
Toward an Asymmetric White-Box Proposal

Lucas Barthelemy1,2

Abstract. This article presents a proposal for an asymmetric white-box scheme.
While symmetric white-box is a well studied topic (in particular for AES white-
box) with a rich literature, there is almost no public article on the topic of asym-
metric white-box. However, asymmetric white-box designs are used in practice
by the industry and are a real challenge. Proprietary implementations can be
found in the wild but are usually heavily obfuscated and their design is not
public, which makes their study impractical. The lack of public research on that
topic makes it hard to assess the security of those implementations and can cause
serious security issues. Our main contribution is to bring a public proposal for
an asymmetric white-box scheme. Our proposal is a lattice-based cryptographic
scheme that combines classical white-box techniques and arithmetic techniques
to offer resilience to the white-box context. In addition, thanks to some homo-
morphic properties of our scheme, we use homomorphic encoding techniques
to increase the security of our proposal in a white-box setting. The resulting
scheme successfully performs a decryption function without exposing its secret
key while its weight remains under 20 MB. While some of our techniques are
designed around specific characteristics of our proposal, some of them may be
adapted to other asymmetric cryptosystems. Moreover, those techniques can be
used and improved in a less restrictive model than the white-box one: the grey-
box model. This proposal aims to raise awareness from the research community
on the study of asymmetric white-box cryptography.

Keywords: white-box cryptography, asymmetric white-box cryptography, lat-
tice based cryptography, software protection, homomorphic cryptography

1 Introduction

Unlike its most common black-box counterpart, white-box cryptography aims to protect
the secret key of a cryptosystem not only against remote attackers, but also against
the user of that cryptosystem itself. Mostly used in fields like D.R.M. (Digital Right
Management), the white-box model assumes that the user of a software performing
cryptographic operations may try to extract a secret key from the software. Note that
in this model, the only focus is to protect the secret key used by our cryptosystem. In
the case of decryption for example, the user still has a legitimate access to the resulting
data. Many applications today, whether on our smartphones, computers or even cars,
use and store sensitive information to function. Those sensitive information are usually
protected by the use of a cryptographic function. The white-box model consider the
case where the attacker has complete access to the device the cryptographic function
is being performed on (whether because it was stolen or because the legitimate user
itself is the attacker). He can access the code itself, read any data stored in memory
and modify the behaviour of any software running on the device (create breakpoints
or faults, remove the ability to generate randomness, etc. . . ).



2 Lucas Barthelemy

As an example, a user paying for a streaming platform must be able to decrypt
the content he has subscribed to, but retrieving the secret key used in that decryption
could yield information on how the system acknowledge his (and others) subscription
and how content is managed by the application. This information could then lead
to security issues (dumping content online for free, impersonating the provider, for
example). Because the attacker in this case is the end user of the software, he has full
control of the device performing the cryptographic operations that are used by the
software to protect sensitive information.

In 2003, Chow, Eisen, Johnson and Oorschot proposed a white-box design based on
AES [10]. From that moment forward, many proposition also based on AES were made
(for example, [9] in 2006, [22] in 2009 and [15] in 2011), most of them broken after a few
years (for example [6] in 2005, [16] in 2013 or [7] in 2015). Some white-box proposals
cryptanalysis are specific to the white-box context, but some of them are derived from
classic side-channel attacks (grey-box model) adapted to the white-box model. While
AES is known to be vulnerable to side-channel attacks, it is still at the center of most
white-box proposals.

More recently, a CTF challenge for the CHES conference was orchestrated to as-
sess the state of white-box cryptography: the WhibOx challenge [1] [2]. This challenge
offered anyone the chance to submit a proposal for an AES-128 white-box implementa-
tion. While the latest edition of that challenge still hold three unbroken proposals, all
proposals to the previous edition were broken and most proposals were broken within
days of their submission. One of the restrictions to submit a proposal was in the weight
of the binary performing the cryptographic operation. Each submission had to uphold
a limitation of 20 MB. In our work, we aimed at that same threshold to justify that
our proposal could be as usable in practice as state of the art AES white-box schemes.

Although there is almost no article on the subject, asymmetric white-box is not
something unheard of by the industry. There are already a collection of patents [21]
[17] [14] regarding the subject and implementations can be found in the wild. However,
those implementations are usually proprietary code and heavily obfuscated. Not only
does this make the study of asymmetric white-box extremely challenging, but it is
extremely dangerous for the products themselves. Indeed, the lack of standard to go
from makes it very hard to assess the security of these proposals. The goal of this work
is to start the discussion around asymmetric white-box. If we are already using them,
we should find a way to make them as resistant as possible.

While there is a discussion that an AES white-box design behaves as an asymmet-
ric scheme (the white-box design acting as a public key hiding the AES secret key),
many applications using protocols involving an asymmetric cryptography scheme (for
example, a signature in the case of a bank transaction) could benefit from a white-box
design of that scheme.

Our contribution : In this article, we consider techniques used in AES white-box
proposals, and apply them to a different cryptosystem. Different cryptosystems may
have different properties regarding, for example, vulnerability to side-channel attacks,
memory overhead compared to a classical scheme or support for different encoding
techniques that prevent key extraction. In particular, we make a proposal for an asym-
metric lattice based scheme that uses both classical white-box techniques and small
homomorphic properties combined with arithmetic techniques to resist the white-box



Toward an Asymmetric White-Box Proposal 3

model. The initial proposal presented in [10] transform the classical AES in a set of
lookup tables protected by various encoding techniques. In our proposal, we use both
the Number Theoretic Transform (NTT) [18] and the Residue Number System (RNS)
[3] representation to reduce all our computations to a set of very small integer products.
This allows us to change our scheme into a fully table-based implementation where all
computations involving the secret key are replaced by a series of lookup tables. A series
of encodings that benefit from small homomorphic properties of our scheme are then
applied to those tables to prevent key extraction.

Section 2 introduces our lattice based scheme, its notations and basic operations,
before its transformation into a table-based scheme. This scheme is based on cryp-
tosystem similar to the BGV [8] or the FV [12] cryptosystems. It is described in the
following article [13].

Section 3 covers how we transform our lattice based scheme to answer the white-
box model challenges. it discusses the use of the Number Theoretic Transform [18]
and Residue Number System [3] representation that allows for a fully table-based im-
plementation. Then, it introduces a new type of encodings: homomorphic encodings.
Those encodings exploit the latent small homomorphic properties of our lattice based
scheme to prevent key-extraction from our lookup tables. We also discuss the security
of this initial design and what could be done to improve it.

Section 4 discusses two additional countermeasures that can be used to vastly im-
prove the security of our scheme. Each of those countermeasures have specific drawbacks
that should be considered before practical use.

This proposal was fully implemented in python and the resulting application matched
our weight objective of 20 MB. While this is still quite the overhead compared to a
regular scheme for some applications (embedded cryptography for example), we also
mention that our techniques can be adjusted to reduce the memory consumption over-
head at the cost of computation time overhead.

Being the first academic proposal for an asymmetric white-box scheme, we hope
this work encourages the research community to study the topic of asymmetric white-
box cryptography. We hope this will yield new ways to both break and improve such
proposals from the community.

2 Our Initial Lattice Based Scheme

This section will introduce the lattice based scheme chosen for our proposal. It is a
variant of the BGV [8] cryptosystem influenced by the design presented in [13]. This
cryptosystem was chosen for its simplicity, while maintaining some key properties of
lattice based cryptography. Some changes were made to the parameters as well for secu-
rity concerns. The first two techniques detailed in this section are quite generic and can
be adapted to many other asymmetric schemes. However, the last technique involving
homomorphic properties will be harder to apply to another asymmetric cryptosystem.
For example, the RSA cryptosystem presents some multiplicative homomorphic prop-
erties, but their use for a white-box design would be limited compared to a lattice
based cryptosystem.



4 Lucas Barthelemy

2.1 Notations

Our cryptosystem involves elements of the cyclotomic ring:

Rq =
(Z/qZ)[X]

Xn + 1

with parameters q, a big prime integer (15 bits in our case), and n a power of 2. In our
case, we set our security parameter n = 1024.

Elements of Rq can be seen as polynomials of degree n−1, with coefficients modulo
q, modulo Xn + 1. The product modulo Rq of two elements a and s of Rq will be
denoted a· s while the addition of two elements, denoted a+ s, will simply consist of a
coefficient-wise addition of those elements. The notation a[i] denotes the coefficient of
degree i of the element a.

The underlying problem is the following:

Problem 1. Given a, s, e ∈ Rq, it is hard to distinguish {a, a· s + e} from a uniform
distribution over Rq ×Rq.

This problem can be reduced to the Closest Vector Problem (CVP) on a lattice of
dimension n with elements of Rq [11]. This problem consists in finding the closest
lattice point from a vector in a space of dimension n.

For simplicity, a plaintext represented by an element of Rq for which all coefficients
are set to 0 will simply be denoted 0. In a similar way, 1 will refer to a plaintext
represented by an element of Rq for which all coefficients are set to 0 except for the
coefficient of degree 0 set to 1, and Xi will denote an element for which all coefficient
are set to 0 except the coefficient of degree i set to 1. Those notations will be used in
the section regarding homomorphic encodings.

2.2 Keygen, Encryption, Decryption

This section briefly presents the three main functions of our scheme. Those are once
again more detailed in [13]. However, this scheme is extremely generic and white-box
techniques discussed in the rest of this article should be applicable to other cryp-
tosystems like BGV [8] or FV [12]. The two functions GaussianPoly and UniformPoly
generate random elements of Rq with, respectively, Gaussian and uniform distribution.
the public and secret keys are, respectively, denoted by pk and sk. While α and m are,
respectively, a ciphertext and a plaintext.

Algorithm 1: KeyGen
input : k == security_level
output: (pk, sk)

sk = GaussianPoly(n, q, k)
pka = UniformPoly(n, q, k)
pkb = pka · sk + 2· GaussianNoise(n, q, k)
pk = (pka, pkb)



Toward an Asymmetric White-Box Proposal 5

Algorithm 2: Encrypt
input : pk, m
output: α = (α1, α2)

u = GaussianPoly(n, q, k)
e1 = 2·GaussianPoly(n, q, k)
e2 = 2·GaussianPoly(n, q, k)
α = (pka · u+ e1, pkb · u+ e2 +m)

Algorithm 3: Decrypt
input : α = (α1, α2), sk
output: m

m = α2 − α1 · sk
for each coefficient of m: do

m[i] = (m[i] > q/2)? m[i]%2: (1−m[i])%2
end

Ciphertexts are pairs of elements of Rq, while a plaintext m is a binary element
of Rq, that is to say a polynomial with coefficients in {0, 1}. During decryption, the
computation:

m = α2 − α1 · sk

involves the secret key sk. It is that computation that we will need to hide in a white-
box context as it involves the secret key.

3 Shaping our Scheme into a White-Box

White-Box Setting : In a white-box context, the attacker is supposed to have full
access to the device the cryptographic function, in our case the decryption function, is
being performed on. He has full access to any software running on the device and can
consult and modify memory at will. For simplicity we assume that the attacker has
access to the source code of our scheme and to any data it uses and is trying to extract
the secret key sk used in our scheme.

In this section, we will explain how we modified our scheme to be more resistant in
a white-box context. During decryption, we need to compute the following polynomial
product:

m = α2 − α1 · sk ∈ Rq

In the current state of our scheme, a white-box attacker could simply read the source
code implementing our scheme and consult its data to retrieve the value of the secret
key sk. Our goal is to protect this critical computation so that, in a white-box model,
sk cannot be simply extracted from our implementation.

The proposal presented in [10] can be broken down in two points: replace any
operation involving the secret key by a set of lookup tables and prevent key extraction
from those tables through the use of encodings. There are some white-box cryptanalysis
techniques that can bypass those protections, we will not discuss them in this article
as it is not the main topic [6] [16]. However, we will mention that those techniques rely



6 Lucas Barthelemy

on the fact that encodings are "chained" together between lookup tables. Because our
scheme uses small homomorphic properties to ensure encodings are never decoded in
their encrypted forms, we believe such techniques will not be easily transformed to fit
our scheme.

This section will first discuss the use of both the Number Theoretic Transform
(NTT) and a Residue Number System (RNS) representation to achieve a fully table-
based implementation. The use of both the NTT and the RNS representation will
transform our critical computation in a set of computations involving very small in-
tegers, those computations will then be replaced by a set of lookup tables.Then, we
will present encoding techniques that benefit from the small homomorphic properties
of our scheme to prevent key extraction from the resulting lookup tables.

In the end, a user should dispose of a series of lookup tables performing the de-
cryption operation of our scheme that do not leak the secret key embedded within
them.

3.1 The NTT and the RNS representation

To transform our scheme so that it resists an attacker in a white-box model, we will
transform its critical computation α2 − α1 · sk into a set of lookup tables. We seek to
achieve such a transformation without reducing the values of the parameters of our
ring n and q as they are both tied to the overall security of our scheme.

NTT Similar to a Fast Fourier Transform (FFT), the Number Theoretic Transform
(NTT) [18] switches from a coefficient representation of polynomials into an evaluated
representation in nth roots of unity. Once in such a representation, computations can
be performed on each evaluated value value-wise. Let ω be an nth root of unity in Rq,
the NTT procedure maps a polynomial α1 in Rq with coefficients α1[0] . . . α1[n− 1] to
a set of n linear combinations of n distinct powers of ω as follows:

β1[k] = α1[0]× ω0k + α1[1]× ω1k + α1[2]× ω2k + · · ·+ α1[n− 1]× ω(n−1)k

∀k, 0 ≤ k < n

Let β1, β2 and γ be, respectively, the NTT representation of α1, α2 and sk. We can
then perform our key computation value-wise:

δ[k] = β2[k]− β1[k]× γ[k]

and finally compute the inverse NTT transformation to recover m.
This technique allows us to perform n addition/product of integers in Z/qZ instead

of one addition/product of polynomials in Rq. This is a first step toward a table-based
implementation but is not sufficient on its own as n lookup tables the size of q, while
feasible in theory, would be unusable in practice.

RNS Our computation m = α2 − α1 · sk is now, with the use of the NTT, a series of
products of big integers. Another technique allows for further decomposition of those



Toward an Asymmetric White-Box Proposal 7

computations into operations involving smaller integers: Montgomery’s multiplication
algorithm in a Residue Number System (RNS) [3].

Let β = {p0, p1, . . . , pk} be a basis composed of small co-prime numbers pi. Let
p =

∏k
i=0 pi, in a Residue Number System (RNS) any integer in Z/pZ is represented

in basis β (that is to say by its residues modulo each pi). Any number represented
in basis β can be translated back into an element of Z/pZ via the use of the Chinese
Remainder Theorem (CRT). In the RNS representation, additions and multiplications
can be performed residue-wise, as a reconstruction via CRT will still produce a correct
result modulo p.

Through the use of NTT, our scheme now performs n subtractions and multiplica-
tions in parallel on Z/qZ, q being a prime number of size at least the size of n (otherwise
NTT would not have been possible). To use an RNS to further decompose our compu-
tations, we need to switch to another representation in Z/pZ where p =

∏k
i=0 pi. Fortu-

nately, the well known Montgomery’s multiplication algorithm allows us to switch from
Z/qZ to Z/pZ to perform our computations. Once in Z/pZ representation, we move
to an RNS representation and perform our computations residue-wise (an example of
such a combination of RNS and Montgomery’s multiplication algorithm can be found
in the following article [3]).

The Resulting Scheme After both transformations (NTT and RNS), our scheme
has become a series of products involving extremely small integers. For our chosen q,
4− bit integers are enough to ensure a practical transformation into lookup tables . Let
αi,j
1 , αi,j

2 and ski,j be the jth residue in RNS of the ith evaluation of respectively α1,
α2 and sk in NTT/RNS decomposition form. we can now perform:

mi,j = αi,j
2 − α

i,j
1 · ski,j∀i, j

and then use the Chinese Remainder Theorem and the inverse NTT operation to re-
trieve the element m. Those elements are small enough so that those computation can
be replaced by a series of lookup tables:

mi,j = Si,j
sk [αi,j

2 ][αi,j
1 ]

With both use of NTT and RNS, such lookup tables are possible in practice. For
example, with our chosen parameters, all lookup tables weight is no more than 20 MB.
Moreover, doubling our security parameter n only doubles the number of lookup tables
(and therefore their size).

Note that many lattice based schemes (BGV [8], FV [12]) use RNS before the NTT.
This use of both techniques allows for faster polynomial products in those schemes
[4]. However, the minimum size of two integers involved in a product, when perform-
ing both techniques in that order, is bound by the size of n (otherwise, NTT would
not be possible for the lack of nth root of units), which is too much for a practical
transformation of our computations in lookup tables. However, both approaches are
similar.

It is possible to lower the cost of our lookup tables by chaining RNS decompositions
(using Montgomery’s algorithm each time to move to another basis composed of smaller
primes). However, this comes at a cost of noticeable computation time overhead (as



8 Lucas Barthelemy

reconstruction requires more and more use of the CRT). Therefore, this technique would
only be of interest for embedded softwares that struggles with memory consumption
overhead.

Computations involving our secret key are now fully table-based. However, the
same problem present in Chow’s AES white-box is emerging. Because those tables only
depends on the value of the residues of sk, it is possible to brute force those values
until all ski,j are recovered. Therefore, we now need a technique to hide those residues:
encodings.

3.2 Homomorphic Encodings

Unlike the AES white-box proposal in [10], our scheme does not present itself as a big
network of lookup tables, but rather in a set of lookup tables in parallel. Therefore,
linear and non-linear encodings do not provide a way to prevent the extraction of sk’s
residues.

However, unlike AES, our scheme present small homomorphic properties. Those
open the way to a new type of encodings: homomorphic encodings. We will not discuss
in details the proofs of those homomorphic properties, as there is already a lot of
research on that topic available (for example see BGV [8] and FV [12] schemes) and it
is not the main subject of this article. But we will discuss the extent and implication
of those properties.

Let m1 and m2 be two plaintexts and c1 and c2 their respective ciphers for private
key sk. An encryption scheme is homomorphic for an operator ⊗ if and only if:

Decrypt(c1 ⊗ c2, sk) = m1 ⊗m2

Lattice based scheme of the BGV/FV family are not fully homomorphic. They are
homomorphic for a specific amount of additions and multiplications, depending on their
parameters. If too many operations are performed on ciphertexts, decryption will fail to
produce the correct plaintext. The homomorphic properties (the amount of additions
and/or multiplication that can be performed before it fails) heavily depends on the size
of q. With our parameters, we can easily perform several homomorphic additions, but
at most two homomorphic products.

Zero Encodings Let z = (z1, z2) be a static encryption of the plaintext 0, we can use
homomorphic properties to modify our lookup tables:

S′i,jsk [αi,j
2 ][αi,j

1 ] = αi,j
2 − α

i,j
1 · ski,j + zi,j2 − z

i,j
1 · ski,j

where zi,j1 and zi,j2 are, respectively, the residues of z1 and z2 in NTT/RNS form.
Because z is an encryption of 0, homomorphic properties will ensure that:

m′[i] = m[i] + 0

Therefore masking our lookup tables.
Note that by design, there are many different ciphertexts resulting from an encryp-

tion of 0 (This is due to IND-CCA properties of lattice based schemes). Therefore an
attacker in a white-box setting would not only have to understand that an encryption
of 0 has been used to encode our tables, but which one.



Toward an Asymmetric White-Box Proposal 9

One Encodings A similar technique consists in using a static encryption of the plain-
text 1, and applying a multiplication of its decryption function instead of an addition.
Because of the small amount of multiplicative homomorphic properties, this encoding
can only be performed twice while still guaranteeing correct decryption. In our proposi-
tion, we recommend using only one of this type of encoding as, while it adds confusion,
we will need one more multiplication for the last type of encodings. Let u = (u1, u2)
be an encryption of 1, we can modify our lookup tables:

S′i,jsk [αi,j
2 ][αi,j

1 ] = (αi,j
2 − α

i,j
1 · ski,j)· (u

i,j
2 − u

i,j
1 · ski,j)

Both techniques can and should be used together to provide a better masking of
our lookup tables.

Masking Encodings Let mask be a binary mask of size n, we can use the encryption
method to encrypt each bit of this mask into one static cipher β = (β1, β2). If we now
modify our lookup tables in a way similar to the additive zero masking:

S′i,jsk [αi,j
2 ][αi,j

1 ] = αi,j
2 − α

i,j
1 · ski,j + βi,j

2 − β
i,j
1 · ski,j

This time, once decryption is finished, we get the following relation:

m′[i] = m[i]⊕mask[i]

The user can then get knowledge of mask and remove it from the resulting plaintext,
as knowledge of mask does not allow for the removal of the encoding provided by β on
the lookup tables.

Rotating Encodings Let r = (r1, r2) be the encoding of the plaintext Xindex. Be-
cause our elements lie in Rq, the computation:

m ·Xindex

will simply result modulo 2 in a rotation of the coefficients of our plaintext. Modifying
our lookup tables in the following manner:

S′i,jsk [αi,j
2 ][αi,j

1 ] = (αi,j
2 − α

i,j
1 · ski,j) · (r

i,j
2 − r

i,j
1 · ski,j)

will yield after decryption a plaintext whose coefficients have been rotated. The user
can then get knowledge of Xn−index and perform the inverse rotation:

m′ ·Xn−index

as only the knowledge of its encrypted form allows for the removing of this encoding
from the lookup tables.

As explained in the section covering zero-encodings, the use of multiplicative ho-
momorphic encodings is however limited due to the small amount of homomorphic
properties our scheme possess.



10 Lucas Barthelemy

3.3 On the security and limitations of our basic design

First, we would like to mention the relation between the security level of our scheme
and the memory consumption overhead of its white-box design. Usually, in lattice based
cryptography, security level depends on the number of dimensions n. In our proposal,
doubling the size of n only doubles the number of lookup tables, which in turn doubles
the size of our white-box design.

This article proposes a design for an asymmetric white-box based on a lattice based
cryptographic algorithm. All computations involving the secret key sk occurring during
decryption are replaced with lookup tables. A series of homomorphic encodings are then
applied to prevent trivial key extraction from those lookup tables. As a result of those
encodings, an extra step of decoding is required to reverse the masking and rotation of
the plaintext.

As far as the security of our scheme in a white-box model is concerned, since we
do not have knowledge of any public work specifically considering lattice based cryp-
tography in a white-box model, we will consider the two following type of attacks:
side-channel attacks on lattice based cryptography, as those can easily be adapted to
the white-box model (consider for example the adaptation of side-channel attacks on
AES white-box designs [7]), and algebraic attacks, as those proved equally potent when
regarding AES white-box designs. Side-channel attacks aim to gain information on the
secret key of a design by observing physical manifestation of the underlying computa-
tion (power consumption, electromagnetic emanations) when subject to different inputs
and/or in the presence of faults. In a white-box setting, this can easily be adapted to
other measures, like the hamming weight of data used in a computation or the control
flow of the implementation of a white-box design. Algebraic attacks on the other hand,
aim to represent a white-box design as a system of equations with various unknowns,
one of them being the secret key or parts of it. If the system can be solved, the secret
key can be recovered.

Side-Channel Attacks on Lattice Based Cryptography: Various articles re-
garding the protection of lattice-based schemes against side-channel attacks have been
published in the last couple of years [19] [5] [20]. While side-channel attacks are not
strictly speaking related to the white-box model (belonging instead to the grey-box
model), many attacks on AES white-box designs shows that those attacks can easily
be adapted and improved in a white-box setting. In particular, power analysis (DPA)
and fault attacks (DFA) benefit greatly from a white-box setting where you have full
control of the device performing the cryptographic operations (for example, the article
[7] adapts classic side-channel type attacks against AES to the white-box model). In
the articles [19] and [5], masked implementations of lattice based designs are proposed
as a countermeasure against side-channel attacks. Our homomorphic encodings, in par-
ticular the masking encoding, perform a similar function in our design. The article [20]
discuss side-channel attacks that can be performed on such designs. They conclude
that while masking seems to be an effective countermeasure against DPA attacks, a
Simple Power Analysis (SPA) attack is still possible. However, because our proposal is
fully table-based, we do not believe such an attack is trivially adaptable to our design.
Moreover, the addition of multiplicative encodings adds a layer of security against such



Toward an Asymmetric White-Box Proposal 11

attacks. As far as fault attacks are concerned, we have currently no knowledge of any
fault attack against a lattice based design that could function on our specific proposal.
However, our design is a simple lattice-based scheme that is significantly different to
many state of the arts lattice-based proposals. Therefore fault attacks could very well
be worth investigating further in future work.

Algebraic Attacks: As far as algebraic attacks specific to the white-box model are
concerned, like the BGE attack on AES white-box designs [6], our initial design seems
particularly vulnerable. Indeed, while using various combinations of homomorphic en-
codings in our white-box design adds a layer of security against side-channel oriented
white-box attacks, extraction of the secret key could still be possible. Mixing our key
computation with static encryption of various values (zero, masks, rotations) increases
the complexity of the computation being performed within our lookup tables. However,
the resulting table still represents the result of a linear equation. While we increase the
number of values unknown to the attacker (as opposed to a non-encoded version of
the scheme where sk is the only unknown), an attacker will eventually be able to solve
such a system. Indeed, an attacker not only has full knowledge of our lookup tables,
he also has full control over their inputs/outputs. Those tables can be seen as oracles
providing as many equation as the attacker may need to recover all encodings. Once
those encodings are known, they can easily be removed from our lookup tables, making
key extraction trivial. While we have not managed in practice to create and solve such
a system when all homomorphic encodings are used in conjunction together, the linear
properties of the computations performed within our lookup tables is still a huge red
flag regarding security against that type of attack.

To prevent key extraction against algebraic attacks, we need one of two counter-
measures: non-linear encodings to prevent the solvability of our systems, or to be able
to perform the final step of our decryption process, the reduction modulo 2, within
our lookup tables. Both countermeasures are achievable and will be discussed in the
following section. However, they both present severe restrictions to be used in practice.

A depiction of our design so far can be found in Appendix A

4 Additional Countermeasures

In this section, we will cover two additional countermeasures that can be used to
improve the resilience of our scheme against white-box attacks. Unlike the different
transformations applied to our scheme so far, those countermeasures are either specific
to a particular setting of white-box cryptography or present considerable overhead to
both memory consumption and computation time. However, both those techniques
provide a huge gain in security in a white-box setting.

4.1 External Encodings

In article [10], external encodings are mentioned as encodings applied to encrypted
messages before they are sent to the party utilizing the white-box. In the case of a
white-box performing decryption, for example, a message is encrypted and then encoded



12 Lucas Barthelemy

before it is send to the party performing decryption. This means that the white-box
used by said party needs to be constructed with those encodings in mind. In the case
of AES, the first set of lookup tables therefore contains an input encoding reversing
the effect of those external encodings.

Using this technique imposes a very specific set up where the party providing the
white-box and the one encrypting the data are both trusted parties. For example, one
can imagine a company developing a software for a specific platform. Said company
sends to legitimate users encrypted software updates and a white-box performing a
decryption of those encrypted updates without leaking any cryptographic key used in
that process. This way, the company can ensure legitimate users are able to update
their product, but also aim at preventing them from manufacturing fake updates that
could alter the product in unforeseen ways (unlocking paid content for example). In this
specific set up, external encodings can be used for the party providing the white-box
and the one encrypting messages are both trusted (in fact, they are one and the same).

On the contrary, let us consider a setup in which the administrator of a secure
environment wants to provide for its users a way to exchange encrypted data. This
administrator wants to prevent its users from being able to extract their respective
cryptographic keys, for they could then easily use those keys to communicate from
outside the secure environment with people inside. In this set up, external encodings
cannot be used, for the party encrypting data is itself not trusted and could collaborate
with the one decrypting messages to gain knowledge of secret cryptographic keys.

Let us consider the use of external encodings in our scheme. Because such encod-
ings will be applied and removed by different parties, external encodings do not need
any linear or homomorphic properties. Let G (respectively H) be a set of non-linear
encodings over Galois’ field GF24 (one encoding for each residue derived from the NTT
transform and the RNS decomposition). Let the tuple (α1, α2) be an encryption of a
message m. Let αi,j

1 (respectively αi,j
2 ) be the set of residues obtained after using an

NTT transform and an RNS decomposition on α1 (respectively α2) on α1 using the
exact same root of unity ω (for the NTT transform) and primed basis β (for the RNS
decomposition) as those used in our white-box performing decryption. The encrypting
party can apply external encodings by computing:

ᾱ1
i,j = Gi,j(α

i,j
1 )

respectively:
ᾱ2

i,j == Gi,j(α
i,j
2 )

Before computing the new values ᾱ1 and ᾱ2 by using the CRT and inverse NTT trans-
form on the resulting residues.

As far as our white-box is concerned, decoding is pre-computed within pre-computation
tables. Let G−1i,j (respectively H−1i,j ) be the inverse encodings of Gi,j (respectively of
Hi,j):

Si,j
sk [ᾱ2

i,j ][ᾱ1
i,j ] = H−1i,j (ᾱ2

i,j)−G−1i,j (ᾱ1
i,j) · ski,j

This transformation adds a layer of resistance against white-box attacks as the en-
codings of both sets G and H do not need to be linear functions, as opposed to the ho-
momorphic encodings covered in the previous section. Therefore, our pre-computation
tables cannot be seen by an attacker as a solvable linear system. However,This new



Toward an Asymmetric White-Box Proposal 13

type of encodings is only usable in a specific context that may not be accessible to all
applications.

4.2 A 3-table scheme

This next countermeasure aims to include the last part of our decryption process, the
reduction modulo 2, in our lookup tables. Reducing the result of our lookup tables
modulo 2 would effectively erase most of the information accessible to an attacker in
a white-box context. However, this operation cannot be performed while our lookup
tables use as input residues derived from an NTT transform coupled to an RNS decom-
position. To solve this issue, we propose an alternative representation of our table-based
scheme.

Let Ssk be a set of lookup tables using a combination of homomorphic encodings:

– a rotating encoding r = (r1, r2),
– an encoding of 0 z = (z1, z2).
– an encoding of 1 u = (u1, u2)

For each key residue ski,j , the table Si,j
sk pre-computes the following equation:

Si,j
sk [αi,j

2 ][αi,j
1 ] =((αi,j

2 − α
i,j
1 · ski,j) · (r

i,j
2 − r

i,j
1 · ski,j)+

(zi,j2 − z
i,j
1 · ski,j)) · (u

i,j
2 − u

i,j
1 · ski,j)

By simply developing this equation, we get:

Si,j
sk [αi,j

2 ][αi,j
1 ] =− αi,j

1 · r
i,j
1 · u

i,j
1 · (ski,j)3+

(αi,j
1 · r

i,j
1 · u

i,j
2 + αi,j

2 · r
i,j
1 · u

i,j
1 +

αi,j
1 · r

i,j
2 · u

i,j
1 + zi,j1 · u

i,j
1 ) · (si,jk )2−

(αi,j
2 · r

i,j
1 · u

i,j
2 + αi,j

1 · r
i,j
2 · u

i,j
2 +

zi,j1 · u
i,j
2 + αi,j

2 · r
i,j
2 · u

i,j
1 + zi,j2 · u

i,j
1 ) · (ski,j)+

αi,j
2 · r

i,j
2 · u

i,j
2 + zi,j2 · u

i,j
2

Let us define two random elements v ∈ Rq and w ∈ Rq that will serve as masking
for the following design. Let us then define two set of lookup tables Vsk and Wsk

performing the following operation for all residues:

V i,j
sk [αi,j

2 ][αi,j
1 ] =− αi,j

1 · r
i,j
1 · u

i,j
1 · (ski,j)3+

(αi,j
2 · r

i,j
1 · u

i,j
1 + zi,j1 · u

i,j
1 ) · (si,jk )2−

(αi,j
2 · r

i,j
1 · u

i,j
2 + αi,j

1 · r
i,j
2 · u

i,j
2 + zi,j1 · u

i,j
2 ) · (ski,j)+

zi,j2 · u
i,j
2 + vi,j

W i,j
sk [αi,j

2 ][αi,j
1 ] =(αi,j

1 · r
i,j
1 · u

i,j
2 + αi,j

1 · r
i,j
2 · u

i,j
1 ) · (si,jk )2−

(αi,j
2 · r

i,j
2 · u

i,j
1 + zi,j2 · u

i,j
1 ) · (ski,j)+

αi,j
2 · r

i,j
2 · u

i,j
2 + wi,j



14 Lucas Barthelemy

such that for all residues (αi,j
2 , αi,j

1 ):

V i,j
sk [αi,j

2 ][αi,j
1 ] +W i,j

sk [αi,j
2 ][αi,j

1 ]− vi,j − wi,j = Si,j
sk [αi,j

2 ][αi,j
1 ]

The last computation required to perform decryption is an addition of the result
of both tables and the removal of encoding values v and w. Note that unlike the
computations represented by Vsk and Wsk, this last part of the decryption process is
free of products. Let ai,j and bi,j be examples of residues obtained through the use of,
respectively, lookup tables V i,j

sk and W i,j
sk such that:

ai,j = V i,j
sk [αi,j

2 ][αi,j
1 ]

bi,j = W i,j
sk [αi,j

2 ][αi,j
1 ]

Let a (respectively b) be an element of Rq reconstructed from the residuesai,j (respec-
tively bi,j). Let T be a set of n lookup tables performing the following operation:

Ti[a[i], b[i]] = (m[i] = a[i] + b[i]− v[i]− w[i]) mod 2

Such a lookup table T not only compute the addition of our two intermediate elements
and the removal of masking values v and w, it also performs the last step of the
decryption process that is the reduction modulo 2. However, such a table far exceed
the size of our previous lookup tables V and W . As an example, our implementation
manages to produce a set of tables T of size approximately 200MB. Therefore, a full
set of tables V , W and T weight around 240MB, increasing the size of our white-box
design by a factor 10.

However, as far as security is concerned, this design is far more resilient than the
one described in the section 2. The distribution of computation between V and W can
be randomised from one white-box implementation to the other. Furthermore, from an
attacker point of view, both tables are indistinguishable from each other (they have
the same inputs and produce a result of similar entropy), opening the door for various
obfuscation techniques impeding the effort of an attacker trying to isolate one table
from the other. As far as tables T are concerned, the reduction modulo 2 is a point
of no return as most of the information on secret key sk is erased by this last step of
decryption.

In conclusion, this 3-table design is far more resistant to the simple scheme presented
in section 2, but it comes at a heavy price in memory consumption and computation
time (as we now require two uses of the inverse-NTT operation per encrypted message).

5 Conclusion

We have presented a design of asymmetric lattice based white-box that can be used in
practice. It is a table-based implementation which takes advantage of the use of both
NTT and RNS techniques. The security against white-box analysis is based on the use
of homomorphic encoding techniques to prevent the extraction of secret key residues.

In white-box cryptography, one concern for usability in practice is always space as
using lookup tables instead of computing an operation is extremely costly. Through



Toward an Asymmetric White-Box Proposal 15

the use of NTT and RNS decomposition techniques, we manage to create a set of
lookup tables performing all operations involving the key while remaining under 20
MB. This target of 20 MB matches the limitations imposed during the two WhibOx
challenges [1] [2] that aimed to gather state of the art AES white-box implementations.
Therefore, we consider this proposal to be a legitimate practical challenger for white-
box cryptography. While this is still a lot of memory consumption overhead for most
applications in the industry (for example, D.R.M. or mobile software), our proposal
can be adjusted by chaining RNS representations to reduce the memory consumption
overhead. However, this comes at a cost of non-negligible computation time overhead.

Moreover, we discuss the limitations in term of security of our basic scheme. There-
fore, We also present two additional countermeasures that increase the resistance of our
scheme in a white-box context. However, both those countermeasures present draw-
backs that should be considered for practical use.

While there is still work to be done for optimizations and evaluation of security,
this design could serve as a ground work for asymmetric white-box scheme. Asymmet-
ric white-boxes can already be found in the wild, and poorly implemented white-box
schemes can have serious consequences on software security. We encourage the com-
munity to break those types of designs in order to understand how they could be
vulnerable, and how we could improve their implementations.

In addition, as far as security is concerned, because research on asymmetric white-
box (and therefore its cryptanalysis) is extremely scarce, we do not recommend the
usage of our proposal in practice.

While encoding techniques discussed in this article are heavily bounded to the ho-
momorphic properties of our scheme (apart from external encodings), the use of NTT
and RNS to shift toward a table-based implementation is generic enough to be appli-
cable to other asymmetric schemes. This means that other asymmetric cryptosystems
may be worth considering in the future, as those could have different interesting prop-
erties for white-box development (for example, resistance to side-channels, dynamic
encodings).

Furthermore, techniques described in this work could be adapted and improved to
offer resilience against grey-box attacks. In particular, homomorphic encodings could be
made dynamic in a grey-box context (as the use of randomness is extremely delicate in
the white-box context) and table-based implementation is already a strong tool against
some side-channel techniques.

All techniques described in this article have been fully implemented and tested
in python. While this language is quite helpful for proof of concept work, a C++
implementation would probably yield less overhead.

Our future work will be to improve encodings by making them dependant of some
pseudo-randomness source derived from the context. We are also searching for a differ-
ent technique of decomposition that could support the final computation performed by
our last lookup table (in the case of our 3-table scheme). Furthermore, we are trying
to find new ways to attack our current proposal. Finally, we are working on adapting
those techniques to other cryptosystems to study their potential as white-box imple-
mentations.



16 Lucas Barthelemy

A A Basic Asymmetric White-Box Scheme

Algorithm 4: Decrypt
input : α = (α1, α2), sk
output: m

gotoNTT(α2, α1) // going into NTT
for i in range(n): do

x[i] = gotoRNS(α1[i]) // going into RNS
y[i] = gotoRNS(α2[i]) // using basis β
for j in range(β): do

z[i][j] = fetch_data(i, j, x[i][j], y[i][j]) // access lookup table
end
m[i] = gobackRNS(z[i]) // reverse RNS

end
m = gobackNTT(m) // reverse NTT
for i in range(n): do

m[i] = (m[i] > q/2)? m[i]%2: (1−m[i])%2
end
decode(m) // remove encodings (depends on construction)



Toward an Asymmetric White-Box Proposal 17

References

1. Ches 2017 capture the flag challenge (2017), https://whibox-contest.github.io/
2. Ches 2019 capture the flag challenge (2019), https://www.cyber-crypt.com/whibox-

contest/
3. Bajard, J.C., Laurent-Stéphane, D., Kornerup, P.: An rns montgomery modular multipli-

cation algorithm 47, 766 – 776 (08 1998)
4. Bajard, J.C., Eynard, J., Hasan, A., Zucca, V.: A full rns variant of fv like somewhat

homomorphic encryption schemes. Cryptology ePrint Archive, Report 2016/510 (2016),
https://eprint.iacr.org/2016/510

5. Beirendonck, M.V., D’Anvers, J.P., Karmakar, A., Balasch, J., Verbauwhede, I.: A side-
channel resistant implementation of saber. Cryptology ePrint Archive, Report 2020/733
(2020), https://eprint.iacr.org/2020/733

6. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box aes implementation.
In: Handschuh, H., Hasan, M.A. (eds.) Selected Areas in Cryptography. pp. 227–240.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

7. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis: Hiding
your white-box designs is not enough. Cryptology ePrint Archive, Report 2015/753 (2015),
https://eprint.iacr.org/2015/753

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. Cryptology ePrint Archive, Report 2011/277 (2011),
https://eprint.iacr.org/2011/277

9. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: Another attempt. Cryp-
tology ePrint Archive, Report 2006/468 (2006), https://eprint.iacr.org/2006/468

10. Chow, S., Eisen, P.A., Johnson, H., Oorschot, P.C.v.: White-box cryptography and an
aes implementation. In: Revised Papers from the 9th Annual International Workshop on
Selected Areas in Cryptography. pp. 250–270. SAC ’02, Springer-Verlag, London, UK, UK
(2003), http://dl.acm.org/citation.cfm?id=646558.694920

11. van Emde-Boas, P.: Another NP-complete Partition Problem and the Complexity of Com-
puting Short Vectors in a Lattice. Report. Department of Mathematics. University of
Amsterdam, Department, Univ. (1981)

12. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/2012/144

13. Guinet, Aguilar, Guelton, Lepoint: Quatre millions d’échanges de clés par secondes. SSTIC
Archive, 2015 (2015), https://www.sstic.org/2015/presentation/4M_kx_per_sec

14. Hoogerbrugge, Jan (Eindhoven, N.M.W.E.N.: Protecting the in-
put/output of modular encoded white-box rsa (November 2016),
http://www.freepatentsonline.com/y2016/0328543.html

15. Karroumi, M.: Protecting white-box aes with dual ciphers. In: Rhee, K.H., Nyang, D.
(eds.) Information Security and Cryptology - ICISC 2010. pp. 278–291. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

16. Lepoint, T., Rivain, M.: Another nail in the coffin of white-box aes implementations.
Cryptology ePrint Archive, Report 2013/455 (2013), https://eprint.iacr.org/2013/455

17. Lex Aaron Anderson (Auckland), Alexander Medvinsky (San Diego, C.R.S.S.D.C.:
Protecting the input/output of modular encoded white-box rsa (July 2018),
https://patents.justia.com/patent/20180198613

18. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. Cryptology ePrint Archive, Report 2016/504 (2016),
https://eprint.iacr.org/2016/504

19. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical cca2-secure and
masked ring-lwe implementation. Cryptology ePrint Archive, Report 2016/1109 (2016),
https://eprint.iacr.org/2016/1109



18 Lucas Barthelemy

20. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. Cryptology ePrint Archive, Report 2017/594 (2017),
https://eprint.iacr.org/2017/594

21. Wilhelmus P.A.J. Michiels, P.M.G.: White-box implementation (February 2009),
https://patents.google.com/patent/US20110150213A1/

22. Xiao, Y., Lai, X.: A secure implementation of white-box aes (12 2009)


