
Nearly Quadratic Broadcast Without Trusted Setup Under
Dishonest Majority

Georgios Tsimos
tsimos@umd.edu

University of Maryland

Julian Loss
jloss@umiacs.umd.edu

University of Maryland

Charalampos Papamanthou
cpap@umd.edu

University of Maryland

July 15, 2020

Abstract

Broadcast (BC) is a crucial ingredient for many protocols in distributed computing and cryptog-
raphy. In this paper we study its communication complexity against an adversary that controls
a majority of the parties. In this setting, all known protocols either exhibit a communication
complexity of more than O(n3) bits (where n is the number of parties) or crucially rely on a
trusted party to generate cryptographic keys before the execution of the protocol. We give the
first protocol for BC that achieves Õ(n2 · κ) bits of communication (where κ is the security pa-
rameter) under a dishonest majority and minimal cryptographic setup assumptions, i.e., where
no trusted setup is required and parties just need to generate their own cryptographic keys.
Our protocol is randomized and combines the classic Dolev-Strong protocol with network gos-
siping techniques to minimize communication. Our analysis of the main random process employs
Chernoff bounds for negatively-associated variables and might be of independent interest.

1 Introduction

Consensus is the fundamental distributed computing problem of agreeing on a common output v
among n mutually distrustful parties, some t of which may be corrupted. In the sender-centric con-
sensus version of broadcast (BC), a designated sender s distributes a value v such that (1) all parties
output the same value v′ (consistency) (2) all parties output v in case s is honest (validity). BC lies
at the core of many cryptographic protocols such as secret sharing and multi-party computation
(MPC). More recently, it has also proven useful in the context of blockchain protocols (e.g., [15]).
Broadcast without trusted setup. As expected, feasibility and quality of BC protocols greatly
depends on the underlying assumptions. For example, in absence of cryptography (such as digital
signatures), no BC protocol can tolerate more than t = n/3 malicious parties [13]. However, when
digital signatures are used, it is widely known that BC can be solved for arbitrary t < n malicious
parties with O(n3 ·κ) bits of communication [5], where κ is the security parameter. Digital signatures
are considered a minimal cryptographic assumption in that they require no trusted setup: All parties
register their public keys to a public bulletin board before the start of the protocol and no assumption
is made on how parties generate their keys. This model is known as the bulletin board PKI model.
Better communication complexity in the trusted PKI model. To obtain BC with better
(subcubic) communication complexity, one can strengthen the underlying (cryptographic) assump-
tions. In particular all existing protocols with less than O(n3) bits of communication (e.g., [1, 4])
are in the trusted PKI model which stands in stark contrast to the bulletin board PKI model: In
the trusted PKI model there is a trusted setup phase where a trusted party, Alice, generates all keys

1

mailto:tsimos@umd.edu
mailto:jloss@umiacs.umd.edu
mailto:cpap@umd.edu

Table 1: Comparison of RandAuthBroadcast, in terms of communication complexity, to existing
BC protocols. We denote with n the number of parties and ε is a fixed constant in (0, 1).

protocol model communication adversary malicious parties
Abraham et al. [1] trusted PKI Õ(n · κ) adaptive < n/2

Chan et al. [4] trusted PKI Õ(n2 · κ) adaptive < (1− ε) · n
Dolev and Strong [5] bulletin board PKI O(n3 · κ) adaptive < n

RandAuthBroadcast bulletin board PKI Õ(n2 · κ) static < (1− ε) · n

honestly and distributes them to the protocol participants while at the same time she must remain
uncompromised for the rest of the protocol. Other drawbacks of the trusted PKI model include
lack for support in dynamic settings, e.g., in blockchain systems, where new parties frequently join
(and leave) as well as bad usability due to their requirement of a very specific (and often not very
efficient) type of signature scheme such as VRFs or threshold signatures [2, 14] (Note that protocols
for bulletin board PKIs are far more convenient, as they work with any digital signature scheme.)
Unsurprisingly, using a trusted PKI, BC can easily be solved within O(n2 ·κ) bits of communication
for any t < (1− ε) · n, where 0 < ε < 1. For a complete comparison of different BC protocols using
different models and assumptions see Table 1.

Given the importance of removing any centralized trust in distributed systems (which is the goal
of distributed systems to begin with) while still having an efficient protocol, we ask the following
fundamental question:

Is there a protocol that solves BC for t < n corruptions with o(n3) bits of communication in the
bulletin board PKI model, i.e., with no trusted setup?

Our result. We resolve this question by introducing RandAuthBroadcast (see Figure 2), the
first protocol for BC that achieves communication complexity of Õ(n2 · κ) in the bulletin board
PKI model (In particular, the exact communication complexity in bits is O(n2 · f(n) ·κ) for f(n) =
ω(1) · log n, which guarantees a negligible probability of failure, as required in a cryptographic
setting.) Our protocol is randomized and works for t < (1 − ε) · n, where 0 < ε < 1 is a constant.
On the downside, we assume a static model of corruption where the adversary must decide which
t parties to corrupt before the execution—but the corrupted parties are byzantine (In Section 5
we discuss challenges in achieving adaptive security.) At a technical level, our protocol combines
techniques used in gossip networks with the structure of the Dolev-Strong protocol to facilitate
efficient communication. Although our approach is rather intuitive, its analysis is subtle, e.g.,
requiring a proof for negatively-associated random variables. For this reason, our main propagation
protocol AddRandomEdges (see Section 3) could be of independent interest.

1.1 Related Work

The problem of BC was originally introduced in the celebrated work of Lamport, Shostak, and
Pease [13]. Their work also gave the first (setup-free) protocol for t < n/3 and showed optimality
of their parameters. However, their solution required an exponential amount of communication and
was soon improved upon by protocols requiring only polynomial amounts of communication [7, 10].
More recently, a line of work initiated by King et al. [12, 11, 3] gave setup-free protocols for the
case of t < n/3 that require Õ(n3/2) communication. For the setting of t < n corruptions, Dolev
and Strong [5] gave the first protocol with polynomial efficiency. Their protocol uses a bulletin
board PKI, requires O(n3 · κ) bits of communication, and solves BC for any t < n. Much more
recently work of Chan et al. gives a protocol that requires Õ(n2 · κ) bits of communication and

2

requires trusted setup. In the range of t < n/3 and t < n/2, the works of Micali [15], Micali
and Vaikuntnathan [16], and Abraham et al. [1] present solution with subquadratic communication
complexity using trusted setup. We give an overview over communication efficient protocols in
Table 1. Somewhat surprisingly, in the setting with setup (for t < n), any efficiency improvement to
the early work of Dolev and Strong has been aimed exclusively at improving the round complexity
rather than the communication complexity. This has been the subject of several works [9, 8, 4, 17].

1.2 Organization

We introduce basic notation, concentration inequalities, the corruption and network model, and
definitions of broadcast protocol in Section 2. In Section 3, we analyze the properties of the random
process AddRandomEdges that occurs in our protocol. In Section 4, we show how to use these
properties to build our protocol RandAuthBroadcast. We conclude in Section 5 with some
discussion concerning challenges to make the protocol adaptively secure as well as to further reduce
the communication complexity.

2 Preliminaries and Notation

We now continue with some preliminary notations and definitions that we will be using throughout
the paper. We will make use of the notation f(x)↗ in x to denote that function f(x) is increasing
in x. Also for m ∈ N and a set S, such that m ≤ |S|, we denote with m ∼ S the set S′ that contains
m elements of S, chosen uniformly at random with replacement.

2.1 Bulletin board PKI

We assume that parties share a public key infrastructure (PKI). That is, each party i has a secret
key ski and a public key pki, where pki is known to all parties. The secret key ski and the public
key pki are not assumed to be computed in a trusted manner. Each party i can compute a signature
σ on a message m via σ ← sig(ski,m). Later, anybody can verify σ via calling ver(pki, σ,m). As is
standard for this line of work, we assume that signatures are idealized, that is, we treat signatures
as perfectly unforgeable in the sense that it is impossible, without ski, to create a signature σ on a
message m such that ver(pki, σ,m) = 1. We also assume perfect correctness, meaning that for any
m, ver(pki, sig(ski,m),m) = 1. To simplify notation, we write sigi(m) to indicate sig(ski,m) and
veri(σ,m) to indicate ver(pki, σ,m).

2.2 Network Model

We consider the standard synchronous model of communication. In this model, parties are assumed
to share a global clock that progresses at the same rate for all parties. Furthermore, they are
connected via pairwise, authenticated channels. Any message that is sent by an honest party at
time T is guaranteed to arrive at every honest party at time T + ∆, where ∆ is the maximum
network delay. In particular, this means that messages of honest parties can not be dropped from
the network and are always delivered. As such we consider protocols that execute in a round based
fashion, where every round in the protocol is of length ∆. It is assumed that all parties start
executing the r-th round of a protocol at time (r − 1) · ∆. Let M be a set of messages and P
be a set of parties. When a party i calls Send(M,P) at round r, then the set of messages M is
delivered to parties in P at round r + 1. Finally, when a party i calls Receive() at round r, then
all messages that were sent to i at round r − 1 via Send commands are stored in i’s local storage.

3

2.3 Adversary Model

Let 0 < ε < 1 be a positive constant. We consider a polynomial-time adversary that can corrupt
up to t ≤ (1 − ε) · n parties in a malicious fashion, i.e., can make them deviate from a protocol
description arbitrarily. In particular, the adversary learns a corrupted party’s entire state, including
secret keys and its entire view of the protocol execution up to that point. In addition, we consider
a rushing adversary that can observe the honest parties’ messages in any synchronous round r of a
protocol, and delay them until the end of that round. In this way, it can choose its own messages for
that round before delivering any of the honest messages. We consider the static model of corruption.
In this model, the adversary chooses what parties to corrupt before an execution of the protocol.

2.4 Definitions

We begin with the formal definition of a t-secure broadcast protocol.

Definition 1 (t-secure broadcast). A protocol Π executed by n parties, where a designated party s
(the sender) holds an input v is a t-secure broadcast protocol if the following properties are satisfied
with overwhelming probability in n whenever at most t parties are corrupted:

Validity: if the sender is honest, all honest parties output v.

Consistency: all honest parties output the same value v′.

Note that we require our result to hold with overwhelming probability in n (which is 1 − negl(n)
where negl(n) is a function that is o(1/nc) for all constants c), which is much stronger than whp.
This is due to the considered adversary being polynomial-time since we are in the cryptographic
setting. Our protocol is randomized and for its analysis we will be using the notion of negatively
associated random variables.

Definition 2 (Negatively associated random variables [6]). Let X = {X1, . . . , Xn} be a set of
random variables. We say that the random variables X are negatively associated (or that X is NA) if
for every two disjoint sets I, J ⊆ [n], E [f(Xi, i ∈ I)g(Xj , j ∈ J)] ≤ E [f(Xi, i ∈ I)]E [g(Xj , j ∈ J)]
for all functions f : R|I| → R and g : R|J | → R that are both non-decreasing or both non-increasing.

Some key properties that we will be using to prove negative association are listed in the Appendix.
See Properties 1, 2, 3 and 4. It is easy to show that a standard Chernoff bound holds for negatively
associated variables. For completeness, we present the proof in the Appendix.

Lemma 1 (Lower tail for negatively associated variables). Let X1, . . . , Xn be negatively associated
Boolean random variables and X be their sum. Let µ = E [X]. Then, for any 0 < δ < 1, the
standard Chernoff bound holds

Pr[X < (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
.

3 The Procedure AddRandomEdges

In this section, we present a random procedure, that we call AddRandomEdges. Procedure
AddRandomEdges simulates the propagation of messages from honest nodes to the rest of the
network in our protocol, between two consecutive rounds. Separately analyzing it allows us to argue
about the consistency and validity of RandAuthBroadcast in a more structured manner.

4

1: procedure Z← AddRandomEdges(S1, S2, S3, S,m)
Input: Partition of n nodes into disjoint sets S1, S2, S3; S ⊆ S1; Integer m ≤ n.
Output: Boolean variables Z.

2: for every node v ∈ S do
3: for i = 1, . . . ,m do
4: Pick a node u uniformly at random from the set of nodes S1 ∪ S2 ∪ S3;
5: Add an edge (v, u);
6: Let Zu ∈ {0, 1} such that Zu = 1 iff u ∈ S2 has nonzero degree;
7: return {Zu}u∈S2 ;

Figure 1: The AddRandomEdges procedure.

AddRandomEdges works over a graph whose vertices are partitioned into three disjoint sets:
In particular, given a partition of n nodes into three disjoint sets S1, S2, S3, and a set S ⊆ S1,
AddRandomEdges picks, for every node in S, m random neighbors from S1∪S2∪S3 and outputs
a Boolean variable for every node u in S2 indicating whether u has obtained a neighbor as a result
of this procedure (The value m will be taken to be roughly ω(1) · log n by our protocol to achieve
negligible probability of failure.) Looking ahead, S is the set of nodes that send a message q at a
specific round, S2 is the set of nodes that have not heard q before, and we are trying to figure out
how many in S2 will get q. The procedure is formally described in Figure 1.

We now prove some useful properties of AddRandomEdges. In Lemma 2 we show that the
output random Boolean variables are negatively associated. Then in Lemma 3 we show that the
number of nodes that acquire an edge in S2 is roughly at least two times the number of nodes in S.
Intuitively this will allow us to show that enough nodes will be seeing the propagated messages in
our final protocol.

Lemma 2. Random variables {Zu}u∈S2 output by AddRandomEdges(S1, S2, S3, S,m) are nega-
tively associated (as defined in Definition 2).

Proof. Let us define indicator random variables

Xvuk =

{
1, if node u ∈ S2 is chosen as the k-th neighbor of v ∈ S;
0, else

,

where k ≤ m. For each pair (v, k), it holds that
∑

u∈S2
Xvuk = 1, since exactly one node u ∈ S2 is

chosen as the k-th neighbor of v. Thus, by Property 3 (also Lemma 8 in [6]) it holds that each set
X(v,k) = {Xvuk}u∈S2 is negatively associated. Furthermore, for each pair (v, k) 6= (v′, k′) the sets
X(v,k),X(v′,k′) contain mutually independent random variables, since choosing the neighbors of v and
v′ are independent procedures. Thus, by Property 1 in the Appendix (also Proposition 7.1 in [6])
it holds that the set X = {Xvuk} for v ∈ S, u ∈ S2 and k = 1, . . . ,m is negatively associated. Now,
for every u ∈ S2, let us define the sets Uu = {Xvuk}v∈S,k∈[m], which are pairwise disjoint. Also,
for every u ∈ S2, let us also define functions hu(Xvuk, Uu) =

∑
Xvuk∈Uu

Xvuk. Note that function
hu counts the incoming edges towards u from all v ∈ S. Each such function is a non-decreasing
function and thus by Property 2 (also Proposition 7.2 in [6]) the set of random variables {hu}u∈S2 is
negatively associated. Observe now that the variables Zu for u ∈ S2 output by AddRandomEdges
can be defined as

Zu = f(Yu) :=

{
0, if Yu = 0;
1, if Yu > 0.

5

Since function f is non-decreasing, by Property 2 (also Proposition 7.2 in [6]) we have that {Zu}u∈S2

are negatively associated.

Lemma 3. Let (S1, S2, S3) be a partition of n nodes into disjoint sets with τ ≤ |S1| ≤ ε ·n/3, |S2| =
ε ·n−|S1|, |S3| = n−ε ·n, where ε ∈ (0, 1) is a constant and τ ≥ 1. Let also S ⊆ S1 with |S| ≥ 2 ·τ/3
and let {Zu}u∈S2 be the random variables output by AddRamdomEdges(S1, S2, S3, S,m). Then
for m ≥ 15/ε,

Pr

∑
u∈S2

Zu ≥ 2 · τ

 ≥ 1− p ,

where p = ε·n
5 · e

−ε·m/9.

Proof. The proof will consider two cases, one for |S1| > ε · n/6 and one for |S1| ≤ ε · n/6.

Case |S1| > ε · n/6: For this case we have that |S| > ε ·n/9 and therefore the probability that
Zu = 0 for a fixed u ∈ S2 is

(1− 1/n)m·|S| > (1− 1/n)m·ε·n/9 ≤ e−ε·m/9 .

Note now that since |S2| = ε · n− |S1| ≥ 2 · ε · n/3 ≥ 2 · τ it is

Pr

∑
u∈S2

Zu ≥ 2 · τ

 ≥ Pr

∑
u∈S2

Zu = |S2|

 = Pr

 ⋂
u∈S2

Zu = 1

 = 1− Pr

 ⋃
u∈S2

Zu = 0


≥ 1− (ε · n− |S1|) · e−ε·m/9 > 1− ε · n

5
· e−ε·m/9 .

Case |S1| ≤ ε · n/6: By Lemma 2, random variables Zu (u ∈ S2) are negatively associated.
By Lemma 1, we can use the lower tail Chernoff bound for Z =

∑
u∈S2

Zu, i.e.,

Pr[Z < (1− δ)µ] <

(
e−δ

(1− δ)1−δ

)µ
.

Note that µ = E [Z] =
∑

u∈S2
Pr[Zu = 1] = (ε · n− |S1|)

(
1− (1− 1/n)m·|S|

)
. Therefore

µ ≥ (5/6) · ε · n ·
(

1− (1− 1/n)m·|S|
)

(since |S1| ≤ ε · n/6)

≥ (5/6) · ε · n · (1− (1− 1/n)m) (since |S| ≥ 1)
≥ (5/6) · ε ·m · (1− (1− 1/m)m) (since n ≥ m and x · (1− (1− 1/x)m)↗ in x)
≥ (5/6) · ε ·m · (1− 1/e)

> 0.5 · ε ·m.

For δ = 1/2 this yields

Pr[Z < µ/2] <

(
e−0.5

(0.5)0.5

)0.5·ε·m
=

(
2

e

)0.25·ε·m
.

Recall however that we must bound the probability Pr[Z < 2·τ]. Therefore it is enough to also
show that µ ≥ 4 · τ . Indeed, starting with the expression µ = (ε ·n−|S1|)

(
1− (1− 1/n)m·|S|

)
6

we have that

µ ≥ 5 · |S1| ·

(
1−

(
1− ε

6|S1|

)m·|S|)
(since n ≥ 6|S1|

ε
and µ↗ in n)

≥ 5 · τ ·
(

1−
(

1− ε

6τ

)m·|S|)
(since |S1| ≥ τ and 5x

(
1− (1− ε/6x)m·|S|

)
↗ in x)

≥ 5 · τ ·
(

1−
(

1− ε

6τ

)2·m·τ/3)
(since |S| ≥ 2 · τ/3)

≥ 5 · τ ·
(

1− e−m·ε/9
)

(1)

> 4 · τ (since m ≥ 15/ε) ,

where to derive Inequality 1, we used the properties that for 0 < x ≤ 1 it is (1− x)1/x ≤ e−1,
for a, b, c > 0 it is a ≤ b⇔ ac ≤ bc, and the fact that τ ≥ 1⇒ τ ≥ ε/6⇒ ε

6τ ∈ (0, 1].

Since now 1− ε·n
5 · e

−ε·m/9 < 1− (2/e)0.25·ε·m, the lemma follows.

4 The Protocol RandAuthBroadcast

We now describe our protocol RandAuthBroadcast. For simplicity, we will describe our protocol
for the case where the values that are agreed upon are from the binary domain, but it is trivial to
generalize to an arbitrary domain of values.

4.1 Intuition: From Send-To-All to Gossiping

Our protocol is inspired by the classic protocol of Dolev-Strong [5] that achieves O(n3·κ) communica-
tion complexity in the bulletin PKI model. Dolev-Strong uses a Send-To-All approach repeatedly—
we briefly recall the protocol here: Each party i ∈ [n] maintains a set Extractedi that initialized as
empty. The protocol proceeds in t rounds as follows. In the first round, the designated sender s
signs her input bit and sends the signature to all n − 1 parties. In rounds 2 ≤ r ≤ t, for each bit
b ∈ {0, 1}, if an honest party i has seen at least r signatures on b (including a signature from the
designated sender) and b is not in her extracted set, then party i adds b to her local extracted set,
signs b and sends the r + 1 signatures to all n − 1 parties. What makes the above protocol work
is the fact that when party i sends the r + 1 signatures, all honest parties see these signatures in
the next round, since these signatures are sent to all n− 1 parties. However this comes at the cost
of increased communication complexity: For example, all honest parties could send an O(t · κ)-size
message to n− 1 parties, which results in O(n2 · t ·κ) communication which is O(n3 ·κ) for linear t.

Our protocol does away with the Send-To-All, and introduces a form of gossiping: it does not
require an honest party to send the r + 1 signatures to all n − 1 parties. Instead, an honest party
sends the r + 1 signatures to a small set of m = log n · ω(1) parties chosen uniformly at random
from the n parties (recall from Section 2 that we denote this set with m ∼ [n]), with the hope that
after a certain number of rounds, enough honest parties will see these messages. As expected, the
total number of rounds must now increase. Fortunately, our protocol requires just an additional
R = O(log n) rounds, yielding a communication complexity of O(n2 ·m ·κ) = Õ(n2 ·κ) and a round
complexity of O(n).

7

1: procedure b′ ← RandAuthBroadcastp(b)
Input: Initial bit b.
Output: Decision bit b′.

2: Extractedp = Localp = ∅;
3: for round r = 1 to t+R+ 1 do
4: if r = 1 and p is the designated sender s then
5: Send(sigs(b),m ∼ [n]);
6: if 1 < r ≤ t+R then
7: Localp ← Localp ∪Receive();
8: for bit x ∈ {0, 1} do
9: if |S ← DistinctSigs(x, Localp, s)| ≥ min{r, t+ 1} & x /∈ Extractedp then

10: Extractedp = Extractedp ∪ x;
11: Send(sigp(x) ∪ S,m ∼ [n]);

12: if r = t+R+ 1 then
13: return b′ ∈ Extractedp if |Extractedp| = 1 otherwise return the canonical bit 0;

Figure 2: Our RandAuthBroadcastp protocol for honest party p: n is the number of parties,
t = (1 − ε) · n is the number of malicious parties, m is the number of uniform parties selected at
every round, s is the designated sender, R = O(log n) is the number of additional rounds, Extractedp
and Localp are local structures initialized as empty. DistinctSigs(x, Localp, s) returns the set of
distinct valid signatures on x contained in Localp if this set includes a signature from s, otherwise
it returns ∅. Note that only the designated sender’s input matters for the protocol but we give an
input bit to all parties to simplify the description of the protocol.

4.2 Formal description and proof of RandAuthBroadcast

Figure 2 contains the pseudocode of our protocol from the view of an honest party p (i.e., this is
the algorithm that runs at each distributed (honest) node p). It takes as input the identity p of the
party (given as subscript of the procedure name) and the initial bit b and returns the final bit b′

(Note that the initial bit b is only relevant for the designated sender s.) Note three major differences
from the Dolev-Strong protocol [5]: (1) we increase the number of rounds from t to t+R+ 1 (Line
3); (2) instead of sending to all parties we send to m randomly selected parties (Lines 5 and 11);
(3) for all rounds r ≥ t+ 1 we do not require r + 1 signatures to add to the extracted set but just
t+ 1—that is why we use the expression min{r, t+ 1} in Line 9. We now continue with the proof of
consistency and validity of RandAuthBroadcast. We first define, using notation consistent with
AddRandomEdges, the following sets of parties (with respect to a specific bit b and a specific
round r):

1. S(b, r) contains honest parties x that added b to their Extractedx set at round r;

2. S1(b, r) contains honest parties x that added b to their Extractedx set by round r;

3. S2(b, r) contains the set of honest parties x that have not added b to their Extractedx set by
round r.

Also, define S3 contain the set of malicious parties (|S3| = n − ε · n). We now prove our main
technical lemma showing (roughly) that the number of parties that receive a message at round r′

that was sent at round r < r′ increases exponentially with r′ − r with overwhelming probability.

8

Lemma 4 (Gossiping bounds). For a specific bit b, let r be the first round of RandAuthBroad-
cast where an honest party p adds b to Extractedp. Then, for all rounds r′ such that r ≤ r′ ≤ t+R
we have that

|S(b, r′)| ≥ (2/3)3r
′−r and |S1(b, r′)| ≥ 3r

′−r

with probability at least (1− p)r′−r, where p = ε·n
5 · e

−ε·m/9.

Proof. For the base case where r′ = r, we have that by definition of S(b, r) and S1(b, r), it is
i ∈ S(b, r) and i ∈ S1(b, r). Therefore |S(b, r)| ≥ τ and |S1(b, r)| ≥ τ for some τ ≥ 1, with
probability 1, and the base case holds.

For the inductive step, assume the claim holds for some round ρ < t+ R, i.e., with probability
at least (1− p)ρ−r it is

|S(b, ρ)| ≥ (2/3)3ρ−r and |S1(b, ρ)| ≥ 3ρ−r . (2)

Recall now that the protocol proceeds from round ρ to round ρ+ 1 by having parties in S(b, ρ) send
a valid message on b to m random parties. We define the events

A : |S2(b, ρ)| ≥ 2 · 3ρ−r

B : |S(b, r′)| ≥ (2/3)3r
′−r and |S1(b, r′)| ≥ 3r

′−r.

To figure out a bound on how many new honest parties will receive this message, it is enough to
call

AddRamdomEdges(S1(b, ρ), S2(b, ρ), S3, S(b, ρ),m)

from Figure 1, which, by Lemma 3, tells us that, assuming m ≥ 15/ε, it is Pr(A|B) ≥ 1 − p, and
thus Pr(|S(b, ρ+ 1)| ≥ 2 · 3ρ−r|B) ≥ 1− p. By the inductive hypothesis in Equation 2 we know that
Pr(B) ≥ (1− p)ρ−r, and therefore by the identity Pr(A) ≥ Pr(B) · Pr(A|B) we have that

|S(b, ρ+ 1)| ≥ 2 · 3ρ−r , (3)

with probability at least (1− p)ρ−r · (1− p) = (1− p)ρ+1−r. Note also that by definition of S1(., .)
and S(., .) we have

|S1(b, ρ+ 1)| = |S(b, ρ+ 1)|+ |S1(b, ρ)| ≥ 2 · 3ρ−r + 3ρ−r = 3 · 3ρ−r = 3(ρ+1)−r .

Now by Equation 3 we have |S(b, ρ+ 1)| ≥ 2 · 3ρ−r = (2/3) · 3(ρ+1)−r, as required.

We now present our main results, i.e., proofs for consistency/validity as defined in Definition 1.

Theorem 1 (RandAuthBroadcast consistency). Let R = dlog3(ε ·n)e and m = ω(1) · log n. At
the end of RandAuthBroadcast, all honest parties agree on the same output bit, with probability
at least 1− negl(n).

Proof. Suppose an honest party i adds bit b to Extractedi at some round r. We prove by the end
of the protocol all honest parties j will add b to their Extractedj sets with probability at least
1 − negl(n)—this will mean that all honest parties will have identical Extracted sets by the end of
the protocol, which is equivalent to consistency. We distinguish the two cases:

Case r < t+ 1: For this case we make use of Lemma 4. Based on Lemma 4, if an honest party
i adds b to Extractedi at round r < t+ 1, at least 3R ≥ 3log3(εn) = ε · n honest parties will add
b to their Extracted set by round r+R (and thus by the end of the protocol), with probability
at least (1 − p)R ≥ 1 − R · p, by Bernoulli’s inequality and since −p ≥ −1. Note however
that for m = ω(1) · log n, p = ε·n

5 · e
−ε·m/9 = negl(n) and therefore the probability is at least

1− negl(n), as required.

9

Case r ≥ t+ 1: Suppose an honest party i adds bit b to Extractedi at some round r ≥ t + 1.
This means that i has received valid signatures on b from t+ 1 distinct parties. That means
that an honest party j added bit b to Extractedj at some round r′′ < t + 1. Therefore, the
case r′′ < t+ 1 from above applies for honest party j and therefore all honest parties will add
b to their Extracted sets by the end of the protocol, with probability at least 1− negl(n).

Theorem 2 (RandAuthBroadcast validity). Let R = dlog3(ε · n)e and m = ω(1) · log n. If the
sender is honest, then at the end of RandAuthBroadcast all honest parties agree on the same
output bit, which is the input bit of the sender, with probability at least 1− negl(n).

Proof. Follows from the proof of consistency in Theorem 1. After R = dlog3(ε·n)e rounds, all honest
parties will have received the bit of the honest sender, with probability at least 1− negl(n).

Theorem 3 (RandAuthBroadcast communication complexity). Let R = dlog3(ε ·n)e and m =
ω(1)·log n. The total number of bits exchanged by all parties in RandAuthBroadcast is Õ(n2 ·κ).

Proof. Every honest party sends at most one time to m = ω(1) · log n parties a message of at most
t signatures. Since there are O(n) honest parties, t = O(n) and the size of each signature is κ, the
total number of bits exchanged is O(n2 ·m · κ) = Õ(n2 · κ).

5 Conclusions and Discussion

In this paper, we have studied the communication complexity of broadcast with dishonest majority
in the bulletin board PKI model. We have shown a protocol that achieves close to O(n) improvement
in communication complexity over the protocol of Dolev and Strong [5] against a static adversary.
We believe that there is much room for future work in this direction.

The most immediate question is whether subcubic broadcast is possible against an adaptive
adversary that controls a majority of the parties. In the strongly adaptive adversarial model, the
adversary can corrupt parties at any given point of an execution of a protocol. On top of this, the
adversary can observe a party p’s messages for round r, then adaptively corrupt p and delete any
of p’s messages for round r. In this manner, the adversary can replace p’s messages with its own,
or send conflicting messages to the messages that p sent prior to being corrupted. It is clear that
our protocol is not secure in this setting. A simple attack would be to send the wrong bit b during
some round r < t−m+ 1 to a single honest party p and then observe which m parties p sends to
during the next round. Then, the adversary corrupts these m parties and thus by the end of the
protocol, p will be the only honest party having b in her Extracted set.

Another question is whether the communication complexity in the quadratic protocol by Chan
et al. [4] can be further improved to subquadratic complexity (using trusted setup). A potential
improvement could be achieved by using some cryptographic primitive such as cryptographic ac-
cumulators or succinct non-interactive arguments in a way that the size of the signature list that
needs to be propagated is kept sublinear, while not comprimising the security of the protocol.

Finally, another interesting direction would be to restrict our sender model to send-to-all channels
(instead of pairwise channels considered here), as commonly found in popular blockchain protocols.

References

[1] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. Communication complexity of byzantine agreement, revisited. In Peter Robinson

10

and Faith Ellen, editors, 38th ACM Symposium Annual on Principles of Distributed Computing,
pages 317–326. Association for Computing Machinery, July / August 2019.

[2] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin
Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in
Computer Science, pages 514–532. Springer, Heidelberg, December 2001.

[3] Elette Boyle, Ran Cohen, and Aarushi Goel. Succinctly reconstructed distributed signatures
and balanced byzantine agreement. ePrint Cryptology Archive, 2020.

[4] T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. Sublinear-round byzantine agreement under
corrupt majority. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas,
editors, PKC 2020: 23rd International Conference on Theory and Practice of Public Key Cryp-
tography, Part II, volume 12111 of Lecture Notes in Computer Science, pages 246–265. Springer,
Heidelberg, May 2020.

[5] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[6] Devdatt P. Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence.
Random Struct. Algorithms, 13(2):99–124, 1998.

[7] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In 20th Annual
ACM Symposium on Theory of Computing, pages 148–161. ACM Press, May 1988.

[8] Matthias Fitzi and Jesper Buus Nielsen. On the number of synchronous rounds sufficient for
authenticated byzantine agreement. In DISC, volume 5805 of LNCS, pages 449–463. Springer,
2009.

[9] Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity of
authenticated broadcast with a dishonest majority. In 48th Annual Symposium on Foundations
of Computer Science, pages 658–668. IEEE Computer Society Press, October 2007.

[10] Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement in t+1 rounds. In
25th Annual ACM Symposium on Theory of Computing, pages 31–41. ACM Press, May 1993.

[11] Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable byzantine agreement
with an adaptive adversary. In Andréa W. Richa and Rachid Guerraoui, editors, 29th ACM
Symposium Annual on Principles of Distributed Computing, pages 420–429. Association for
Computing Machinery, July 2010.

[12] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In 17th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 990–999. ACM-SIAM, January
2006.

[13] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(382–401), July 1982.

[14] Benoît Libert, Marc Joye, and Moti Yung. Born and raised distributively: fully distributed non-
interactive adaptively-secure threshold signatures with short shares. In Magnús M. Halldórsson
and Shlomi Dolev, editors, 33rd ACM Symposium Annual on Principles of Distributed Com-
puting, pages 303–312. Association for Computing Machinery, July 2014.

11

[15] Silvio Micali. Very simple and efficient byzantine agreement. In Christos H. Papadimitriou,
editor, ITCS 2017: 8th Innovations in Theoretical Computer Science Conference, volume 4266,
pages 6:1–6:1, 67, January 2017. LIPIcs.

[16] Silvio Micali and Vinod Vaikuntanathan. Optimal and player-replaceable consensus with an
honest majority. Technical report, MIT, 2017.

[17] Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas Devadas. Expected constant round byzantine
broadcast under dishonest majority. ePrint Cryptology Archive, 2020.

Appendix

Proof of Lemma 1

Proof. Define the variables Yi = 1−Xi. Since Xi ≤ 1, Yi are also NA (see proof of Proposition 5 [6]).
For i = 1, . . . , n, let pi = Pr[Xi = 1]. By linearity of expectation, we have that E [Y] = µ =

∑n
i=1 pi.

Since variables Yi are negatively associated, from Property 4, we have that for t > 0,

E
[
etY
]

= E
[
etY1 · etY2 . . . etYn

]
≤

n∏
i=1

E
[
etYi
]

=
n∏
i=1

E
[
et(1−Xi)

]
=

n∏
i=1

et·E
[
e−tXi

]
= etn

n∏
i=1

E
[
e−tXi

]
.

For each E
[
e−tXi

]
, it holds that E

[
e−tXi

]
= pie

−t + (1− pi) = 1 + pi(e
−t − 1) ≤ epi(e−t−1) , where

we used the fact that for any k, it holds that 1 + k ≤ ek. Replacing above we get that

E
[
etY
]
≤ etn

n∏
i=1

epi(e
−t−1) = etn+

∑n
i=1 pi(e

−t−1) = etn+µ(e
−t−1) .

Finally, applying Markov’s inequality, for any t > 0 we get that

Pr[X ≤ (1− δ) · µ] = Pr[n− Y ≤ (1− δ) · µ]

= Pr[Y ≥ n− (1− δ) · µ]

= Pr[etY ≥ etn−t(1−δ)·µ]

≤ etn+µ(e
−t−1)

etn−t(1−δ)µ

=
eµ(e

−t−1)

e−t(1−δ)µ

=

(
ee
−t−1

e−t(1−δ)

)µ
,

By now we set t = − ln(1− δ) > 0, since δ ∈ (0, 1) and thus we get:

Pr[X ≤ (1− δ) · µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
.

12

Other properties of negatively associated variables

Property 1 (Proposition 7.1 [6]). If X and Y are sets of NA random variables and ∀x ∈ X,∀y ∈
Y, x, y are mutually independent, then X ∪Y is also a set of NA random variables.

Property 2 (Proposition 7.2 [6]). Let X = {X1, . . . , Xn} be a set of NA random variables. Let
(I1, . . . , Ik) ⊂ [n] be disjoint index sets, for some positive integer k. For j ∈ [k], let hj : R|Ij | → R
be functions that are all non-decreasing or all non-increasing, and define Yj = hj(Xi, i ∈ Ij). Then
Y = {Y1, . . . , Yk} is also a set of NA random variables.

Property 3 (Lemma 8 [6]). Let X = {X1, . . . , Xn} be a set of Boolean random variables with∑
iXi = 1. Then X is a set of NA random variables.

Property 4 (Lemma 2 [6]). Let X1, . . . , Xn be NA. Then for any non-decreasing functions fi it is
E [
∏
i fi(Xi)] ≤

∏
i E [fi(Xi)].

13

	Introduction
	Related Work
	Organization

	Preliminaries and Notation
	Bulletin board PKI
	Network Model
	Adversary Model
	Definitions

	The Procedure AddRandomEdges
	The Protocol RandAuthBroadcast
	Intuition: From Send-To-All to Gossiping
	Formal description and proof of RandAuthBroadcast

	Conclusions and Discussion

