
Keep it Unsupervised: Horizontal Attacks Meet
Deep Learning

Guilherme Perin1, Łukasz Chmielewski2,3, Lejla Batina2 and Stjepan Picek1

1 Delft University of Technology, The Netherlands
2 Radboud University Nijmegen, The Netherlands

3 Riscure BV, The Netherlands

Abstract. To mitigate side-channel attacks, real-world implementations of public-key
cryptosystems adopt state-of-the-art countermeasures based on randomization of the
private or ephemeral keys. Usually, for each private key operation, a “scalar blinding”
is performed using 32 or 64 randomly generated bits. Nevertheless, horizontal
attacks based on a single trace still pose serious threats to protected ECC or RSA
implementations. If the secrets learned through a single-trace attack contain too
many wrong (or noisy) bits, the cryptanalysis methods for recovering remaining bits
become impractical due to time and computational constraints. This paper proposes
a deep learning-based framework to iteratively correct partially correct private keys
resulting from a clustering-based horizontal attack. By testing the trained network on
scalar multiplication (or exponentiation) traces, we demonstrate that a deep neural
network can significantly reduce the number of wrong bits from randomized scalars
(or exponents).
When a simple horizontal attack can recover around 52% of attacked multiple private
key bits, the proposed iterative framework improves the private key accuracy to above
90% on average and to 100% for at least one of the attacked keys. Our attack model
remains fully unsupervised and excludes the need to know where the error or noisy
bits are located in each separate randomized private key.
Keywords: Side-channel Analysis · Public-key Algorithms · Horizontal Attacks · Deep
Learning

1 Introduction
Modern implementations of public-key cryptosystems in embedded devices are usually
protected against side-channel attacks (SCAs). When considering RSA or ECC-based
protocols such as key generation or signature verification, the operation to protect is
modular exponentiation or scalar multiplication, which are accordingly the most security-
critical operations (including the operations they consist of). The private key (scalar
or exponent) directly determines the computation length, i.e., the number of iterations
in a scalar multiplication or modular exponentiation loop. Side-channel attacks have
been shown to be a threat even against protected implementations, see, e.g., [CCC+19].
Typical countermeasures include randomization of the private key (as well as other sensitive
parameters for each protocol execution, e.g., projective coordinates for ECC) and the
regularity of all the operations involved.

Using the randomization techniques properly deems unsupervised attacks such as
DPA [KJJ99], CPA [BCO04], or MIA [GBTP08] unfeasible. On the other hand, Simple
Power Analysis (SPA), which is the simplest form of unsupervised attack, can be defeated
by regular methods, such as Montgomery ladder [JY02], square-and-multiply always (resp.
double-and-add always), or atomicity-based implementations [GV10]. However, profiling

2 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

attacks still apply, but they require an open device clone with access to the random number
generator output to use the profiling phase’s random values. This is typically impractical
since those values are stored in a protected way and are inaccessible to an adversary or
even evaluator. Consequently, the only possible attack in a real-world scenario remains
the exploitation of a single trace separately. The secret recovered from a single trace is
a blinded private key, which can still be used for decryption or signature verification for
RSA or ECC-based protocols.

In the past years, different forms of horizontal attacks that target single traces have
been proposed in several research papers [BJPW13, BJP+15]. For a horizontal attack
to be successful, the private key bits must be recovered from a single side-channel trace,
because only then the blinding procedure has no effect. This makes horizontal attacks a
serious threat against private key blinding protections. However, the results provided by
horizontal attacks must provide a limited amount of wrong bits (or noisy bits) in recovered
private keys to complete the attack with brute-force or some other cryptanalysis. If the
amount of wrong bits is substantial, the brute-force step is usually impractical. Besides,
the attacker usually has unreliable metrics to determine the wrong bits’ position inside the
recovered private key. These constraints may render horizontal attacks unfeasible when
assessing the security of protected implementations of public-key cryptosystems.

This paper proposes a new approach to improve single trace attacks that reduce the
number of wrong bits in a recovered private key. By attacking several single traces, an
attacker may recover several partially correct random private keys. This information is
then used to label each sub-trace (trace interval representing the processing of a single
private key bit) and use them as elements in a training set to train a neural network.
Assuming that each recovered private key contains more than 50% of correct bits (just
above a random guess), the trained neural network can significantly improve the number of
correct bits in a random private key related to a single trace. This way, the attack remains
an unsupervised side-channel attack. Our experiments show that even if the partially
recovered private keys contain up to 48% of wrong bits, the neural network can return
private keys with above 90% correct bits on average. Moreover, for at least one of the
attacked private keys, our method reaches 100% correctness1. We refer to the maximum
correctness among attacked private keys as the maximum single trace accuracy.

Our new attack framework is based on the fact that deep neural networks can generalize
well, even if the training set contains a significant amount of noisy labels [ZS18, HYY+18].

To summarize, the main contributions of this work are as follows:
• We propose a novel framework for horizontal attacks on implementations of public-

key cryptosystems. This framework is based on an unsupervised learning paradigm.
The efficiency of our method reaches above 90% accuracy on average and 100%
maximum single trace accuracy, which is a significant improvement from state-of-
the-art horizontal attacks.

• We demonstrate our method on two real-world datasets featuring the traces from
protected ECC implementations on ARM Cortex-M. More precisely, we successfully
attack µNaCl2 library that is additionally side-channel protected. The protections
include coordinate re-randomization [NCOS16] and each scalar multiplication is
performed with a different random scalar. Therefore, we effectively attack scalar
multiplication with an ephemeral key.

• As our framework is generic, we argue it is adequate to target other public-key, in
particular RSA and ECC cryptographic implementations.

1Note that usually recovering one of the randomized or blinded private keys is equivalent to breaking
the security of the system, for example, recovering one random scalar breaks the ECDSA security.

2http://munacl.cryptojedi.org/curve25519-cortexm0.shtml

http://munacl.cryptojedi.org/curve25519-cortexm0.shtml

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 3

Algorithm 1: Montgomery ladder with cswap and coordinate re-randomization.
// ... initialization omitted ...
bprev ← 0;
for i = 254 . . . 0 do

re_randomize_coords(work_state);
b← bit i of scalar;
s← b⊕ bprev;
bprev ← b;
cswap(work_state, s);
ladderstep(work_state);

end
// ... return omitted ...

Structure of the paper The remainder of this work is organized as follows. Section 2
summarizes background information on deep neural networks and the details of the attacked
implementations. Subsequently, we describe horizontal attacks and their background,
including related work, and the technique used for labeling in Section 3. We propose an
iterative deep learning framework in Section 4. In Section 5, we present the results of
our practical evaluation of the proposed framework. Section 6 discusses how to extend
the iterative framework to different targets. Finally, in Section 7, we conclude with an
overview of what we believe to be the most important directions for future work.

2 Background
This section gives relevant background information about the target, i.e., datasets we used,
and deep learning as employed in our framework.

2.1 Target
This work targets protected ECC implementations in software. In particular, we attack the
same library as Nascimento and Chmielewski in [NC17], namely, a protected µNaCl. This
is a cryptographic library for ARM Cortex-M that provides implementations of Curve25519,
an elliptic curve of the 128-bit security level, and its associated X25519 key exchange
protocol. The curve Curve25519 [Ber06] is a Montgomery curve defined by the equation
y2 = x3 + 486662x2 + x over the prime field defined by the prime number 2255 − 19.
It uses x = 9 as the base point, which generates a cyclic subgroup of order 2252 +
27742317777372353535851937790883648493 (prime) and cofactor 8.

The µNaCl library provides two elliptic curve scalar multiplication (ECSM) imple-
mentations, both based on the Montgomery ladder. A high-level description of the
implementations is given in Algorithm 1. Both of them implement ECC processing opera-
tion ladderstep in the same way (for details, see [DHH+15]). However, they differ in how
the conditional swap (cswap) operation, fundamental to implement it in constant time, is
performed: either by arithmetic means (cswap-arith) or pointers swapping (cswap-pointer).
For each iteration, the cswap condition depends on the scalar bit processed at that moment.

In the cswap-arith implementation, the if/else branch is replaced by conditional swaps
of the respective coordinate values of the working points, P1 = (X1, Z1) and P2 = (X2, Z2),
to achieve constant time. The coordinate values are essentially exchanged word by word.
Another cswap implementation performs a conditional swap of pointers to the field elements
instead (cswap-pointer). The main difference between those implementations is that during
each ECSM iteration, in the second implementation, the mask is accessed fewer times by

4 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

the AND (&) instruction (3 times) than in the cswap-arith (16 times). The implementation
of cswap-arith is presented in Appendix A.

Note that the µNaCl ECSM implementations do not provide SCA countermeasures,
besides being regular3 and constant-time. The authors of [NC17] strengthen the SCA
resistance by adding coordinate re-randomization [NCOS16] to both implementations.

Although the scalar randomization is not implemented in µNaCl, we collect the traces
with a random scalar for each ECSM execution. Therefore, we effectively attack Elliptic
Curve Diffie-Hellman Ephemeral (ECDHE) key exchange or the scalar multiplication with
an ephemeral key, as required in some signature generation algorithms, e.g., ECDSA. For
details about the targeted implementation, we refer the reader to [NC17].

Observe that the techniques presented in this paper also work against implementations
protected with scalar randomization. For the scalar protected with blinding, our deep
learning approach would be simply applied on a longer blinded scalar (e.g., for a 64-bit
blinding, we would need to attack 319-bit scalar instead of 255-bit one). In the case of
scalar splitting, our technique would need to be performed on both split scalars.

Leakage from cswap in [NC17] The paper [NC17] shows that both implementations
leak the cswap condition value through an elaborate and heavily parameterized horizontal
clustering attack. For both implementations, the authors succeed in recovering at least
one random scalar when employing an additional brute-force. The attack’s success rate
reaches more than 95% for a single trace among all 100 attacked traces. In particular, the
pointer cswap implementation leaks slightly more than the arithmetic one.

Measurement Setup We use a similar setup to the one from [NC17]. The target software
runs on the STM32F4 microcontroller chip on the board, with a 32-bit ARM-M4 CPU
core, clocked at 168 MHz. We acquired electromagnetic emanation (EM) traces that
originate from the ECSM execution on the target device, using a single EM probe. The
setup consists of a Lecroy Waverunner 8254M oscilloscope, a Langer RF-U 2.5-2 H-field
probe, an amplifier, and an analog low pass filter (250 MHz), where we use a low pass
BNC analog filter BLP-250+ from Mini-Circuits. The following settings were used: 2.5
GS/s sample rate, 16 mV amplitude, and 70 million samples. The acquisition and trace
pre-processing were done using Riscure’s Inspector software package.4

2.2 Datasets
Two datasets are considered in this paper. They are collected from an implementation that
executes Algorithm 1. The first dataset refers to the implementation that uses the pointer
conditional swap. The second implementation uses the arithmetic conditional swap.

Both datasets consist of 300 traces each. The traces are split up to single iterations
and aligned as described in Section 5.1. For each iteration, we aim to recover the bit s
from Algorithm 1 (i.e., the condition bit to cswap). All the accuracy values in this paper
are listed for the values of s.

Dataset Pointer-Cswap The split dataset for pointer cswap consist of 255 ∗ 300 = 76 500
iteration traces. Four overlapped iteration traces are presented in Figure 1. As we can see,
the traces are relatively noisy. We mark the alignment area with a grey color.

Subsequently, we execute a horizontal attack, following a shortened approach from [NC17],
as described in detail in Section 3.3. The resulting average accuracy for 300 traces is

3Regularity means that the scalar multiplication operations, like ECC double-and-add, are always
executed in the same order, regardless the scalar.

4http://www.riscure.com/

http://www.riscure.com/

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 5

Figure 1: Pointer-Cswap 4 overlapped traces (grey color marks aligned area)

Figure 2: Arith-Cswap 4 overlapped traces (grey color marks aligned area)

relatively low: 0.5224. Finally, for the deep learning attack, we label the traces with the
recovered noisy scalar bits.

Dataset Arith-Cswap The split dataset for arithmetic cswap consists of 76 500 iteration
traces, the same as for the pointer cswap dataset. The four overlapped iteration traces are
presented in Figure 2. Like for the other dataset, the measurements are relatively noisy.

Subsequently, similar as for Pointer-Cswap, we execute the horizontal attack from
Section 3.3. The resulting average accuracy for 300 traces is again relatively low: 0.5244.
Finally, we label the traces with the recovered noisy scalar bits.

2.3 Deep Neural Networks
Algorithms like multilayer perceptron (MLP) or convolutional neural networks (CNNs)
bring many advantages for SCA as they can break targets protected with countermea-
sures [CDP17, KPH+19]. Besides reaching top performance, they also do not require pre-
processing of leakage traces, making the attack simpler to run. Previous works have applied
such methods to profiling attacks against symmetric [MPP16, CDP17, KPH+19, ZBHV20]
and asymmetric crypto algorithms [CCC+19, WPB19].

Convolutional neural networks (CNNs) commonly consist of three types of layers:
convolutional layers, pooling layers, and fully-connected layers. The convolution layer
computes the output of neurons that are connected to local regions in the input, each
computing a dot product between their weights and a small region they are connected to
in the input volume. Pooling decrease the number of extracted features by performing a
down-sampling operation along the spatial dimensions. The fully-connected layer computes
either the hidden activations or the class scores. Additionally, the batch normalization
layer normalizes the input layer by adjusting and scaling the activations.

Data augmentation encompasses various techniques that are used to increase the
amount of data by 1) adding slightly modified copies of already existing data or 2) creating
synthetic data from existing data. Data augmentation helps prevent overfitting. Dropout is
a regularization technique that randomly “drops out” neurons during the training process
of a neural network. This technique is used to reduce overfitting.

Training deep neural networks with noisy labels is a well-known problem within the
machine learning community [HYY+18]. The main challenge relies on the achievement of
good model generalization when a significant portion of training data contains noisy or
random labels. Deep neural networks have a high capacity for memorizing noisy labels,

6 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

which hurts generalization performance. A common way to deal with noisy labels is to use
(explicit) regularization. For example, in [JNC16], the authors applied dropout to improve
learning performance in the presence of noisy labels. Alternatively, data augmentation can
serve as an implicit form of regularization. Data augmentation has been successfully applied
to deep learning-based attacks on protected AES implementations [CDP17, PHJ+19]. In
the first work, the authors modified the training traces with random shifts and warping
to improve the generalization of a profiling attack to side-channel measurements that
contain misalignment. The second work considered common machine learning resampling
techniques like SMOTE to achieve better attack performance. We show that our iterative
framework also benefits from data augmentation as it drastically improves classification
accuracy.

3 Horizontal Attacks
This section provides an overview of horizontal attacks against protected public-key
implementations. First, we list and describe main types of horizontal attacks. Next, we
describe the practical limitations of horizontal attacks. Since our iterative framework
requires initial labeling of attacked traces that is better than random, we describe how to
achieve that using a simple cluster-based horizontal attack. Finally, we present published
methods that aim to remove noisy key bits obtained from public-key implementation.

There are two kinds of horizontal attacks: profiling and non-profiling. In the first case,
an attacker uses a device under his control to create ‘profiles’ of operations with sensitive
data that they can later ‘match’ to measurements taken from the victim’s device. Here,
the attacker might need to know the profiling device’s private key and be even able to turn
off side-channel countermeasures. The attack can, however, be more complex due to the
profiles portability issue, as in practice, the profiles from the controlled device might not
be matching the attacked device perfectly.

In the profiling case, the most notable attacks are template attacks on single traces, as
demonstrated on ECC [NCOS16], and deep learning attacks on RSA [CCC+19].

In the non-profiling case, the attacker does not have access to a profiling device, and
he needs to attack a device with an unknown key. This setting is sometimes also referred
to as unsupervised. In this work, when we discuss horizontal attacks, we usually mean the
non-profiling ones, unless stated otherwise.

3.1 Main Types of Non-Profiling Horizontal Attacks
This section lists the main types of non-profiling horizontal attacks, as proposed in the
recent literature.
• Horizontal correlation attacks: in [CFG+10], the authors proposed an attack based
on predictions of intermediate multiple-precision arithmetic results. Although this
method is effective against private key blinding countermeasures, other mitigation
methods, e.g., message or point randomization, can prevent this horizontal attack.

• Online template attacks [BCP+17]: these attacks use horizontal techniques to exploit
the fact that an internal state of scalar multiplication depends only on the (known)
input and the scalar. Advanced types of those attacks need only one leakage trace
and can defeat implementations protected only with scalar blinding or splitting.
This kind of attack can be prevented by randomizing the internal state using
point blinding and projective coordinate randomization [Cor99] or coordinates re-
randomization [NCOS16]. Note that online template attacks are actually non-
profiling, despite the common setup for template attack that is profiling.

• Collision-correlation horizontal attacks [BJPW13, BJP+15]: in this type of horizontal
attacks, an adversary computes statistical correlations between two sub-traces to

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 7

verify if they share common operands or output in the modular operations. This
method is effective against private key blinding countermeasures and message or
point randomization as the statistical distinguisher only needs side-channel leakages
representing the processing of input operands and output to be used in modular
operations. Thus, this method does not require knowledge of the intermediate data
and can be applied against message randomization techniques. The drawback of this
method is that it requires a low level of noise.

• Clustering-based horizontal attacks [HIM+13, SHKS15, PITM14, PC15, NC17]:
Heyszl et al. [HIM+13] proposed to use clustering algorithms in the context of hori-
zontal attacks. The follow-up work extended the original method to multi-channel
and high-resolution electromagnetic measurements [SHKS15]. Perin et al. [PITM14]
proposed a heuristic method to attack single exponentiation traces (like in RSA)
based on the combination of multi clustering results. The work presented in [PC15]
proposed a clustering-based framework to combine multiple points of interest iden-
tified through different unsupervised methods. In [NC17], the authors applied the
framework proposed in [PC15] to the context of protected ECC implementations.

3.2 Horizontal Attacks in Practice
The application of horizontal attacks requires specific knowledge about the target im-
plementation. This information can be obtained through available documentation or by
reverse engineering. The target scalar multiplication or modular exponentiation may be
implemented in many different ways depending on the required performance or side-channel
resistance. By observing single side-channel traces, an adversary might be able to recognize
the implementation details and then mount a horizontal attack. Cryptographic opera-
tions, like exponentiation or scalar multiplication, are implemented through a sequence
of modular operations. Usually, the minimum required granularity is in distinguishing
doubling and adding for scalar multiplication5 and Montgomery multiplications for modular
exponentiation.

If a (potentially post-processed) side-channel trace provides conditions to recognize
the sequence of operations, an attacker could deduce some valuable information about
the used countermeasures, such as the bit-length of the blinding factor, or the type of
the scalar/exponent blinding countermeasure (e.g., additive, multiplicative, or splitting).
Knowing the bit-length of the private scalar or exponent, the attacker can split the trace
into sub-traces, each one representing (ideally) the time interval to process one scalar
or exponent bit. Even if this process sounds simple from a theoretical point of view, in
practice, a single side-channel trace could feature low signal-to-noise ratio (SNR), dummy
modular operations, or jitter (also as a countermeasure), increasing the difficulty to split
the full trace into sub-traces correctly. While those limitations are not enough to completely
mitigate horizontal attacks, they significantly increase the signal processing requirements.

Private keys recovered by horizontal attacks need to contain a relatively small amount
of wrong bits (also called noisy bits) for the attacker to fully recover the target key with
brute-force or even advanced error correction algorithms based on cryptanalysis. For
example, if an attacker recovers 90% of a 2 048-bit RSA exponent, this means that a trivial
brute-force would require a search space of approximately 10286 under the assumption
that the attacker knows which bits are incorrect6. This simple example shows that dealing
with wrong bits can be challenging or even impractical after a horizontal attack.

Therefore, in practice, it is reasonable to assume that, after applying a non-profiling
horizontal attack to a single trace, the recovered secret key bits might still contain erroneous
bits. Hence, a post-analysis method is still required to reduce the wrong bits to a quantity

5We note that for ECSM, it is sometimes necessary to distinguish even down to field multiplications.
6Observe that there exist algorithms that can correct such errors faster than the trivial brute-force,

e.g., [RIL19, HMM10]. However, to executing those algorithms can be costly (for details, see Section 3.4).

8 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

that cryptanalysis or brute-force can handle. This is where our work comes in, to improve
this process and decrease the error rates.

In this work, the post-analysis solution is based on an iterative deep-learning framework,
as detailed in Section 4. This paper’s main contribution is adopting deep learning to
reduce the number of wrong bits significantly while keeping the attack framework in a
fully unsupervised setting, as an adversary assumes no knowledge about private key bits.

3.3 Short Horizontal Clustering for Traces Labeling
We emphasize that the datasets we attack with deep learning need to be labeled slightly
better than random. Consequently, we combine a shortened version of the horizontal
attack by Nascimento and Chmielewski [NC17] and the semi-parametric approach by Perin
et al. [PC15]. In this section, we recall the attacks and combine them in the horizontal
attack framework, as outlined below.

The framework consists roughly of the following phases:
1. The first step is clustering leakage assessment (CLA). CLA takes as input iteration

traces from multiple ECSM executions and finds time moments in the traces where
the leakage most likely is located; we call these moments points of interest (POIs).

2. Next, key recovery (KR) is run, yielding an approximate scalar. This scalar is
expected to be incorrect (due to some wrong bits) but better than random.

3. Given the approximate scalar, points-of-interest optimization (POI-OPT) produces
a refined list of POIs.

4. Finally, the final KR step outputs the recovered scalars for each ECSM.
The above steps are described in detail in [PC15] and further expanded on in [NC17].

This framework is parametrized in [NC17] in the following way.
• Step 1 can be run with various clustering algorithms: k-means [Alp10], fuzzy
k-means [Alp10], or Expectation-Maximization [Bis06].
Additionally, many outlier detections (for example, Tukey test) and handling methods
(e.g., replace the outlier with the median) can be chosen. These methods are used to
reduce occasional noise peaks.
The results of the clustering algorithm are used to make a leakage metric trace
using one of the following distinguishers: sum-of-squared differences (SOSD), sum-of-
squared t-values (SOST), and mutual information analysis (MIA).

• Step 2 is parametrized similarly to Step 1 with: clustering algorithms, outliers
detectors, and handlers. Additionally, it takes the number of POIs as a parameter
(the POIs are chosen based on the leakage metric trace) and an algorithm that
combines clustering results. This algorithm can be either majority rule or log-
likelihood. Instead of single-dimensional clustering for each POI, it is also possible
to use multi-dimensional clustering and then combining algorithm is not necessary.

• Step 3 is not parametric. It only runs the Welch’s t-test on the result of Step 2.
• Step 4 is parametrized in the same way as Step 2. Note that Steps 4 can be

parametrized partially or completely differently than Step 2.
To simplify the proposed iterative framework (Section 4) and limit the number of

parameters, we stop the attack after Step 2. We also try to choose the most straightforward
parameters while still obtaining better than random results. We run CLA (Step 1) with
k-means, SOST, and Tukey test with a median replacement on 100 traces. The resulting
leakage metric trace for Cswap-Arith is presented in Figure 3. Since the highest peaks
are not in the same offsets as for the correct t-test trace from Figure 6, we should not
expect the attack to work well, but any result better than random should be sufficient; the
situation is similar for the Cswap-Pointer implementation. KR (Step 1) with k-means for
20 best POIs (selected from the result of CLA), and the majority rule are used to recover
the scalars.

The results of this simplified horizontal attack are as follows.

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 9

Figure 3: The result of CLA for Cswap-Arith: the leakage metric trace.

• Pointer-Cswap: the resulting accuracy for 300 traces is relatively low: 0.5224.
However, it is consistent for both recovered groups of scalar bits: 0.5253 for bit 0
and 0.5195 for bit 1. Furthermore, when we run t-test on the recovered labels, then
a few peaks indicate leakage, as presented in Figure 6.

• Arith-Cswap: the resulting accuracy for 300 traces is relatively low: 0.5244. For
the pointer case, the accuracy is consistent for both recovered groups: 0.5234 for bit
0 and 0.5253 for bit 1. Moreover, when we run t-test on the recovered labels, then
several peaks indicating weak leakage are visible, as presented in Figure 6. Observe
these peaks seem slightly less pronounced than in the Pointer-Cswap case.

The achieved accuracy is low (approximately 52%), but we find it sufficient for the
deep learning method presented in this paper to correct the labels. Moreover, observe that
weak leakage can be visible using a t-test, as presented in Figure 6. The resulting datasets
and their accuracy values are described in Section 2.2.

Note that the full procedure presented in [NC17] can recover most of the bits for at least
one scalar out of 100 attacked ones. Afterward, a single correct scalar can be recovered by
brute-force using approximately 245 operations for cswap-arith and 222 for cswap-pointer.
This brute-force step is not necessary for our approach since we can achieve 100% accuracy
for one of the 300 attacked scalars using the deep learning approach.

3.4 Methods to Remove Noisy Bits from Public-key Implementations
Let us assume that an attacker aims to perform a single trace attack on several scalar
multiplications (or modular exponentiations) from a device operating an ECC (or RSA)
protocol. First, by measuring the corresponding side-channel leakages, the attacker acquires
a set {TN} of single traces. Second, they apply a single trace attack, either a profiling or
non-profiling, on these traces and obtains a set of blinded scalar (or exponent) values {d′

i},
for 1 ≤ i ≤ N .

Due to noise and other aspects interfering with the side-channel analysis (misalignment,
for example), the derived scalar (or exponent) might contain multiple errors. The number
ei = HD(d′

i, di) represents the amount of wrongly recovered bits contained in each d′
i,

where HD is the Hamming Distance. In an unsupervised setting, the number of wrong bits
cannot be precisely estimated by an attacker, as well as the indices of the wrong bits in d′

i.
An attacker can also use the probabilities of recovered key bits being either 0 or 1, coming
from the horizontal or template attack, for faster key recovery as presented in [HIM+13],
for example. However, this technique does not work in a more noisy environment due to
many high-confidence false-positives, as presented in [NC17]. Even for a profiling attack,
it is not easy to use these probabilities in a noisy setting, as presented in [NCOS16].

A standard approach to speed up the trivial brute-force is to use a meet-in-the-middle
approach. It is a space-time trade-off cryptographic attack that exploits the fact that
multiple encryption operations are performed in sequence. The attack essentially halves
the effort necessary for the trivial brute-force, but it requires the amount of memory of
exactly that size (i.e., half of the brute-force size). This approach was employed to recover
the full private key from its partial knowledge for exponentiation in [GTY07] and scalar

10 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

multiplication in [NCOS16, NC17].
Alternatively, it may be possible to correct the private key with an informed brute-force

attack from [LvVW15]. Unfortunately, this attack works well if the bits containing errors
are adjacent to each other, which is often not the case.

For RSA, there exist algorithms that can correct multiple errors in a private key (in
the exponent and the prime factors) by exploiting RSA mathematical properties [HS09,
HMM10]. These algorithms utilize the fact that the corresponding public and private
RSA keys contain significant redundancy, especially for RSA-CRT. The attacks do not
consider exponent blinding or splitting, but there exists a follow-up attack against exponent
blinding for RSA-CRT [SW17]. Moreover, there exists an attack that for a small public
RSA exponent (e.g., 3) and given a quarter of the bits of the private key, the attack can
recover the entire private key [BDF98]. Slightly weaker results are achieved for larger
public exponents.

Roche et al. [RIL19] proposed the most efficient, and fitting to the SCA context,
technique, to the best of our knowledge. It improves the original solution from [SI11] and
recovers a secret scalar by combining information from many noisy blinded scalars (e.g.,
outputs of horizontal attacks). It even works efficiently when blinding factors are large
(e.g., ≥ 32 bits) and with a significant bit error rate of 10%− 15%. In our setting, this
kind of correcting algorithm can be applied not after the horizontal attack but after the
deep learning phase. However, this step is not necessary for the results presented in this
paper since we reach a 100% recovery for at least some scalars for both implementations.

4 Proposed Iterative Deep Learning Framework
This section proposes an iterative deep learning framework that can correct wrong bits
from private keys derived from a horizontal attack. The proposed iterative framework
keeps the attack completely unsupervised as no knowledge about secret bits (i.e., labels) is
assumed since the first attack steps. The framework contains an initialization step, where
traces are prepared and labeled with a horizontal attack, and the main part, which consists
of an iterative process.

4.1 Initialization
The input to the framework is a set of scalar multiplication traces (for RSA applications,
it can be replaced by modular exponentiation traces), containing all the sub-operations
representing the full secret scalar’s processing. Thus, the scalar multiplication traces Ti,
i ∈ [0, N − 1], are split into sub-traces Ti,j , each one representing the time interval of the
processing of a single scalar bit. The term j indicates the index of the scalar bit. For each
trace Ti, the scalar may be randomized.

After full scalar multiplication traces are split into sub-traces, as illustrated in Figure 4,
a horizontal attack is applied to the sub-traces Ti,j to define initial labels Yi,j for each
sub-trace. The output of a horizontal attack is dataset D = {Ti,j , Yi,j} labeled according
to two possible classes, 0 and 1. The proposed framework requires additional attack traces
which are not part of D.

4.2 Main Part of the Framework
Figure 5 illustrates the iterative deep learning framework, where every iteration implements
the following four steps:
• Phase 1– Prepare sets D1 and D2: The full set D = {Ti,j , Yi,j} is split into an
initial training set, D1, and a subsequent test set, D2. In our case, the number of
sub-traces in each of these subsets is identical.

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 11

Figure 4: Trace preprocessing for horizontal attacks. The full scalar multiplication traces
are split into sub-intervals, each one framing the processing of one scalar bit. The intervals
indicated by Ti,j (red area) are selected as sub-traces. Green areas are discarded as these
parts present no target leakage.

Figure 5: Proposed iterative framework

• Phase 2– Train on D1, predict and relabel D2: a deep neural network is
trained with D1, with labels Y1, and tested or predicted on D2. The Softmax output
probabilities obtained by predicting D2 are then used to re-label Y2.

• Phase 3– Train on D2, predict and relabel D1: In the next step, the process
works in the opposite direction. The deep neural network is trained with the re-
labeled D2, having new labels Y2, and tested or predicted on D1. This time, the
Softmax output probabilities obtained from D1 are used to re-label Y1.
• Phase 4– Join D1 and D2 and shuffle the full set: this last phase of an iteration

combine both relabelled sets D1 and D2 into a single dataset D = {Ti,j , Yi,j}. Finally,
the combined and shuffled dataset D is again split into D1 and D2 as a preparation
for Phase 1 of the next iteration.

After the deep neural networks are trained on D1 and D2 in Phases 2 and 3, respectively,
a separate test set is used as target traces. This test set can be composed of scalar
multiplication traces that are not used to implement D1 and D2. In the results presented
in Section 5, the attack phase is performed at the end of each training epoch. The test
set does not require an initial labeling step from a horizontal attack. For example, to
determine when the iteration framework should stop, the attacker evaluates N scalar
multiplication traces Ti, i ∈ [0, N − 1], with the known public parameters.

This procedure continues iteratively until a successful attack is achieved. In every step

12 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

Table 1: Horizontal attack results

Dataset Scalar bits ECSM Traces K-means Accuracy

Cswap-Arith 255 250 52.24%

Cswap-Pointer 255 250 52.44%

of this iterative process, it is expected that the number of noisy labels decreases as a result
of deep neural networks learning side-channel leakages from the limited number of correct
labels in the training set. Of course, the higher the wrong bits in the initial training set,
the more iterations we expect to need to reach a successful attack. The main reasons
why the iterative framework can correct wrong labels are because (1) regularized neural
networks are robust and (to some extent) insensitive to the presence of noisy or error
labels and (2) the attacked traces contain exploitable leakages. As we show in Section 5,
because we start with a very low correct rate for labels as a result of a horizontal attack
(52%), the proposed framework usually requires more than 30 iterations until the maximum
accuracy is achieved. In the first iterations (e.g., until iteration 5), we expect a higher
level of correction, while for the rest of iterations, the correction rate is slower. Moreover,
as we show in Section 5, using random CNN models across framework iterations tends
to provide superior results compared to a situation when a fixed CNN is used along the
whole framework process. This is an additional form of regularization, and it supports the
hypothesis that preventing overfitting of deep neural networks at each iteration leads to
better error labels correction.

5 Results

This section provides several results on different applications of the proposed iteration
framework. We start by the crucial preliminary step, i.e., applying a horizontal attack
method to the two target datasets. We conduct a leakage assessment on the datasets
to demonstrate the leakage occurrence, given by t-test peaks, that the framework faces
with these datasets. Next, we apply a cluster-based horizontal attack on the two datasets
to have initial labels for the framework. Finally, we apply the proposed framework with
different variations. The proposed framework is very generic because it does not restrict
the type of learning algorithm to be used in each iteration. Therefore, we apply different
variations of CNN architectures together with different types of regularization techniques.

5.1 Labeling Traces from Clustering-based Horizontal Attack

The first phase considers the application of a horizontal attack to the datasets. Here,
we adopted clustering-based horizontal attacks [PC15]. In this first phase, the goal is to
provide initial labels to the sub-traces. For both datasets, Cswap-Pointer and Cswap-Arith,
we only apply a short version of the horizontal attack, as described in Section 3.3. This
is essentially the attack from [NC17] without optimization. Table 1 details the labeling
accuracy obtained from clustering-based horizontal attacks on both datasets.

In Table 1, the labeling accuracy is close to 52% for both datasets, although it seems
that Cswap-pointer contains a bit more side-channel leakages compared to Cswap-Arith,
as visible in Figure 6. This first phase of the subsequent attack is applied to 250 ECSM
trace sets. From 300 traces, 50 traces are left for test purposes in Phases 2 and 3.

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 13

(a) t-test on cswap-pointer dataset with HA
labels. (b) t-test on cswap-arith dataset with HA labels.

(c) t-test on cswap-pointer dataset with true
labels.

(d) t-test on cswap-arith dataset with true la-
bels.

Figure 6: t-test on the two considered dataset.

5.2 Leakage Assessment on cswap-arith and cswap-pointer Datasets

This section presents a leakage assessment on the datasets used in this paper. This
analysis’s main reason is to demonstrate how much leakage can be captured by standard
leakage assessment methods. It is important to emphasize that the proposed framework
does not assume any knowledge from this leakage assessment as we want to keep the
analysis fully unsupervised. The leakage assessment is based on t-test, and results are
shown in Figure 6. This figure shows t-test peaks with labels obtained from the cluster-
based horizontal attack and correct labels. Note that labels from the horizontal attack can
already indicate leakage detection, as shown in Figures 6b and 6b, for cswap-arith and
cswap-pointer datasets, respectively.

5.3 Attacking cswap-arith and cswap-pointer Datasets with Super-
vised Learning

To achieve 100% of test accuracy on both attacked datasets for at least one scalar
multiplication trace, we define a CNN with one convolution layer (10 filters, kernel size
of 40 and stride of 1) and two fully-connected layers containing 100 neurons each. In all
layers, we use the ReLU activation function. Finally, we use the learning rate equal to
0.0001 and RMSprop optimizer. For both datasets, training is done for 25 epochs and
a mini-batch size of 100 traces. In total, we consider 31 875 sub-traces (obtained from
125 random scalar multiplications) for profiling, and we test the trained CNN on separate
12 875 sub-traces (obtained from 50 random scalar multiplications). To reach a successful
attack on at least one scalar multiplication trace with a supervised setting, we require no
regularization. Still, as we will see in the next section, regularization (dropout and data
augmentation) is crucial to achieve satisfactory attack results.

14 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

Table 2: CNN architectures considered for the two datasets described in Section 2.2

Layer cswap-arith cswap-pointer

Input input_size = 8 000 input_size = 1 000

AvgPooling1D pool size=4, stride=4 -

Conv1D_1 8 filters, ks=20, stride=1 8 filters, ks=40, stride=4

Conv1D_2 16 filters, ks=20, stride=1 16 filters, ks=40, stride=4

Conv1D_3 32 filters, ks=20, stride=1 32 filters, ks=40, stride=4

Dense_1 100 neurons 100 neurons

Dense_2 100 neurons 100 neurons

Softmax 2 neurons 2 neurons
.

5.4 Iterative Framework Application on Different Cases
This section provides experimental results for the proposed iterative framework. The
selected learning algorithm for steps 2 and 3 is a convolutional neural network. First,
in Section 5.4.1, we present results when the CNN hyperparameters are fixed in all the
framework iterations. There, we also introduce the four scenarios in which the framework
is applied. Afterward, in Section 5.4.2, we improve the learning algorithm’s variability
by randomizing the CNN hyperparameters in every framework iteration. In the random
hyperparameters case, we also present results for the four application scenarios described
in Section 5.4.1. We decide to use CNNs instead of, e.g., a multilayer perceptron because
CNNs are more robust to jitter-based effects in side-channel traces, as already demonstrated
in [CDP17].

Maximum single trace accuracy metric: for the provided results on the cswap-
arith and cswap-pointer datasets, we separate 50 scalar multiplication traces, each one
containing 255 sub-traces, one for each scalar bit. The metric to estimate the proposed
iterative framework’s performance is the maximum accuracy obtained by testing the 50
tested scalar multiplication traces. Note that these 50 traces are never used in training
datasets D1 and D2, as they are separated traces.

5.4.1 Fixed CNN Hyperparameters

In the first case, we consider two CNN configuration during all iterations of the framework,
with and without dropout layers [SHK+14], as detailed in Tables 2 and 3. A different
configuration of convolution layers is defined for each dataset. For both CNNs, we defined
three consecutive convolution layers containing 8, 16, and 32 filters, respectively. This
choice is motivated by the fact that more convolution filters in subsequent convolution
layers increase the capacity of the model with respect to leakage detection. For all the
layers, the ReLU activation function is chosen. The weights for the two dense layers
are always initialized with the random uniform method, while for the remaining layers,
the weight initialization considers the glorot uniform method. RMSprop is used as the
stochastic gradient descent optimizer with a learning rate of 0.00001. The loss function
is set to categorical cross-entropy. The CNNs are always trained for ten epochs, as we
observed that training the networks for more epochs results in overfitting and degrades
the results.

As the cswap-arith dataset contains sub-traces with 8 000 samples each, we define as
the first layer an AveragePooling1D layer to implement dimensionality reduction identical
to window resampling. This way, we reduce the number of trainable parameters (weights
and biases) in the deep neural network and also eliminate a part of jitter present in
measurements.

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 15

Table 3: CNN architectures without dropout layers for the two datasets described in
Section 2.2.

Layer cswap-arith cswap-pointer

Input input_size = 8 000 input_size = 1 000

AvgPooling1D pool size=4, stride=4 -

BN Layer Batch Normalization Batch Normalization

Conv1D_1 8 filters, ks=20, stride=1 8 filters, ks=40, stride=4

Conv1D_2 16 filters, ks=20, stride=1 16 filters, ks=40, stride=4

Conv1D_3 32 filters, ks=20, stride=1 32 filters, ks=40, stride=4

Dropout_1 Dropout Rate=0.5 Dropout Rate=0.5

Dense_1 100 neurons 100 neurons

Dropout_2 Dropout Rate=0.5 Dropout Rate=0.5

Dense_2 100 neurons 100 neurons

Softmax 2 neurons 2 neurons

Having defined the two CNN architectures in Tables 2 and 3, the iterative framework
is applied on both datasets, for 50 iterations, on the following four scenarios:

1. CNN (Table 2) without regularization: in each framework iteration, the CNN
is trained without any type of regularization technique;

2. CNN (Table 2) with data augmentation: in this case, shifted-based data
augmentation is considered. Every time a batch of 100 sub-traces is processed during
training, we randomly apply shifts of 5 samples to the right or the left in the x-axis.
The sub-traces were already aligned before the application of horizontal attacks in
order to have initial labels. However, small jitter is still present in the sub-traces,
and data augmentation with minimal shifts of 5 samples showed satisfactory results.
For each epoch, the CNN processes augmented mini-batch 200 times;

3. CNN with dropout (Table 3) and without data augmentation: in this case,
the only type of regularization against overfitting are the two introduced dropout
layers with a dropout rate of 0.5, which is a relatively high rate to provide a significant
level of regularization;

4. CNN with dropout (Table 3) and with data augmentation: in this last case,
we combine dropout layers with data augmentation using the same definitions as
described in Scenario 2;

We expect that dropout and data augmentation regularization methods reduce the
overfitting that can happen during iterations. The overfitting likely happens due to training
an identical deep neural network after relabeling the datasets based on predictions obtained
from this same neural network. Recall that regularization is a widely adopted technique
used in the machine learning community to deal with noisy labels.

For each scenario described above, we run the iterative framework ten times and average
the results. Figures 7 and 8 show the average, minimum, and maximum single trace test
accuracy for the two considered datasets. When attacking the cswap-arith dataset, the
iterative framework can reach 100% of maximum single trace accuracy only when dropout
layers are considered together with data augmentation. For the other three scenarios, the
maximum achieved accuracy values are 92.94%, 78.43%, and 76.07% for dropout only,
data augmentation only, and no regularization, respectively.

Results for the cswap-pointer dataset provided better results for all four scenarios. For
this dataset, we obtained 100% of the maximum single test trace accuracy for the three
cases with some type of regularization. Only when no regularization is considered, the

16 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

Figure 7: Minimum, maximum, and average single trace accuracy with iterative framework
on the cswap-arith dataset.

Figure 8: Minimum, maximum, and average single trace accuracy with iterative framework
on the cswap-pointer dataset.

framework achieved a maximum accuracy of 97.64% after 50 iterations. As a highlight,
results for the cswap-pointer case demonstrated that the framework was able to return
100% accuracy for seven out of ten framework executions when data augmentation is used
as the only regularization method. Table 4 provides the frequency in which the iterative
framework achieves 100% in each scenario for both datasets (in Appendix B, Figures 17
and 18 show the maximum single test trace accuracy obtained for each framework execution
for the two datasets).

The better results for different cases is explained by the high t-test peaks in Figures 6a
and 6c, indicating a higher occurrence of address-like leakages in this scalar multiplication
implementation. Although the t-test peaks for this implementation are higher compared
to the cswap-arith implementation, a clustering-based horizontal attack was able to return
a maximum of 52.44% accuracy for this dataset. Without any method to deal with noisy
labels, like regularization, the iterative framework’s application could not achieve 100%
for one of the 50 tested scalar multiplication traces. However, as the leakage is relatively
higher for this dataset compared to cswap-arith, we can obtain a successful attack on the
cswap-pointer dataset in all scenarios with regularization. For the cswap-arith dataset,
higher successful results are achieved when random CNN hyperparameters and/or the
attack interval is optimized with gradient visualization, as detailed in the following sections.

5.4.2 Random CNN Hyperparameters

In this experiment, the CNN hyperparameters will vary before the start of every framework
iteration. For both datasets, the selected CNN architectures have the same structure as
CNNs presented in Tables 2 and 3, except that we vary the following hyperparameters:
• Number of filters: in the first convolution layer (Conv1D_1), the number of filters

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 17

Figure 9: Random CNN hyperparameters: minimum, maximum, and average single trace
accuracy with iterative framework on the cswap-arith dataset.

is randomly selected between 4 and 8. The two subsequent convolution layers
(Conv1D_2 and (Conv1D_3) will have number filters equal to two and four times,
respectively, the number of filters randomly defined in Conv1D_1. This proportion
is kept to improve feature extraction from side-channel traces.

• Kernel size and strides: for the three convolution layers (Conv1D_1, Conv1D_2,
and (Conv1D_3), the kernel size is the same and randomly selected between 10
and 40. Similarly, the three convolution layers’ strides are the same and randomly
selected between 1 and 4.

• Fully-connected Layers: The number of fully-connected layers is randomly selected
between 1 and 5. The number of neurons for all fully-connected layers is randomly
defined between 100 and 400.

• Activation Function: The activation function for all the layers is randomly selected
from ReLU, Tanh, SELU, or ELU.

The main reason to randomize the CNN configuration before every iteration is to
reduce the same model’s overfitting in a subsequent iteration. Retraining an identical CNN
with datasets relabeled in the previous iteration can bias the model in the next iteration,
reducing the framework’s chances to improve the label’s correctness during the framework
execution consistently.

Figures 9 and 10 show results for both datasets. These figures show an average of ten
framework executions and the maximum and minimum single trace test accuracy. As we
can see, without any type of regularization, the maximum achieved single trace accuracies
are 86.27% and 96.47% for the cswap-arith and cswap-pointer datasets, respectively.
Combining random CNN hyperparameters with regularization techniques improves the
results on the cswap-arith dataset significantly. We can achieve 100% of single trace test
accuracy for all three different scenarios with some type of regularization. Note that
when dropout is combined with data augmentation, running the framework ten times on
cswap-arith dataset resulted in 100% of test accuracy in 6 cases.

For the cswap-pointer dataset, we were able to achieve 100% of single trace test accuracy
when any type of regularization is used. For this last dataset, random CNN hyperparameters
presented similar results in comparison to fixed CNN hyperparameters. Results with
data augmentation only were more successful when fixed CNN hyperparameters are
considered, as detailed in Table 4. On the other hand, the combination of dropout and
data augmentation for random CNN hyperparameters achieved superior results than the
fixed CNN hyperparameters case. For this specific scenario, we managed to achieve 100%
test accuracy in four out of ten framework executions.

18 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

Figure 10: Random CNN hyperparameters: minimum, maximum, and average single
trace accuracy with iterative framework on the cswap-pointer dataset for random CNN
hyperparameters.

5.5 Using Gradient Visualization to Optimize Attack Interval
The proposed iterative framework’s attack performance can be significantly increased
by narrowing down the samples interval in sub-traces. One alternative could be to split
sub-traces into smaller sample intervals and attack each one of them at a time. However,
this would increase computational time and render the analysis too slow. Therefore, in this
section, we propose using a deep learning tool based on gradient visualization to optimize the
attack interval and, as a consequence, reduce iterative framework computational complexity.

Gradient visualization (GV) is conducted by analyzing what input features (given by
a neuron in the input deep neural network layer as a one-to-one mapping) have more
influence in classification during training. It is a technique that computes the values of
derivatives in a neural network regarding the input trace. These derivatives are then used
to point out what feature needs to be modified the least to affect the loss function the
most. In [MDP19], the authors proposed the visualization of input activation gradients as
a technique to characterize the automated selection of points of interest by deep neural
networks. The result is a vector of gradients computed by the backpropagation algorithm
as the derivative of the cost function concerning the input activation.

When applied to our framework, the gradient needs to consider the labels for sub-traces
obtained after each framework iteration. For the initial iterations, the label correctness
can be very low, and the gradients in these first iterations will most likely indicate unclear
results in terms of leakage location. However, by summing up the gradients obtained for
all iterations, we can obtain satisfactory and clear results.

Figures 11 and 12 show gradient peaks for both datasets. The gradient values were
obtained from CNNs trained on both datasets when fixed CNN hyperparameters are used
in all framework iterations. We can clearly observe that gradient peaks correspond to the
leakage occurrence given by t-test results from Figure 6. As a result, an adversary can
narrow down the attack interval in sub-traces. For the cwsap-pointer dataset, Figure 12
indicates high gradient peaks from sample 550 to sample 800. In the case of the cwsap-arith
dataset, Figure 11 shows larger gradients from sample 1 500 to 3 500.

Figures 13 and 14 show results for fixed and random CNN hyperparameters, respectively,
on the cswap-arith dataset. The iterative framework considers only sample interval range
from 1 500 to 3 500 of all sub-traces, which is trace interval where the leakage is more
significant. The CNN configurations are the same as provided in Tables 2 and 3. Now,
we can reach 100% accuracy for all four scenarios, with and without regularization, as
detailed in Tables 4 and 5. Without regularization, one out of ten framework executions
achieved 100% of single trace test accuracy. When no regularization is in place, we could
not achieve 100% for all ten framework executions.

Figures 15 and 16 show results for fixed and random CNN hyperparameters, respectively,

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 19

Figure 11: Input gradient visualization for the cswap-arith dataset.

Figure 12: Input gradient visualization for the cswap-pointer dataset.

on the cswap-pointer dataset. After using gradient visualization to narrow down the interval
for the cswap-pointer dataset, we achieved 100% of maximum test accuracy for the three
scenarios with regularization. Again, only when no regularization method is adopted, the
test accuracy reaches 94.50% and 96.47% for the cases when fixed, and random CNN
hyperparameters are considered on an optimal interval, respectively. In the end, narrowing
down the attack interval for the cswap-pointer dataset did not lead to improved results,
indicating that the original interval of 1 000 samples in sub-traces is needed for the CNN to
fit the existing leakages. On the other hand, for the cswap-arith dataset, the improvement
after optimizing the interval is very significant.

Table 5 also summarizes the maximum single trace accuracy results obtained before
and after considering gradient visualization to optimize the attack interval.

6 Extending the Iterative Framework to Different Targets
The proposed iterative deep learning-based framework is generic and can be extended to
several public-key implementations. The two targets evaluated in this paper executed
scalar multiplications at bit-level, meaning that each sub-trace represents the processing
of a single scalar bit. However, for implementations of scalar multiplications (also modular
exponentiations) that process more than a bit at a time (e.g., window-based implemen-
tations), the only difference would be the number of classes in the trained deep neural
networks and the scalar multiplication trace splitting procedure. In this case, a sub-trace
could represent the processing of a group of scalar bits (i.e., a window).

A successful attack using our proposed framework requires the presence of remaining
and unintentional leakages in the target device. This is the main reason why we clearly
demonstrated through t-test leakage assessment, the presence of remaining and exploitable
leakages after a horizontal attack is applied in order to initialize the framework. Although
detected t-test peaks are significantly lower than those obtained from a situation when
true labels are available, the label correctness of around 52% is already enough for the
proposed framework to iteratively learn the presence of leakages from few (but sufficient)

20 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

Figure 13: Fixed CNN hyperparameters: minimum, maximum, and average single trace
accuracy with iterative framework on the cswap-arith dataset and attacking the sample
interval range from 1 500 to 3 500 of all sub-traces.

Figure 14: Random CNN hyperparameters: minimum, maximum, and average single
trace accuracy with iterative framework on cswap-arith dataset and attacking the sample
interval range from 1 500 to 3 500 of all sub-traces.

correctly labeled sub-traces.
For public-key implementations that are properly protected with masking and hiding

countermeasures, and where the processing of scalar bits leads to a leakage-free scenario,
it is expected that the proposed deep learning-based framework will likely be unable
to iteratively correct error labels. Additionally, in this scenario, we expect that the
initialization labeling step (Section 4.1) with a horizontal attack will deliver random
labels, preventing the framework from learning how to correct the wrong labels through
its iterations.

7 Conclusions and Future Works
This paper presented a novel deep learning-based iterative framework to correct the
remaining wrong bits resulting from horizontal attacks. As discussed in this work, horizontal
attacks are the only applicable method against protected public-key implementations,
and the only alternative for attackers is to recover the full secret from a single trace. As
horizontal attacks face many limitations in practice, it is common to return results with
a high and an unknown number of wrong bits. We show that deep learning techniques,
through an iterative process, can continuously improve the correctness of labels in a
dataset with a high number of noisy bits, given by wrong target scalar bits. From a
cluster-based horizontal attack, which provided very poor accuracy of 52% for two datasets,
our framework was able to return 100% of correct blind and secret scalars. For that, we
made use of deep learning techniques such as dropout, data augmentation, and gradient

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 21

Figure 15: Fixed CNN hyperparameters: minimum, maximum, and average single trace
accuracy with iterative framework on the cswap-pointer dataset and attacking the sample
interval range from 550 to 800 of all sub-traces.

Figure 16: Random CNN hyperparameters: minimum, maximum, and average single trace
accuracy with iterative framework on cswap-pointer dataset and attacking the sample
interval range from 550 to 800 of all sub-traces.

visualization.
Nevertheless, this work leaves space for several future research directions. As regulariza-

tion based on dropout layers and data augmentation was highly efficient in our application
cases, we suggest upgrading the proposed framework’s regularization techniques. For that,
we suggest proposing a metric for early stopping while keeping the framework completely
unsupervised. Another direction would be to adopt ensembles for the iterative framework
to reduce error variability by combining results for several models in each framework
iteration [PCP19]. Finally, an interesting future research direction would be to create a
noisy transition matrix based on classification probabilities for each bit in target scalar
multiplication traces. With this method, it would be possible to identify, with some
probability, the location of wrong bits in final results.

Availability
Implementations for reproducing our results are available at https://github.com/AISyLab/
IterativeDLFramework.

Acknowledgements
Łukasz Chmielewski is partially supported by European Commission through the ERC
Starting Grant 805031 (EPOQUE) of P. Schwabe. We thank anonymous reviewers and
the shepherd for the suggestions on how to improve the paper.

https://github.com/AISyLab/IterativeDLFramework
https://github.com/AISyLab/IterativeDLFramework

22 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

Table 4: Summary of ten iterative framework executions: number of cases where the
framework achieves 100% of maximum single trace test accuracy, for fixed and random
CNN hyperparameters. Results are provided for full sample intervals and after selecting
an optimal interval gradient visualization (GV) results.

Fixed CNN Hyperparameters

cswap-arith cswap-pointer

Method Full interval GV Optimized Full interval GV Optimized

CNN No regularization 0/10 0/10 0/10 0/10

CNN Dropout 0/10 8/10 1/10 1/10

CNN Data Augmentation 0/10 2/10 7/10 2/10

CNN Dropout + Data Augmentation 1/10 9/10 2/10 4/10

Random CNN Hyperparameters

cswap-arith cswap-pointer

Method Full interval GV Optimized Full interval GV Optimized

CNN No regularization 0/10 1/10 0/10 0/10

CNN Dropout 4/10 10/10 1/10 2/10

CNN Data Augmentation 1/10 10/10 2/10 1/10

CNN Dropout + Data Augmentation 6/10 10/10 4/10 3/10

Table 5: Summary of iterative framework results: maximum single trace accuracy achieved
from ten framework executions. Results for the cswap-arith and cswap-pointer datasets
for full sample intervals and after selecting an optimal interval gradient visualization (GV)
results.

Fixed CNN Hyperparameters

cswap-arith cswap-pointer

Method Full interval GV Optimized Full interval GV Optimized

CNN No regularization 76.07% 86.27% 97.64% 94.50%

CNN Dropout 92.94% 100% 100% 98.82%

CNN Data Augmentation 78.43% 100% 100% 100%

CNN Dropout + Data Augmentation 100% 100% 100% 100%

Random CNN Hyperparameters

cswap-arith cswap-pointer

Method Full interval GV Optimized Full interval GV Optimized

CNN No regularization 86.27% 100% 96.47% 96.47%

CNN Dropout 100% 100% 100% 100%

CNN Data Augmentation 100% 100% 100% 100%

CNN Dropout + Data Augmentation 100% 100% 100% 100%

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 23

References
[Alp10] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd

edition, 2010.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th International
Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings, volume 3156
of Lecture Notes in Computer Science, pages 16–29. Springer, 2004.

[BCP+17] Lejla Batina, Łukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe,
and Michael Tunstall. Online template attacks. Journal of Cryptographic
Engineering, August 2017.

[BDF98] Dan Boneh, Glenn Durfee, and Yair Frankel. An attack on rsa given a small
fraction of the private key bits. In Kazuo Ohta and Dingyi Pei, editors,
Advances in Cryptology — ASIACRYPT’98, pages 25–34, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[Ber06] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key
Cryptography - PKC 2006, pages 207–228, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[BJP+15] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard, and
Justine Wild. Horizontal collision correlation attack on elliptic curves - -
extended version -. Cryptogr. Commun., 7(1):91–119, 2015.

[BJPW13] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizontal
collision correlation attack on elliptic curves. In Tanja Lange, Kristin E. Lauter,
and Petr Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th
International Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised
Selected Papers, volume 8282 of Lecture Notes in Computer Science, pages
553–570. Springer, 2013.

[CCC+19] Mathieu Carbone, Vincent Conin, Marie-Angela Cornelie, François Dassance,
Guillaume Dufresne, Cécile Dumas, Emmanuel Prouff, and Alexandre Venelli.
Deep learning to evaluate secure RSA implementations. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2019(2):132–161, 2019.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures - profil-
ing attacks without pre-processing. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 45–68. Springer,
2017.

[CFG+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and
Vincent Verneuil. Horizontal correlation analysis on exponentiation. In Miguel
Soriano, Sihan Qing, and Javier López, editors, Information and Communica-
tions Security - 12th International Conference, ICICS 2010, Barcelona, Spain,

24 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

December 15-17, 2010. Proceedings, volume 6476 of Lecture Notes in Computer
Science, pages 46–61. Springer, 2010.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In Çetin K. Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems, pages 292–302, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

[DHH+15] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof
Paar, Ana Helena Sánchez, and Peter Schwabe. High-speed curve25519 on
8-bit, 16-bit, and 32-bit microcontrollers. Designs, Codes and Cryptography,
77(2–3):493–514, December 2015.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual informa-
tion analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2008, 10th International Workshop,
Washington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of
Lecture Notes in Computer Science, pages 426–442. Springer, 2008.

[GTY07] K. Gopalakrishnan, Nicolas Thériault, and Chui Zhi Yao. Solving discrete
logarithms from partial knowledge of the key. In K. Srinathan, C. Pandu
Rangan, and Moti Yung, editors, Progress in Cryptology – INDOCRYPT 2007,
pages 224–237, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[GV10] Christophe Giraud and Vincent Verneuil. Atomicity improvement for elliptic
curve scalar multiplication. In Dieter Gollmann, Jean-Louis Lanet, and Julien
Iguchi-Cartigny, editors, Smart Card Research and Advanced Application, 9th
IFIP WG 8.8/11.2 International Conference, CARDIS 2010, Passau, Germany,
April 14-16, 2010. Proceedings, volume 6035 of Lecture Notes in Computer
Science, pages 80–101. Springer, 2010.

[HIM+13] Johann Heyszl, Andreas Ibing, Stefan Mangard, Fabrizio De Santis, and
Georg Sigl. Clustering algorithms for non-profiled single-execution attacks on
exponentiations. In Aurélien Francillon and Pankaj Rohatgi, editors, Smart
Card Research and Advanced Applications - 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected
Papers, volume 8419 of Lecture Notes in Computer Science, pages 79–93.
Springer, 2013.

[HMM10] Wilko Henecka, Alexander May, and Alexander Meurer. Correcting errors in
RSA private keys. In Advances in Cryptology - CRYPTO 2010, 30th Annual
Cryptology Conference, volume 6223 of Lecture Notes in Computer Science,
pages 351–369. Springer, 2010.

[HS09] Nadia Heninger and Hovav Shacham. Reconstructing rsa private keys from
random key bits. In Shai Halevi, editor, Advances in Cryptology - CRYPTO
2009, pages 1–17, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[HYY+18] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W.
Tsang, and Masashi Sugiyama. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems, NIPS’18, page
8536–8546, Red Hook, NY, USA, 2018. Curran Associates Inc.

[JNC16] Ishan Jindal, Matthew S. Nokleby, and Xuewen Chen. Learning deep networks
from noisy labels with dropout regularization. 2016 IEEE 16th International
Conference on Data Mining (ICDM), pages 967–972, 2016.

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 25

[JY02] Marc Joye and Sung-Ming Yen. The montgomery powering ladder. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 291–302. Springer, 2002.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. unleashing the power of convolutional neural networks for
profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(3):148–179, 2019.

[LvVW15] Tanja Lange, Christine van Vredendaal, and Marnix Wakker. Kangaroos in
side-channel attacks. In Marc Joye and Amir Moradi, editors, Smart Card
Research and Advanced Applications, pages 104–121, Cham, 2015. Springer
International Publishing.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization
for general characterization in profiling attacks. In Ilia Polian and Marc
Stöttinger, editors, Constructive Side-Channel Analysis and Secure Design -
10th International Workshop, COSADE 2019, Darmstadt, Germany, April 3-5,
2019, Proceedings, volume 11421 of Lecture Notes in Computer Science, pages
145–167. Springer, 2019.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security, Privacy, and
Applied Cryptography Engineering - 6th International Conference, SPACE 2016,
Hyderabad, India, December 14-18, 2016, Proceedings, volume 10076 of Lecture
Notes in Computer Science, pages 3–26. Springer, 2016.

[NC17] Erick Nascimento and Lukasz Chmielewski. Applying horizontal clustering side-
channel attacks on embedded ECC implementations. In Thomas Eisenbarth and
Yannick Teglia, editors, Smart Card Research and Advanced Applications - 16th
International Conference, CARDIS 2017, Lugano, Switzerland, November 13-
15, 2017, Revised Selected Papers, volume 10728 of Lecture Notes in Computer
Science, pages 213–231. Springer, 2017.

[NCOS16] Erick Nascimento, Lukasz Chmielewski, David Oswald, and Peter Schwabe.
Attacking embedded ECC implementations through cmov side channels. In
Roberto Avanzi and Howard M. Heys, editors, Selected Areas in Cryptography -
SAC 2016 - 23rd International Conference, St. John’s, NL, Canada, August 10-
12, 2016, Revised Selected Papers, volume 10532 of Lecture Notes in Computer
Science, pages 99–119. Springer, 2016.

[PC15] Guilherme Perin and Lukasz Chmielewski. A semi-parametric approach for
side-channel attacks on protected RSA implementations. In Naofumi Homma
and Marcel Medwed, editors, Smart Card Research and Advanced Applications
- 14th International Conference, CARDIS 2015, Bochum, Germany, November
4-6, 2015. Revised Selected Papers, volume 9514 of Lecture Notes in Computer
Science, pages 34–53. Springer, 2015.

26 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

[PCP19] Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek. Strength in num-
bers: Improving generalization with ensembles in profiled side-channel analysis.
Cryptology ePrint Archive, Report 2019/978, 2019. https://eprint.iacr.
org/2019/978.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(1):209–237, 2019.

[PITM14] Guilherme Perin, Laurent Imbert, Lionel Torres, and Philippe Maurine. At-
tacking randomized exponentiations using unsupervised learning. In Emmanuel
Prouff, editor, Constructive Side-Channel Analysis and Secure Design - 5th
International Workshop, COSADE 2014, Paris, France, April 13-15, 2014.
Revised Selected Papers, volume 8622 of Lecture Notes in Computer Science,
pages 144–160. Springer, 2014.

[RIL19] Thomas Roche, Laurent Imbert, and Victor Lomné. Side-channel attacks on
blinded scalar multiplications revisited. In Sonia Belaïd and Tim Güneysu,
editors, Smart Card Research and Advanced Applications - 18th International
Conference, CARDIS 2019, Prague, Czech Republic, November 11-13, 2019,
Revised Selected Papers, volume 11833 of Lecture Notes in Computer Science,
pages 95–108. Springer, 2019.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[SHKS15] Robert Specht, Johann Heyszl, Martin Kleinsteuber, and Georg Sigl. Improving
non-profiled attacks on exponentiations based on clustering and extracting
leakage from multi-channel high-resolution EM measurements. In Stefan
Mangard and Axel Y. Poschmann, editors, Constructive Side-Channel Analysis
and Secure Design - 6th International Workshop, COSADE 2015, Berlin,
Germany, April 13-14, 2015. Revised Selected Papers, volume 9064 of Lecture
Notes in Computer Science, pages 3–19. Springer, 2015.

[SI11] Werner Schindler and Kouichi Itoh. Exponent blinding does not always lift
(partial) spa resistance to higher-level security. In Javier López and Gene
Tsudik, editors, Applied Cryptography and Network Security - 9th International
Conference, ACNS 2011, Nerja, Spain, June 7-10, 2011. Proceedings, volume
6715 of Lecture Notes in Computer Science, pages 73–90, 2011.

[SW17] Werner Schindler and Andreas Wiemers. Generic power attacks on RSA with
CRT and exponent blinding: new results. J. Cryptogr. Eng., 7(4):255–272,
2017.

[WPB19] Leo Weissbart, Stjepan Picek, and Lejla Batina. One trace is all it takes:
Machine learning-based side-channel attack on eddsa. In Shivam Bhasin, Avi
Mendelson, and Mridul Nandi, editors, Security, Privacy, and Applied Cryptog-
raphy Engineering - 9th International Conference, SPACE 2019, Gandhinagar,
India, December 3-7, 2019, Proceedings, volume 11947 of Lecture Notes in
Computer Science, pages 86–105. Springer, 2019.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Method-
ology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(1):1–36, 2020.

https://eprint.iacr.org/2019/978
https://eprint.iacr.org/2019/978

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 27

1 void fe25519_cswap (fe25519 * in1 , fe25519 * in2 , int condition)
2 {
3 int32 mask = condition ;
4 uint32 ctr;
5 mask = -mask;
6 for (ctr = 0; ctr < 8; ctr ++)
7 {
8 uint32 val1 = in1 -> as_uint32 [ctr];
9 uint32 val2 = in2 -> as_uint32 [ctr];

10 uint32 temp = val1;
11 val1 ^= mask & (val2 ^ val1);
12 val2 ^= mask & (val2 ^ temp);
13 in1 -> as_uint32 [ctr] = val1;
14 in2 -> as_uint32 [ctr] = val2;
15 }
16 }

Listing 1: Conditional swap of 2 field elements based on arithmetic of field operands limbs.

[ZS18] Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training
deep neural networks with noisy labels. CoRR, abs/1805.07836, 2018.

A Arithmetic Conditional Swap Implementation
Listing 1 shows the actual C implementation of the arithmetic conditional swap of two
field elements in µNaCl (call to CSWAP in Algorithm 1). This implementation uses XOR and
AND instructions.

B Detailed Iterative Framework Results
This section provides detailed results obtained from executing the proposed framework ten
times on each scenario, described in Sections 5.4.1, for fixed and random CNN hyperpa-
rameters, before and after optimizing the attack interval from the gradient visualization
results.

B.1 Fixed Hyperparameters
Figures 17 and 18 show results for ten iterative framework executions for fixed CNN
hyperparameters in all the iterations.

Figure 17: Fixed CNN hyperparameters: maximum single trace accuracy on the cswap-
arith dataset for ten different framework executions.

B.2 Random Hyperparameters
Figures 19 and 20 show results for ten iterative framework executions for random CNN
hyperparameters in all the iterations.

28 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

Figure 18: Fixed CNN hyperparameters: maximum single trace accuracy on the cswap-
pointer dataset for ten different framework executions.

Figure 19: Random CNN hyperparameters: maximum single trace accuracy on the cswap-
arith dataset for ten different framework executions and for random CNN hyperparameters.

B.3 Fixed Hyperparameters after GV Interval Optimization
Figures 21 and 22 show results for ten iterative framework executions for fixed CNN
hyperparameters. Results are shown for an optimized attack interval that is done with
gradient visualization.

B.4 Random Hyperparameters after GV Interval Optimization
Figures 23 and 24 show results for ten iterative framework executions for random CNN
hyperparameters. Results are shown for an optimized attack interval that is done with
gradient visualization.

Guilherme Perin, Łukasz Chmielewski, Lejla Batina and Stjepan Picek 29

Figure 20: Random CNN hyperparameters: maximum single trace accuracy on the
cswap-pointer dataset for ten different framework executions and for random CNN hyper-
parameters.

Figure 21: Fixed CNN hyperparameters: maximum single trace accuracy on the cswap-
arith dataset for ten different framework executions and attacking the sample interval
range from 1 500 to 3 500 of all sub-traces.

Figure 22: Fixed CNN hyperparameters: maximum single trace accuracy on the cswap-
pointer dataset for ten different framework executions and attacking the sample interval
range from 550 to 800 of all sub-traces.

Figure 23: Random CNN hyperparameters: maximum single trace accuracy on the cswap-
arith dataset for ten different framework executions and attacking the sample interval
range from 1 500 to 3 500 of all sub-traces.

30 Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

Figure 24: Random CNN hyperparameters: maximum single trace accuracy on the cswap-
pointer dataset for ten different framework executions and attacking the sample interval
range from 550 to 800 of all sub-traces.

	Introduction
	Background
	Target
	Datasets
	Deep Neural Networks

	Horizontal Attacks
	Main Types of Non-Profiling Horizontal Attacks
	Horizontal Attacks in Practice
	Short Horizontal Clustering for Traces Labeling
	Methods to Remove Noisy Bits from Public-key Implementations

	Proposed Iterative Deep Learning Framework
	Initialization
	Main Part of the Framework

	Results
	Labeling Traces from Clustering-based Horizontal Attack
	Leakage Assessment on cswap-arith and cswap-pointer Datasets
	Attacking cswap-arith and cswap-pointer Datasets with Supervised Learning
	Iterative Framework Application on Different Cases
	Using Gradient Visualization to Optimize Attack Interval

	Extending the Iterative Framework to Different Targets
	Conclusions and Future Works
	Arithmetic Conditional Swap Implementation
	Detailed Iterative Framework Results
	Fixed Hyperparameters
	Random Hyperparameters
	Fixed Hyperparameters after GV Interval Optimization
	Random Hyperparameters after GV Interval Optimization

