manner as the above selectively secure RHIBE.

Unfortunately, this approach is not scalable for hierarchical settings. Specifically, to prove
the adaptive security of RIBE, the reduction loss Q is sufficient to divide all nodes because the
reduction algorithm must select only a single predetermined leaf node ηID⋆ to which the target ID⋆

will be assigned. In the hierarchical case, the reduction algorithm must select ℓ⋆ predetermined
leaf nodes ηID⋆

[ℓ]
∈ BT pa(ID⋆

[ℓ]
) for ℓ ∈ [ℓ⋆]. In other words, the reduction algorithm must guess ℓ⋆

numbers Q⋆
1, . . . , Q

⋆
ℓ⋆ on which the RHIBE adversary makes secret key queries on ID⋆[1], . . . , ID

⋆
[ℓ⋆],

respectively. Therefore, the approach results in reduction loss Qℓ⋆ . In other words, even if we
replace the BBG HIBE of the SE RHIBE with an adaptively secure HIBE scheme, it appears to
be difficult to achieve adaptive security with the proof techniques of SE RHIBE and WES RIBE
in a straightforward manner. Thus, a new approach is required to prove the adaptive security of
RHIBE.

2.4 Proposed Approach for Adaptively Secure RHIBE Scheme

Here, we provide an overview of the proposed RHIBE scheme. Note that the WES node division is
not scalable in the hierarchical setting. First, we employ a new node division to prove the adaptive
security of RHIBE. Then, we modify the SE RHIBE to obtain an adaptively secure RHIBE scheme
with the weaker DKER because the scheme is not compatible with the new node division. Finally,
we discuss how we achieve the stronger DKER.

Adaptive Node Division. As discussed in Section 2.2, SE node division does not work in the
adaptive security setting because it requires ID⋆. In addition, it appears that WES node division
cannot be extended to the hierarchical setting. Here, we employ a new node division to prove the
adaptive security of RHIBE. Specifically, as the SE RHIBE case, our reduction algorithm guesses
ℓ⋆, i.e., the minimum hierarchical level of the target user’s ancestor whose secret key skID⋆

[ℓ⋆]
is

received by the RHIBE adversary. In addition, as the WES RIBE case, our reduction algorithm
guesses only a single number Q⋆ on which the RHIBE adversary makes a secret key query on ID⋆[ℓ⋆]
with reduction loss Q. In other words, the guess is scalable because the reduction algorithm does
not guess the numbers Q⋆

1, . . . , Q
⋆
ℓ⋆−1 on which the RHIBE adversary makes a secret key query on

ID⋆[1], . . . , ID
⋆
[ℓ⋆−1]. Then, the reduction algorithm divides a set of all activated nodes AN into two

mutually exclusive subsets SKℓ⋆ and KU ℓ⋆ , which are defined later. Unlike the SE RHIBE case,
the reduction algorithm does not set leaf nodes ηID⋆

[ℓ]
∈ BT pa(ID⋆

[ℓ]
) for ℓ ∈ [ℓ⋆] in advance. In turn,

whenever the reduction algorithm creates binary trees BT pa(ID) of all level-(ℓ⋆ − 1) users pa(ID)
such that |ID| = ℓ⋆, it sets leaves η⋆pa(ID) ∈ BT pa(ID) to which the Q⋆-th queried user will be assigned

in advance. Note that, although there are numerous (but polynomially many) leaves η⋆pa(ID), only
one of them will be used for the Q⋆-th query. Then, our node division is defined as follows:

SKℓ⋆ :=

{
θ :

(
θ ∈ BT pa(ID) for |ID| ≤ ℓ⋆ − 1

)
∨(

θ ∈ BT pa(ID) \ Path(BT pa(ID), η
⋆
pa(ID)) for |ID| = ℓ⋆

) } ,

KU ℓ⋆ := AN \ SKℓ⋆ =

{
θ :

(
θ ∈ BT pa(ID) for |ID| ≥ ℓ⋆ + 1

)
∨(

θ ∈ Path(BT pa(ID), η
⋆
pa(ID)) for |ID| = ℓ⋆

) } .

A graphical overview of our node division is presented in Appendix A (Figure 3). Note that
the reduction algorithm can perform node division without knowledge of ID⋆; thus, the division
is compatible with the adaptive security setting. In particular, all skID⋆

[ℓ]
,θ for ℓ ∈ [ℓ⋆ − 1] and
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ℓ ∈ [ℓ⋆, |ID⋆|] are associated with nodes θ ∈ SKℓ⋆ and θ ∈ KU ℓ⋆ , respectively. We summarize the
property of the node division in the following.

• All (skID,θ, delkpa(ID),θ)θ∈SKℓ⋆
received by the RHIBE adversary satisfy ID /∈ prefix+(ID⋆). The

adversary may receive (kupa(ID),T,θ)θ∈SKℓ⋆
for ID ∈ prefix+(ID⋆) ∧ T = T⋆.

• All (kupa(ID),T,θ)θ∈KUℓ⋆
received by the RHIBE adversary satisfy ID /∈ prefix+(ID⋆) ∨ T ̸= T⋆.

The adversary may receive (skID,θ, delkpa(ID),θ)θ∈SKℓ⋆
for ID ∈ prefix+(ID⋆).

Here, we omit the analysis of why the properties hold (refer to Section 6 for the corresponding

analysis). Intuitively, SKℓ⋆ and KU ℓ⋆ take similar roles as SE(1)ℓ⋆ and SE(2)ℓ⋆ ∪SE
(3)
ℓ⋆ , respectively. In

particular, all (skID,θ)θ∈SKℓ⋆
received by the RHIBE adversary satisfy ID /∈ prefix+(ID⋆) as in the

case of (skID,θ)θ∈SE(1)
ℓ⋆
. Similarly, all (kupa(ID),T,θ)θ∈KUℓ⋆

received by the RHIBE adversary satisfy

ID /∈ prefix+(ID⋆) ∨ T ̸= T⋆, while all (kupa(ID),T,θ)θ∈SE(2)
ℓ⋆

and (kupa(ID),T,θ)θ∈SE(3)
ℓ⋆

received by the

RHIBE adversary satisfy T ̸= T⋆ and ID /∈ prefix+(ID⋆), respectively. Although we omit the details,
the reduction algorithm can create all (skID,θ, kupa(ID),T,θ)θ∈SKℓ⋆

and all (skID,θ, delkpa(ID),θ)θ∈KUℓ⋆

in the same manner as SE node division. However, a problem arises in (delkpa(ID),θ)θ∈SKℓ⋆
and

(kupa(ID),T,θ)θ∈KUℓ⋆
due to the slight difference between node divisions; therefore, the modification

of the node division is insufficient to prove the security of the SE RHIBE for two reasons. First, the
RHIBE adversary receives no (delkpa(ID),θ)θ∈SE(1)

ℓ⋆
; thus, the reduction algorithm for SE node division

sets (delkpa(ID),θ = g
α−αpa(ID),θ

2 )
θ∈SE(1)

ℓ⋆
, which are elements that cannot be computed by the reduction

algorithm itself. In addition, our node division allows the adversary to receive (delkpa(ID),θ)θ∈SKℓ⋆
;

therefore, the reduction algorithm cannot set delkpa(ID),θ in the same manner as the SE node division.
Thus, the reduction algorithm cannot answer (delkpa(ID),θ)θ∈SKℓ⋆

even in the selective security
model. Second, the reduction algorithm for SE node division employs distinct methods to create

kupa(ID),T,θ depending on whether T ̸= T⋆ or ID /∈ prefix+(ID⋆) holds (i.e., whether θ ∈ SE(2)ℓ⋆ or θ ∈
SE(3)ℓ⋆ ). However, here, the reduction algorithm must know (ID⋆, T⋆). In addition, (kupa(ID),T,θ)θ∈KUℓ⋆

satisfies T ̸= T⋆ ∨ ID /∈ prefix+(ID⋆); therefore, the reduction algorithm without knowing (ID⋆, T⋆)
does not have a way to distinguish which of condition T ̸= T⋆ or ID /∈ prefix+(ID⋆) holds. Thus, the
reduction algorithm can only answer (kupa(ID),T,θ)θ∈KUℓ⋆

in the selective security model.9 Therefore,
the SE RHIBE is incompatible with our node division.

Modified RHIBE Scheme. To avoid the issue, we modify the SE RHIBE scheme. Here, we use
BBG HIBE to explain the proposed approach because we believe it facilitates understanding of the
proposed approach compared to SE RHIBE. Note that we extract the required properties of HIBE
to construct adaptively secure RHIBE and replace the BBG HIBE with adaptively secure HIBE
schemes later in this section. Although SE RHIBE is a concatenation of level-L BBG HIBE and BB
IBE, the proposed RHIBE scheme is based on level-(L + 1) BBG HIBE and utilizes its algebraic
property. First, we set MPK, skkgc, ctID,T, and dkID,T, which are very similar to those of BBG HIBE,
as follows:

MPK = (g, g1 := gα, g2, (hi)i∈[L+2]), skkgc = (gα2 , delkkgc),

// (g2, (hi)i∈[L+2])←R GL+3, α←R Zp

9Note that we can avoid this issue by guessing T⋆ with reduction loss |T | as the proofs of the above adaptively
secure RIBE. However, our construction does not require the guess; thus, it avoids this issue. That is why the
proposed RIBE scheme achieves tighter reduction than the WES RIBE [WES17] and its variant [GW19], as shown
in Table 2.
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ctID,T =
(
gs, (hT1h

id1
2 · · ·hid|ID||ID|+1hL+2)

s,M · e(g1, g2)s
)
, // s←R Zp

dkID,T =
(
gα2 · (hT1h

id1
2 · · ·hid|ID||ID|+1hL+2)

r, gr, (hri )i∈[|ID|+2,L+1]

)
. // r ←R Z2

p

Here, it is easy to verify that dkID,T enables users ID to decrypt ctID,T. Then, we describe
delkkgc, skID, delkpa(ID), and kupa(ID),T as follows:

delkkgc =
(
g
αkgc,θ

2

)
θ∈AN kgc

, // αkgc,θ ←R Zp

skID =

((
g
αpa(ID),θ

2 · (hid12 · · ·hid|ID||ID|+1hL+2)
rID,θ , grID,θ , (h

rID,θ
i )i∈{1}∪[|ID|+2,L+1]

)
θ∈Path(BT pa(ID),ηID)

, delkID

)
,

// rID,θ ←R Zp

delkpa(ID) =
(
g
αpa(ID),θ

2 · (hid12 · · ·hid|ID||ID|+1hL+2)
upa(ID),θ , gupa(ID),θ , (h

upa(ID),θ

i )i∈{1}∪[|ID|+2,L+1]

)
θ∈AN pa(ID)

,

// (αpa(ID),θ, upa(ID),θ)←R Z2
p

kupa(ID),T =

(
g
α−αpa(ID),θ

2 · (hT1h
id1
2 · · ·hid|pa(ID)||pa(ID)|+1hL+2)

rpa(ID),T,θ ,

grpa(ID),T,θ , (h
rpa(ID),T,θ
i )i∈[|pa(ID)|+2,L]

)
θ∈Npa(ID),T

.

// rpa(ID),T,θ ←R Zp

Here, delkpa(ID),θ of the proposed scheme follows a similar distribution to skID,θ, and that of SE
RHIBE follows a similar distribution to MSK. This is why the skID of the proposed scheme is
larger than that of the existing RHIBE schemes. It is easy to check that the scheme satisfies the
correctness: delkpa(ID) can be created without any secret information, delkpa(ID) enables users pa(ID)
to create skID, skID and kupa(ID),T enable non-revoked users ID to create dkID,T and kuID,T.

Key Creations. Next, we observe how our construction avoids the previous issue to prove
adaptive security. As with Seo-Emura’s proof, the reduction algorithm changes the distribu-

tion of factor g
αpa(ID),θ

2 of (delkpa(ID),θ)θ∈SKℓ⋆
to g

α−αpa(ID),θ

2 , which cannot be computed by the
reduction algorithm by itself. As with the SE proof, here, the adversary cannot detect the

change. Thus, the g
αpa(ID),θ

2 terms of (skID,θ)θ∈SKℓ⋆
and g

α−αpa(ID),θ

2 of (kupa(ID),T,θ)θ∈SKℓ⋆
are re-

placed by g
α−αpa(ID),θ

2 and g
αpa(ID),θ

2 , respectively. Although we omit the specifics, the reduc-
tion algorithm can create all (skID,θ, kupa(ID),T,θ)θ∈SKℓ⋆

and all (skID,θ, delkpa(ID),θ)θ∈KUℓ⋆
in the

same manner as SE RHIBE. In addition, the reduction algorithm of the proposed scheme can
also compute (delkpa(ID),θ)θ∈SKℓ⋆

and (kupa(ID),T,θ)θ∈KUℓ⋆
. First, the modification of delkpa(ID),θ,

which follows a distribution that is similar to skID,θ, allows the reduction algorithm to create
(delkpa(ID),θ)θ∈SKℓ⋆

. Here, the reduction algorithm receives a special form of BBG secret keys(
gα2 · (h

id1
2 · · ·hid|pa(ID)||pa(ID)|+1hL+2)

r, gr, (hri )i∈{1}∪[|pa(ID)|+2,L+1]

)
of pa(ID), where pa(ID) is encoded in

levels from 2 to |pa(ID)| + 1, and modifies them using g
αpa(ID),θ

2 . In this case, we exploit the
fact that all (delkpa(ID),θ)θ∈SKℓ⋆

received by the RHIBE adversary satisfy ID /∈ prefix+(ID⋆).
Next, the modification of the proposed scheme, which is not a concatenation of BBG HIBE
and BB IBE, i.e., it is based on only BBG HIBE, enables the reduction algorithm to cre-
ate (kupa(ID),T,θ)θ∈KUℓ⋆

. For this purpose, the reduction algorithm receives BBG secret keys(
gα2 · (hT1h

id1
2 · · ·hid|pa(ID)||pa(ID)|+1hL+2)

r, gr, (hri )i∈[|pa(ID)|+2,L+1]

)
of (T, pa(ID)), where T and pa(ID) are

encoded in levels 1 and from 2 to |pa(ID)| + 1, respectively, and modifies them using g
αpa(ID),θ

2 .
Here, we exploit the fact that all (kupa(ID),T,θ)θ∈KUℓ⋆

received by the RHIBE adversary satisfy
ID /∈ prefix+(ID⋆) ∨ T ̸= T⋆. Therefore, the reduction algorithm can create all delkpa(ID), skID, and
kupa(ID),T received by the adversary in a security proof.
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Achieving the Stronger DKER. The above scheme is sufficient to achieve the weaker DKER;
however, it is insufficient to achieve the stronger DKER. Here, we describe how the reduction
algorithm creates dkID,T. First, the reduction algorithm creates skID,θ and kupa(ID),T,θ with the same
θ as described above and can derive most decryption keys dkID,T. Here, the only exception is
(dkID⋆

[ℓ]
,T⋆)ℓ∈[ℓ⋆−1]. Recall that all (skID⋆[ℓ],θ)ℓ∈[ℓ⋆−1] are associated with nodes θ ∈ SKℓ⋆ . As observed

above, the reduction algorithm can create all (kupa(ID),T,θ)θ∈SKℓ⋆
by itself. However, the method

to create (skID,θ)θ∈SKℓ⋆
relies on the condition ID ∈ prefix+(ID⋆). In other words, the reduction

algorithm cannot create (skID⋆
[ℓ]
,θ)ℓ∈[ℓ⋆−1]. Thus, the reduction algorithm receives the decryption

key as a BBG secret key
(
gα2 · (hT1h

id1
2 · · ·hid|ID||ID|+1hL+2)

r, gr, (hri )i∈[|ID|+2,L+1]

)
of (T, ID), where T and

ID are encoded in levels 1 and from 2 to |ID|+1, respectively. The reduction algorithm requires that
ID /∈ prefix+(ID⋆)∨ T ̸= T⋆ to receive the BBG secret keys; thus, it can only answer (dkID⋆

[ℓ]
,T)ℓ∈[ℓ⋆−1]

when T ̸= T⋆. Thus, the above scheme only achieves the weaker DKER because the reduction
algorithm for the stronger DKER has to be able to create (dkID⋆

[ℓ]
,T⋆)ℓ∈[ℓ⋆−1]. Moreover, the above

scheme has a trivial attack in the stronger DKER model since one of (dkID⋆
[ℓ]
,T⋆)ℓ∈[ℓ⋆−1] enables an

adversary to decrypt challenge ciphertext ctID⋆,T⋆ .
To prevent this trivial attack, we modify the decryption key as follows:

dkID,T =
(
gα2 · (hT1h

id1
2 · · ·hid|ID||ID|+1hL+2)

r, gr
)

// r ←R Z2
p.

Here, it is easy to check that the decryption key correctly decrypts a ciphertext. Although this is a
simple modification by removing (hi)i∈[|ID|+2,L+1], it prevents an adversary with (dkID⋆

[ℓ]
,T⋆)ℓ∈[ℓ⋆−1]

from decrypting challenge ciphertext ctID⋆,T⋆ . Thus, the reduction algorithm receives the special
BBG secret keys and can answer (dkID⋆

[ℓ]
,T⋆)ℓ∈[ℓ⋆−1] in the stronger DKER model.

Extracting Essential Properties of HIBE Required for Proposed Approach. The above
modification describes the proposed approach based on BBG HIBE. However, some readers may
wonder whether the approach truly provides adaptively secure RHIBE schemes because we em-
ployed the special algebraic/security properties of BBG HIBE. Thus, we exploit essential properties,
i.e., MSK evaluatability, first-level wildcarded SK, and prefix decryption restriction, which enable
HIBE schemes to be compatible with the proposed approach. Then, we verify that not only the
BBG HIBE but also several adaptively secure HIBE schemes [CG17, CW14, GCTC16] satisfy the
properties. As a result, we can construct adaptively secure RHIBE schemes based on the HIBE
schemes.

3 RHIBE

In this section, we provide a definition for RHIBE. Note that the content of this section is primarily
based on [KMT19].

Syntax. An RHIBE scheme Π consists of six algorithms (Setup,Encrypt,GenSK,KeyUp,GenDK,
Decrypt) defined as follows.

• Setup(1λ, L) → (MPK, skkgc): This is the setup algorithm that takes security parameter 1λ

and the maximum depth of the hierarchy L ∈ N as input, and outputs a master public key
MPK and the KGC’s secret key skkgc.

• Encrypt(MPK, ID, T,M) → ctID,T: This is the encryption algorithm, which takes MPK, an
identity ID ∈ I |ID|, time period T ∈ T , and a plaintext M ∈ M as input, and outputs a
ciphertext ctID,T.
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• GenSK(MPK, skpa(ID), ID)→ (skID, sk
′
pa(ID)): This is the secret key generation algorithm, which

takes MPK, a parent’s secret key skpa(ID), and an identity ID ∈ Ipa(ID) as input, and outputs
skID for ID and the “updated” sk′pa(ID).

• KeyUp(MPK, T, skID,RLID,T, kupa(ID),T)→ (kuID,T, sk
′
ID): The key update information generation

algorithm takes MPK, T ∈ T , skID for ID ∈ I |ID|, revocation list RLID,T ⊆ IID, and a parent’s
key update kupa(ID),T as input, and outputs kuID,T and the “updated” sk′ID. As a special case,
we define kupa(kgc),T := ⊥ for all T ∈ T .
• GenDK(MPK, skID, kupa(ID),T)→ dkID,T or ⊥: This is the decryption key generation algorithm,

which takes MPK, skID for ID ∈ I |ID|, and kupa(ID),T as input, and outputs a decryption key
dkID,T for T ∈ T or the special symbol ⊥, indicating that ID or some of its ancestors have
been revoked.

• Decrypt(MPK, dkID,T, ctID,T)→ M: This is the decryption algorithm, which takes MPK, dkID,T,
and ctID,T as input, and outputs the decryption result M.

Correctness. We require ciphertext ctID,T to be decrypted properly by a correctly-generated
decryption key dkID,T for the same ID and T when ID is not revoked at T. In other words, for all
λ ∈ N, L ∈ N, (MPK, skkgc) ← Setup(1λ, L), ℓ ∈ [L], ID ∈ (I)ℓ, T ∈ T , M ∈ M, RLkgc,T ⊆ I,
RLID[1],T ⊆ IID[1] , . . . ,RLID[ℓ−1],T ⊆ IID[ℓ−1]

, if ID′ ̸∈ RLpa(ID′),T holds for all ID′ ∈ prefix+(ID). Then,
we require M′ = M to hold after executing the following procedures.

(1) (kukgc,T, skkgc)← KeyUp(MPK, T, skkgc,RLkgc,T,⊥).
(2) For all ID′ ∈ prefix+(ID) (in short-to-long order), execute the following (2.1) and (2.2):

(2.1) (skID′ , sk
′
pa(ID′))← GenSK(MPK, skpa(ID′), ID

′).

(2.2) (kuID′,T, sk
′
ID′)← KeyUp(MPK, T, skID′ ,RLID′,T, kupa(ID′),T).

10

(3) dkID,T ← GenDK(MPK, skID, kupa(ID),T).
11

(4) ct← Encrypt(MPK, ID, T,M).
(5) M′ ← Decrypt(MPK, dkID,T, ct).

Security Definition. Let Π be an RHIBE scheme. Adaptive security with the stronger DKER
is defined using a game between adversary A and challenger C. The game is parameterized by
security parameter λ and polynomial L = L(λ) representing the maximum hierarchical depth. In
this game, global counter Tcu is initialized as 1 to denote the “current time period. In addition,
C’s responses to A’s queries are controlled by Tcu. Intuitively, A can receive all secret keys, key
updates, and decryption keys if they are insufficient to derive dkID⋆,t⋆ for target tuple (ID⋆, t⋆).
The game proceeds as follows.

First, C runs (MPK, skkgc) ← Setup(1λ, L) and prepares SKList, which initially contains
(kgc, skkgc), and into which pairs of (ID, skID) generated during the game are stored. When a new
skID is generated or existing ones are updated by executing GenSK or KeyUp, C stores (ID, skID) or
updates them in SKList. Note that we omit discussion of this addition/update. Then, C executes
(kukgc,1, sk

′
kgc)← KeyUp(MPK, Tcu = 1, skkgc,RLkgc,1 = ∅,⊥) to generate a key update for the initial

time period Tcu = 1 and gives (MPK, kukgc,1) to A.
Then, A may adaptively make the following five types of a query to C.

Secret Key Generation Query: Upon a query ID ∈ I |ID| from A, C checks if (ID, ∗) /∈ SKList

and (pa(ID), skpa(ID)) ∈ SKList for some skpa(ID), and then returns ⊥ to A if this is not
the case. Otherwise, C executes (skID, sk

′
pa(ID)) ← GenSK(MPK, skpa(ID), ID). If |ID| = 1,

10If |ID′| = L, this step is skipped.
11Here, skID is the latest secret key, i.e., the result of Step (2).
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or 2 ≤ |ID| ≤ L − 1 and pa(ID) /∈ RLpa(pa(ID)),Tcu , then C executes (kuID,Tcu , sk
′
ID) ←

KeyUp(MPK, Tcu, skID,RLID,Tcu := ∅, kupa(ID),Tcu) and returns kuID,Tcu to A. If 2 ≤ |ID| ≤ L
and pa(ID) ∈ RLpa(pa(ID)),Tcu , then C executes RLpa(ID),Tcu ← RLpa(ID),Tcu ∪ {ID} and returns
nothing to A.
Note that all ID in the following queries (except the challenge query) must be “activated”, in
the sense that skID has already been generated via this query; thus, (ID, skID) ∈ SKList.

Secret Key Reveal Query: Until the challenge query, upon a query ID ∈ I |ID| from A, C finds
skID from SKList and returns it to A. After the challenge query, C checks

– If Tcu ≥ T⋆ and ID ∈ prefix+(ID⋆), then ID′ ∈ RLpa(ID′),T⋆ for some ID′ ∈ prefix+(ID).

If this condition is not satisfied, then C returns ⊥ to A; otherwise, C finds skID from SKList

and returns it to A.
Revoke & Key Update Query: Until the challenge query, upon a query RL ⊆ I≤L (denoting

the set of identities to be revoked in the next time period) from A, C determines if the
following conditions are satisfied simultaneously.

– RLID,Tcu ⊆ RL for all ID ∈ I≤L−1 that appear in SKList.12

– For all identities ID such that (ID, ∗) ∈ SKList and ID′ ∈ prefix+(ID), if ID′ ∈ RL, then
ID ∈ RL.

After the challenge query, C also checks

– ID′ ∈ RL if Tcu = T⋆−1 and skID′ for some ID′ ∈ prefix+(ID⋆) has been revealed previously
by the secret key reveal query.

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, C increments the
current time period by Tcu ← Tcu + 1 and executes the following operations (1) and (2) for
all “activated” and non-revoked identities ID, i.e., ID ∈ I≤L−1 ∪ {kgc}, (ID, ∗) ∈ SKList and
ID /∈ RL, in breadth-first order in the identity hierarchy.

(1) Set RLID,Tcu ← RL ∩ IID, where we define Ikgc := I.
(2) Run (kuID,Tcu , sk

′
ID) ← KeyUp(MPK, Tcu, skID,RLID,Tcu , kupa(ID),Tcu), where kupa(kgc),Tcu :=

⊥.
Finally, C returns all of the generated {kuID,Tcu}(ID,∗)∈SKList\RL to A.

Decryption Key Reveal Query: Until the challenge query, upon a query (ID, T) ∈ I |ID| × T
from A, C checks

– If T ≤ Tcu holds.

After the challenge query, C also checks

– If (ID, T) ̸= (ID⋆, T⋆) holds.13

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, C finds skID from
SKList, runs dkID,T ← GenDK(MPK, skID, kupa(ID),T), and returns dkID,T to A.

Challenge Query: Note that A is permitted to make this query exactly once. Upon a query
(ID⋆, T⋆,M⋆

0,M
⋆
1) such that |M⋆

0| = |M⋆
1| from A, C determines if the following conditions are

satisfied simultaneously.

– If T⋆ ≤ Tcu, A has not submitted (ID⋆, T⋆) as a decryption key reveal query.

– If T⋆ ≤ Tcu and skID for ID ∈ prefix+(ID⋆) has been revealed to A, then ID ∈ RLpa(ID),T⋆−1.

12This check ensures that previously revoked identities remain revoked in the next time period.
13This is the condition of the stronger DKER. The condition of the weaker DKER is replaced by (ID, T) ̸= (ID′, T⋆)

for all ID′ ∈ prefix+(ID⋆).
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If these conditions are not satisfied, then C returns ⊥ to A. Oth-
erwise, C selects a bit b ∈ {0, 1} uniformly at random, runs ct⋆ ←
Encrypt(MPK, ID⋆, T⋆,M⋆

b), and returns the challenge ciphertext ct⋆ to A.
At some point, A outputs b′ ∈ {0, 1} as its guess for b and terminates.

This completes the description of the game. In this game, A’s adaptive security advantage is
defined by AdvRHIBEΠ,L,A(λ) := 2 · |Pr[b′ = b]− 1/2|.

Definition 1. We say that an RHIBE scheme Π of depth L satisfies adaptive security if the
advantage AdvRHIBEΠ,L,A(λ) is negligible for all PPT adversaries A.

4 Pairing-based HIBE

In this section, we describe HIBE and its additional properties that are used in our construction.
The additional properties can be achieved in most existing pairing-based HIBE constructions; there-
fore, HIBE with those properties can be considered an abstraction of existing pairing-based HIBE
constructions. We briefly review the definition of plain HIBE in Section 4.1, and in Section 4.2,
we discuss additional properties of HIBE. Finally, in Section 4.3, we describe how state-of-the-art
HIBE schemes satisfy these properties.

4.1 Plain HIBE

A plain HIBE scheme H.Π with depth L consists of four algorithms (H.Setup,H.Encrypt,H.GenSK,
H.Decrypt) defined as follows.

• H.Setup(1λ, L) → (H.MPK,H.MSK): The setup algorithm takes security parameter λ and
maximum hierarchical depth L as input, and it outputs a master public key H.MPK and a
smaster secret key H.MSK.

• H.Encrypt(H.MPK, ID,M) → H.ctID: The encryption algorithm takes H.MPK, an identity
ID ∈ H.I |ID|, and a plaintext M as input, and outputs a ciphertext H.ctID.

• H.GenSK(H.MPK,H.skID′ , ID := (ID′, id)) → H.skID: The secret key generation algorithm
takes H.MPK, a secret key H.skID′ , and an identity ID ∈ H.IID′ as input, and outputs a secret
key H.skID. Here, the second input H.skID′ can be replaced by H.MSK.

• H.Decrypt(H.MPK,H.skID,H.ctID)→ M: The decryption algorithm takes H.MPK, H.skID, and
H.ctID as input, and outputs the decryption result M.

The correctness of HIBE ensures that the H.Decrypt algorithm outputs a correct decryp-
tion result. In addition, most pairing-based HIBE schemes further satisfy the condition that
H.GenSK(H.MPK,H.MSK, ID) ≈ H.GenSK(H.MPK,H.skID′ , ID) even when given H.skID′ . The se-
curity of HIBE ensures that it is difficult for an adversary who obtains polynomially many secret
keys H.skID such that ID /∈ prefix+(ID⋆) to extract secret information from H.ctID⋆ .

By definition, an HIBE system has three natural restrictions. First, only the KGC that knows
H.MSK can create a secret key H.skID for any ID ∈ H.I |ID|. Next, a user with H.skID can create
H.skID′ iff ID ∈ prefix+(ID′). Thus, finally, an adversary cannot obtain H.skID for ID ∈ prefix+(ID⋆)
in the security game, where ID⋆ is a target identity.

4.2 Properties Extracted from Existing HIBE Constructions

We presented the proposed approach to construct RHIBE schemes in Section 2.4. That explanation
was specific to BBG HIBE because we rely on several special algebraic/security properties of the
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scheme, which the definition of plain HIBE does not capture. To construct adaptively secure RHIBE
schemes, here, we introduce three additional properties of HIBE, i.e., MSK evaluatability, first-level
wildcarded SK, and prefix decryption restriction, to abstract the properties to realize the proposed
approach. Note that the extracted properties can be achieved by most pairing-based constructions,
as discussed in Section 4.3.

MSK Evaluatability. In Section 2.4, users or the reduction algorithm performed the following
operations.

• All parent users pa(ID) compute g
αpa(ID),θ

2 to create delkpa(ID),θ, where αpa(ID),θ ←R Zp. Here,

although the reduction algorithm may change the computation to g
α−αpa(ID),θ

2 , it does not
change the distribution.

• Each user ID employs skID,θ and kupa(ID),T,θ, which are the BBG secret keys whose first factors

of sk1 and ku1 are g
αpa(ID),θ

2 and g
α−αpa(ID),θ

2 , respectively, and derives dkID,T, which is a BBG
secret key whose first factor of dk1 is gα2 . In addition, the distribution of dkID,T is independent
of skID,θ and kupa(ID),T,θ.

Note that these operations are not supported by plain HIBE; therefore, we introduce MSK
evaluatability. In the following, we use notation H.skID[H.MSK] rather than H.skID, to explicitly
describe the MSK-component of H.skID. Here, let H.MSK denote an MSK space of HIBE, which
is a finite multiplicative abelian group. Intuitively, MSK evaluatability allows anyone to perform
the following operations.

1. H.MPK can be used to sample Ĥ.MSK, which we refer to as a pseudo-MSK, randomly from

H.MSK. Note that Ĥ.MSK ̸= H.MSK holds with overwhelming probability.

2. H.skID[Ĥ.MSK1] and H.skID[Ĥ.MSK2] for the same ID ∈ I under arbitrary

(Ĥ.MSK1, Ĥ.MSK2) ∈ H.MSK2 can be merged into H.skID[f(Ĥ.MSK1, Ĥ.MSK2)] by

evaluating their MSK-parts with function f : H.MSK×H.MSK → H.MSK. Here, Ĥ.MSK1

and Ĥ.MSK2 are arbitrary elements in H.MSK including H.MSK.

We formally define MSK evaluatability in Definition 2.

Definition 2 (MSK Evaluatability). Let H.Π be an HIBE scheme. We say that H.Π supports MSK
evaluatability w.r.t. a function class F if there exist two probabilistic algorithms H.SampMSK and
H.EvalMSK.

• H.SampMSK(H.MPK) → Ĥ.MSK: The pseudo-MSK sampling algorithm takes H.MPK as

input and outputs Ĥ.MSK ∈ H.MSK.
• H.EvalMSK(H.MPK,H.skID[Ĥ.MSK1],H.skID[Ĥ.MSK2], f) → H.skID[f(Ĥ.MSK1, Ĥ.MSK2)]:

The MSK evaluation algorithm takes H.skID[Ĥ.MSK1] and H.skID[Ĥ.MSK2] for the same ID,

under (Ĥ.MSK1, Ĥ.MSK2) ∈ H.MSK2, and a function f ∈ F as input, and then outputs

H.skID[f(Ĥ.MSK1, Ĥ.MSK2)].

In addition, these algorithms satisfy the following requirements.

▷ Pseudo-MSK Indistinguishability: For any f ∈ F and any Ĥ.MSK ∈ H.MSK, given

Ĥ.MSK, it holds that

H.SampMSK(H.MPK) ≈ f(Ĥ.MSK,H.SampMSK(H.MPK)).
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▷ Evaluation Invariance: For any f ∈ F , any (Ĥ.MSK1, Ĥ.MSK2) ∈ H.MSK2, and any

ID ∈ I, given H.skID[Ĥ.MSK1] and H.skID[Ĥ.MSK2], it holds that

H.GenSK(H.MPK, f(Ĥ.MSK1, Ĥ.MSK2), ID)

≈ H.EvalMSK(H.MPK,H.skID[Ĥ.MSK1],H.skID[Ĥ.MSK2], f).

Remark 1. Although we have defined MSK evaluatability for general F , we consider a sim-
ple class F := {mul, div} throughout the paper, where mul and div indicate multiplication

and division, respectively. In other words, mul(Ĥ.MSK1, Ĥ.MSK2) = Ĥ.MSK1 · Ĥ.MSK2 and

div(Ĥ.MSK1, Ĥ.MSK2) = Ĥ.MSK1/Ĥ.MSK2. Therefore, we omit “w.r.t. F” and simply state MSK
evaluatability for simplicity.

Remark 2. Although we have defined pseudo-MSK indistinguishability for a general dis-
tribution H.SampMSK(H.MPK), we consider only the case where H.SampMSK(H.MPK) is
a uniform distribution on H.MSK throughout the paper. When F = {mul, div}, the
uniformity of H.SampMSK(H.MPK) implies pseudo-MSK indistinguishability. In addition,
H.SampMSK(H.MPK) ̸= H.MSK holds with high probability.

First-level wildcarded SK. In Section 2.4, we assumed the following special encoding/security
requirement of BBG HIBE:

• delkpa(ID),θ is a BBG secret key, where pa(ID) is encoded in levels from 2 to |pa(ID)| + 1.
delkpa(ID),θ is used to create skID,θ which is a BBG secret key, where ID is encoded in levels
from 2 to |ID| + 1. In addition, skID,θ is used to create kuID,T,θ′, which is a BBG secret key,
where T and ID are encoded in levels 1 and from 2 to |ID|+ 1, respectively.

• Note that the BBG HIBE does not degrade security even if delkpa(ID),θ for pa(ID) /∈ prefix+(ID⋆)
and skID,θ for ID /∈ prefix+(ID⋆) are revealed.

These encodings/security requirements are not supported by plain HIBE; thus, we introduce the
first-level wildcarded SK. This concept is similar to that of wildcarded IBE [ABC+11] and wicked
IBE [AKN07]. Roughly speaking, if an HIBE scheme supports first-level wildcarded SK, a wildcard
“∗” can be used for the first level of identity vectors when generating secret keys, whereas wicked
IBE allows wildcards at each level of identity vectors for secret keys.14 Thus, first-level wildcarded
SK enables all parent users to allow more flexible delegation procedures than plain HIBE. This
“wildcard” can be replaced with any element identity id ∈ H.I; therefore, H.sk(∗,id1,...,id|ID|) can be
used to derive H.sk(T,id1,...,id|ID|) for any T ∈ H.I and H.sk(∗,id1,...,id|ID|+1) for any id|ID|+1 ∈ H.I. In

other words, an identity space H.I≤L for secret keys becomesW.I≤L := (H.I∪{∗})×H.I≤L−1. Note
that identity space H.I≤L for ciphertexts is the same as that of the original HIBE, i.e., wildcards
are not permitted for ciphertexts at all levels. Here, for simplicity, we define the following notations
regarding to this notion.

(I) For any ID := (id1, id2, . . . , id|ID|) ∈W.I |ID|, let

W.IID :=
{

H.IID ∪ {ID′ ∈ H.I |ID| | ∀id′1 ∈ H.I, ID′ = (id′1, id2 . . . , id|ID|)} if id1 = ∗,
H.IID otherwise.

(II) Let W.prefix+((id1, . . . , idℓ)) := prefix+((id1, . . . , idℓ)) ∪ {(∗, id2, . . . , idℓ)} be a wildcarded
prefix for an identity (id1, , . . . , idℓ) ∈ H.Iℓ.

14In this sense, our notion is more closely related to wicked IBE rather than wildcarded IBE because wildcards are
associated with a ciphertext/secret key in wildcarded/wicked IBE. Nonetheless, we use “wildcarded” to express this
intuitive property.
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Here, we examined a toy example. Assume H.I = {0, 1}. For ID = (∗, 1), we have W.IID = H.IID ∪
{(0, 1), (1, 1)}, where H.IID = {(∗, 1, 0), (∗, 1, 1)}, and, for ID = (0, 1), we have W.prefix+(ID) =
prefix+(ID) ∪ {(∗, 1)} = {0, (0, 1), (∗, 1)}.

Formally, first-level wildcarded SK is defined as follows.

Definition 3 (First-level Wildcarded SK). Let H.Π be an HIBE scheme. We say that H.Π supports
first-level wildcarded SK if H.GenSK can be modified as follows.

• H.GenSK(H.MPK,H.skID′ , ID ∈W.IID)→ H.skID: This is the same as H.GenSK in plain HIBE,
with the exception that it takes ID ∈W.I≤L as input rather than ID ∈ H.I≤L.

The following correctness and wildcarded secret key query are satisfied.

▷ Correctness: For any ID′ ∈W.I≤L−1 and ID ∈W.IID′, given H.skID′, it holds that

H.GenSK(H.MPK,H.MSK, ID′) ≈ H.GenSK(H.MPK,H.skID, ID
′).

▷ Wildcarded Secret Key Query: In the security game, an adversary is allowed to receive
secret keys H.skID for any ID ∈W.I≤L \W.prefix+(ID⋆).

Prefix Decryption Restriction. In Section 2.4, we utilized the following special form of a BBG
secret key.

• dkID,T is a special form of an BBG secret key that does not contain (hri )i∈[|ID|+2,L+1].

• Note that BBG HIBE does not degrade security even if (dkID⋆
[ℓ]
,T⋆)ℓ∈[|ID⋆|−1] are revealed.

The special form of the secret keys is not supported by plain HIBE; thus, we introduce the
prefix decryption restriction. This property degrades the decryption capability of an HIBE secret
key. Note that a similar concept called limited delegation was introduced by Shacham [Sha07].15 If
an HIBE scheme supports the prefix decryption restriction, there is an HIBE decryption key H.dkID,
which can be considered an HIBE secret key for ID without delegation functionality. In contrast to
an HIBE secret key H.skID, a decryption key H.dkID for ID ∈ H.I≤L can decrypt ciphertext H.ctID′

iff ID = ID′. In other words, H.dkID cannot decrypt ciphertext H.ctID′ for ID′ ∈ H.IID, whereas
H.skID can perform this decryption.

Formally, the prefix decryption restriction is defined as follows.

Definition 4 (Prefix Decryption Restriction). An HIBE scheme supports the prefix decryption
restriction if there exists H.GenDK as follows.

• H.GenDK(H.MPK,H.skID)→ H.dkID: The decryption key generation algorithm takes H.MPK
and H.skID as input and outputs a decryption key H.dkID.

The following correctness and decryption key query are satisfied.

▷ Correctness: For any ID ∈ H.I≤L, a correctly-generated ciphertext H.ctID can be decrypted
correctly with H.dkID. In addition, for any ID ∈ H.I≤L given H.skID, it holds that

H.GenDK(H.MPK,H.GenSK(H.MPK,H.MSK, ID)) ≈ H.GenDK(H.MPK,H.skID).

▷ Decryption Key Query: In the security game, an adversary is permitted to receive decryp-
tion keys H.dkID for any ID ∈ H.I≤L \ {ID⋆}.

15Shacham define an HIBE secret key H.skID with limited delegation such that it can derive a secret key H.skID′ of
a suffix identity ID′ only when |ID′| is less than or equal to limited bound |ID′| = L′ < L.
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4.3 Concrete Examples

Here, we demonstrate that the Chen-Wee (CW) HIBE [CW14]16 satisfies the above properties
because we consider it to be conceptually simpler to understand than other state-of-the-art HIBE
schemes [CG17, GCTC16]. The CW HIBE is designed on an asymmetric bilinear group of prime-
order p equipped with a non-degenerate bilinear map e : G1 ×G2 → GT . Here, we use the implicit
notation [a]1 := ga1 ∈ G1, [a]2 := ga2 ∈ G2, and [a]T := e(g1, g2)

a ∈ GT [EHK+17]. In addition,
for a vector a := (a1, . . . , ad) ∈ Zk

p, we use the notation [a]1 := ([a1]1, . . . , [ad]1) ∈ Gk
1. The

analogous notation is used for [a]2, [a]T and a matrix [A]1, [A]2, [A]T . If A and B are matrices
with compatible dimensions, let e([A]1, [B]2) = [A⊤B]T . First, the CW HIBE samples two matrices

A and B in Z(k+1)×k
p from a matrix distribution Dk [EHK+17], W1, . . . ,WL+1 ←R Z(k+1)×(k+1)

p ,
and k←R Zk+1

p . Then, H.Setup(1λ, L) outputs H.MPK and H.MSK:

H.MPK :=

(
[A]1, [W

⊤
1 A]1, . . . , [W

⊤
L+1A]1

[B]2, [W1B]2, . . . , [WL+1B]2
; [A⊤k]T

)
, H.MSK := [k]2.

Thus, the master secret key space H.MSK of the scheme is Gk+1
2 . This scheme has H.ctID⋆ and

H.skID:

H.ctID⋆ :=
(
c0 := [As]1, c1 := [(id⋆1W

⊤
1 + · · ·+ id⋆|ID⋆|W

⊤
|ID⋆| +W⊤

L+1)As]1, c2 := M · [s⊤A⊤k]T

)
,

H.skID :=

 skID,0 := [Br]2,
skID,1 := [k]2 · [(id1W1 + · · ·+ id|ID|W|ID| +WL+1)Br]2

skID,|ID|+1 := [W|ID|+1Br]2, . . . , skID,L := [WLBr]2

 ,

where s, r ←R Zk
p. It is easy to verify the correctness of the scheme. Specifically, the decryption

works as M = c2 · e(c1, skID⋆,0)/e(c0, skID⋆,1), where skID⋆,|ID⋆|+1, . . . , skID⋆,L are not used. They are
responsible only for key delegation.

Prior to examining whether CW HIBE satisfies the properties discussed in Section 4.2, we
first describe the crucial part in its security proof. Chen and Wee proved adaptive security using
Waters’ dual system encryption methodology [Wat09]. To overcome the main step (i.e., changing
secret keys H.skID queried by the adversary to be semi-functional), they observed that the following

distributions are uniformly random in ZL−|ID|+2
p :

{ζ1id⋆1 + · · ·+ ζ|ID⋆|id
⋆
|ID⋆| + ζL+1, ζ1id1 + · · ·+ ζ|ID|id|ID| + ζL+1, (ζi)i∈[|ID|+1,L]},

where ζi ←R Zp for all i ∈ [L + 1]. Intuitively, ζ1id
⋆
1 + · · · + ζ|ID⋆|id

⋆
|ID⋆| + ζL+1 is a random

semi-functional component of ciphertext element c1, and the other ζ1id1 + · · · + ζ|ID|id|ID| + ζL+1

and (ζi)i∈[|ID|+1,L] are random semi-functional components of secret key elements skID,1 and
(skID,i)i∈[|ID|+1,L], respectively. Here, the uniformity claim holds when ID /∈ prefix+(ID⋆). In partic-
ular, when |ID⋆| < |ID|, the claim holds because the second element ζ1id1 + · · ·+ ζ|ID|id|ID| + ζL+1

distributes uniformly random in Zp even when idi = id⋆i for i ∈ [|ID⋆|] because the random
(ζ|ID⋆|+1, . . . , ζ|ID|) are independent of the other elements. The claim also holds for |ID⋆| ≥ |ID|
because ID /∈ prefix+(ID⋆), which implies that id⋆i⋆ ̸= idi⋆ holds for some i⋆ ∈ [|ID|]. Therefore,
{ζ0 + ζi⋆id

⋆
i⋆ , ζ0 + ζi⋆idi⋆} distributes uniformly in Z2

p.

16To be precise, we use Chen-Gay-Wee’s instantiation of a dual system group [CGW15] as Chen-Wee’s HIBE
scheme. In addition, the scheme proposed by Gong et al. satisfies prefix decryption restriction only if n ≥ 2, where
n is a predetermined parameter to manage the efficiency trade-off in their scheme, and we note that this flexible
parameter n is crucial. It is difficult to prove that other unbounded HIBE schemes [Lew12, LW11] have the prefix
decryption restriction because they do not have such a parameter.
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MSK Evaluatability. Since the master secret key space of the CW HIBE is Gk+1
2 , we define the

H.SampMSK and H.SampMSK algorithms as follows.

• H.SampMSK(H.MPK)→ Ĥ.MSK: It samples k̂←R Zk+1
p and outputs Ĥ.MSK := [k̂]2.

• H.EvalMSK(H.MPK,H.skID[[k̂1]2],H.skID[[k̂2]2], f)→ H.skID[f([k̂1]2, [k̂2]2)]: On input

– H.skID[[k̂1]2] = (H.sk
(1)
ID,0,H.sk

(1)
ID,1, (H.sk

(1)
ID,i)i∈[|ID|+1,L]),

– H.skID[[k̂2]2] = (H.sk
(2)
ID,0,H.sk

(2)
ID,1, (H.sk

(2)
ID,i)i∈[|ID|+1,L]),

it samples r′ ←R Zk
p and outputs H.skID[f([k̂1]2, [k̂2]2)] = (H.skID,0,H.skID,1,

(H.skID,i)i∈[|ID|+1,L]), where

– if f = mul: skID,0 = sk
(1)
ID,0 ·sk

(2)
ID,0 ·[Br′]2, skID,1 = sk

(1)
ID,1 ·sk

(2)
ID,1 ·[(id1W1+· · ·+id|ID|W|ID|+

WL+1)Br′]2, and skID,i = sk
(1)
ID,i · sk

(2)
ID,i · [WiBr′]2;

– if f = div: skID,0 = (sk
(1)
ID,0/sk

(2)
ID,0) · [Br′]2, skID,1 = (sk

(1)
ID,1/sk

(2)
ID,1) · [(id1W1 + · · · +

id|ID|W|ID| +WL+1)Br′]2, and skID,i = (sk
(1)
ID,i/sk

(2)
ID,i) · [WiBr′]2.

These algorithms satisfy the requirements in Definition 2 as follows:

▷ Pseudo-MSK Indistinguishability: For any [k̂]2 ∈ Gk+1
2 , given [k̂]2, mul([k̂]2, [k̂]2) =

[k̂]2 · [k̂]2 = [k̂ + k̂]2 and div([k̂]2, [k̂]2) = [k̂]2/[k̂]2 = [k̂ − k̂]2, where k̂ ←R Zk+1
p , are

uniformly distributed in Gk+1
2 .

▷ Evaluation Invariance: For any [k̂1]2, [k̂2]2 ∈ H.MSK, and any ID ∈ I,
given H.skID[[k̂1]2],H.skID[[k̂2]2], the master secret key part of H.skID[f([k̂1]2, [k̂2]2)] ←
H.EvalMSK(H.MPK,H.skID[[k̂1]2],H.skID[[k̂2]2], f) is f([k̂1]2, [k̂2]2) for both f ∈ {mul, div}.
Then, the distribution is the same as H.GenSK(H.MPK, f([k̂1]2, [k̂2]2), ID) due to the uni-
formly random r′ ∈ Zk

p.

Remark 3 (Difficulty achieving MSK evaluatability from lattices and traditional groups). Obvi-
ously, it appears to be difficult for lattice-based HIBE schemes [ABB10a, ABB10b, CHKP12, Zha12]
and the pairing-free HIBE scheme [DG17] to satisfy MSK evaluatability, which is the primary rea-
son we exclusively focus on pairing-based instantiations.

First-level Wildcarded SK. The CW HIBE can be modified easily such that
it equips first-level wildcarded SK. Here, we define a secret key H.sk(∗,ID)[[k̂]2] :=

(sk(∗,ID),0, sk(∗,ID),1, (sk(∗,ID),i)i∈[ℓ+1,L], sk(∗,ID),∗) ← H.GenSK(H.MPK, [k̂]2, (∗, ID)) for ID =

(id2, . . . , idℓ) under a (pseudo-)master secret key [k̂]2 ∈ Gk+1
2 as

• sk(∗,ID),0 = [Br]2, sk(∗,ID),1 = [k̂]2 · [(id2W2 + · · ·+ idℓWℓ +WL+1)Br]2,

sk(∗,ID),ℓ+1 = [Wℓ+1Br]2, . . ., sk(∗,ID),L = [WLBr]2, sk(∗,ID),∗ = [W1Br]2 .

Note that sk(∗,ID),0 and (sk(∗,ID),i)i∈[ℓ+1,L] are the same as the original secret key. In addition, we

can execute H.GenSK(H.MPK,H.sk(∗,ID), ID
′) by sampling r′ ←R Zk

p and computing

• H.skID′ := (skID′,0, skID′,1, (skID′,i)i∈[ℓ+2,L], skID′,∗) if ID
′ = (∗, ID, idℓ+1):

skID′,1 = sk(∗,ID),1 · [(WL+1 + id2W2 + · · · + idℓWℓ)Br′]2 · (sk(∗,ID),ℓ+1 · [Wℓ+1Br′]2)
idℓ+1 ,

skID′,∗ = sk(∗,ID),∗ · [W1Br′]2;

• H.skID′ := (skID′,0, skID′,1, (skID′,i)i∈[ℓ+1,L]) if ID
′ = (id1, ID):

skID′,1 = sk(∗,ID),1 · [(WL+1 + id2W2 + · · ·+ idℓWℓ)Br′]2 · (sk(∗,ID),∗ · [W1Br′]2)
id1 ,
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where skID′,0 and (skID′,i)i∈[ℓ+1,L] are computed in the same manner as the original delegation
procedure.

The above skID satisfies the correctness in Definition 3 due to the uniformly random r′ ←R Zk
p.

We demonstrate that CW HIBE permits a wildcarded secret key query in Definition 3, i.e., the
reduction algorithm can change a wildcarded secret key H.sk(∗,ID) to semi-functional. Note that it

is sufficient to demonstrate that the following distribution is a uniform distribution in ZL−|ID|+3
p :

{ζ1id⋆1 + · · ·+ ζ|ID⋆|id
⋆
|ID⋆| + ζL+1, ζ1, ζ2id2 + · · ·+ ζ|ID|id|ID| + ζL+1, (ζi)i∈[|ID|+1,L]},

where ζi ←R Zp for all i ∈ [L + 1]. Here, ζ1 is a random semi-functional component of a new
secret key element sk(∗,ID),∗, and ζ2id2 + · · · + ζ|ID|id|ID| + ζL+1 is a random semi-functional com-
ponent of a secret key element skID,1. Since [id1W1Br]1 is omitted, a random semi-functional
component of skID,1 differs from that of an HIBE secret key H.sk(id1,...,id|ID|) by ζ1id1. The claim of

uniformity holds thanks to the fact that (∗, id2, . . . , id|ID|) /∈ W.prefix+(ID⋆) ⇔ (id2, . . . , id|ID|) /∈
H.prefix+((id⋆2, . . . , id

⋆
|ID⋆|)).

Prefix Decryption Restriction. Recall that skID,|ID|+1, . . . , skID,L are not used during decryption
and only are responsible for key delegation; thus, we define the GenDK algorithm as follows:

• H.GenDK(H.MPK,H.skID = (skID,0, skID,1, (skID,i)i∈[ℓ+1,L])) → H.dkID: It samples r′ ←R Zk
p

and outputs H.dkID = (H.dkID,0,H.dkID,1) by computing dkID,0 = skID,0 · [Br′]2, dkID,1 =
skID,1 · [(WL+1 + id1W1 + · · ·+ id|ID|W|ID|)Br′]2.

Obviously, H.dkID is able to decrypt H.ctID correctly. In addition, the above dkID,T satisfies the
correctness in Definition 4 thanks to the uniformly random r′ ←R Zk

p. Finally, we demonstrate
that CW HIBE allows the decryption key query in Definition 4, i.e., the reduction algorithm can
change a decryption key H.dkID to be semi-functional. Here, it is sufficient to demonstrate that the
following distribution is a uniform distribution in Z2

p:

{ζ0 + ζ1id
⋆
1 + · · ·+ ζ|ID⋆|id

⋆
|ID⋆|, ζ0 + ζ1id1 + · · ·+ ζ|ID|id|ID|},

where ζi ←R Zp for all i ∈ [max{|ID⋆|, |ID|}]. Note that there are no (ζi)i∈[|ID|+1,L] that are random
semi-functional components of (skID,i)i∈[|ID|+1,L]. Thus, the claim of uniformity holds because ID ̸=
ID⋆.

5 Construction

In this section, we present the proposed RHIBE scheme with depth L from an HIBE scheme
with depth L + 1 supporting MSK evaluatability, first-level wildcarded SK, and prefix decryption
restriction using the CS method. Here, we assume I ⊆ H.I and T ⊆ H.I. The master public
key, ciphertexts, and decryption keys of the proposed RHIBE scheme are the same as those of the
underlying HIBE scheme.

Complete Subtree Method. As claimed in Section 2.1 and Section 2.2, Path(BT pa(ID), ηID) ⊂
BT pa(ID) and AN pa(ID) ⊂ BT pa(ID) denote a path from the root node to a leaf node ηID and a set
of activated nodes θ associated with delkpa(ID),θ that have been used to create all skID,θ and/or

kupa(ID),T,θ at least once. For all parent users pa(ID) ∈ I≤L−1 and kgc, we introduce the following
notations to indicate the subsets of BT pa(ID): Lpa(ID) is a set of all leaf nodes; ALpa(ID) ⊂ Lpa(ID) is
a set of leaf nodes to which some identities have already been assigned; RLpa(ID),T ⊂ ALpa(ID) is a
set of leaf nodes for users revoked by a time period T.

In this paper, we use four algorithms (CS.SetUp,CS.Assign,CS.Cover,CS.Match) to describe the
CS method.
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• CS.SetUp(1λ, pa(ID))→ BT pa(ID): The setup algorithm takes the security parameter 1λ and a

parent identity pa(ID) ∈ I≤L−1 as input, and outputs the description of a binary tree BT pa(ID)

for pa(ID).

• CS.Assign(BT pa(ID),ALpa(ID), ID) → (ηID,AL′pa(ID)): The assign algorithm takes binary tree

BT pa(ID), a set of leaf nodes ALpa(ID), and an identity ID ∈ I |ID|, and samples a leaf node
ηID ←R Lpa(ID) \ ALpa(ID) uniformly at random. It assigns ID to ηID and updates AL′pa(ID) ←
ALpa(ID) ∪ {ηID}. Finally, it outputs ηID and AL′pa(ID).
• CS.Cover(BT pa(ID),RLpa(ID),T)→ Npa(ID),T: The cover algorithm takes a binary tree BT pa(ID)

and a set of leaf nodes RLpa(ID),T, and outputs a set of nodes Npa(ID),T.

• CS.Match(Npa(ID),T, ηID) → θ or ⊥: The matching algorithm takes a set of nodes Npa(ID),T

output by CS.Cover and a leaf node ηID as input, and outputs θ ∈ Npa(ID),T∩Path(BT pa(ID), ηID)
if such a node exists; otherwise, it outputs an invalid symbol ⊥.

The CS method ensures that the CS.Match algorithm outputs θ and ⊥ for all leaf nodes ηID ∈
Lpa(ID) \ RLpa(ID),T and ηID ∈ RLpa(ID),T, respectively. In addition, the CS method allows us to
realize scalable revocation because |NID| = O(|RLID| log(|LID|/|RLID|)) holds.

Construction. Note that skID,θ, delkpa(ID),θ, kupa(ID),T,θ, and dkID,T of the proposed RHIBE scheme
are HIBE secret keys or an HIBE decryption key:

skID,θ = H.sk(∗,ID)[Ĥ.MSKpa(ID),θ], delkpa(ID),θ = H.sk(∗,pa(ID))

[
Ĥ.MSKpa(ID),θ

]
,

kuID,T,θ = H.sk(T,ID)[H.MSK/Ĥ.MSKID,θ], dkID,T = H.dk(T,ID).

It is easy to verify that delkpa(ID),θ can derive skID,θ, skID,θ, delkID,θ, and kupa(ID),T,θ can derive kuID,T,θ,
and skID,θ and kupa(ID),T,θ can derive dkID,T due to MSK evaluatability, first-level wildcarded SK,
and prefix decryption restriction. The proposed scheme is presented in the following.

• Setup(1λ, L) → (MPK, skkgc): Run (H.MPK,H.MSK) ← H.Setup(1λ, L+ 1) and BT kgc ←
CS.SetUp(1λ, kgc), then output MPK := H.MPK and skkgc := (H.MSK,BT kgc).

• Encrypt(MPK, ID, T,M)→ ctID,T: Parse MPK = H.MPK. Run

· H.ct(T,ID) ← H.Encrypt(H.MPK, (T, ID),M),

then output ctID,T := H.ct(T,ID).

• GenSK(MPK, skpa(ID), ID)→ (skID, sk
′
pa(ID)): Parse MPK = H.MPK and

▷ skpa(ID) =


(H.MSK,BT kgc, (θ, delkkgc,θ)θ∈AN kgc

) if pa(ID) = kgc, (θ, skpa(ID),θ)θ∈Path(BT pa(pa(ID)),ηpa(ID)), BT pa(ID),

(θ, delkpa(ID),θ)θ∈AN pa(ID)

 otherwise.

Proceed as follows.

1 (User Assignment). Run (ηID,BT ′
pa(ID))← CS.Assign(BT pa(ID), ID).

2 (Delegation Key Generation). For each node θ ∈ Path(ηID) \ AN pa(ID), proceeds as
follows.

2-1 (Pseudo-MSK Sampling). Run

· Ĥ.MSKpa(ID),θ ← H.SampMSK(H.MPK).

2-2 (Sub-delegation Key Generation). If pa(ID) = kgc, skip this step. Otherwise,
run

· H.sk(∗,pa(ID))
[
Ĥ.MSKpa(ID),θ

]
← H.GenSK(H.MPK, Ĥ.MSKpa(ID),θ, (∗, pa(ID))).
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2-3 (Update). Proceed as follows.

· Set delkpa(ID),θ :=

{
Ĥ.MSKkgc,θ if pa(ID) = kgc,

H.sk(∗,pa(ID))

[
Ĥ.MSKpa(ID),θ

]
otherwise.

· Update BT pa(ID) by AN ′
pa(ID) ← AN pa(ID) ∪ {θ}.

3 (Sub-secret Key Generation). For each θ ∈ Path(BT pa(ID), ηID), parse

▷ delkpa(ID),θ = H.sk(∗,pa(ID))

[
Ĥ.MSKpa(ID),θ

]
,

and run

· H.sk(∗,ID)
[
Ĥ.MSKpa(ID),θ

]
← H.GenSK(H.MPK,H.sk(∗,pa(ID))

[
Ĥ.MSKpa(ID),θ

]
, (∗, ID)),

then set skID,θ := H.sk(∗,ID)[Ĥ.MSKpa(ID),θ].

Finally, run BT ID ← CS.SetUp(1λ, ID), and output skID and an updated sk′pa(ID), where

– skID := ((θ, skID,θ)θ∈Path(BT pa(ID),ηID),BT ID),

– sk′pa(ID) =


(H.MSK,BT ′

kgc, (θ, delkkgc,θ)θ∈AN ′
kgc
) if pa(ID) = kgc, (θ, skpa(ID),θ)θ∈Path(BT pa(pa(ID)),ηpa(ID)), BT

′
pa(ID),

(θ, delkpa(ID),θ)θ∈AN ′
pa(ID)

 otherwise.

• KeyUp(MPK, T, skID,RLID,T, kupa(ID),T)→ (kuID,T, sk
′
ID): Parse MPK = H.MPK and

▷ skID =

{
(H.MSK,BT kgc, (θ, delkkgc,θ)θ∈AN kgc

) if ID = kgc,

((θ, skID,θ)θ∈Path(BT pa(ID),ηID),BT ID, (θ, delkID,θ)θ∈AN ID) otherwise,

▷ kupa(ID),T =

{
⊥ if ID = kgc,
(θ, kupa(ID),T,θ)θ∈Npa(ID),T

otherwise.

Proceeds as follows.

1 (Finding NID,T). Run

· NID,T ← CS.Cover(BT ID,RLID,T).

2 (Delegation Key Generation). For each node θ ∈ NID,T \AN ID, perform Steps 2-1, 2-2,
and 2-3 of GenSK.

3 (Sub-key Update Generation). Run GenDK(MPK, skID, kupa(ID),T) until Step 2 to obtain
H.sk(T,ID)[H.MSK]. Then, for each θ ∈ NID,T, parse

▷ delkID,θ =

{
Ĥ.MSKkgc,θ if ID = kgc,

H.sk(∗,ID)[Ĥ.MSKID,θ] otherwise.

If ID = kgc, run

· H.skT
[

H.MSK

Ĥ.MSKkgc,θ

]
← H.GenSK(H.MPK, H.MSK

Ĥ.MSKkgc,θ

, T),

and set kukgc,T,θ := H.skT[H.MSK/Ĥ.MSKkgc,θ]. Otherwise, run

· H.sk(T,ID)[Ĥ.MSKID,θ]← H.GenSK(H.MPK,H.sk(∗,ID)[Ĥ.MSKID,θ], (T, ID)),

· H.sk(T,ID)
[

H.MSK

Ĥ.MSKID,θ

]
← H.EvalMSK(H.MPK,H.sk(T,ID)[H.MSK] ,H.sk(T,ID)[Ĥ.MSKID,θ], div),

and set kuID,T,θ := H.sk(T,ID)[H.MSK/Ĥ.MSKID,θ].
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Finally, output kuID,T and an updated secret key sk′ID, where

– kuID,T = (θ, kuID,T,θ)θ∈NID,T ,

– sk′ID =

{
(H.MSK,BT ′

kgc, (θ, delkkgc,θ)θ∈AN ′
kgc
) if ID = kgc,

((θ, skID,θ)θ∈Path(BT pa(ID),ηID),BT
′
ID, (θ, delkID,θ)θ∈AN ′

ID
) otherwise.

• GenDK(MPK, skID, kupa(ID),T)→ dkID,T or ⊥: Parse MPK = H.MPK and

▷ skID = ((θ, skID,θ)θ∈Path(BT pa(ID),ηID),BT ID, (θ, delkID,θ)θ∈AN ID),

▷ kupa(ID),T = (θ, kupa(ID),T,θ)θ∈Npa(ID),T
.

Proceeds as follows.

1 (Finding the Common Node θ). Run CS.Match(Npa(ID),T, ηID) to find θ ∈ BT pa(ID). If
it outputs ⊥, then output ⊥.

2 (Secret Key Generation under MSK). Parse

▷ skID,θ = H.sk(∗,ID)[Ĥ.MSKpa(ID),θ],

▷ kupa(ID),T,θ = H.sk(T,pa(ID))

[
H.MSK

Ĥ.MSKpa(ID),θ

]
.

Compute H.sk(T,ID)[H.MSK] as follows:

· H.sk(T,ID)[Ĥ.MSKpa(ID),θ]← H.GenSK(H.MPK,H.sk(∗,ID)[Ĥ.MSKpa(ID),θ], (T, ID)),

· H.sk(T,ID)
[

H.MSK

Ĥ.MSKpa(ID),θ

]
← H.GenSK(H.MPK,H.sk(T,pa(ID))

[
H.MSK

Ĥ.MSKpa(ID),θ

]
, (T, ID)),

· H.sk(T,ID)[H.MSK]

← H.EvalMSK(H.MPK,H.sk(T,ID)[Ĥ.MSKpa(ID),θ],H.sk(T,ID)

[
H.MSK

Ĥ.MSKpa(ID),θ

]
, mul),

3 (Decryption Key Generation). Run
· H.dk(T,ID) ← H.GenDK(H.MPK,H.sk(T,ID)[H.MSK]).

Finally, output dkID,T := H.dk(T,ID).

Decrypt(MPK, dkID,T, ctID,T)→ M: Parse dkID,T = H.dk(T,ID) and ctID,T = H.ct(T,ID). Run and output

· M← H.Decrypt(H.MPK,H.dk(T,ID),H.ct(T,ID)).

Correctness. The correctness of the CS method ensures that a non-revoked user can find node
θ ∈ Path(BT pa(ID),ηID)∩Npa(ID),T. Then, the correctness of HIBE and first-level wildcarded SK, the
prefix decryption restriction, and evaluation invariance ensure that dkID,T is an HIBE decryption
key H.dk(T,ID) under H.MSK. Again, the correctness of prefix decryption restriction ensures that
the H.Decrypt algorithm outputs M correctly.

6 Security

In this section, we prove the following theorem.

Theorem 1. If the underlying HIBE scheme with hierarchical depth L+1 supporting MSK evaluata-
bility, first-level wildcarded SK, and prefix decryption restriction satisfies adaptive (resp. selective)
security, then the RHIBE scheme with hierarchical depth L also satisfies adaptive (resp. selective)
security. Specifically, if there exists an adversary A to break adaptive (resp. selective) security of
the RHIBE scheme with advantage AdvRHIBEΠ,L,A(λ), then there exists a reduction algorithm B to break
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adaptive (resp. selective) security of the underlying HIBE scheme with advantage AdvHIBEH.Π,L+1,B(λ)

such that AdvRHIBEΠ,L,A(λ) ≤ O(LQ) · AdvHIBEH.Π,L+1,B(λ) (resp. AdvRHIBEΠ,L,A(λ) ≤ O(L) · AdvHIBEH.Π,L+1,B(λ)),
where Q denotes the number of A’s secret key generation queries.

Proof of Theorem 1. In the following, we prove the theorem for adaptive security. From this point
forward, we divide A’s attack strategy into L+1 types and consider the following Type-ℓ⋆ strategy
for each ℓ⋆ ∈ [L+ 1].

Type-ℓ⋆ strategy: For ℓ⋆ ∈ [L], A makes a secret key reveal query on ID⋆[ℓ⋆] but not on any

ID ∈ prefix+(ID⋆[ℓ⋆])\{ID
⋆
[ℓ⋆]} (= prefix+(ID⋆[ℓ⋆−1])). In addition, as a special case for ℓ⋆ = L+1,

A does not make secret key reveal queries on any ID ∈ prefix+(ID⋆).

To reduce the security of HIBE to that of RHIBE, the reduction algorithm B picks ℓ⋆ ←R [L+ 1]
and assumes that A follows the attack strategy of Type-ℓ⋆. If this condition does not hold, B aborts
the game and outputs a random bit. Here, the reduction suffers from O(L) reduction loss. In the
following, we provide a proof against A of the Type-ℓ⋆ strategy (denoted Aℓ⋆) for a fixed ℓ⋆.

Now, we employ Aℓ⋆ as a building block and construct a reduction algorithm Bℓ⋆ against an
(L+ 1)-level HIBE scheme. Note that Bℓ⋆ will set

(T⋆, ID⋆)

as the challenge identity in the HIBE security game; thus, Bℓ⋆ does not make secret key reveal
queries on ID ∈W.prefix+(ID⋆) during the HIBE security game. First, Bℓ⋆ is given an HIBE’s master

public key H.MPK from an HIBE challenger C. Whenever new pseudo-MSKs Ĥ.MSKpa(ID),θ are

generated, Bℓ⋆ stores (θ, Ĥ.MSKpa(ID),θ) in MSKList. Then, Bℓ⋆ executes BT kgc ← CS.SetUp(1λ, kgc),
produces kukgc,1, and sends (MPK = H.MPK, kukgc,1) to Aℓ⋆ . Here, Bℓ⋆ produces kukgc,1 in the same
way as in revoke & key update queries which we will explain later.

Let Qℓ⋆ be the maximum number of secret key generation queries on level-ℓ⋆ identities, and
let IDq ∈ Iℓ

⋆
be an identity on which Aℓ⋆ makes a q-th secret key generation query on level-ℓ⋆

identities. Then, Bℓ⋆ guesses17 the number Q⋆ ∈ [Qℓ⋆ ] such that IDQ⋆ = ID⋆[ℓ⋆] ∈ prefix+(ID⋆). If
the guess is incorrect, Bℓ⋆ outputs a random bit and aborts the game. The guess is correct with
probability 1/Qℓ⋆ > 1/Q. Note that we assume the guess is correct in the following.

Bℓ⋆ answers Aℓ⋆ ’s queries (including kukgc,1) by interacting with C as follows:

Secret Key Generation Query: Upon the query, the challenger must perform three steps in the
real security game, i.e., user assignments, delegation key generations, and sub-secret key generations.
In the reduction, Bℓ⋆ , in turn, performs modified user assignments, node division, and pseudo-MSK
samplings as follows:

1 (Modified User Assignment). Upon Aℓ⋆ ’s query on a level-ℓ identity ID′ for ℓ ̸= ℓ⋆, Bℓ⋆ runs
ηID′ ← CS.Assign(BT pa(ID′), ID

′) and assigns the user to leaf ηID′ ∈ Lpa(ID′) (as in the real
scheme). In addition, if ℓ = ℓ⋆− 1, Bℓ⋆ further samples a uniformly random leaf η⋆ID′ ←R LID′
in the level-(ℓ⋆ − 1) user’s binary tree BT ID′ and updates ALID′ ← {η⋆ID′}, even though there
is there is no user assigned to the leaf. Then, Bℓ⋆ modifies the way to assign level-ℓ⋆ users
IDq to a leaf node in Lpa(IDq) as follows:
IDq for q ∈ [Q⋆ − 1]: Bℓ⋆ executes ηIDq ← CS.Assign(BT pa(IDq), IDq) and assigns IDq to a leaf

ηIDq and updates AL′pa(IDq) ← ALpa(IDq)∪{ηIDq}. Although the procedure appears to be
the same as that in the real scheme, IDq is never assigned to leaf η⋆pa(IDq) to which still
has no assigned users.

17The guess is not required to prove selective security: thus, the reduction loss differs by a factor O(Q).
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IDQ⋆ : Bℓ⋆ assigns IDQ⋆ to the pre-sampled leaf ηIDQ⋆ = η⋆pa(IDQ⋆ ) ∈ ALpa(IDQ⋆ ) ⊂ BT pa(IDQ⋆ )

and does not update ALpa(IDQ⋆ ). Then, Bℓ⋆ updates ALID′ ← ALID′ \ {η⋆ID′} for all
level-(ℓ⋆ − 1) activated users ID′ except pa(IDQ⋆).

IDq for q ∈ [Q⋆+1, Qℓ⋆ ]: Bℓ⋆ executes ηIDq ← CS.Assign(BT pa(IDq), IDq), assigns IDq to a leaf
ηIDq , and updates ALpa(IDq) ← ALpa(IDq) ∪ {ηIDq}. In this case, IDq may be assigned to
leaf η⋆pa(IDq) when pa(IDq) ̸= pa(IDQ⋆).

Note that the modified user assignments are uniformly random from Aℓ⋆ ’s view as in the real
scheme.

2 (Node Division). Bℓ⋆ divides all activated nodes managed in the reduction into two sets SKℓ⋆

and KU ℓ⋆ , as discussed in Section 2.4, both of which are initially empty sets. Upon Aℓ⋆ ’s
query, Bℓ⋆ updates the sets as follows:

SKℓ⋆ :=

{
θ :

(
θ ∈ BT pa(ID) for |ID| ≤ ℓ⋆ − 1

)
∨(

θ ∈ BT pa(ID) \ Path(BT pa(ID), η
⋆
pa(ID)) for |ID| = ℓ⋆

) } ,

KU ℓ⋆ := AN \ SKℓ⋆ =

{
θ :

(
θ ∈ BT pa(ID) for |ID| ≥ ℓ⋆ + 1

)
∨(

θ ∈ Path(BT pa(ID), η
⋆
pa(ID)) for |ID| = ℓ⋆

) } .

As a special case for ℓ⋆ = L+ 1, KUL+1 is always an empty set, and SKL+1 denotes a set of
all activated nodes managed in the reduction.

3 (Pseudo-MSK Sampling). Bℓ⋆ executes

– Ĥ.MSKpa(ID),θ ← H.SampMSK(H.MPK)
and stores it in MSKList.

If pa(ID) = kgc, Bℓ⋆ implicitly sets

delkkgc,θ :=

{
H.MSK/Ĥ.MSKkgc,θ for θ ∈ SKℓ⋆ ,

Ĥ.MSKkgc,θ for θ ∈ KU ℓ⋆ .

Otherwise, Bℓ⋆ does not create delkpa(ID),θ in this step.

Note that delkkgc,θ is sampled by executing the H.SampMSK algorithm in the real scheme.
Here, delkkgc,θ follows the same distribution as in the real scheme due to the pseudo-MSK
indistinguishability in Definition 2.

Finally, Bℓ⋆ returns kuID,Tcu to Aℓ⋆ , where Bℓ⋆ creates kuID,Tcu in the same manner as the revoke
& key update query, which is explained later.

Secret Key Reveal Query: In the real security game, upon a query ID from Aℓ⋆ , Bℓ⋆ finds
(ID, skID) ∈ SKList and gives skID to Aℓ⋆ . In the reduction, Bℓ⋆ performs sub-secret key generations
and delegation key generations as follows:

1 (Sub-secret Key Generation). Bℓ⋆ creates sub-secret keys (skID,θ)θ∈Path(BT pa(ID),ηID). For all

nodes θ ∈ Path(BT pa(ID), ηID), Bℓ⋆ creates (skID,θ)θ∈SKℓ⋆
and (skID,θ)θ∈KUℓ⋆

in distinct man-
ners:

(skID,θ)θ∈SKℓ⋆
: Bℓ⋆ finds Ĥ.MSKpa(ID),θ from MSKList and makes an HIBE secret key reveal

query on (∗, ID) to C and receives H.sk(∗,ID). Then, Bℓ⋆ executes

– H.sk(∗,ID)[Ĥ.MSKpa(ID),θ]← H.GenSK(H.MPK, Ĥ.MSKpa(ID),θ, (∗, ID)),

– H.sk(∗,ID)[H.MSK/Ĥ.MSKpa(ID),θ]←
H.EvalMSK(H.MPK,H.sk(∗,ID),H.sk(∗,ID)[Ĥ.MSKpa(ID),θ], div).
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Finally, Bℓ⋆ sets skID,θ := H.sk(∗,ID)[H.MSK/Ĥ.MSKpa(ID),θ] and stores it in SKList.

Note that H.MSK/Ĥ.MSKpa(ID),θ and skID,θ follow the same distribution as in the real
scheme due to pseudo-MSK indistinguishability and evaluation invariance in Definition 2,
respectively.

(skID,θ)θ∈KUℓ⋆
: Bℓ⋆ finds Ĥ.MSKpa(ID),θ from MSKList and executes

– H.sk(∗,ID)[Ĥ.MSKpa(ID),θ]← H.GenSK(H.MPK, Ĥ.MSKpa(ID),θ, (∗, ID)).

Finally, Bℓ⋆ sets skID,θ := H.sk(∗,ID)[Ĥ.MSKpa(ID),θ] and stores it in SKList.

Here, skID,θ follows the same distribution as in the real scheme due to the correctness of
HIBE.

2 (Delegation Key Generation). Bℓ⋆ creates delegation keys (delkID,θ)θ∈AN ID . Here, for all
nodes θ ∈ AN ID such that delkID,θ do not exist, Bℓ⋆ creates (delkID,θ)θ∈SKℓ⋆

and
(delkID,θ)θ∈KUℓ⋆

in distinct manners:

(delkID,θ)θ∈SKℓ⋆
: Bℓ⋆ finds Ĥ.MSKID,θ from MSKList and makes an HIBE secret key reveal

query on (∗, ID) to C and receives H.sk(∗,ID). Then, Bℓ⋆ executes

– H.sk(∗,ID)[Ĥ.MSKID,θ]← H.GenSK(H.MPK, Ĥ.MSKID,θ, (∗, ID)),

– H.sk(∗,ID)[H.MSK/Ĥ.MSKID,θ]←
H.EvalMSK(H.MPK,H.sk(∗,ID),H.sk(∗,ID)[Ĥ.MSKID,θ], div).

Finally, Bℓ⋆ sets delkID,θ := H.sk(∗,ID)[H.MSK/Ĥ.MSKID,θ].

Here, H.MSK/Ĥ.MSKID,θ and delkID,θ follow the same distribution as in the real scheme
due to the pseudo-MSK indistinguishability and evaluation invariance in Definition 2,
respectively.

(delkID,θ)θ∈KUℓ⋆
: Bℓ⋆ finds Ĥ.MSKID,θ from MSKList and executes

– H.sk(∗,ID)[Ĥ.MSKID,θ]← H.GenSK(H.MPK, Ĥ.MSKID,θ, (∗, ID)).

Finally, Bℓ⋆ sets delkID,θ := H.sk(∗,ID)[Ĥ.MSKID,θ].

Note that delkID,θ follows the same distribution as in the real scheme due to the correct-
ness of HIBE.

Finally, Bℓ⋆ returns skID = ((θ, skID,θ)θ∈Path(BT pa(ID),ηID),BT ID, (θ, delkID,θ)θ∈AN ID) to Aℓ⋆ .

Revoke & Key Update Query: Upon a query RL from Aℓ⋆ , Bℓ⋆ checks if all conditions of the
query are satisfied simultaneously. If the output is not ⊥, Bℓ⋆ updates each revocation list RLID,T in
the same manner as the real security game. Then, the challenger performs three steps in the real
security game, i.e., finding NID,T, delegation key generations, and sub-key update generations. In
the reduction, Bℓ⋆ performs finding NID,T, pseudo-MSK samplings, and sub-key update generations
as follows:

1 (Finding NID,T). Bℓ⋆ executes

· NID,T ← CS.Cover(BT ID,RLID,T)
as the real scheme.

2 (Pseudo-MSK Sampling). For each node θ ∈ NID,T \ AN ID, Bℓ⋆ performs the pseudo-MSK
sampling in the same manner as for secret key generation queries.

3 (Sub-key Update Generation). Bℓ⋆ creates (kuID,Tcu,θ)θ∈SKℓ⋆
and (kuID,Tcu,θ)θ∈KUℓ⋆

in distinct
manners:
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(kuID,Tcu,θ)θ∈SKℓ⋆
: Bℓ⋆ finds Ĥ.MSKID,θ from MSKList and runs

– H.sk(Tcu,ID)[Ĥ.MSKID,θ]← H.GenSK(H.MPK, Ĥ.MSKID,θ, (Tcu, ID)).

Finally, Bℓ⋆ sets kuID,Tcu,θ := H.sk(Tcu,ID)[Ĥ.MSKID,θ].

Note that Ĥ.MSKID,θ and kuID,Tcu,θ follow the same distribution as those in the real
scheme due to the pseudo-MSK indistinguishability in Definition 2 and the correctness
of HIBE, respectively.

(kuID,Tcu,θ)θ∈KUℓ⋆
: Bℓ⋆ finds Ĥ.MSKID,θ from MSKList and makes an HIBE secret key reveal

query on (Tcu, ID) to C and receives H.sk(Tcu,ID). Then, Bℓ⋆ executes

– H.sk(Tcu,ID)[Ĥ.MSKID,θ]← H.GenSK(H.MPK, Ĥ.MSKID,θ, (Tcu, ID)),

– H.sk(Tcu,ID)[H.MSK/Ĥ.MSKID,θ]←
H.EvalMSK(H.MPK,H.sk(Tcu,ID),H.sk(Tcu,ID)[Ĥ.MSKpa(ID),θ], div).

Finally, Bℓ⋆ sets kuID,Tcu,θ := H.sk(Tcu,ID)[H.MSK/Ĥ.MSKID,θ].

Note that kuID,Tcu,θ follows the same distribution as that in the real scheme due the
evaluation invariance in Definition 2.

Finally, Bℓ⋆ returns the generated {kuID,Tcu}(ID,∗)∈SKList\RL to Aℓ⋆ .

Decryption Key Reveal Query: Upon query (ID, T) from Aℓ⋆ , Bℓ⋆ checks if all conditions of
the query are satisfied simultaneously. If the output is not ⊥, Bℓ⋆ makes an HIBE decryption key
reveal query on (T, ID) to C and receives H.dk(T,ID). Finally, Bℓ⋆ sets dkID,T := H.dk(T,ID) and returns
it to Aℓ⋆ .

Note that dkID,T follows the same distribution as that in the real scheme due to the correctness
of HIBE.

Challenge Query: Upon a query (ID⋆, T⋆,M⋆
0,M

⋆
1) from Aℓ⋆ , Bℓ⋆ check if all conditions of the

query are satisfied simultaneously. If the output is not ⊥, Bℓ⋆ makes an HIBE challenge query
on ((T⋆, ID⋆),M⋆

0,M
⋆
1) to C and receives HIBE challenge ciphertext H.ct(T⋆,ID⋆). Then, Bℓ⋆ sends

H.ct⋆ := H.ct(T⋆,ID⋆) to Aℓ⋆ as an RHIBE challenge ciphertext.

Note that H.ct⋆ is created in the same manner as the real scheme.

After Bℓ⋆ receives a bit b′ from Aℓ⋆ , Bℓ⋆ sends β′ ← b′ to C as its own guess.

The above completes the description of Bℓ⋆ . Note that Bℓ⋆ can make all of the above queries
to C without making HIBE secret key queries on ID ∈ W.prefix+((T⋆, ID⋆)) and HIBE decryption
key reveal queries on (T⋆, ID⋆). We observe that Bℓ⋆ makes HIBE secret key reveal queries and
decryption key reveal queries to C in the following cases.

• HIBE secret key reveal queries on (∗, ID) for (skID,θ, delkID,θ)θ∈SKℓ⋆
to answer RHIBE secret

key reveal queries.

• HIBE secret key reveal queries on (Tcu, ID) for (kuID,Tcu,θ)θ∈KUℓ⋆
to answer revoke & key update

queries.

• HIBE decryption key reveal queries on (T, ID) for dkID,T to answer RHIBE decryption key
reveal queries.

Next, we observe that the node division during secret key generation queries satisfies the following
properties.
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• All (skID,θ, delkpa(ID),θ)θ∈SKℓ⋆
received by Aℓ⋆ satisfy ID /∈ prefix+(ID⋆). Thus, (∗, ID) /∈

W.prefix+((T⋆, ID⋆)) hold. We explain why this holds as follows.

– From the definition of the Type-ℓ⋆ strategy, ID ∈ I≤ℓ⋆−1 on which Aℓ⋆ makes secret key
reveal queries satisfy ID /∈ prefix+(ID⋆) because Aℓ⋆ does not make the queries on ID⋆[ℓ]
for ℓ ∈ [ℓ⋆ − 1].

– From the definition of SKℓ⋆ and the assumption that IDQ⋆ = ID⋆[ℓ⋆], all skID,θ of ID ∈ Iℓ⋆

on which Aℓ⋆ makes secret key reveal queries satisfy θ ∈ SKℓ⋆ only when ID ̸= ID⋆[ℓ⋆]
because Path(BT pa(ID⋆

[ℓ⋆]
), ηID⋆[ℓ⋆]) ∩ SKℓ⋆ = ∅.

– From the definition of SKℓ⋆ , all skID,θ of ID ∈ I≥ℓ⋆+1 and delkID,θ of ID ∈ I≥ℓ⋆ on which
Aℓ⋆ makes secret key reveal queries satisfy θ /∈ SKℓ⋆ because all associated nodes belong
to BT pa(ID′) for some |ID′| ≥ ℓ⋆ + 1.

• All (kuID,Tcu,θ)θ∈KUℓ⋆
received by Aℓ⋆ satisfy ID /∈ prefix+(ID⋆) ∨ T ̸= T⋆. Thus, (Tcu, ID) /∈

W.prefix+((T⋆, ID⋆)) hold. We explain why this holds as follows.

– From the definition of KU ℓ⋆ , all kuID,Tcu,θ of ID ∈ I≤ℓ⋆−1 received by Aℓ⋆ satisfy θ /∈ KU ℓ⋆

because the associated nodes belong to BT pa(ID′) for some |ID′| ≤ ℓ⋆ − 1.

– All kuID,Tcu,θ of ID ∈ I≥ℓ⋆ received by Aℓ⋆ satisfy θ ∈ KU ℓ⋆ only when ID /∈ prefix+(ID⋆)∨
T ̸= T⋆. In particular, if ID ∈ prefix+(ID⋆) ∩ I≥ℓ⋆ , ID⋆[ℓ⋆] ∈ prefix+(ID). From the
definitions of the Type-ℓ⋆ strategy and the security of RHIBE, Aℓ⋆ makes a secret key
reveal query on ID⋆[ℓ⋆]; therefore, all ID such that ID⋆[ℓ⋆] ∈ prefix+(ID) are revoked by T⋆.
Then, from the definition of KU ℓ⋆ and the assumption that IDQ⋆ = ID⋆[ℓ⋆], T ̸= T⋆ holds.

• From the definition of RHIBE, dkID,T received by Aℓ⋆ satisfy (ID, T) ̸= (ID⋆, T⋆).

As observed previously, Bℓ⋆ perfectly simulates the adaptive security game against Aℓ⋆ with
probability 1/Q. Here, the probability that β′ is a correct guess is the same as that of b′; thus,
Bℓ⋆ ’s advantage is AdvRHIBEΠ,L,Aℓ⋆

(λ) ≤ O(Q)·AdvHIBEΠ,L+1,Bℓ⋆
(λ). Therefore, B’s advantage against A for a

general attack strategy is AdvRHIBEΠ,L,A(λ) ≤
∑

ℓ⋆∈[L+1]O(Q)·AdvHIBEΠ,L+1,Bℓ⋆
(λ) ≤ O(LQ)·AdvHIBEΠ,L+1,B(λ).

7 Conclusion

In this paper, we have proposed the first adaptively secure RHIBE schemes in the standard
model under the standard k-linear assumption. The achievement is significant because all known
RHIBE schemes in the standard model [ESY16, KMT19, WZH+19, LP18, RLPL15, SE15b] only
achieve selective security. In addition, the security of most known RHIBE schemes over bilinear
groups [LP18, RLPL15, SE15b] are based on q-type assumptions. We obtain the proposed scheme
by developing a generic construction of RHIBE from HIBE with mild requirements that are satisfied
by several state-of-the-art pairing-based schemes [CG17, CW14, GCTC16]. Moreover, the proposed
scheme is attractive even in a non-hierarchical case. Although the security of the currently most
efficient adaptively secure RIBE schemes [GW19, WES17] is based on a non-standard assumption,
the proposed RIBE scheme instantiated by [CG17] is secure under the standard k-linear assump-
tion and achieves similar efficiency as we summarized in Table 2. It has to be an interesting open
problem for constructing more efficient adaptively secure RHIBE schemes.

31



References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the stan-
dard model. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010,
29th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, volume 6110 of Lecture Notes in Computer Science, pages 553–572.
Springer, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In Tal Rabin, editor, Advances
in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, volume 6223 of
Lecture Notes in Computer Science, pages 98–115. Springer, 2010.

[ABC+11] Michel Abdalla, James Birkett, Dario Catalano, Alexander W. Dent, John Malone-Lee,
Gregory Neven, Jacob C. N. Schuldt, and Nigel P. Smart. Wildcarded identity-based
encryption. J. Cryptology, 24(1):42–82, 2011.

[AKN07] Michel Abdalla, Eike Kiltz, and Gregory Neven. Generalized key delegation for hi-
erarchical identity-based encryption. In Joachim Biskup and Javier López, editors,
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A Graphical Overview of Node Division

Here, we present graphical overviews of SE node division and our node division. As defined in
Section 2, ID⋆ is the target identity, and ℓ⋆ is the minimum level of of skID⋆

[ℓ⋆]
received by the

RHIBE adversary.

A.1 Seo-Emura Node Division

SE node division is defined as three mutually exclusive subsets, i.e., SE(1)ℓ⋆ ,SE(2)ℓ⋆ , and SE(3)ℓ⋆ .

SE(1)ℓ⋆ :=
{
θ :
(
θ ∈ BT pa(ID⋆

[ℓ]
) for ℓ ∈ [ℓ⋆ − 1]

)
∨
(
θ ∈ BT pa(ID⋆

[ℓ⋆]
) \ Path(BT pa(ID⋆

[ℓ⋆]
), ηID⋆[ℓ⋆])

)}
,

SE(2)ℓ⋆ :=
{
θ :
(
θ ∈ BT ID⋆

[ℓ]
for ℓ ∈ [ℓ⋆, |ID⋆|]

)
∨
(
θ ∈ Path(BT pa(ID⋆

[ℓ⋆]
), ηID⋆[ℓ⋆])

)}
,

SE(3)ℓ⋆ := AN \ (SE(1)ℓ⋆ ∪ SE
(2)
ℓ⋆ ) = AN \

( |ID⋆|⋃
ℓ=0

BT ID⋆
[ℓ]

)
.

Figure 2 shows the graphical overview of SE node division.

A.2 Our Node Division

Our node division is defined as two mutually exclusive subsets SKℓ⋆ and KU ℓ⋆ .

SKℓ⋆ :=

{
θ :

(
θ ∈ BT pa(ID) for |ID| ≤ ℓ⋆ − 1

)
∨(

θ ∈ BT pa(ID) \ Path(BT pa(ID), η
⋆
pa(ID)) for |ID| = ℓ⋆

) } ,

KU ℓ⋆ := AN \ SKℓ⋆ =

{
θ :

(
θ ∈ BT pa(ID) for |ID| ≥ ℓ⋆ + 1

)
∨(

θ ∈ Path(BT pa(ID), η
⋆
pa(ID)) for |ID| = ℓ⋆

) } .

Figure 3 shows a graphical overview of our node division.
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Figure 2: SE node division
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Figure 3: Our node division
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