
Re-Consolidating First-Order Masking Schemes
Nullifying Fresh Randomness

Aein Rezaei Shahmirzadi, Amir Moradi

Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany
firstname.lastname@rub.de

Abstract.
Application of masking, known as the most robust and reliable countermeasure to
side-channel analysis attacks, on various cryptographic algorithms has dedicated
a lion’s share of research to itself. The difficulty originates from the fact that the
overhead of application of such an algorithmic-level countermeasure might not be
affordable. This includes the area- and latency overheads as well as the amount of
fresh randomness required to fulfill the security properties of the resulting design.
There are already techniques applicable in hardware platforms which consider glitches
into account. Among them, classical threshold implementations force the designers
to use at least three shares in the underlying masking. The other schemes, which can
deal with two shares, often necessitates the use of fresh randomness.
Here, in this work, we present a technique allowing us to use two shares to realize
the first-order glitch-extended probing secure masked realization of several functions
including the Sbox of Midori, PRESENT, PRINCE, and AES ciphers without any
fresh randomness.
Keywords: Side-Channel Analysis · Masking · Threshold Implementation · AES

1 Introduction
The rapid deployment of Internet of Things (IoT) necessitates physical security in addition
to analytical security of the underlying cryptographic primitives. This is due to the fact
that in the IoT scenarios the device is in hand and control of the legitimate users who
can play the role of an adversary. Among physical attacks, Side-Channel Analysis (SCA)
attacks [KJJ99, QS01] are considered as the most threatening attack vector, as often the
device cannot detect if its physical characteristics are being measured, e.g., its power
consumption. After the introduction of such attacks in the open literature, the relevant
scientific communities have dedicated a considerable body of research on understanding
its foundations as well as on development of defeating mechanisms. Due to their sound
theoretical basis, masking countermeasures have absorbed the attention of the researchers
at most. Being based on secret-sharing schemes, the key-dependent intermediate values of
the cipher are randomized by the application of a masking countermeasure, usually done
at the algorithmic level. In the most common scheme, Boolean masking [GP99], sensitive
variables are split into several shares, whose addition (binary XOR) results in the same
original (unshared) value.

While it became almost known how to correctly apply masking schemes on software
implementations, their application on hardware designs were still an ambiguous process. It
has been repeatedly shown that thought-secure masked hardware implementations [Tri03,
OMPR05] exhibit exploitable leakages [MPO05, MME10]. This shortcoming is due to
not having atomic gates in hardware leading to a phenomenon called glitches. Finally,
this issue has been theoretically addressed in [NRR06], where an implementation strategy

mailto:firstname.lastname@rub.de

2 Re-Consolidating First-Order Masking Schemes

is introduced, called Threshold Implementation (TI), later extended to higher orders
in [BGN+14a].

Security of masking schemes is commonly evaluated by the probing model [ISW03],
where the order of an attack is reflected by the number of probes simultaneously placed
on a device observing its intermediate signals. Although this model captures the leakage
of software implementations, where operations have a sequential nature, the adversary
gains more information by probing a single signal in a hardware circuit, due to the glitches.
Therefore, the model is extended to cover glitches (called glitch-extended probing model or
robust probing model) [FGP+18]. In this model, a probe placed at the output of a gate is
propagated backwards to its inputs and interpreted as several probes placed on all signals
driving the gate. TI circuits [NRS11] are indeed secure under the robust probing model,
as they maintain the security in presence of glitches.

Despite its sound theoretical basis, realizing the TI variant of non-linear functions is
not straightforward. Under the TI settings, a function with algebraic degree t should be
split into td+ 1 shares to achieve security against dth order attacks. Due to a high number
of input shares, this leads to high area overhead (and/or latency) for functions with a
high algebraic degree. As an essential underlying assumption of masking schemes, uniform
sharing should be also achieved at the output of a masked (TI) function. It is, however,
not trivial to achieve this for every given function. Even, a uniform TI with minimum
number of input shares does not exist for some functions, e.g., 2-input AND gate and
Keccak non-linear function χ [BDN+13]. Although this can be solved by insertion of fresh
masks (refreshing the sharing), if a uniform TI is found for a non-linear functions of a
cipher, it does not require any fresh randomness and the entire masked cipher can be
implemented with td+ 1 shares while only the primary inputs (plaintext and key) should
be presented in the shared form.

By introducing a new technique denoted as changing of the guards [Dae17], it is shown
that uniform sharing for a bijective Sbox can be achieved by making use of independent
shares of the cipher state as fresh masks. This technique has been applied on a 3-share
implementation of Keccak non-linear function χ [Dae17], on a 4-share decomposed AES
Sbox to cubic functions [WM18], and on a 3-share tower-field representation of the AES
Sbox [Sug19]. All these implementations require fresh randomness just for the first
execution of the cipher. Subsequent executions can proceed without any fresh masks.

The td+ 1 requirement has been relaxed in [RBN+15, GMK16] by showing how to use
only d+1 shares when d-th order security is desired. Although this allows realizing masked
circuits with less area overhead, it mostly forces to use fresh randomness. Application of
such a methodology on AES led to 2-share masked designs reported in [CRB+16, GMK17],
requiring between 18 and 54 fresh mask bits per clock cycle.

As a side note, it has been tried to reduce the required fresh randomness of such d+ 1
hardware masking schemes. For example, a combination of the multiplication algorithm
in [BDF+17] and randomness optimization in [BBP+16] led to the scheme presented
in [GM17] which – compared to [GMK16] – reduces the number of fresh masks for higher-
order hardware implementations of the multiplication. There exists also activities in
reducing the latency of d+ 1 hardware masking schemes [GIB18], which even leads to a
higher number of required fresh masks.

1.1 Our Contributions
In this work, we provide techniques which allow us to realize d + 1 hardware masking
schemes without any fresh masks for d = 1, i.e., only first-order secure implementations
with 2 shares. We start our study with a 2-input AND operation and show how to construct
its 2-share variant without any fresh randomness while achieving robust probing security.
As a side note, this has never been achieved/reported in the state of the art. We generalize
our strategy and provide robust-probing-secure representation of larger functions including

Aein Rezaei Shahmirzadi, Amir Moradi 3

the Sboxes of Midori, PRESENT, PRINCE, and AES without any fresh randomness.
We would like to highlight that the aforementioned changing of the guards is not used
in our constructions, and they are the only ones reported so far in the literature with
this feature. Hardware platforms are our main target implementation basis. However,
this does not hinder our constructions to be used as a sequence of instructions to run on
a software platform. Our entire developments including the source codes and the HDL
representation of the constructed Sboxes and full ciphers are given in the github. In addition
to our own simulations and FPGA-based practical investigations, we have evaluated our
constructions by the recently-introduced leakage verification tool SILVER [KSM20], which
is also available online.

2 Preliminaries
In this section, in addition to the notations, we give the preliminary knowledge necessary
and helpful to follow the rest of the paper. This includes the fundamentals of masking
in hardware and various state-of-the-art techniques to realize the masked variant(s) of a
given function in hardware.

2.1 Notations and Definitions
We denote binary random variables ∈ F2 with lower-case italic x, vectors ∈ Fn>1

2 with
upper-case italic X, j-th element in a vector X with superscripts xj , i-th share of a variable
with subscripts xi, coordinate functions with lower-case italic sans-serif f (.), functions with
larger output width by upper-case italic sans-serif F (.), and sets with calligraphic font F .

In an s-th order Boolean masking, the secret x is represented by s+1 shares (x0, . . . , xs)
in such a way that x =

⊕
∀i

xi. The initial masking requires s independent and uniformly-

distributed masks m0, . . . ,ms−1 to form the shares as xi<s = mi and xs = x ⊕
⊕
∀i

mi.

Application of a binary linear function L(.) on X in a masked form can be easily achieved
by applying the same function on all shares as L(X) =

⊕
∀i

L(Xi). This also holds for any

affine function A(X) = L(X) ⊕ C if the constant C is applied an odd number of times.
The challenge is how to apply a non-linear function F (.) in such a masked form.

2.2 Threshold Implementations
For simplicity, let us consider the case where the number of input and output shares are
the same. The masked variant of Y = F (X) receives input shares X0, . . . , Xs and provides
output shares Y0, . . . , Ys with X =

⊕
∀i

Xi and Y =
⊕
∀i

Yi. In first-order TI [NRS11], each

output share Yi is provides by a component function Fi(X0, . . . , Xi−1, Xi+1, . . . , Xs), where
at least one input share Xi is missing in its input list. This, referred to as non-completeness,
guarantees the leakage of Fi(.) to be independent of X. Further, for each value of X giving
all possible sharing X0, . . . , Xs to the masked function leads to a set of Y0, . . . , Ys which
should be a uniform sharing of Y = F (X). Not fulfilling the uniformity would potentially
result in a leakage in subsequent function(s) which receives Y0, . . . , Ys as the shared input.

Classical TI defines the minimum number of input shares as td+ 1, where t stands for
the algebraic degree of the underlying function F (.) and d the desired degree of security.
This leads to have at least 3 input shares for the smallest non-linear function (t = 2) and
first-order security d = 1.

Achieving a uniform and non-complete TI becomes particularly more challenging for
functions with high algebraic degree. Hence, it is usually tried to decompose the target
function into smaller (preferably quadratic) functions and achieve masked variant of each

https://github.com/Chair-for-Security-Engineering/NullFresh

4 Re-Consolidating First-Order Masking Schemes

one separately [BNN+15]. This necessitates placing registers between each consecutive
masked functions to avoid the propagation of glitches.

It is easy to achieve non-complete component functions, e.g., by following the direct
sharing technique [NRS11]. However, fulfilling the uniformity is not trivial, and even
not necessarily possible for every function. For example, the uniform TI of any 2-input
nonlinear function (e.g., an AND gate) with 3 input shares does not exist [NRS11]. In
such cases, by means of fresh randomness (fresh masks) the output shares are re-shared,
hence fulfilling the uniformity. This concept has been used in all state-of-the-art TI of the
AES Sbox, e.g. [BGN+14b, MPL+11]. Note that changing of the guards [Dae17] relaxes
the necessity of having fresh masks at every clock cycle by using the input shares of an
Sbox as the fresh masks for the next neighboring Sbox(es), e.g., in [Sug19, WM18] for the
AES Sbox.

2.3 Probing Security
Security of masking schemes is commonly evaluated by the probing security model [ISW03],
where the number of probes which the adversary can put on the intermediate signals
(variables) of the circuit (design) reflects the order of the attack [BDF+17, DDF14].
Compared to software implementations, where the operations are performed in a sequential
way and each operation can be modeled as an atomic gate whose output change once per
evaluation, hardware implementations are prone to glitches. In other words, the changes
(toggles) at a gate output can propagate to the further driven gates. It means that by
putting a probe on a gate output, the adversary not only observes its changes but also
obtains a fraction of changes on former gates which drive the probed gate. This initiated a
vast number of research on how to adjust the probing security model considering glitches.
This has led to the introduction of glitch-extended or robust probing model [FGP+18],
where a probe placed on a gate output is propagated backwards and extended to multiple
probes at the input of the combinatorial circuit which drive the probed gate. Since we
deal with hardware implementations in this article, we consider the robust probing model
in our evaluations and assessments.

We further mainly focus on first-order security. Unless otherwise stated, we refer to a
first-order secure/vulnerable design by omitting the term ’first-order’.

2.4 Masking with d + 1 Shares
It has been shown in [RBN+15, GMK16] that it is not necessary to follow td + 1 rule
for the number of input shares to construct a secure masked hardware implementation.
Instead, d-th order (robust probing) security can be achieved by d+ 1 input shares. This
can be done by dividing the given function into two register-isolated parts and introducing
fresh randomness. For example, for a 2-input AND gate x = f (a, b) with a0, a1, b0, b1 as
input shares and x0, x1 as output shares, we can write 4 component functions

f0(a0, b0, r) = a0b0 + r → x′0

f1(a0, b1) = a0b1 → x′1 x′0 + x′1 = x0

f2(a1, b0, r) = a1b0 → x′2 x′2 + x′3 = x1

f3(a1, b1) = a1b1 + r → x′3

, (1)

with r being a fresh mask. Note that the result of component functions are stored in
registers x′0 to x′3, and the part, which XORs the registers’ output to make the output
shares x0 and x1, is referred to as compression layer. Without any particular restrictions,
fresh mask r can be added either to f0 or f1 and either to f2 or f3. However, in Domain
Oriented Masking (DOM) [GMK16], it is defined to be added on f1 and f2, i.e., the
component functions which receive input shares with different indices, i.e., a0 and b1 in f1.

Aein Rezaei Shahmirzadi, Amir Moradi 5

Table 1: Intermediate signals of Equation (2) for all possible input values.

a b a0 a1 b0 b1 x′0 x′1 4P (x′0, x′1) x′2 x′3 4P (x′2, x′3) x0 x1 4P (x0, x1)

0 0
0 0 0 0 0 0

(2,1,1,0)
0 0

(2,1,1,0)
0 0

(2,0,0,2)1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 0 1 1
1 1 1 1 0 1 0 1 1 1

0 1
0 0 0 1 1 0

(2,1,1,0)
0 0

(2,1,1,0)
1 0

(0,2,2,0)1 1 0 1 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
1 1 1 0 0 1 0 0 1 0

1 0
0 1 0 0 0 0

(2,1,1,0)
0 0

(2,1,1,0)
0 0

(2,0,0,2)1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 0 1 1
1 0 1 1 1 0 0 1 1 1

1 1
0 1 0 1 0 0

(2,1,1,0)
0 0

(2,1,1,0)
0 0

(2,0,0,2)1 0 0 1 1 0 0 1 1 1
0 1 1 0 0 1 1 0 1 1
1 0 1 0 0 0 0 0 0 0

It can be trivially seen that the application of the same technique on the function
x = f (a, b, c) = ab+ c does not require any fresh mask. Instead of r in Equation (1), c0 can
be added to f0 and c1 to f3. We have observed that the same holds for x = f (a, b) = ab+ b.
It means that we can write

f0(a0, b0) = a0b0 + b0 → x′0

f1(a0, b1) = a0b1 → x′1 x′0 + x′1 = x0

f2(a1, b0) = a1b0 → x′2 x′2 + x′3 = x1

f3(a1, b1) = a1b1 + b1 → x′3

(2)

which provides a uniform and first-order secure sharing of x = ab+ b. In order to show its
security under the robust probing model, we provide Table 1 presenting the value of all
intermediate signals for all possible input values. Since none of the component functions
fi∈{0,...,3}(.) receives both shares of an input signal (non-completeness) placing a probe
on each component function does not reveal any information. This can also be seen in
column x′0 of Table 1, that for all possible sharings of each input value a, b it is 1 only once,
and 0 three times. The same holds for x′1 to x′3. By placing a probe on an output share,
e.g., x0, the robust probing model extends it to two simultaneous probes placed on x′0 and
x′1. In column 4P (x′0, x′1) we show a factor of joint probability of such probes. It can be
seen that independent of the input value a, b, the probes jointly see two times (0, 0), once
(1, 0), and once (0, 1). We refer to this as identical joint probability distribution. Since the
same is seen when a probe is placed on the other output share x1, the design is first-order
robust probing secure. Looking at the distribution of the output shares P (x0, x1), it can
be seen that for each input value a, b both possible output sharing of x happen equally
likely, which indicates the uniformity of this construction as the sharing of ab+ b.

By representing the 2-input AND as āb+ b, with ā the inverse of a, we can apply the
same construction in Equation (2) and present the sharing of ā by (ā0, a1) or (a0, ā1). This
automatically leads to a robust probing secure and uniform sharing of the 2-input AND
gate. Note that the intermediate signals, distributions, and discussions given for ab+ b
stay the same for āb + b. We would like to stress that it is the first time that a secure
2-share masked AND gate without any fresh randomness is constructed.

Following the classification in [BNN+15], six 4-bit quadratic classes are defined: Q4
4,

Q4
12, Q4

293, Q4
294, Q4

299, and Q4
300. Some constructions for the 2-share masked variant

of such bijections without fresh randomness are given in the appendix of [RBN+15].

6 Re-Consolidating First-Order Masking Schemes

We have observed that – in contrast to the other cases – the construction given for
Q4

300 : 01234589DC76BAFE1 is not secure. We just show the given construction for the 3rd
output bit z = h(a, b, c) = ab+ bc+ c as follows, where 6 component functions are defined.

h0(a0, b0, c0) = a0b0 + b0c0 + c0 → z′0

h1(a0, b1) = a0b1 → z′1

h2(b1, c0) = b1c2 → z′2 z′0 + z′1 + z′2 = z0

h3(a1, b0) = a1b0 → z′3 z′3 + z′4 + z′5 = z1

h4(b0, c1) = b0c1 → z′4

h5(a1, b1, c1) = a1b1 + b1c1 + c1 → z′5

(3)

Under the robust probing model, placing a probe on z0 is extended to three simultaneous
probes on z′0, z′1, and z′2. Simulating the intermediate signals shows that the joint probability
distribution P (z′0, z′1, z′2) is not identical for all input values a, b, c, indicating its insecurity.
We have also confirmed this findings using SILVER. The non-uniformity of 4-bit shared
output of this construction is also reported in [KSM20]. The table of intermediate values
and corresponding joint probability distributions of Equation (3) is given in Appendix A.

3 Technique
Based on our observations in Section 2, we constructed a generic procedure allowing to
find robust probing secure constructions without any fresh masks. Below we give this
procedure by first focusing on small 2-input coordinate functions, and later extend it to
larger functions.

3.1 2-input Quadratic Functions
The trick we used to build the secure 2-share AND gate without fresh mask in Section 2.4
cannot be generalized to arbitrary functions. Therefore, we construct a general strategy.
Let us consider a constant-free arbitrary quadratic function with two inputs x = f (a, b),
i.e., f (0, 0) = 0. Since its shared variant – in addition to any other linear term – has
quadratic terms a0b0, a0b1, a1b0, and a1b1, we have to use four component functions
f0(a0, b0), f1(a0, b1), f2(a1, b0), and f3(a1, b1). We follow the below steps:

1. We start with making the set F0 including all possible 2-input constant-free coordinate
functions for f0(a0, b0) which have a0b0 in their Algebraic Normal Form (ANF), and
similarly for the other component functions. Apparently, the cardinality of each set
is 4.

2. Supposing that f0(.) and f1(.) are compressed to make an output share x0 (similar
to Equation (2)), in the second step, we search for tuples in F0 ×F1 which i) whose
outputs are jointly statistically independent of input a, b, and ii) their XOR (i.e.,
x0) is a balanced function. The first condition is to achieve security in robust
probing model, i.e., identical joint probability distribution, see Table 1 with respect to
P (x′0, x′1). The second condition is necessary to achieve uniformity [KSM20]. Those
tuples which fulfill both conditions are added to the set F0,1. The same is repeated
for the other two component functions f2(.) and f3(.) and the set F2,3 is made.

3. In the last step we need to find tuples in F0,1 ×F2,3 whose XOR makes a sharing
of x, i.e., x0 + x1 = x, i.e., the correctness property of TI [NRS11]. In order to

1It is actually not the same as the one defined in [BNN+15] as Q4
300 : 0123458967CDEFAB, but they are

affine equivalent.

Aein Rezaei Shahmirzadi, Amir Moradi 7

efficiently proceed in this step, we store the ANF of the XOR result of each tuple
of F2,3 (i.e., x1 = x′2 + x′3) in a searchable list (e.g., an indexed sorted linked list).
By selecting an element in F0,1, we first make the ANF of XOR of its tuples, which
is the ANF of x0 = x′0 + x′1. By replacing every variable a with a0 + a1 (resp. for
b) in the ANF of the given function x = f (a, b), we know what should be the ANF
of its sharing. By XORing these two ANFs, we can directly obtain the ANF of the
desired x1. Hence, we look into the aforementioned searchable list to check whether
there is a tuple in F2,3 with the desired ANF for x1. If so, the found component
functions make a correct, non-complete, uniform, and robust probing secure sharing
of x = f (a, b).

We should refer to classical TI design process [NRS11], where by direct sharing, non-
completeness and correctness properties are fulfilled. Later, by addition of correction
terms, it is tried to achieve a uniform sharing. In the above expressed procedure, we first
construct component functions which fulfill non-completeness and uniformity. Then, we
search for a combination which fulfills correctness.

Note that if the given function is not constant free, it should be first made so by
x = f (a, b) + f (0, 0). After, constructing the secure sharing of x, the constant can be added
to just one of the component functions leading to a correct and secure sharing of f (.).

By applying this procedure on a 2-input AND gate, we found 8 solutions including
the one shown in Section 2.4. We should highlight that as given above, we considered a
configuration where component functions f0(.) and f1(.) are compressed to make an output
share x0. This is actually not a must, we can take another configuration where f0(.) and
f2(.) are compressed (resp. f1(.) and f3(.)). This leads to another set of 8 solutions for the
2-input AND. We provided all these solutions in the github. Note that having f0(.) and
f3(.) in a compressed layer does not lead to any solution.

3.2 3-input Cubic Functions
Here, we extend the procedure to arbitrary 3-bit cubic constant-free coordinate function
x = f (a, b, c). Due to its cubic term abc, we have to use 8 component functions

f0(a0, b0, c0), f1(a0, b0, c1), f2(a0, b1, c0), f3(a0, b1, c1),
f4(a1, b0, c0), f5(a1, b0, c1), f6(a1, b1, c0), f7(a1, b1, c1).

The first step is similar to that of 2-input case, i.e., sets F0 to F7 are made covering all
possible 3-input cubic coordinate functions corresponding to each component functions.
As a side note, each of such sets has 64 elements.

In the second step, we first suppose that component functions f0 to f3 are compressed
to provide the output share x0. We, hence, need to search for tuples in F0 ×F1 ×F2 ×F3
satisfying the conditions expressed in the second step in Section 3.1. The first condition,
i.e., identical joint probability distribution, helps optimizing the search process. That
is, if joint probability distribution P (x′0, x′1, x′2, x′3) is independent of inputs a, b, c, the
same holds for the joint probability distribution of every two and every three selection
of x′0, x′1, x′2, x′3. Therefore, we first look for tuples in F0 ×F1 fulfilling the identical joint
probability distribution condition. Afterwards, the set is extended by expanding the tuples
by one more element ∈ F2 while still satisfying this condition. This is continued to have
tuples in F0 × F1 × F2 × F3. At this step, the second condition, i.e., balancedness, is
examined and the set F0,1,2,3 is formed having the tuples which satisfy both conditions.
The same process is followed to construct the other set F4,5,6,7 including the tuples in
F4 ×F5 ×F6 ×F7.

The last step is identical to that explained as the third step in Section 3.1. In short,
the sorted list of ANF of the XOR result of elements in F4,5,6,7 and the ANF of the target
masked function help us to rapidly find the matching tuples in F0,1,2,3 and F4,5,6,7.

https://github.com/Chair-for-Security-Engineering/NullFresh

8 Re-Consolidating First-Order Masking Schemes

We applied this technique on 3-input AND function. To give an overview on the
complexity of the explained search process, each set F0,1,2,3 and F4,5,6,7 contains 5 120
tuples, and our program in C++ using a single CPU needs around 6 seconds to generate
10 368 constructions, each of which a robust probing secure and uniform sharing of 3-input
AND without any fresh randomness.

Similar to the 2-input case, there is no must to force component functions f0 to f3 to be
compressed. The component functions can be arbitrarily divided into two parts, but every
division does not necessarily make a solution. In our investigations, we found 186 720 such
secure constructions for the 3-input AND. Below, we give one of such constructions, while
our entire findings are provided in the github.

f0(a0, b0, c0) = a0 + a0b0 + a0b0c0 → x′0

f1(a0, b0, c1) = a0 + a0b0 + a0c1 + a0b0c1 → x′1

f2(a0, b1, c0) = b1c0 + a0b1c0 → x′2

f3(a0, b1, c1) = c1 + a0c1 + b1c1 + a0b1c1 → x′3 x′0 + x′1 + x′2 + x′3 = x0

f4(a1, b0, c0) = a1 + a1b0 + a1b0c0 → x′4 x′4 + x′5 + x′6 + x′7 = x1

f5(a1, b0, c1) = a1 + a1b0 + a1c1 + a1b0c1 → x′5

f6(a1, b1, c0) = b1c0 + a1b1c0 → x′6

f7(a1, b1, c1) = c1 + a1c1 + b1c1 + a1b1c1 → x′7

(4)

3.3 4-input Cubic Functions
4-bit bijections are commonly used as Sboxes in lightweight block ciphers including
PRESENT [BKL+07], PRINCE [BCG+12], Midori [BBI+15], etc. The coordinate function
of such bijections can be at most cubic. Therefore, we explain below how to apply our
technique on an arbitrary constant-free 4-bit coordinate function x = f (a, b, c, d) with the
algebraic degree of at most 3.

We start with defining the component functions as follows.

f0(a0, b0, c0, d0), f1(a0, b0, c1, d1), f2(a0, b1, c0, d1), f3(a0, b1, c1, d0),
f4(a1, b0, c0, d1), f5(a1, b0, c1, d0), f6(a1, b1, c0, d0), f7(a1, b1, c1, d1). (5)

Not as a unique configuration, this allows us to realize the sharing of any (at most cubic)
4-bit function. In other words, these component functions support any cubic term. For
example, if the ANF of f (.) contains the term acd, each term of its sharing a0/1c0/1d0/1
fits to one of these component functions.

At the first step, we should make the sets F0 to F7 for each component function
respectively.

• If f (.) is cubic, we fill each Fi∈{0,...,7} with all possible constant-free cubic coordinate
functions whose cubic terms are exactly those of f (.). This is to guarantee that the
shared function fulfills the correctness property of TI.

• If f (.) is quadratic, each Fi is filled with all possible constant-free quadratic and
linear functions irrespective of the terms of f (.). In this case, we further add a
constant function fi(.) = 0 to Fi; this helps to cover the cases were we do not need
to use all 8 component functions.

• In case of a linear f (.), we obviously do not need to search for any constructions; f (.)
can be applied on each set of shares a0, b0, c0, d0 and a1, b1, c1, d1 independently.

https://github.com/Chair-for-Security-Engineering/NullFresh

Aein Rezaei Shahmirzadi, Amir Moradi 9

The next second and the third steps are exactly identical to those given for 3-input cubic
functions in Section 3.2.

Here, an important point is with respect to the way the component functions are
defined. As stated, the configuration given in Equation (5) is not the only possible one.
It can be seen that shares of different variables are differently assigned to component
functions. We indeed found four different ways to do such assignments, shown below for
an exemplary input variable w.

f0 f1 f2 f3 f4 f5 f6 f7
1 w0 w0 w0 w0 w1 w1 w1 w1
2 w0 w0 w1 w1 w0 w0 w1 w1
3 w0 w1 w0 w1 w0 w1 w0 w1
4 w0 w1 w1 w0 w1 w0 w0 w1

Input variables a, b, c, d can take any of such ways to be assigned to component functions.
However, it should be taken into account that the input variables which are jointly in a
non-linear term of the target function f (a, b, c, d) cannot similarly be assigned to component
functions. Otherwise, the correctness property of TI cannot be fulfilled. Based on our
observations, depending on the target function, several robust probing secure and uniform
solutions for the sharing of arbitrary (at most cubic) f (.) can be found by changing the way
the input shares are assigned to component functions. We deal with several corresponding
case studies in the next section.

4 Case Studies
In this section we provide a couple of cases studies, where we have applied our technique
to realize the 2-share secure implementation of different ciphers without any fresh masks.

4.1 Midori
As the first case study, we focus on Midori-64 [BBI+15], where a 4-bit Sbox
F (a, b, c, d) : CAD3EBF789150246 is used. Note that the same Sbox is used in the de-
sign of CRAFT [BLMR19]. Since each of its 4-bit coordinate functions is at most cubic,
we can easily apply the technique expressed in Section 3.3 to find solutions for uniform and
robust probing secure 2-share constructions for each coordinate function. We have found
112 128, 32 256, 112 128, 17 346 048 solutions for each coordinate function respectively.
Our program running on a machine with 24 CPU cores and 96GB of RAM required 115
minutes to generate all these solutions.

In the next step, we need to find a combination of these solutions (one for each
coordinate function) which are jointly uniform. As a side note, since no fresh masks
is used, the output sharing of different coordinate functions are not necessarily jointly
uniform. Since the number of possible combinations is very high, we should optimize
the search process. If four shared coordinate functions are jointly uniform, any two and
any three selection of them is also jointly uniform. Therefore, we can first find two
jointly-uniform solutions (for two component functions), and then search for the third one
to be jointly uniform with the first two, and so on for the fourth component function. We
have found millions of such combinations which are jointly uniform, one of which is given
in Appendix B. Note that the second coordinate function of the Midori Sbox y = g(.) is
quadratic. Therefore, its sharing has 4 component functions instead of 8 compared to the
other shared coordinate functions.

The component functions of different coordinate functions which receive the same
input shares can be combined in a single combinatorial circuit. For example, we refer
to f2(a0, b0, c1, d0), g0(a0, b0, d0), h1(a0, b0, c1, d0), and k2(a0, b0, c1, d0) in Appendix B. In

10 Re-Consolidating First-Order Masking Schemes

f4

f5

f6

f7

f0

f1

f2

f3

f0

f1

f2

f3

g0

g1

g2

g3

g0

g1

g2

g3

Gate

Next

Functionx'0

x'1

x'2

x'3

x'4

x'5

x'6

x'7

y'0

y'1

y'2

y'3

x0

x1

y0

y1

Figure 1: A general block diagram of our constructions.

m / c

c / m

SC

MC

 SC

-1

k0

k1

αi

CompressSbox

Figure 2: 2-share masked round-based Midori-64 enc/dec without any fresh masks.

other words, a combinatorial circuit which receives a0, b0, c1, d0 can provide four outputs to
be individually stored in registers x′2, y′0, z′1, t′2. This neither violates the non-completeness
nor affects the robust probing security of the construction. Therefore, for the sake of area
efficiency, this factor can be considered when searching for a joint-uniform combination of
shared coordinate functions.

Figure 1 shows a general block diagram of our technique. Using this graphics we would
like to stress that the output of the compression layer (x0/1, y0/1 in this case) cannot
be freely given to a linear/non-linear function. If the subsequent function makes use of
different output bits in a combinatorial circuit, e.g., x0 and y0, the robust probing security
model extends a probe on such a gate to all x′0, x′1, x′2, x′3 and y′0, y′1. Hence, these signals
should have an identical joint probability distribution independent of the inputs a, b, c, d.
This condition has not been considered when searching for combined jointly-uniform shared
coordinate functions. We have also examined this on the solutions we found for Midori
Sbox. No solution can fulfill such a condition. Therefore, placing a register after the
compression layer is necessary if the subsequent function mixes different output bits of the
shared function. Note that, such a register is not required when a fresh mask is used for
each coordinate function, e.g., in [GMK17, CRB+16].

Based on our construction and observations we have designed a 2-share round-based
implementation of Midori-64 encryption/decryption function without any fresh masks.
The design architecture is shown in Figure 2, which is similar to that of [MS16a]. Since
the Midori’s MixColumns does not mix different output bits of any Sbox, we did not
need to place a register after the compression layer, but it is placed at the input of the

Aein Rezaei Shahmirzadi, Amir Moradi 11

Sbox, i.e., output of the MixColumns of the former cipher round. As a comparison to the
state of the art, we are only aware of a 3-share classic TI design of the Midori-64 which
is also free of fresh masks, reported in [MS16a]. In this design, the Sbox is decomposed
to two quadratic bijections allowing to represent shared version of each by a uniform TI
making use of 3 shares. Similar to our design, it has two register stages, hence the same
latency with respect to the number of clock cycles. Note that no key masking is used
in [MS16a]; hence, in order to provide a fair comparison, we also did not share the key
path in our Midori design. We refer to Table 2, where we report the performance figures
of our constructions compared to the state of the art. Notably, our construction is slightly
larger than the 3-share version [MS16a]. This is due to having more registers at the output
of the component functions. Each Sbox in our design needs 28 registers (see Appendix B),
while the 3-share uniform TI needs 12 registers. As an advantage, the initial masking of
the plaintext requires 64 mask bits in our design while it is 128 bits in the 3-share design.

4.2 PRESENT
We applied the same technique on the PRESENT Sbox [BKL+07]
F (a, b, c, d) : C56B90AD3EF84712. Since the process is exactly the same as that of Midori
Sbox, we omit re-explaining the steps in detail. We found 551 424, 1 152, 5 417 472, and
1 152 uniform and robust probing secure solutions for its coordinate functions respectively,
in 107 minutes using the same machine expressed in Section 4.1. We further found millions
of jointly-uniform combined solutions (one for each coordinate function). One of such
solutions is given in Appendix C.

In order to compare our construction to the state of the art, we have taken the design
of [PMK+11], where the Sbox is decomposed in two quadratic bijections allowing to achieve
uniformity with 3 shares at each stage without any fresh masks. Therefore, we could easily
replace its Sbox with our construction and change the number of shares to 2. As given in
Table 2, our design is smaller than that of [PMK+11] due to a reduction on the number of
shared state registers.

4.3 PRINCE
The application of our technique on PRINCE [BCG+12] is not as straightforward as
the former cases. PRINCE makes use of the Sbox F (a, b, c, d) : BF32AC916780E5D4 and
it is inverse B732FD89A6405EC1 in both encryption and decryption procedures. Based
on the fact that the PRINCE Sbox and its inverse are affine equivalent, a round-based
implementation using only the Sbox and some affine functions has been introduced
in [MS16a]. The use of our Sbox constructions in this strategy would lead to several register
stages, as explained in Section 4.1. Therefore, we followed another design architecture shown
in Figure 3, where both Sbox and Sbox inverse are implemented, but their compression
layer is shared as at every cipher round either the Sbox or its inverse is used.

Application of our technique on the Sbox led to 4 478 976, 17 346 048, 17 346 048, and
112 128 solutions for its coordinate functions, which took around 4 hours. For the Sbox
inverse we have found 24 576, 10 106 880, 70 957 824, and 99 84 solutions in approximately
11.5 hours. Finding a jointly-uniform combination of these solutions is obviously challenging
as the number of possible combinations explodes. We have used one more trick to optimize
this search process. Let us focus on a single coordinate function y = f (a, b, c, d). In the
solutions found for this coordinate function, the ANF of the outputs of the compression
layer y0 = y′0 +y′1 +y′2 +y′3 and y1 = y′4 +y′5 +y′6 +y′7 are not unique. In other words, there
are several solutions with the same ANF for y0 and y1, in which the component functions
generating y′0 to y′7 are different. The component functions affect both uniformity and
robust probing security, while y0, y1 affect only the uniformity. Therefore, in order to find
a joint-uniform combination of the shared coordinate functions, we can just consider those

12 Re-Consolidating First-Order Masking Schemes

m / c

RC k1
k0 k0k0́́

c / m

SR
-1

SR

SR
-1

SR
-1

S

S
-1

SR
-1

SR
-1

MʹCompress

Figure 3: 2-share masked round-based PRINCE enc/dec without any fresh masks.

solutions which have a unique ANF for the shared output. In other words, we can shrink
the found solutions by considering only one solution for each ANF of y0, y1 and the same
for the other coordinate functions. Application of this strategy led to 2 688, 5 952, 5 952,
and 1 536 such solutions for the Sbox coordinate functions and 96, 2 880, 7 728, and 1 056
solutions for the coordinate functions of the Sbox inverse.

We have noticed that neither for the Sbox nor for the Sbox inverse, there is a jointly-
uniform combination of the found solutions. It is noteworthy to mention that this is
not related to the cubic class to which the PRINCE Sbox belong. Putting some linear
bijections at its input and/or output can lead to combined solutions with joint uniformity.
As an example, by composing the Sbox with A(x, y, z, t) = (x, y + z, z, t), we found several
jointly-uniform combined solutions. However, we have to apply the inverse of A after the
compression layer, which necessitates a register stage in their between (see Section 4.1 and
Figure 3). Independent of this, we have found solutions for both Sbox and its inverse,
where the first, third, and fourth shared coordinate functions are jointly uniform, but not
with the second coordinate function, although all are individually uniform. One of such
solutions is given in Appendix D and Appendix E. In the given solutions the corresponding
component functions of all coordinate functions receive the same set of input shares, i.e.,
f0(.), g0(.), h0(.), and k0(.). The same holds for the Sbox inverse. Therefore, a component
function for both Sbox and Sbox inverse is implemented which receives an additional select
signal determining whether the component function of the Sbox or its inverse should be
given as the output. In other words, the corresponding component functions of S/S−1

and the subsequent multiplexer in Figure 3 are combined in a single module. This way we
could optimize the implementation with respect to the area overhead.

In order to construct a secure implementation of the cipher, a single-bit fresh mask can
applied on the second shared coordinate function. However, we refer to the cipher structure
in Figure 3 and highlight the specification of the PRINCE M ′-layer [BCG+12]. Every
output bit of the M ′-layer is the XOR of its 3 input bits, which are the output of different
Sboxes. In other words, output bits of an Sbox (resp. Sbox inverse) are never mixed in
the M ′-layer. Therefore, as shown in Figure 3, we did not put a register between the
compression and M ′-layer. Further, since every shared coordinate function is individually
uniform, and as stated, 3 output bits of different Sboxes (with independent sharing) are
XORed to make a single bit output of the M ′-layer, sharing of every output nibble of the
M ′-layer (going to the next Sbox/Sbox inverse) becomes jointly uniform. Hence, there is
no need to use a fresh mask for the second shared coordinate function.

We are aware of two works dealing with masked hardware implementation of PRINCE.
In [MS16a], the Sbox is decomposed to three quadratic bijections allowing to obtain its
uniform sharing with 3 shares without any fresh masks, i.e., 3 clock cycles per encryp-
tion/decryption round. In [BKN19], the authors considered d + 1 masking and did not
decompose the Sbox, as we do in our construction. Each first-order masked Sbox in their
design requires 12 fresh mask bits, while using a form of mask reuse, the authors could
reduce the required fresh masks to 48 bits per clock cycle in a round-based implementation

Aein Rezaei Shahmirzadi, Amir Moradi 13

 Square-
Scale

GF(24)
Inverter

4-bit
MSB

4-bit
LSB

4-bit
MSB

4-bit
LSB

 Square-Scale-Multiply
P

Q

Figure 4: Inversion in GF (24)2 .

with 2 clock cycles per cipher round. Our round-based implementation supporting both
encryption and decryption has also two register stages per cipher round, but does not
need any fresh mask bits. Table 2 shows a comparison between the performance of these
designs. Since key path was masked in [BKN19], but not in [MS16a], we provided both
designs with and without key masking enabling a more meaningful comparison.

4.4 AES
For the AES Sbox, similar to several state-of-the-art works, e.g., [Can05, CRB+16, GMK17,
GMK16], we followed a tower-field approach for the inversion in GF (28). Apart from the
input and output isomorphisms, which have been taken from the Canright’s design [Can05],
Figure 4 depicts a block diagram of the inversion in GF (24)2. We presented the design
using four blocks, the middle one: inversion in GF (24), the last blocks: GF (24) multiplier,
and the first block: a combination of square-scale and GF (24) multiplier.

4.4.1 Inverter

We start with the GF (24) inverter. We have taken F (a, b, c, d) : 0132ED8AF67C495B which
is affine equivalent to the cubic class C4

282 [BNN+15]. Application of the technique explained
in former sections led to 4 478 976, 5 417 472, 70 957 824, and 140 011 008 robust probing
secure and uniform solutions for its coordinate functions respectively. We also found several
jointly-uniform combined solutions leading to uniform and secure sharing of the GF (24)
inverter with 2 shares and no fresh masks. We give one of such solutions in Appendix F.

4.4.2 Multiplier

The two multipliers as the last blocks of the GF (24)2 inverter (see Figure 4) are identical
8-bit to 4-bit quadratic functions. Therefore, we require four component functions for
each coordinate function to cover the quadratic terms. Considering a coordinate function
f (a, b, c, d, e, f, g, h), an important question is how to assign the input shares to the
component functions f0(.), . . . , f3(.). Taking a single input variable w into account, we can
assign its shares w0, w1 to the component functions as follows.

f0 f1 f2 f3
1 w0 w0 w1 w1
2 w0 w1 w0 w1
3 w0 w1 w1 w0

Similar to what expressed in Section 3.3, the shares of input variables which are jointly in a
non-linear term should be differently assigned to the component functions. It is important
to highlight that since the underlying module multiples two 4-bit inputs, its quadratic
terms have always a variable from 〈a, b, c, d〉 and the other one from 〈e, f, g, h〉. Therefore,
shares of a, b, c, d can be identically assigned to component functions, and the same for

14 Re-Consolidating First-Order Masking Schemes

Table 2: Performance figures of different implementations.
(using Synopsis Design Compiler, and UMC180 standard cell library, no compile_ultra)

Design No. of Key Fresh Masks Area Delay Latency
Shares Masking [bit] [GE] [ns] [cycles]

Midori [MS16a] 3 7 0 7297 4.00 32
Midori [this work] 2 7 0 7560 4.99 32
PRESENT [PMK+11] 3 7 0 2282 4.61 565
PRESENT [this work] 2 7 0 1819 4.59 565
PRINCE [MS16a] 3 7 0 9292 4.00 40
PRINCE [BKN19] 2 3 48 13185a 8.37 24
PRINCE [this work] 2 7 0 10668 5.92 24
PRINCE [this work] 2 3 0 11462 5.74 24
AES [WM18] 4 7 0b 7600 2804
AES [MPL+11] 3 3 48 11114 266
AES [BGN+14b] 3 3 44 9102 246
AES [BGN+15] 3 3 44 11221 246
AES [BGN+15] 3 3 32 8119 246
AES [Sug19] 3 3 0b 17100c 266
AES [GMK16] 2 3 28 7600 216
AES [GMK16] 2 3 18 7100 246
AES [CRB+16] 2 3 54 6681c 276
AES [UHA17] 2 7 64 6321d 219
AES [this work] 2 3 1 7136 6.25 246
AES [this work] 2 3 0 7707 6.25 246
AES [this work] 2 7 1 6247 5.74 246
AES [this work] 2 7 0 6818 5.74 246

a Synthesized by ourselves. Thanks to the authors providing their implementation.
b Using changing of the guards.
c Using NanGate 45.
d Using TSMC65.

shares of e, f, g, h. As an example, for the first coordinate function x = f (a, b, c, d) =
b+ d+ ae+ ce+ af + bf + cf + df + cg + ah+ bh, we can consider the following settings.

f0(a0, b0, c0, d0, e0, f0, g0, h0)
f1(a0, b0, c0, d0, e1, f1, g1, h1)
f2(a1, b1, c1, d1, e0, f0, g0, h0)
f3(a1, b1, c1, d1, e1, f1, g1, h1)

Considering all possible ways to assign the shares to the component functions, we have
found millions of uniform and robust probing secure solutions for each component function.
We further have easily found several solutions as their combination which fulfill the joint
uniformity without any fresh masks. One of such solutions is given in Appendix G.

4.4.3 Square-Scale-Multiplier

Having the uniform and robust probing secure construction for the GF (24) inverter and
the GF (24) multiplier, the remaining part is the first block (see Figure 4). We intentionally
combined the square-scale and the first multiplier to an 8-bit to 4-bit quadratic function.
This helps us to achieve the uniformity. Otherwise, having a uniform shared multiplier,
we do not necessarily obtain a uniform sharing when it is XORed with the output of

Aein Rezaei Shahmirzadi, Amir Moradi 15

the square-scale module, since the multiplier and the square-scale have common inputs.
Similar to what we have done for the multiplier in Section 4.4.2, we have found several
probing secure solutions which are also jointly uniform. However, connecting all these
secure modules together based on the block diagram in Figure 4 does not necessarily lead
to a secure implementation. The problem is the multipliers at the last stage, which receive
the output of the GF (24) inverter as well as either 4-bit LSB of the primary input P or
its 4-bit MSB Q. Since the output sharing of the GF (24) inverter depends on the sharing
of the primary inputs, uniform sharing at the input of the multipliers is not guaranteed.
Therefore, sharing of the output of the GF (24) inverter should be jointly uniform with
sharing of P for the bottom multiplier, and jointly uniform with sharing of Q for the top
multiplier. Since our uniform shared GF (24) inverter is made without any fresh masks (i.e.,
is a bijection), this condition should be fulfilled by the shared square-scale-multiplier. In
other words, output sharing of the square-scale-multiplier should be jointly uniform with
P as well as with Q. We have added this condition to the search program when looking
for combination of shared coordinate functions of the square-scale-multiplier, which did
not lead to any solution. Instead, we found two other alternatives:

• We found several solutions for the shared square-scale-multiplier, whose all four
shared outputs are jointly uniform. At the same time, their first three shared outputs
are jointly uniform with P as well as with Q. This means that we can make use of a
single-bit fresh mask to refresh the sharing of the remaining output. This allows us
to use only 1-bit fresh mask to achieve a robust probing secure GF (24)2 inversion.
We give the details of such a shared square-scale-multiplier in Appendix H. This
construction is also shown in Figure 5(a), where every stage should be isolated by
means of registers.

• We found two distinct solutions for the shared square-scale-multiplier, each of which
with a jointly-uniform output sharing. One of such is jointly uniform with P and the
other one jointly uniform with Q. This implies instantiating two GF (24) inversion
modules, as shown in Figure 5(b), but allows realizing the shared GF (24)2 inversion
fully without any fresh masks. This construction for sure has a higher area overhead
compared to the former solution. The detail of such found solutions are given in
Appendix I and Appendix J. We would like to highlight that the non-linear terms in
these two constructions are similarly assigned to their component functions. This
allows us to combine every component function of one of the constructions with a
component function of another construction. In other words, a component function
is made which generates two outputs: one for the square-scale-multiplier which is
jointly uniform with P and one for the other square-scale-multiplier which is jointly
uniform with Q. This is beneficial to reduce the area overhead of its implementation.

Note that in both above given solutions, the output sharing of the top multiplier is
jointly uniform. The same holds for that of the bottom multiplier, but they are not jointly
uniform. In other words, our constructions are robust probing secure, but their output
cannot be given to the next function which mixed the output of the top and bottom
multipliers. This includes the output isomorphism (to convert from GF (24)2 to GF (28))
as well as the affine transformation of the AES Sbox applied after the GF (28) inversion.

In order to solve this problem, and construct a secure AES encryption module, we
make use of the features of the AES MixColumns, which similar to the PRINCE M ′-layer
can overcome the joint non-uniformity issue. However, since the multiplication-by-2 and
multiplication-by-3 of the MixColumns combine different bits of each Sbox output, we
divide the MixColumns in two parts. Let us recall the MixColumns operation, where a
4× 4 matrix is multiplied by a vector of four Sbox outputs A,B,C,D. If we denote the
output of the GF (24)2 inversion of the corresponding Sboxes by A′, B′, C ′, D′ and the
composition of the output isomorphism and the affine transformation by OA(.), we can

16 Re-Consolidating First-Order Masking Schemes

 Square-
Scale-

Multiply
Compress Compress

Multiply

Multiply

Compress

Compress

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

1 bit fresh
mask

GF(16)
Inverter

(a) Using a single-bit fresh mask

 Square-
Scale-

Multiply

Compress

Multiply

Multiply

Compress

Compress

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Compress

GF(16)
Inverter

GF(16)
Inverter

Compress

Compress

(b) Using two square-scale-multipliers

Figure 5: Our constructions for the shared inversion in GF (24)2 by 2 shares.

write
X
Y
Z
T

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

OA(A′)
OA(B′)
OA(C ′)
OA(D′)

 , (6)

where X,Y, Z, T denote the MixColumns output (of a column). We divide this matrix
multiplication into two parts as

X
Y
Z
T

 =

2 0 0 3
3 2 0 0
0 3 2 0
0 0 3 2

︸ ︷︷ ︸

MC ′

1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

︸ ︷︷ ︸

β

OA(A′)
OA(B′)
OA(C ′)
OA(D′)

 .

Since all elements of β are 0/1, we can move the application of OA(.) between these two
matrix multiplications. More precisely,

X
Y
Z
T

 = MC ′ •

OA(X ′)
OA(Y ′)
OA(Z ′)
OA(T ′)

 ,

X ′

Y ′

Z ′

T ′

 = β •

A′

B′

C ′

D′

 .
Since every row of β contains three 1s, and each bit of A′, B′, C ′, D′ has a uniform sharing,
and each Sbox input has a uniform and independent sharing, each byte of X ′, Y ′, Z ′, T ′
becomes jointly uniform. Therefore, application of OA(.) on X ′, Y ′, Z ′, T ′ would not lead
to any leakage. Note that X ′, Y ′, Z ′, T ′ should be stored in a register before the application
of OA(.). In other words, using this technique the application of MixColumns needs two
clock cycles. We followed this strategy and constructed a masked serialized AES encryption

Aein Rezaei Shahmirzadi, Amir Moradi 17

IA

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

β MC'

OA

OA-1

RCON

KeyPT

OA-1

EN

CT

State
Registers

Key
Registers

OA

Done

OA

OA

OA

OA

GF(24)2
Inverter

Figure 6: Our design of the serialized AES encryption.

module with 2 shares without any fresh mask (resp. with 1-bit fresh mask), which is
explained in details below.

4.5 AES Encryption
Our serialized AES encryption module, in which both variants of our masked GF (24)2

inversions can be plugged, requires 246 clock cycles to accomplish a full encryption. Figure 6
shows an overview of the datapath of the design. The state registers (resp. key registers)
are viewed as a 4 × 4 square array of bytes, and the byte located at row i and column
j is denoted as 4 × j + i. In the first 16 clock cycles, the key and plaintext are loaded
byte-wise to the module. Meanwhile, the AddRoundKey and the input isomorphism IA(.)
are performed, and the result is fed into the GF (24)2 inversion. Note that we have to
place a register between the IA(.) and the inversion. Otherwise, the first stage of the
GF (24)2 inversion violates the non-completeness property. The same has been applied
in [CRB+16, GMK17]. The next 4 cycles are spent on dedicating the IA(.) and inversion
to the key schedule procedure. When the last state byte comes out of the inversion
module, the ShifRows is applied, which is not shown in the figure for the sake of simplicity.
Afterwards, the MixColumns operation is performed in parallel to the AddRoundKey and
IA(.) of the next encryption round. As mentioned in Section 4.4.3, OA(.) cannot be applied
right after the inversion and it is integrated in the MixColumns, which forces us to put
a register after the multiplication by β matrix to guarantee the non-completeness. The
same holds for the key schedule. In order to generate the round keys, the output of the
inversion is XORed with OA−1 (.) of the corresponding key byte followed by a register
to avoid glitches and any potential leakage. Then, OA(.) and corresponding RCON are
XORed to the registered result, which provides the correct next round key byte. In short,
each encryption round takes 23 cycles to finish the inversions and MixColumns entirely.

The state register contains the output of the GF (24)2 inversion (not the Sbox), and
OA(.) is integrated into the MixColumns. Since the MixColumns is missing in the last cipher
round, we have to apply OA(.) after the last AddRoundKey to generate the ciphertext.
This is done by instantiating a dedicated OA(.) module separated by an output register
which is enabled only when the encryption is terminated (see Figure 6 and a register
enabled by the Done signal). Hence, in the last round, the state is XORed with OA−1 (.)
of the round key and the result is loaded to the output register. Similar to the other
serialized AES designs, the ciphertext appears byte-wise at the output of the module. We

18 Re-Consolidating First-Order Masking Schemes

should point out that, in our design, many registers are placed right after a multiplexer.
This allows the synthesizer to make use of scan flip-flops, a technique commonly used in
state of the arts.

As a comparison to the similar works, we refer to Table 2. Notably, our designs
outperform 3-share implementations [MPL+11, BGN+14b, BGN+15] in terms of area
overhead and required randomness with the same latency (# of clock cycles). Using
changing of the guards, a 4-share and a 3-share masked implementation with no fresh
masks have been introduced in [WM18] and [Sug19] respectively. The former one has 11
times longer run-time and the latter one has more than double area overhead compared
to our designs. The randomness complexity of our designs is the best among all 2-share
implementations while their area overhead is slightly larger than [CRB+16] and is almost
the same compared to the constructions presented in [GMK16], and smaller than [UHA17].
There is a mixture of having and not having key masking in the aforementioned designs.
Therefore, we provided two versions of our designs, one with shared key state and another
one without, indicated by a column in Table 2.

5 Analysis
As stated, we have evaluated our constructions using SILVER [KSM20] confirming their
first-order security under robust probing model. As a side note, we have not considered
maskVerif [BBC+19], which is a language-based verification tool. As a matter of known
issue, maskVerif has false negative cases, i.e., it may report the insecurity of a secure design.
Based on our observation and experience, we faced these cases particularly when the given
design does not make use of fresh masks, an example is given in [KSM20]. Since the goal
of our constructions is to avoid any fresh masks, we could not truly examine our designs
by maskVerif.

Since verification tools, including SILVER, can only deal with parts of the given
designs (i.e., gadgets), analyzing a full encryption/decryption module is still not possible.
Therefore, for the sake of completeness we conducted practical analysis by implementing
our constructions on an FPGA evaluation board and collecting power consumption traces.

5.1 Setup
We made use of a SAKURA-G board [SAK], where a Spartan-6 FPGA is embedded to host
cryptographic cores for practical SCA evaluations. We collected the power consumption
traces at a sampling rate of 500MS/s by monitoring the voltage drop over a 1Ω resistor
placed in the Vdd path, amplified by an on-board AC amplifier. During the measurements,
our designs running on the aforementioned FPGA were supplied by a stable and jitter-free
clock source at the frequency of 6MHz.

5.2 Evaluation Technique
Fixed-versus-random t-test has been used in most of the state of the art to evaluate
the security of masked implementations. As it is shown in [CEM18], such an analysis
at first order may lead to false negative result due to the power distribution network
(also referred to as coupling effect) particularly if 2 shares are used, e.g., [BPG18]. In
other works like [SH18] several fresh mask bits are used to overcome this issue. Since
our constructions do not make use of any fresh masks, they are also prone to this issue.
Therefore, we conducted attacks to evaluate the robustness of our designs. In order to
be independent of any particular (hypothetical) leakage model, similar to [DMW18], we
performed Moments-Correlating DPA (MC-DPA) attacks [MS16b]. For the round-based
implementations (Midori and PRINCE) we performed profiling MC-DPA, where a set of

Aein Rezaei Shahmirzadi, Amir Moradi 19

0 2 4 6 8 10
Time [s]

P
ow

er

(a) A sample trace

(b) 1st-order MC-DPA, first round, 50 million traces (c) 1st-order MC-DPA, last round, 50 million traces

(d) 2nd-order MC-DPA, first round, 10 million traces (e) 2nd-order MC-DPA, last round, 10 million traces

Figure 7: Experimental analysis of our Midori encryption/decryption design.

traces are used to extract the model based on the leakage of an Sbox, and the attack is
performed on another set of traces on the same Sbox module. This process examines if the
attack finds out that the same key portion (nibble in these cases with a 4-bit Sbox) is used
in both profiling and attack traces. For the serialized implementation (AES) we performed
collision MC-DPA by constructing the leakage model based on an Sbox calculation and
conducting the attack on another Sbox call. If successful, the attack reveals the linear
difference between the corresponding key portions (bytes in case of AES). We excluded
our PRESENT design in these analyses, since we just changed the Sbox design compared
to [PMK+11], whose uniformity and robust probing security is confirmed by SILVER.

5.3 Results
For each of the Midori and PRINCE designs and a fixed key, we collected 100 million
traces while the plaintext was selected randomly. The first 50 million traces were used to
extract first- and second-order models for each Sbox input. We used the second 50 million
traces to conduct the first- and second-order MC-DPA attacks using the aforementioned
models. The corresponding results on an exemplary targeted Sbox (nibble) are shown in
Figure 7 and Figure 8. The attacks confirm the first-order robustness of the designs, and
as expected the second-order attacks can exploit the leakage. We observed that around

20 Re-Consolidating First-Order Masking Schemes

0 2 4 6 8 10
Time [s]

P
ow

er

(a) A sample trace

(b) 1st-order MC-DPA, first round, 50 million traces (c) 1st-order MC-DPA, last round, 50 million traces

(d) 2nd-order MC-DPA, first round, 10 million traces (e) 2nd-order MC-DPA, last round, 10 million traces

Figure 8: Experimental analysis of our PRINCE encryption/decryption design.

10 million traces are more than enough to recover the correct key candidate through
second-order moments. We further conducted the same attacks targeting the last round of
the cipher; the corresponding results, also shown in Figure 7 and Figure 8, are along the
same lines.

For the AES design, we also collected 100 million traces for random plaintexts. Due
to its serialized architecture, we could use the entire 100 million traces to extract first-
and second-order models associated to an Sbox input, and use the same set of 100 million
traces to conduct the attack on another Sbox call. The result of this procedure, which
reveals the XOR difference between the corresponding key bytes, are shown in Figure 9.
Similar to the former cases, the first-order attacks did not succeed while the second-order
leakage was exploited using around 10 million traces. Note that the presented results
belong to our design of the masked GF (24)2 inversion without fresh masks (see Figure 5(b)
and Table 2). Due to the similarity of the analysis results of our other design with a
single-bit fresh mask (Figure 5(a)) we omit representing the identical figures.

For the sake of completeness and to verify our setup, we repeated these attacks when
the initial masking is turned off, i.e., the designs are not changed but the plaintext and
the key are given when the mask for initial sharing is set to 0. The result of identical
attacks on Midori and the AES are shown in Appendix K, indicating that 10 000 traces
are enough to exploit the first-order leakage.

Aein Rezaei Shahmirzadi, Amir Moradi 21

0 5 10 15 20 25 30 35 40 45 50
Time [s]

P
ow

er

(a) A sample trace

(b) 1st-order MC-DPA, first round, 100 million traces (c) 1st-order MC-DPA, last round, 100 million traces

(d) 2nd-order MC-DPA, first round, 10 million traces (e) 2nd-order MC-DPA, last round, 10 million traces

Figure 9: Experimental analysis of our AES encryption design.

6 Discussions and Conclusions

In this work, we have presented a methodology which allows us to realize first-order 2-share
masked realization of non-linear functions without any fresh randomness. Considering the
common and reasonable robust probing model, where the effect of glitches in hardware
platforms is covered, we showed how to provide first-order secure implementation of various
ciphers including Midori, PRINCE, PRESENT and AES. Compared to the state of the
art – to the best of our knowledge – our designs are the only ones which i) use 2 shares, ii)
do not require any fresh masks, and iii) do not apply changing of the guards.

Apart from these achievements, we should stress that our technique cannot trivially
be extended to higher orders, i.e., with larger number of shares than 2. Adjusting
our search algorithms may lead to a reduction in the number of required fresh masks,
but eliminating them entirely is unlikely possible. We further should mention that our
constructions (of small functions) not necessarily satisfy the requirements of being Non-
Interference (NI) [BBD+16], Strong Non-Interference (SNI) [BBD+16], or Probe-Isolating
Non-Interference (PINI) [CS20]. Therefore, they cannot be trivially composed to make
a secure circuit. Instead, uniform sharing of every gadget’s inputs should be carefully
examined in every composition.

22 Re-Consolidating First-Order Masking Schemes

References
[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin

Grégoire, and François-Xavier Standaert. maskverif: Automated verification
of higher-order masking in presence of physical defaults. In ESORICS 2019,
volume 11735 of Lecture Notes in Computer Science, pages 300–318. Springer,
2019.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In CCS 2016, pages
116–129. ACM, 2016.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In ASIACRYPT 2015, volume 9453 of Lecture
Notes in Computer Science, pages 411–436. Springer, 2015.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In EUROCRYPT 2016, volume 9666 of Lecture
Notes in Computer Science, pages 616–648. Springer, 2016.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications -
extended abstract. In ASIACRYPT 2012, volume 7658 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2012.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations
of masking schemes and the bounded moment leakage model. In EUROCRYPT
2017, volume 10210 of Lecture Notes in Computer Science, pages 535–566,
2017.

[BDN+13] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen,
and Gilles Van Assche. Efficient and first-order DPA resistant implementations
of keccak. In CARDIS 2013, volume 8419 of Lecture Notes in Computer
Science, pages 187–199. Springer, 2013.

[BGN+14a] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-order threshold implementations. In ASIACRYPT 2014,
volume 8874 of Lecture Notes in Computer Science, pages 326–343. Springer,
2014.

[BGN+14b] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. A more efficient AES threshold implementation. In AFRICACRYPT
2014, volume 8469 of Lecture Notes in Computer Science, pages 267–284.
Springer, 2014.

[BGN+15] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Trade-offs for threshold implementations illustrated on AES. IEEE
Trans. on CAD of Integrated Circuits and Systems, 34(7):1188–1200, 2015.

Aein Rezaei Shahmirzadi, Amir Moradi 23

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In CHES 2007, volume 4727 of
Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

[BKN19] Dusan Bozilov, Miroslav Knezevic, and Ventzislav Nikov. Optimized threshold
implementations: Minimizing the latency of secure cryptographic accelerators.
In Sonia Belaïd and Tim Güneysu, editors, CARDIS 2019, volume 11833 of
Lecture Notes in Computer Science, pages 20–39. Springer, 2019.

[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: lightweight tweakable block cipher with efficient protection against
DFA attacks. IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

[BNN+15] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, Natalia N.
Tokareva, and Valeriya Vitkup. Threshold implementations of small s-boxes.
Cryptogr. Commun., 7(1):3–33, 2015.

[BPG18] Florian Bache, Christina Plump, and Tim Güneysu. Confident leakage
assessment - A side-channel evaluation framework based on confidence intervals.
In DATE 2018, pages 1117–1122. IEEE, 2018.

[Can05] David Canright. A very compact s-box for AES. In Josyula R. Rao and
Berk Sunar, editors, CHES 2005, volume 3659 of Lecture Notes in Computer
Science, pages 441–455. Springer, 2005.

[CEM18] Thomas De Cnudde, Maik Ender, and Amir Moradi. Hardware masking,
revisited. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):123–148,
2018.

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware.
In CHES 2016, volume 9813 of Lecture Notes in Computer Science, pages
194–212. Springer, 2016.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Information Forensics and Security, 15:2542–2555, 2020.

[Dae17] Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In CHES 2017, volume 10529 of
Lecture Notes in Computer Science, pages 137–153. Springer, 2017.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In EUROCRYPT 2014,
volume 8441 of Lecture Notes in Computer Science, pages 423–440. Springer,
2014.

[DMW18] Lauren De Meyer, Amir Moradi, and Felix Wegener. Spin me right round
rotational symmetry for fpga-specific AES. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):596–626, 2018.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

24 Re-Consolidating First-Order Masking Schemes

[GIB18] Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic low-latency
masking in hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1–
21, 2018.

[GM17] Hannes Groß and Stefan Mangard. Reconciling d+1 masking in hardware
and software. In CHES 2017, volume 10529 of Lecture Notes in Computer
Science, pages 115–136. Springer, 2017.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-Oriented Masking:
Compact Masked Hardware Implementations with Arbitrary Protection Order.
In Theory of Implementation Security - TIS@CCS 2016, page 3. ACM, 2016.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected AES implementation with arbitrary protection order. In CT-RSA
2017, volume 10159 of Lecture Notes in Computer Science, pages 95–112.
Springer, 2017.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis
(the "duplication" method). In CHES 1999, volume 1717 of Lecture Notes in
Computer Science, pages 158–172. Springer, 1999.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - Statistical
Independence and Leakage Verification. IACR Cryptology ePrint Archive,
2020:634, 2020.

[MME10] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-enhanced
power analysis collision attack. In CHES 2010, volume 6225 of Lecture Notes
in Computer Science, pages 125–139. Springer, 2010.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 69–88. Springer, 2011.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
attacking masked AES hardware implementations. In CHES 2005, volume
3659 of Lecture Notes in Computer Science, pages 157–171. Springer, 2005.

[MS16a] Amir Moradi and Tobias Schneider. Side-channel analysis protection and
low-latency in action - - case study of PRINCE and midori -. In ASIACRYPT
2016, volume 10031 of Lecture Notes in Computer Science, pages 517–547,
2016.

[MS16b] Amir Moradi and François-Xavier Standaert. Moments-correlating DPA. In
TIS@CCS 2016, pages 5–15. ACM, 2016.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In ICICS 2006, volume
4307 of Lecture Notes in Computer Science, pages 529–545. Springer, 2006.

Aein Rezaei Shahmirzadi, Amir Moradi 25

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Imple-
mentation of Nonlinear Functions in the Presence of Glitches. J. Cryptology,
24(2):292–321, 2011.

[OMPR05] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen.
A side-channel analysis resistant description of the AES s-box. In FSE 2005,
volume 3557 of Lecture Notes in Computer Science, pages 413–423. Springer,
2005.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-channel resistant crypto for less than 2, 300 GE. J.
Cryptology, 24(2):322–345, 2011.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
measures and counter-measures for smart cards. In E-smart 2001, volume
2140 of Lecture Notes in Computer Science, pages 200–210. Springer, 2001.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating Masking Schemes. In Advances in Cryptology -
CRYPTO 2015, volume 9215 of Lecture Notes in Computer Science, pages
764–783. Springer, 2015.

[SAK] SAKURA. Side-channel Attack User Reference Architecture. http://satoh.
cs.uec.ac.jp/SAKURA/index.html.

[SH18] Pascal Sasdrich and Michael Hutter. Protecting triple-des against DPA - A
practical application of domain-oriented masking. In COSADE 2018, volume
10815 of Lecture Notes in Computer Science, pages 207–226. Springer, 2018.

[Sug19] Takeshi Sugawara. 3-share threshold implementation of AES s-box without
fresh randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):123–
145, 2019.

[Tri03] Elena Trichina. Combinational logic design for AES subbyte transformation
on masked data. IACR Cryptol. ePrint Arch., 2003:236, 2003.

[UHA17] Rei Ueno, Naofumi Homma, and Takafumi Aoki. Toward more efficient dpa-
resistant aes hardware architecture based on threshold implementation. In
COSADE 2017, Lecture Notes in Computer Science, pages 50–64. Springer,
2017.

[WM18] Felix Wegener and Amir Moradi. A first-order SCA resistant AES without
fresh randomness. In COSADE 2018, volume 10815 of Lecture Notes in
Computer Science, pages 245–262. Springer, 2018.

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

26 Re-Consolidating First-Order Masking Schemes

A Simulation of Masked Q4
300 of [RBN+15]

Table 3: Intermediate signals of the masked Q4
300 of [RBN+15] in Equation (3).

a b c a0 a1 b0 b1 c0 c1 z′0 z′1 z′2 8P (z′0, z′1, z′2) z′3 z′4 z′5 8P (z′3, z′4, z′5)

0 0 0

0 0 0 0 0 0 0 0 0

(3,2,0,1,1,0,0,1)

0 0 0

(3,0,1,0,2,1,0,1)

1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 1 0 1 0 1
0 0 0 0 1 1 1 0 0 0 0 1
1 1 0 0 1 1 1 0 0 0 0 1
0 0 1 1 1 1 0 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1

1 0 0

0 1 0 0 0 0 0 0 0

(3,2,0,1,1,0,0,1)

0 0 0

(3,0,1,0,2,1,0,1)

1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 1
1 0 1 1 0 0 1 1 0 0 0 0
0 1 0 0 1 1 1 0 0 0 0 1
1 0 0 0 1 1 1 0 0 0 0 1
0 1 1 1 1 1 0 0 1 1 1 1
1 0 1 1 1 1 1 1 1 0 1 0

0 1 0

0 0 0 1 0 0 0 0 0

(3,2,1,0,0,1,0,1)

0 0 0

(3,1,0,0,2,0,1,1)

1 1 0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 1 0 0
0 0 0 1 1 1 1 0 1 0 0 0
1 1 0 1 1 1 1 1 1 0 0 1
0 0 1 0 1 1 0 0 0 0 1 1
1 1 1 0 1 1 1 0 0 1 1 1

1 1 0

0 1 0 1 0 0 0 0 0

(3,2,1,0,0,1,0,1)

0 0 1

(3,1,0,0,2,0,1,1)

1 0 0 1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0 0 0
0 1 0 1 1 1 1 0 1 0 0 1
1 0 0 1 1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 0 0 1 1 1
1 0 1 0 1 1 1 0 0 0 1 1

0 0 1

0 0 0 0 0 1 0 0 0

(3,2,0,1,1,0,0,1)

0 0 1

(3,0,1,0,2,1,0,1)

1 1 0 0 0 1 0 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 0
1 1 1 1 0 1 1 1 0 1 1 1
0 0 0 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0
1 1 1 1 1 0 1 1 1 1 0 1

1 0 1

0 1 0 0 0 1 0 0 0

(3,2,0,1,1,0,0,1)

0 0 1

(3,0,1,0,2,1,0,1)

1 0 0 0 0 1 0 0 0 0 0 1
0 1 1 1 0 1 0 0 0 1 1 1
1 0 1 1 0 1 1 1 0 0 1 0
0 1 0 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0
0 1 1 1 1 0 0 0 1 1 0 1
1 0 1 1 1 0 1 1 1 0 0 0

0 1 1

0 0 0 1 0 1 0 0 0

(3,2,1,0,0,1,0,1)

0 0 0

(3,1,0,0,2,0,1,1)

1 1 0 1 0 1 0 1 0 0 0 1
0 0 1 0 0 1 0 0 0 0 1 1
1 1 1 0 0 1 1 0 0 1 1 1
0 0 0 1 1 0 1 0 1 0 0 0
1 1 0 1 1 0 1 1 1 0 0 1
0 0 1 0 1 0 0 0 0 0 0 0
1 1 1 0 1 0 1 0 0 1 0 0

1 1 1

0 1 0 1 0 1 0 0 0

(3,2,1,0,0,1,0,1)

0 0 1

(3,1,0,0,2,0,1,1)

1 0 0 1 0 1 0 1 0 0 0 0
0 1 1 0 0 1 0 0 0 1 1 1
1 0 1 0 0 1 1 0 0 0 1 1
0 1 0 1 1 0 1 0 1 0 0 1
1 0 0 1 1 0 1 1 1 0 0 0
0 1 1 0 1 0 0 0 0 1 0 0
1 0 1 0 1 0 1 0 0 0 0 0

Aein Rezaei Shahmirzadi, Amir Moradi 27

B 2-share Masked Midori Sbox without Fresh Masks

F (a, b, c, d) : CAD3EBF789150246

x = f (a, b, c, d) = b+ ac+ ad+ abc+ abd+ bcd

y = g(a, b, c, d) = a+ c+ ac+ ad+ cd

z = h(a, b, c, d) = 1 + a+ d+ ad+ abc+ abd+ bcd

t = k(a, b, c, d) = 1 + ab+ bd+ cd+ abd+ bcd

f0(a1, b0, c0, d0) = b0c0d0 + b0c0a1 + b0d0a1 → x′0
f1(a0, b0, c0, d1) = d1 + b0d1 + c0d1 + c0a0 + d1a0 + b0c0d1 + b0c0a0 + b0d1a0 → x′1
f2(a0, b0, c1, d0) = c1d0 + c1a0 + d0a0 + b0c1d0 + b0c1a0 + b0d0a0 → x′2
f3(a1, b0, c1, d1) = b0 + b0d1 + b0c1d1 + b0c1a1 + b0d1a1 → x′3
f4(a0, b1, c0, d0) = b1c0d0 + b1c0a0 + b1d0a0 → x′4
f5(a1, b1, c0, d1) = d1 + b1d1 + c0d1 + c0a1 + d1a1 + b1c0d1 + b1c0a1 + b1d1a1 → x′5
f6(a1, b1, c1, d0) = c1d0 + c1a1 + d0a1 + b1c1d0 + b1c1a1 + b1d0a1 → x′6
f7(a0, b1, c1, d1) = b1 + b1d1 + b1c1d1 + b1c1a0 + b1d1a0 → x′7

g0(a0, c0, d0) = a0 + c0 + d0 + a0c0 + a0d0 + c0d0 → y′0
g1(a0, b1, c1, d1) = b1 + d1 + a0c1 + a0d1 + c1d1 → y′1
g2(a1, c0, d1) = d1 + a1c0 + a1d1 + c0d1 → y′2
g3(a1, b1, c1, d0) = a1 + b1 + c1 + d0 + a1c1 + a1d0 + c1d0 → y′3

h0(a0, b0, c0, d1) = 1 + a0 + b0d1 + a0b0c0 + a0b0d1 + b0c0d1 → z′0
h1(a0, b0, c1, d0) = d0 + a0c1 + a0d0 + b0d0 + c1d0 + a0b0c1 + a0b0d0 + b0c1d0 → z′1
h2(a0, b1, c0, d0) = a0 + b1c0 + a0b1c0 + a0b1d0 + b1c0d0 → z′2
h3(a0, b1, c1, d1) = a0 + a0c1 + b1c1 + a0d1 + c1d1 + a0b1c1 + a0b1d1 + b1c1d1 → z′3
h4(a1, b0, c0, d0) = a1 + b0d0 + a1b0c0 + a1b0d0 + b0c0d0 → z′4
h5(a1, b0, c1, d1) = d1 + a1c1 + a1d1 + b0d1 + c1d1 + a1b0c1 + a1b0d1 + b0c1d1 → z′5
h6(a1, b1, c0, d1) = a1 + b1c0 + a1b1c0 + a1b1d1 + b1c0d1 → z′6
h7(a1, b1, c1, d0) = a1 + a1c1 + b1c1 + a1d0 + c1d0 + a1b1c1 + a1b1d0 + b1c1d0 → z′7

k0(a1, b0, c0, d0) = 1 + b0d0 + b0a1 + b0c0d0 + b0d0a1 → t′0
k1(a0, b0, c0, d1) = a0 + c0d1 + b0a0 + d1a0 + b0c0d1 + b0d1a0 → t′1
k2(a0, b0, c1, d0) = c1d0 + d0a0 + b0c1d0 + b0d0a0 → t′2
k3(a1, b0, c1, d1) = b0d1 + b0c1d1 + b0d1a1 → t′3
k4(a0, b1, c0, d0) = a0 + b1d0 + c0d0 + b1a0 + d0a0 + b1c0d0 + b1d0a0 → t′4
k5(a1, b1, c0, d1) = b1d1 + b1a1 + b1c0d1 + b1d1a1 → t′5
k6(a1, b1, c1, d0) = b1c1d0 + b1d0a1 → t′6
k7(a0, b1, c1, d1) = c1d1 + d1a0 + b1c1d1 + b1d1a0 → t′7

x′0 + x′1 + x′2 + x′3 = x0 x′4 + x′5 + x′6 + x′7 = x1

y′0 + y′1 = y0 y′2 + y′3 = y1

z′0 + z′1 + z′2 + z′3 = z0 z′4 + z′5 + z′6 + z′7 = z1

t′0 + t′1 + t′2 + t′3 = t0 t′4 + t′5 + t′6 + t′7 = t1

28 Re-Consolidating First-Order Masking Schemes

C 2-share Masked PRESENT Sbox without Fresh Masks

F (a, b, c, d) : C56B90AD3EF84712

x = f (a, b, c, d) = a+ c+ d+ bc

y = g(a, b, c, d) = b+ d+ bd+ cd+ abc+ abd+ acd

z = h(a, b, c, d) = 1 + c+ d+ ab+ ad+ bd+ abd+ acd

t = k(a, b, c, d) = 1 + a+ b+ d+ bc+ abc+ abd+ acd

f0(a1, b0, c0, d0) = c0 + d0 + a1 + b0c0 → x′0
f1(a1, b0, c1) = c1 + a1 + b0c1 → x′1
f2(a1, b1, c0) = a1 + b1c0 → x′2
f3(a0, b1, c1, d1) = d1 + a0 + b1c1 → x′3

g0(a1, b0, c0, d0) = b0a1 + b0c0a1 + b0d0a1 + c0d0a1 → y′0
g1(a0, b0, c0, d1) = d1a0 + b0c0a0 + b0d1a0 + c0d1a0 → y′1
g2(a0, b0, c1, d0) = c1 + b0c1 + b0d0 + c1d0 + c1a0 + b0c1a0 + b0d0a0 + c1d0a0 → y′2
g3(a1, b0, c1, d1) = b0 + c1 + b0c1 + b0d1 + c1d1 + b0a1 + c1a1 + d1a1 + b0c1a1+

b0d1a1 + c1d1a1 → y′3
g4(a0, b1, c0, d0) = b1 + d0 + a0 + b1c0 + b1d0 + c0d0 + b1a0 + b1c0a0 + b1d0a0+

c0d0a0 → y′4
g5(a1, b1, c0, d1) = d1 + b1c0 + b1d1 + c0d1 + d1a1 + b1c0a1 + b1d1a1 + c0d1a1 → y′5
g6(a1, b1, c1, d0) = c1a1 + b1c1a1 + b1d0a1 + c1d0a1 → y′6
g7(a0, b1, c1, d1) = a0 + b1a0 + c1a0 + d1a0 + b1c1a0 + b1d1a0 + c1d1a0 → y′7

h0(a1, b0, c0, d0) = 1 + b0a1 + c0a1 + b0d0a1 + c0d0a1 → z′0
h1(a0, b0, c0, d1) = a0 + b0a0 + c0a0 + d1a0 + b0d1a0 + c0d1a0 → z′1
h2(a0, b0, c1, d0) = b0d0 + c1d0 + b0d0a0 + c1d0a0 → z′2
h3(a1, b0, c1, d1) = c1 + a1 + b0d1 + c1d1 + d1a1 + b0d1a1 + c1d1a1 → z′3
h4(a0, b1, c0, d0) = a0 + b1a0 + c0a0 + d0a0 + b1d0a0 + c0d0a0 → z′4
h5(a1, b1, c0, d1) = c0 + d1 + a1 + b1a1 + c0a1 + b1d1a1 + c0d1a1 → z′5
h6(a1, b1, c1, d0) = d0 + b1d0 + c1d0 + d0a1 + b1d0a1 + c1d0a1 → z′6
h7(a0, b1, c1, d1) = b1d1 + c1d1 + b1d1a0 + c1d1a0 → z′7

k0(a1, b0, c0, d0) = 1 + b0a1 + b0c0a1 + b0d0a1 + c0d0a1 → t′0
k1(a0, b0, c0, d1) = d1 + b0c0 + b0d1 + c0d1 + d1a0 + b0c0a0 + b0d1a0 + c0d1a0 → t′1
k2(a0, b0, c1, d0) = c1a0 + b0c1a0 + b0d0a0 + c1d0a0 → t′2
k3(a1, b0, c1, d1) = b0 + c1 + a1 + b0c1 + b0d1 + c1d1 + b0a1 + c1a1 + d1a1+

b0c1a1 + b0d1a1 + c1d1a1 → t′3
k4(a0, b1, c0, d0) = d0 + b1a0 + b1c0a0 + b1d0a0 + c0d0a0 → t′4
k5(a1, b1, c0, d1) = d1 + b1c0 + b1d1 + c0d1 + d1a1 + b1c0a1 + b1d1a1 + c0d1a1 → t′5
k6(a1, b1, c1, d0) = c1a1 + b1c1a1 + b1d0a1 + c1d0a1 → t′6
k7(a0, b1, c1, d1) = b1 + c1 + d1 + a0 + b1c1 + b1d1 + c1d1 + b1a0 + c1a0 + d1a0+

b1c1a0 + b1d1a0 + c1d1a0 → t′7

x′0 + x′1 = x0 x′2 + x′3 = x1
y′0 + y′1 + y′2 + y′3 = y0 y′4 + y′5 + y′6 + y′7 = y1
z′0 + z′1 + z′2 + z′3 = z0 z′4 + z′5 + z′6 + z′7 = z1
t′0 + t′1 + t′2 + t′3 = t0 t′4 + t′5 + t′6 + t′7 = t1

Aein Rezaei Shahmirzadi, Amir Moradi 29

D 2-share Masked PRINCE Sbox without Fresh Masks

F (a, b, c, d) : BF32AC916780E5D4 Remark: 〈x0, x1〉, 〈z0, z1〉, 〈t0, t1〉 are jointly uniform.

x = f (a, b, c, d) = 1 + c+ d+ ab+ bc+ ad+ cd+ abc

y = g(a, b, c, d) = 1 + ac+ bc+ bd+ abc+ bcd

z = h(a, b, c, d) = a+ d+ ab+ ad+ bd+ abd+ bcd

t = k(a, b, c, d) = 1 + b+ d+ bc+ cd+ abc+ abd+ acd

f0(a0, b0, c0, d1) = 1 + b0 + d1 + a0b0 + b0c0 + a0d1 + a0b0c0 → x′0
f1(a0, b0, c1, d0) = a0c1 + a0b0c1 → x′1
f2(a0, b1, c0, d0) = d0 + b1c0 + a0d0 + a0b1c0 → x′2
f3(a0, b1, c1, d1) = c1 + a0b1 + a0c1 + a0b1c1 → x′3
f4(a1, b0, c0, d0) = c0 + c0d0 + a1b0c0 → x′4
f5(a1, b0, c1, d1) = b0 + d1 + a1b0 + b0c1 + a1d1 + c1d1 + a1b0c1 → x′5
f6(a1, b1, c0, d1) = d1 + a1b1 + c0d1 + a1b1c0 → x′6
f7(a1, b1, c1, d0) = b1c1 + a1d0 + c1d0 + a1b1c1 → x′7

g0(a0, b0, c0, d1) = 1 + b0c0 + a0b0c0 + b0c0d1‘ → y′0
g1(a0, b0, c1, d0) = c1 + a0c1 + b0c1 + c1d0 + a0b0c1 + b0c1d0 → y′1
g2(a0, b1, c0, d0) = d0 + a0b1 + a0c0 + b1d0 + c0d0 + a0b1c0 + b1c0d0 → y′2
g3(a0, b1, c1, d1) = a0b1 + b1d1 + a0b1c1 + b1c1d1 → y′3
h4(a1, b0, c0, d0) = d0 + a1b0 + a1c0 + b0d0 + c0d0 + a1b0c0 + b0c0d0 → y′4
h5(a1, b0, c1, d1) = a1b0 + b0d1 + a1b0c1 + b0c1d1 → y′5
h6(a1, b1, c0, d1) = b1c0 + a1b1c0 + b1c0d1 → y′6
h7(a1, b1, c1, d0) = c1 + a1c1 + b1c1 + c1d0 + a1b1c1 + b1c1d0 → y′7

h0(a0, b0, c0, d1) = a0d1 + c0d1 + a0b0d1 + b0c0d1 → z′0
h1(a0, b0, c1, d0) = a0 + a0b0 + b0c1 + b0d0 + a0b0d0 + b0c1d0 → z′1
h2(a0, b1, c0, d0) = d0 + a0d0 + b1d0 + c0d0 + a0b1d0 + b1c0d0 → z′2
h3(a0, b1, c1, d1) = a0b1 + b1c1 + a0b1d1 + b1c1d1 → z′3
h4(a1, b0, c0, d0) = a1d0 + c0d0 + a1b0d0 + b0c0d0 → z′4
h5(a1, b0, c1, d1) = a1 + a1b0 + b0c1 + b0d1 + a1b0d1 + b0c1d1 → z′5
h6(a1, b1, c0, d1) = d1 + a1d1 + b1d1 + c0d1 + a1b1d1 + b1c0d1 → z′6
h7(a1, b1, c1, d0) = a1b1 + b1c1 + a1b1d0 + b1c1d0 → z′7

k0(a0, b0, c0, d1) = 1 + a0b0 + a0d1 + a0b0c0 + a0b0d1 + a0c0d1 → t′0
k1(a0, b0, c1, d0) = b0 + d0 + a0b0 + b0c1 + a0d0 + b0d0 + c1d0 + a0b0c1+

a0b0d0 + a0c1d0 → t′1
k2(a0, b1, c0, d0) = a0d0 + a0b1c0 + a0b1d0 + a0c0d0 → t′2
k3(a0, b1, c1, d1) = d1 + b1c1 + a0d1 + b1d1 + c1d1 + a0b1c1 + a0b1d1 + a0c1d1 → t′3
k4(a1, b0, c0, d0) = b0c0 + b0d0 + c0d0 + a1b0c0 + a1b0d0 + a1c0d0 → t′4
k5(a1, b0, c1, d1) = a1 + a1b0c1 + a1b0d1 + a1c1d1 → t′5
k6(a1, b1, c0, d1) = b1 + a1b1 + b1c0 + b1d1 + c0d1 + a1b1c0 + a1b1d1 + a1c0d1 → t′6
k7(a1, b1, c1, d0) = a1 + a1b1 + a1b1c1 + a1b1d0 + a1c1d0 → t′7

x′0 + x′1 + x′2 + x′3 = x0 x′4 + x′5 + x′6 + x′7 = x1
y′0 + y′1 + y′2 + y′3 = y0 y′4 + y′5 + y′6 + y′7 = y1
z′0 + z′1 + z′2 + z′3 = z0 z′4 + z′5 + z′6 + z′7 = z1
t′0 + t′1 + t′2 + t′3 = t0 t′4 + t′5 + t′6 + t′7 = t1

30 Re-Consolidating First-Order Masking Schemes

E 2-share Masked PRINCE Sbox Inverse without Fresh Masks

F (a, b, c, d) : BF32AC916780E5D4 Remark: 〈x0, x1〉, 〈z0, z1〉, 〈t0, t1〉 are jointly uniform.

x = f (a, b, c, d) = 1 + d+ ab+ bc+ cd+ abd+ acd

y = g(a, b, c, d) = 1 + ac+ bc+ bd+ cd+ abc

z = h(a, b, c, d) = a+ c+ ab+ ac+ bc+ bd+ abc+ abd

t = k(a, b, c, d) = 1 + a+ b+ ab+ ac+ bc+ cd+ abc+ acd+ bcd

f0(a0, b0, c0, d1) = 1 + d1 + a0c0 + b0d1 + a0b0d1 + a0c0d1 → x′0
f1(a0, b0, c1, d0) = a0 + d0 + a0b0 + c1d0 + a0b0d0 + a0c1d0 → x′1
f2(a0, b1, c0, d0) = c0 + a0c0 + c0d0 + a0b1d0 + a0c0d0 → x′2
f3(a0, b1, c1, d1) = a0 + b1 + a0b1 + b1d1 + a0b1d1 + a0c1d1 → x′3
f4(a1, b0, c0, d0) = b0 + c0 + a1c0 + b0c0 + a1d0 + a1b0d0 + a1c0d0 → x′4
f5(a1, b0, c1, d1) = b0 + c1 + a1b0 + a1c1 + b0c1 + b0d1 + c1d1 + a1b0d1 + a1c1d1 → x′5
f6(a1, b1, c0, d1) = a1 + a1b1 + a1c0 + b1c0 + b1d1 + c0d1 + a1b1d1 + a1c0d1 → x′6
f7(a1, b1, c1, d0) = a1 + b1 + c1 + a1c1 + b1c1 + a1d0 + a1b1d0 + a1c1d0 → x′7

g0(a0, b0, c0, d1) = 1 + a0 + c0 + b0c0 + a0d1 + c0d1 + a0b0c0 → y′0
g1(a0, b0, c1, d0) = a0 + b0c1 + a0d0 + c1d0 + a0b0c1 → y′1
g2(a0, b1, c0, d0) = d0 + a0c0 + a0d0 + c0d0 + a0b1c0 → y′2
g3(a0, b1, c1, d1) = b1 + a0c1 + b1c1 + a0d1 + c1d1 + a0b1c1 → y′3
h4(a1, b0, c0, d0) = c0 + a1b0 + a1c0 + a1d0 + b0d0 + a1b0c0 → y′4
h5(a1, b0, c1, d1) = a1b0 + a1c1 + a1d1 + b0d1 + a1b0c1 → y′5
h6(a1, b1, c0, d1) = b1 + a1b1 + b1c0 + a1d1 + b1d1 + a1b1c0 → y′6
h7(a1, b1, c1, d0) = d0 + a1b1 + a1d0 + b1d0 + a1b1c1 → y′7

h0(a0, b0, c0, d1) = a0 + c0 + a0b0 + a0d1 + a0b0c0 + a0b0d1 → z′0
h1(a0, b0, c1, d0) = a0b0c1 + a0b0d0 → z′1
h2(a0, b1, c0, d0) = a0b1 + a0c0 + b1c0 + b1d0 + a0b1c0 + a0b1d0 → z′2
h3(a0, b1, c1, d1) = c1 + d1 + a0c1 + b1c1 + a0d1 + b1d1 + a0b1c1 + a0b1d1 → z′3
h4(a1, b0, c0, d0) = b0c0 + b0d0 + a1b0c0 + a1b0d0 → z′4
h5(a1, b0, c1, d1) = d1 + a1b0 + a1c1 + b0c1 + a1d1 + b0d1 + a1b0c1 + a1b0d1 → z′5
h6(a1, b1, c0, d1) = a1b1 + a1c0 + a1d1 + a1b1c0 + a1b1d1 → z′6
h7(a1, b1, c1, d0) = a1 + a1b1c1 + a1b1d0 → z′7

k0(a0, b0, c0, d1) = 1 + b0 + a0b0 + b0c0 + a0d1 + b0d1 + a0b0c0 + a0c0d1 + b0c0d1 → t′0
k1(a0, b0, c1, d0) = c1d0 + a0b0c1 + a0c1d0 + b0c1d0 → t′1
k2(a0, b1, c0, d0) = b1 + a0c0 + b1c0 + c0d0 + a0b1c0 + a0c0d0 + b1c0d0 → t′2
k3(a0, b1, c1, d1) = a0 + a0b1 + a0c1 + a0d1 + b1d1 + a0b1c1 + a0c1d1 + b1c1d1 → t′3
k4(a1, b0, c0, d0) = a1c0 + a1b0c0 + a1c0d0 + b0c0d0 → t′4
k5(a1, b0, c1, d1) = a1 + d1 + a1b0 + a1c1 + b0c1 + a1d1 + b0d1 + c1d1 + a1b0c1+

a1c1d1 + b0c1d1 → t′5
k6(a1, b1, c0, d1) = d1 + a1b1 + a1d1 + b1d1 + c0d1 + a1b1c0 + a1c0d1 + b1c0d1 → t′6
k7(a1, b1, c1, d0) = b1c1 + a1b1c1 + a1c1d0 + b1c1d0 → t′7

x′0 + x′1 + x′2 + x′3 = x0 x′4 + x′5 + x′6 + x′7 = x1
y′0 + y′1 + y′2 + y′3 = y0 y′4 + y′5 + y′6 + y′7 = y1
z′0 + z′1 + z′2 + z′3 = z0 z′4 + z′5 + z′6 + z′7 = z1
t′0 + t′1 + t′2 + t′3 = t0 t′4 + t′5 + t′6 + t′7 = t1

Aein Rezaei Shahmirzadi, Amir Moradi 31

F 2-share Masked GF (24) Inversion without Fresh Masks
F (a, b, c, d) : 0132ED8AF67C495B

x = f (a, b, c, d) = a+ b+ d+ bc+ bd+ cd+ abc

y = g(a, b, c, d) = b+ c+ d+ ac+ bd+ abd+ acd

z = h(a, b, c, d) = c+ d+ bc+ cd+ acd+ bcd

t = k(a, b, c, d) = c+ d+ ad+ bd+ bcd

f0(a1, b0, c0, d1) = b0 + b0c0 + b0d1 + c0d1 + c0a1 + b0c0a1 → x′0
f1(a0, b0, c0, d0) = d0 + b0d0 + c0d0 + b0c0a0 → x′1
f2(a0, b0, c1, d0) = c1 + c1d0 + b0c1a0 → x′2
f3(a1, b0, c1, d1) = b0c1 + c1d1 + c1a1 + b0c1a1 → x′3
f4(a0, b1, c0, d1) = b1c0 + b1c0a0 → x′4
f5(a1, b1, c0, d0) = a1 + b1d0 + c0a1 + b1c0a1 → x′5
f6(a1, b1, c1, d0) = c1 + b1c1 + c1a1 + b1c1a1 → x′6
f7(a0, b1, c1, d1) = b1 + d1 + a0 + b1d1 + b1c1a0 → x′7

g0(a1, b0, c0, d0) = a1 + b0a1 + c0a1 + d0a1 + b0d0a1 + c0d0a1 → y′0
g1(a0, b0, c0, d1) = b0d1a0 + c0d1a0 → y′1
g2(a0, b0, c1, d0) = b0d0 + c1d0 + b0d0a0 + c1d0a0 → y′2
g3(a1, b0, c1, d1) = b0 + a1 + b0d1 + c1d1 + b0a1 + c1a1 + d1a1 + b0d1a1 + c1d1a1 → y′3
h4(a0, b1, c0, d0) = b1a0 + c0a0 + b1d0a0 + c0d0a0 → y′4
h5(a1, b1, c0, d1) = c0 + d1 + d1a1 + b1d1a1 + c0d1a1 → y′5
h6(a1, b1, c1, d0) = d0 + b1d0 + c1d0 + d0a1 + b1d0a1 + c1d0a1 → y′6
h7(a0, b1, c1, d1) = b1 + c1 + b1d1 + c1d1 + b1a0 + c1a0 + b1d1a0 + c1d1a0 → y′7

h0(a1, b0, c0, d0) = b0c0 + c0a1 + b0c0d0 + c0d0a1 → z′0
h1(a0, b0, c0, d1) = b0d1 + d1a0 + b0c0d1 + c0d1a0 → z′1
h2(a0, b0, c1, d0) = c1d0 + b0c1d0 + c1d0a0 → z′2
h3(a1, b0, c1, d1) = c1 + a1 + b0c1 + b0d1 + c1d1 + c1a1 + d1a1 + b0c1d1 + c1d1a1 → z′3
h4(a0, b1, c0, d0) = b1 + d0 + c0d0 + b1c0d0 + c0d0a0 → z′4
h5(a1, b1, c0, d1) = b1 + c0 + d1 + a1 + b1c0 + b1d1 + c0d1 + c0a1 + d1a1+

b1c0d1 + c0d1a1 → z′5
h6(a1, b1, c1, d0) = b1c1 + c1a1 + b1c1d0 + c1d0a1 → z′6
h7(a0, b1, c1, d1) = b1d1 + d1a0 + b1c1d1 + c1d1a0 → z′7

k0(a1, b0, c0, d0) = a1 + c0d0 + b0a1 + b0c0d0 → t′0
k1(a0, b0, c0, d1) = d1 + b0d1 + b0a0 + b0c0d1 → t′1
k2(a0, b0, c1, d0) = c1 + d0 + a0 + b0c1 + b0d0 + c1d0 + b0a0 + b0c1d0 → t′2
k3(a1, b0, c1, d1) = b0c1 + b0a1 + b0c1d1 → t′3
k4(a0, b1, c0, d0) = c0 + a0 + b1c0 + b1d0 + c0d0 + d0a0 + b1c0d0 → t′4
k5(a1, b1, c0, d1) = b1 + a1 + b1c0 + b1d1 + d1a1 + b1c0d1 → t′5
k6(a1, b1, c1, d0) = b1 + c1d0 + d0a1 + b1c1d0 → t′6
k7(a0, b1, c1, d1) = d1a0 + b1c1d1 → t′7

x′0 + x′1 + x′2 + x′3 = x0 x′4 + x′5 + x′6 + x′7 = x1
y′0 + y′1 + y′2 + y′3 = y0 y′4 + y′5 + y′6 + y′7 = y1
z′0 + z′1 + z′2 + z′3 = z0 z′4 + z′5 + z′6 + z′7 = z1
t′0 + t′1 + t′2 + t′3 = t0 t′4 + t′5 + t′6 + t′7 = t1

32 Re-Consolidating First-Order Masking Schemes

G 2-share Masked GF (24) Multiplier without Fresh Masks

F (a, b, c, d, e, f, g, h) : 〈x, y, z, t〉

x = f (a, b, c, d, e, f, g, h) = b+ d+ ae+ ce+ af + bf + cf + df + cg + ah+ bh

y = g(a, b, c, d, e, f, g, h) = a+ b+ c+ d+ be+ de+ af + cf + dg + ah

z = h(a, b, c, d, e, f, g, h) = b+ c+ ae+ ce+ de+ af + bf + df + ag + dg + ch+ dh

t = k(a, b, c, d, e, f, g, h) = a+ b+ d+ be+ ce+ af + cf + df + bg + cg + dg + ch

f0(a0, b0, c0, d0, e0, f0, g0, h0) =d0 + a0e0 + c0e0 + a0f0 + b0f0 + c0f0 + d0f0+
c0g0 + a0h0 + b0h0 →x′0

f1(a0, b0, c0, d0, e1, f1, g1, h1) =b0 + e1 + a0e1 + c0e1 + a0f1 + b0f1 + c0f1 + d0f1+
c0g1 + a0h1 + b0h1 →x′1

f2(a1, b1, c1, d1, e0, f0, g0, h0) =d1 + a1e0 + c1e0 + a1f0 + b1f0 + c1f0+
d1f0 + c1g0 + a1h0 + b1h0 →x′2

f3(a1, b1, c1, d1, e1, f1, g1, h1) =b1 + e1 + a1e1 + c1e1 + a1f1 + b1f1 + c1f1 + d1f1+
c1g1 + a1h1 + b1h1 →x′3

g0(a0, b0, c0, d0, e0, f0, g0, h0)=a0 + b0 + b0e0 + d0e0 + a0f0 + c0f0 + d0g0 + a0h0 →y′0
g1(a0, b0, c0, d0, e1, f1, g1, h1)=c0 + d0 + f1 + b0e1 + d0e1 + a0f1 + c0f1 + d0g1+

a0h1 →y′1
g2(a1, b1, c1, d1, e0, f0, g0, h0)=b1 + c1 + d1 + b1e0 + d1e0 + a1f0 + c1f0 + d1g0+

a1h0 →y′2
g3(a1, b1, c1, d1, e1, f1, g1, h1)=a1 + f1 + b1e1 + d1e1 + a1f1 + c1f1 + d1g1 + a1h1 →y′3

h0(a0, b0, c0, d0, e0, f0, g0, h0)=b0 + a0e0 + c0e0 + d0e0 + a0f0 + b0f0 + d0f0+
a0g0 + d0g0 + c0h0 + d0h0 →z′0

h1(a0, b0, c0, d0, e1, f1, g1, h1)=c0 + g1 + a0e1 + c0e1 + d0e1 + a0f1 + b0f1+
d0f1 + a0g1 + d0g1 + c0h1 + d0h1 →z′1

h2(a1, b1, c1, d1, e0, f0, g0, h0)=b1 + a1e0 + c1e0 + d1e0 + a1f0 + b1f0 + d1f0+
a1g0 + d1g0 + c1h0 + d1h0 →z′2

h3(a1, b1, c1, d1, e1, f1, g1, h1)=c1 + g1 + a1e1 + c1e1 + d1e1 + a1f1 + b1f1+
d1f1 + a1g1 + d1g1 + c1h1 + d1h1 →z′3

k0(a0, b0, c0, d0, e0, f0, g0, h0)=a0 + b0e0 + c0e0 + a0f0 + c0f0 + d0f0 + b0g0+
c0g0 + d0g0 + c0h0 →t′0

k1(a0, b0, c0, d0, e1, f1, g1, h1)=b0 + d0 + h1 + b0e1 + c0e1 + a0f1 + c0f1+
d0f1 + b0g1 + c0g1 + d0g1 + c0h1 →t′1

k2(a1, b1, c1, d1, e0, f0, g0, h0)=a1 + c1 + d1 + b1e0 + c1e0 + a1f0 + c1f0+
d1f0 + b1g0 + c1g0 + d1g0 + c1h0 →t′2

k3(a1, b1, c1, d1, e1, f1, g1, h1)=b1 + c1 + h1 + b1e1 + c1e1 + a1f1 + c1f1+
d1f1 + b1g1 + c1g1 + d1g1 + c1h1 →t′3

x′0 + x′1 = x0 x′2 + x′3 = x1
y′0 + y′1 = y0 y′2 + y′3 = y1
z′0 + z′1 = z0 z′2 + z′3 = z1
t′0 + t′1 = t0 t′2 + t′3 = t1

Aein Rezaei Shahmirzadi, Amir Moradi 33

H 2-share Masked GF (24) Square-Scale-Multiplier
with 1-bit Fresh Mask, Jointly Uniform with P and Q

F (a, b, c, d, e, f, g, h) : 〈x, y, z, t〉

x = f (a, b, c, d, e, f, g, h) = a+ e+ ae+ be+ ce+ af + df + ag + cg + bh+ dh

y = g(a, b, c, d, e, f, g, h) = 1 + d+ h+ ae+ be+ de+ af + cf + df + bg + ah+ bh

z = h(a, b, c, d, e, f, g, h) = a+ b+ c+ d+ e+ f + g + h+ ae+ be+ ce+ de+ af+
cf + ag + bg + dg + ah+ ch+ dh

t = k(a, b, c, d, e, f, g, h) = b+ d+ f + h+ ae+ ce+ bf + df + ag + cg + dg + bh+ ch

f0(a0, b0, c0, d0, e0, f0, g0, h0) =b0 + c0 + d0 + f0 + a0e0 + b0e0 + c0e0 + a0f0+
d0f0 + a0g0 + c0g0 + b0h0 + d0h0 →x′0

f1(a1, b0, c1, d1, e1, f0, g1, h1) =b0 + d1 + f0 + g1 + a1e1 + b0e1 + c1e1 + a1f0+
d1f0 + a1g1 + c1g1 + b0h1 + d1h1 →x′1

f2(a0, b1, c0, d0, e1, f1, g1, h1) =a0 + c0 + d0 + e1 + f1 + g1 + a0e1 + b1e1 + c0e1+
a0f1 + d0f1 + a0g1 + c0g1 + b1h1 + d0h1 →x′2

f3(a1, b1, c1, d1, e0, f1, g0, h0) =a1 + d1 + e0 + f1 + a1e0 + b1e0 + c1e0 + a1f1+
d1f1 + a1g0 + c1g0 + b1h0 + d1h0 →x′3

g0(a0, b0, c0, d0, e0, f0, g0, h0)=1 + b0 + a0e0 + b0e0 + d0e0 + a0f0 + c0f0 + d0f0+
b0g0 + a0h0 + b0h0 →y′0

g1(a1, b0, c1, d1, e1, f0, g1, h1)=b0 + c1 + d1 + e1 + g1 + a1e1 + b0e1 + d1e1+
a1f0 + c1f0 + d1f0 + b0g1 + a1h1 + b0h1 →y′1

g2(a0, b1, c0, d0, e1, f1, g1, h1)=d0 + e1 + g1 + h1 + a0e1 + b1e1 + d0e1 + a0f1+
c0f1 + d0f1 + b1g1 + a0h1 + b1h1 →y′2

g3(a1, b1, c1, d1, e0, f1, g0, h0)=c1 + h0 + a1e0 + b1e0 + d1e0 + a1f1 + c1f1+
d1f1 + b1g0 + a1h0 + b1h0 →y′3

h0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + b0e0 + c0e0 + d0e0 + a0f0 + c0f0 + a0g0+
b0g0 + d0g0 + a0h0 + c0h0 + d0h0 →z′0

h1(a1, b0, c1, d1, e1, f0, g1, h1)=b0 + c1 + d1 + e1 + f0 + g1 + a1e1 + b0e1 + c1e1+
d1e1 + a1f0 + c1f0 + a1g1 + b0g1 + d1g1 + a1h1+
c1h1 + d1h1 →z′1

h2(a0, b1, c0, d0, e1, f1, g1, h1)=a0 + b1 + c0 + d0 + f1 + h1 + a0e1 + b1e1 + c0e1+
d0e1 + a0f1 + c0f1 + a0g1 + b1g1 + d0g1 + a0h1+
c0h1 + d0h1 →z′2

h3(a1, b1, c1, d1, e0, f1, g0, h0)=a1 + e0 + h0 + a1e0 + b1e0 + c1e0 + d1e0 + a1f1+
g0 + c1f1 + a1g0 + b1g0 + d1g0 + a1h0 + c1h0 + d1h0 →z′3

k0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + c0e0 + b0f0 + d0f0 + a0g0 + c0g0 + d0g0+
b0h0 + c0h0 + m →t′0

k1(a1, b0, c1, d1, e1, f1, g0, h1)=b0 + e1 + h1 + a1e1 + c1e1 + b0f1 + d1f1 + a1g0+
c1g0 + d1g0 + b0h1 + c1h1 →t′1

k2(a0, b1, c0, d0, e1, f1, g1, h1)=d0 + e1 + f1 + a0e1 + c0e1 + b1f1 + d0f1 + a0g1+
c0g1 + d0g1 + b1h1 + c0h1 →t′2

k3(a1, b1, c1, d1, e0, f0, g1, h0)=b1 + d1 + f0 + h0 + a1e0 + c1e0 + b1f0 + d1f0+
a1g1 + c1g1 + d1g1 + b1h0 + c1h0 + m →t′3

x′0 + x′1 = x0 x′2 + x′3 = x1 y′0 + y′1 = y0 y′2 + y′3 = y1
z′0 + z′1 = z0 z′2 + z′3 = z1 t′0 + t′1 = t0 t′2 + t′3 = t1

34 Re-Consolidating First-Order Masking Schemes

I 2-share Masked GF (24) Square-Scale-Multiplier
without Fresh Masks, Jointly Uniform with P

F (a, b, c, d, e, f, g, h) : 〈x, y, z, t〉

x = f (a, b, c, d, e, f, g, h) = a+ e+ ae+ be+ ce+ af + df + ag + cg + bh+ dh

y = g(a, b, c, d, e, f, g, h) = 1 + d+ h+ ae+ be+ de+ af + cf + df + bg + ah+ bh

z = h(a, b, c, d, e, f, g, h) = a+ b+ c+ d+ e+ f + g + h+ ae+ be+ ce+ de+ af+
cf + ag + bg + dg + ah+ ch+ dh

t = k(a, b, c, d, e, f, g, h) = b+ d+ f + h+ ae+ ce+ bf + df + ag + cg + dg + bh+ ch

f0(a0, b0, c0, d0, e0, f0, g0, h0) =a0e0 + b0e0 + c0e0 + a0f0 + d0f0 + a0g0 + c0g0+
b0h0 + d0h0 →x′0

f1(a1, b1, c1, d1, e0, f0, g0, h0) =a1e0 + b1e0 + c1e0 + a1f0 + d1f0 + a1g0 + c1g0+
b1h0 + d1h0 + e0 + a1 →x′2

f2(a0, b0, c0, d0, e1, f1, g1, h1) =a0e1 + b0e1 + c0e1 + a0f1 + d0f1 + a0g1 + c0g1+
b0h1 + d0h1 + h1 + a0 →x′1

f3(a1, b1, c1, d1, e1, f1, g1, h1) =a1e1 + b1e1 + c1e1 + a1f1 + d1f1 + a1g1 + c1g1+
b1h1 + d1h1 + e1 + h1 →x′3

g0(a0, b0, c0, d0, e0, f0, g0, h0)=1 + a0e0 + b0e0 + d0e0 + a0f0 + c0f0 + d0f0+
b0g0 + a0h0 + b0h0 + e0 + c0 →y′0

g1(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + b1e0 + d1e0 + a1f0 + c1f0 + d1f0 + b1g0+
a1h0 + b1h0 + e0 + h0 →y′2

g2(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + b0e1 + d0e1 + a0f1 + c0f1 + d0f1 + b0g1+
a0h1 + b0h1 + c0 + d0 →y′1

g3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + b1e1 + d1e1 + a1f1 + c1f1 + d1f1 + b1g1+
a1h1 + b1h1 + h1 + d1 →y′3

h0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + b0e0 + c0e0 + d0e0 + a0f0 + c0f0 + a0g0+
b0g0 + d0g0 + a0h0 + c0h0 + d0h0 + f0 + h0 →z′0

h1(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + b1e0 + c1e0 + d1e0 + a1f0 + c1f0 + a1g0+
b1g0 + d1g0 + a1h0 + c1h0 + d1h0 + e0 + g0 + d1 →z′2

h2(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + b0e1 + c0e1 + d0e1 + a0f1 + c0f1 + a0g1+
b0g1 + d0g1 + a0h1 + c0h1 + d0h1 + e1 + g1 + h1+
a0 + b0 + c0 + d0 →z′1

h3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + b1e1 + c1e1 + d1e1 + a1f1 + c1f1 + a1g1+
b1g1 + d1g1 + a1h1 + c1h1 + d1h1 + f1 + a1 + b1 + c1 →z′3

k0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + c0e0 + b0f0 + d0f0 + a0g0 + c0g0 + d0g0+
b0h0 + c0h0 + f0 + a0 + b0 →t′0

k1(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + c1e0 + b1f0 + d1f0 + a1g0 + c1g0 + d1g0+
b1h0 + c1h0 + h0 →t′2

k2(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + c0e1 + b0f1 + d0f1 + a0g1 + c0g1 + d0g1+
b0h1 + c0h1 + a0 + d0 →t′1

k3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + c1e1 + b1f1 + d1f1 + a1g1 + c1g1 + d1g1+
b1h1 + c1h1 + f1 + h1 + b1 + d1 →t′3

x′0 + x′1 = x0 x′2 + x′3 = x1 y′0 + y′1 = y0 y′2 + y′3 = y1
z′0 + z′1 = z0 z′2 + z′3 = z1 t′0 + t′1 = t0 t′2 + t′3 = t1

Aein Rezaei Shahmirzadi, Amir Moradi 35

J 2-share Masked GF (24) Square-Scale-Multiplier
without Fresh Masks, Jointly Uniform with Q

F (a, b, c, d, e, f, g, h) : 〈x, y, z, t〉

x = f (a, b, c, d, e, f, g, h) = a+ e+ ae+ be+ ce+ af + df + ag + cg + bh+ dh

y = g(a, b, c, d, e, f, g, h) = 1 + d+ h+ ae+ be+ de+ af + cf + df + bg + ah+ bh

z = h(a, b, c, d, e, f, g, h) = a+ b+ c+ d+ e+ f + g + h+ ae+ be+ ce+ de+ af+
cf + ag + bg + dg + ah+ ch+ dh

t = k(a, b, c, d, e, f, g, h) = b+ d+ f + h+ ae+ ce+ bf + df + ag + cg + dg + bh+ ch

f0(a0, b0, c0, d0, e0, f0, g0, h0) =a0e0 + b0e0 + c0e0 + a0f0 + d0f0 + a0g0 + c0g0+
b0h0 + d0h0 →x′0

f1(a0, b0, c0, d0, e1, f1, g1, h1) =a0e1 + b0e1 + c0e1 + a0f1 + d0f1 + a0g1 + c0g1+
b0h1 + d0h1 + a0 + e1 →x′1

f2(a1, b1, c1, d1, e0, f0, g0, h0) =a1e0 + b1e0 + c1e0 + a1f0 + d1f0 + a1g0 + c1g0+
b1h0 + d1h0 + d1 + e0 →x′2

f3(a1, b1, c1, d1, e1, f1, g1, h1) =a1e1 + b1e1 + c1e1 + a1f1 + d1f1 + a1g1 + c1g1+
b1h1 + d1h1 + a1 + d1 →x′3

g0(a0, b0, c0, d0, e0, f0, g0, h0)=1 + a0e0 + b0e0 + d0e0 + a0f0 + c0f0 + d0f0+
b0g0 + a0h0 + b0h0 + a0 + g0 →y′0

g1(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + b0e1 + d0e1 + a0f1 + c0f1 + d0f1 + b0g1+
a0h1 + b0h1 + a0 + d0 →y′1

g2(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + b1e0 + d1e0 + a1f0 + c1f0 + d1f0 + b1g0+
a1h0 + b1h0 + g0 + h0 →y′2

g3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + b1e1 + d1e1 + a1f1 + c1f1 + d1f1 + b1g1+
a1h1 + b1h1 + d1 + h1 →y′3

h0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + b0e0 + c0e0 + d0e0 + a0f0 + c0f0 + a0g0+
b0g0 + d0g0 + a0h0 + c0h0 + d0h0 + b0 + d0 →z′0

h1(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + b0e1 + c0e1 + d0e1 + a0f1 + c0f1 + a0g1+
b0g1 + d0g1 + a0h1 + c0h1 + d0h1 + a0 + c0 + h1 →z′1

h2(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + b1e0 + c1e0 + d1e0 + a1f0 + c1f0 + a1g0+
b1g0 + d1g0 + a1h0 + c1h0 + d1h0 + a1 + c1 + d1+
e0 + f0 + g0 + h0 →z′2

h3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + b1e1 + c1e1 + d1e1 + a1f1 + c1f1 + a1g1+
b1g1 + d1g1 + a1h1 + c1h1 + d1h1 + b1 + e1 + f1 + g1 →z′3

k0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + c0e0 + b0f0 + d0f0 + a0g0 + c0g0 + d0g0+
b0h0 + c0h0 + b0 + e0 + f0 →t′0

k1(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + c0e1 + b0f1 + d0f1 + a0g1 + c0g1 + d0g1+
b0h1 + c0h1 + d0 →t′1

k2(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + c1e0 + b1f0 + d1f0 + a1g0 + c1g0 + d1g0+
b1h0 + c1h0 + e0 + h0 →t′2

k3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + c1e1 + b1f1 + d1f1 + a1g1 + c1g1 + d1g1+
b1h1 + c1h1 + b1 + d1 + f1 + h1 →t′3

x′0 + x′1 = x0 x′2 + x′3 = x1 y′0 + y′1 = y0 y′2 + y′3 = y1
z′0 + z′1 = z0 z′2 + z′3 = z1 t′0 + t′1 = t0 t′2 + t′3 = t1

36 Re-Consolidating First-Order Masking Schemes

K Attack Results with PRNG off

(a) Midori, 1st-order profiling MC-DPA,
first round, 10 000 traces

(b) AES, 1st-order collision MC-DPA,
first round, 10 000 traces

Figure 10: Experimental analysis with initial masking turned off.

	Introduction
	Our Contributions

	Preliminaries
	Notations and Definitions
	Threshold Implementations
	Probing Security
	Masking with d+1 Shares

	Technique
	2-input Quadratic Functions
	3-input Cubic Functions
	4-input Cubic Functions

	Case Studies
	Midori
	PRESENT
	PRINCE
	AES
	AES Encryption

	Analysis
	Setup
	Evaluation Technique
	Results

	Discussions and Conclusions
	Simulation of Masked Q4300 of DBLP:conf/crypto/ReparazBNGV15
	2-share Masked Midori Sbox without Fresh Masks
	2-share Masked PRESENT Sbox without Fresh Masks
	2-share Masked PRINCE Sbox without Fresh Masks
	2-share Masked PRINCE SboxInverse without Fresh Masks
	2-share Masked GF(24) Inversion without Fresh Masks
	2-share Masked GF(24) Multiplier without Fresh Masks
	2-share Masked GF(24) Square-Scale-Multiplierwith 1-bit Fresh Mask, Jointly Uniform with P and Q
	2-share Masked GF(24) Square-Scale-Multiplierwithout Fresh Masks, Jointly Uniform with P
	2-share Masked GF(24) Square-Scale-Multiplierwithout Fresh Masks, Jointly Uniform with Q
	Attack Results with PRNG off

