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Abstract. Broadcast (BC) is a crucial ingredient for a plethora of cryp-
tographic protocols such as secret sharing and multiparty computation.
In this paper we apply gossiping (propagating a message by sending to a
few random parties who in turn do the same, until the message is deliv-
ered) to design new randomized BC protocols with improved communi-
cation complexity and which are secure against an adversary controlling
the majority of parties. We make progress on two fronts. First, we pro-
pose a protocol for single-sender BC in the static model of corruption
that achieves Õ(n2 · κ2) bits of communication and where no trusted
setup is required—parties just need to generate their own cryptographic
keys. All prior protocols in this setting exhibit O(n3 ·κ) communication.
Using insights from our single-sender BC protocol, we then propose the
first adaptively-secure parallel BC protocol with Õ(n2 · κ4) communica-
tion complexity, significantly improving existing parallel BC protocols
of Õ(n3) communication. To the best of our knowledge, our parallel BC
protocol is the first non-trivial one, i.e., one that is not using a single-
sender BC protocol n times and in a black box fashion, thus leading to
the improved complexity.

1 Introduction

Since its formalization by Lamport et al. [16], the problem of broadcast (BC) has
been studied in countless works and remains at the pinnacle of interest in the era
of cryptocurrencies and blockchains. In its single-sender version, BC involves a
designated sender s that distributes a value v such that (1) all parties output the
same value v′ (consistency); (2) all parties output v in case s is honest (validity).
Parallel BC (PBC) (also known as interactive consistency [20]) is a generaliza-
tion of the single-sender setting where all parties act as designated senders, and
in the end each party outputs values, satisfying the above conditions, from every
sender. Broadcast protocols lie at the core of many cryptographic protocols such
as secret sharing and multiparty computation and have also recently been proven
useful in the context of blockchain consensus protocols (e.g., [17]). Interestingly,
in many of the above applications, BC is mostly used as a library that is invoked
by every party simultaneously, which implicitly gives a (trivial) PBC protocol.
An important metric for any distributed protocol is its communication complex-
ity, i.e., how many bits are exchanged during the protocol. Often, it is closely
related to the communication efficiency of the underlying protocols using BC or



protocol model communication adversary malicious parties type

Abraham et al. [1] trusted PKI Õ(n · κ) adaptive < n/2 BC
Chan et al. [5] trusted PKI O(n2 · κ2) adaptive < (1− ε) · n BC

Dolev and Strong [7] bulletin PKI O(n3 · κ) adaptive < n BC
Momose and Ren [19] bulletin PKI Õ(n2 · κ) adaptive < n/2 BC

RandomBroadcast §3 bulletin PKI O(n2 · κ2) static < (1− ε) · n BC
ParallelBroadcast §5 trusted PKI Õ(n2 · κ4) adaptive < (1− ε) · n PBC

Table 1. Comparison of RandomBroadcast and ParallelBroadcast, in terms of
communication (number of bits), to existing work. n the number of parties and ε < 1.

PBC. However, while there is a lot of work on the communication complexity of
simple BC (see Table 1) no results exist (to the best of our knowledge) on the
communication complexity of PBC specifically.

Contributions. In this work, we revisit the communication complexity of both
BC and PBC. See Table 1. We focus on the dishonest majority setting with both
a static and an adaptive adversary and we provide the first subcubic protocols
(under certain assumptions) for both BC and PBC. Additionally, to the best
of our knowledge, our PBC protocol is the first to not use BC as a black box,
leading to the improved communication bound.

Message Propagation.We achieve our improvements by optimizing one of the
fundamental aspects of BC protocols: their message propagation. When an hon-
est party sends out a message at some round, propagation ensures that all honest
parties receive this message soon. In most protocols, this is implemented via an
expensive SEND-ALL instruction delivering the message in a single round [5,7].
However, such instructions might not always be needed. For example, it might
not be crucial to deliver the message strictly in the next round. Our proposed
protocols for BC and PBCminimize the use of SEND-ALL instructions via gossip-
ing, eventually yielding much better communication for the proposed protocols.
In particular, in message propagation via gossiping, a party first sends the mes-
sage M only to a small random set of parties, who in turn do the same, until
M is delivered. Somewhat surprisingly, the effect of this simple technique on the
complexity of broadcast had not been explored before.

Bulletin PKI versus Trusted PKI. Our proposed protocols are designed in
two distinct trust models, the bulletin PKI model and the trusted PKI model. In
bulletin PKI, no trusted setup is required: All parties register their public keys
to a public bulletin board before the start of the protocol and no assumption
is made on how parties generate their keys. In trusted PKI, trusted setup is
required: A trusted party, Alice, generates all keys honestly and distributes them
to the parties prior to protocol execution while at the same time she must remain
uncompromised for the rest of the protocol. Clearly, trusted PKI is a stronger
assumption than bulletin PKI.
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1.1 Communication-Efficient BC in the Bulletin PKI Model

In our first contribution (Section 3) we apply gossiping to achieve communication-
efficient BC protocols in the bulletin PKI model. When using bulletin PKI, it is
widely known that BC can be solved for arbitrary t < n malicious parties with
O(n3 ·κ) bits of communication using the seminal result of Dolev and Strong [7]
(Here κ is the security parameter and represents the size of a digital signature.)
However, to the best of our knowledge no protocol with better communication
complexity exists. We resolve this question by introducing RandomBroadcast
(see Figure 2), the first BC protocol that achieves communication complexity of
Õ(n2 ·κ2) bits in the bulletin PKI model. Our protocol is randomized and works
for t < (1− ε) · n corrupted parties where ε ∈ (0, 1) is a constant. On the down-
side, we assume a static model of corruption where the adversary must decide
which t parties to corrupt before the execution—but the corrupted parties are
byzantine.

Technical Highlights. Our protocol follows a similar framework with the
Dolev-Strong protocol [7]. Recall that in Dolev-Strong, for all rounds r < n,
whenever an honest party p has observed r signatures on a bit b for the first
time, p adds her signature and sends a message x of r + 1 signatures to all par-
ties, using a SEND-ALL(x) instruction. Our proposed protocol just replaces the
SEND-ALL(x) instruction with a SEND-RANDOM(m,x) instruction and runs for
an additional O(log n) rounds. Our SEND-RANDOM(m,x) instruction is imple-
mented by sending message x to party i (for all i ∈ [n]) with probability m/n for
some fixed m = Θ(κ). It is important to note, however, that our protocol does
not merely implement SEND-ALL(x) via a sequence of SEND-RANDOM(m,x)
instructions as this would still lead to cubic communication complexity—again,
it just replaces the instructions. Unfortunately our gossiping technique does not
protect against adaptive adversaries who can simply wait and corrupt recipients
of SEND-RANDOM(m,x) commands during the protocol. Still, this is not funda-
mental: We show next that gossiping, when used in PBC can (quite surprisingly)
overcome this issue.

1.2 Adaptively-Secure PBC in the Trusted PKI Model

In our second contribution (Section 5) we use gossiping to improve the commu-
nication complexity of PBC. Recall that in PBC all n parties simultaneously act
as a sender and wish to consistently distribute their message. To the best of our
knowledge, all PBC protocols that are used in the literature are derived trivially
by calling BC multiple times in a black-box fashion, which leads to a multiplica-
tive n-factor in the communication complexity. For example, deriving PBC for
t < (1− ε) · n via n parallel executions of the best BC protocol so far [5], would
yield Õ(n3) communication complexity. The main question we are considering
here is whether gossiping can help in deriving a non-black-box version of PBC,
possibly with better communication complexity. We answer this question by pro-
viding the first adaptively-secure protocol for PBC, ParallelBroadcast (see
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Figure 9), with Õ(n2 · κ4) overall communication complexity. Thus, we achieve
Õ(n · κ4) amortized communication complexity per sender.
Technical Highlights. Our starting point is the recent protocol by Chan et
al. [5] that solves BC in the trusted PKI model with O(n2 · κ2) communication
complexity. We call this protocol ChBC from now on. ChBC is essentially a Dolev-
Strong protocol run among a random committee of κ parties—for the rest of
honest parties to agree with the committee, a distribution phase takes place.
More concretely, ChBC at round r < κ instructs parties to perform the following.

1. (Voting) Whenever an honest committee party p has observed r signatures
on a bit b for the first time, p adds her signature and sends a message of
r+1 signatures to all parties, using a SEND-ALL instruction. Note this step
is executed only by the committee and the size of the message sent is at most
κ signatures of κ bits each; hence the induced communication complexity is
O(n · κ3);

2. (Distribution) Whenever an honest party p has observed r signatures on a
bit b for the first time, p just forwards the r signatures to all parties, using
a SEND-ALL instruction. Note that this step is executed by all parties and
therefore induces O(n2 · κ2) communication complexity (It is n2 · κ2 since
every party sends once to all n parties a list of at most κ signatures of κ bits
each.)

Our Approach: ConvergeRandom Protocol. We first observe that if we
naively use the ChBC protocol for the parallel case, the communication com-
plexity of the distribution phase will grow to O(n3 · κ2), since the SEND-ALL
instruction would have to be used at most 2·n times (instead of one), for each bit
b and for each party p. To overcome this issue we abstract away what this naive
modification of ChBC achieves by introducing the Converge problem. In the
Converge problem, all honest parties p begin with a set of messagesMp; In the
end, all remaining honest parties q (we consider an adaptive adversary) should
output a set Sq that is a superset of

⋃
pMp (We use superset and not equality

because the adversary can inject arbitrary messages.) For a formal definition of
the Converge problem, see Definition 5.

We are able to come up with an efficient and quite simple protocol that solves
the Converge problem, the ConvergeRandom protocol—see Figure 6. The
main idea is very simple:

1. In round 1, honest party p, for every message x ∈Mp, picks recipient i ∈ [n]
with probabilitym/n (Herem = Θ(κ).) Then party p constructs lists Lj (for
j = 1, . . . , n) containing messages x ∈ Mp that were assigned to recipient j
in the previous step. Padding is used to ensure an adaptive adversary does
not gain any advantage and list Lj is sent out to party j for j = 1, . . . , n;

2. In rounds i = 2, . . . , dlog ε ·ne, every honest party p collects all lists Lp from
the round i−1, compiles their union into a new message setMp and performs
the same task (random assigning of elements in Mp, compilation into lists
and sending) as before.
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We prove that with overwhelming probability, the above protocol delivers every
element contained in the sets of the initially-honest parties to all remaining
honest parties (see Lemma 9). To compute the communication complexity of
the above protocol we make an important observation: The number of elements
inMp, for any round and for any honest party is always O(n). This is because in
our setting, messages are valid r-batches (a set of r valid signatures) for party-bit
pairs and there can only be at most 2n of them! In particular, if an honest party
receives, at some round i two different valid r-batches on the same party-bit
pair, it can safely ignore one of them. Therefore the communication complexity
of ConvergeRandom is O(n2 ·κ4 · log n) since ConvergeRandom is run for κ
rounds, and for every inner iteration of ConvergeRandom, every honest party
sends a message of at most |Mp| ·m/n = Θ(κ) elements to all parties and each
element is at most κ signatures of κ bits each.

Adaptive Security of ConvergeRandom. It turns out that proving Con-
vergeRandom is adaptively secure (which translates into adaptive security of
our ParallelBroadcast protocol) requires a lot of care. In particular, the
crux of our proof rests on Lemma 5 stating that during the propagation process,
an adversary corrupting a party that just sent does not get any further infor-
mation about who to corrupt next. Note that this was trivial to establish in the
original ChBC protocol since honest parties send to all. However, in our case a
corruption can expose the party’s state and therefore who the party actually sent
to, guiding the adversary’s next choice. To address this, we require our protocol
be secure in the erasure model (e.g., as in [14,2]), where honest parties can erase
their states at appropriate times in the protocol—see Line 11 in the code of our
Propagate procedure in Figure 5.

1.3 Related Work

The problem of BC was originally introduced in the celebrated work of Lamport,
Shostak, and Pease [16]. Their work also gave the first (setup-free) protocol for
t < n/3 and showed optimality of their parameters. However, their solution re-
quired an exponential amount of communication and was soon improved upon
by protocols requiring only polynomial amounts of communication [8,11]. More
recently, a line of work initiated by King et al. [15,13,3] gave setup-free proto-
cols for the case of t < n/3 that require Õ(n3/2) communication and Momose
and Ren [19] provide a protocol in the bulletin PKI model with Õ(n2 · κ) com-
munication complexity but in the honest majority setting. For the setting of
t < n corruptions, Dolev and Strong [7] gave the first protocol with polynomial
efficiency. Their protocol uses a bulletin board PKI, requires O(n3 · κ) bits of
communication, and solves BC for any t < n. Much more recently, the work of
Chan et al. [5] gives a protocol that requires Õ(n2 ·κ) bits of communication and
requires trusted setup. In the range of t < n/3 and t < n/2, the works of Mi-
cali [17], Micali and Vaikuntnathan [18], and Abraham et al. [1] present solution
with subquadratic communication complexity using trusted setup. Somewhat
surprisingly, in the setting with setup (for t < n), any efficiency improvement to
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the early work of Dolev and Strong has been aimed exclusively at improving the
round complexity rather than the communication complexity. This has been the
subject of several works [10,9,5,22]. Finally, the problem of interactive consis-
tency or parallel broadcast was originally introduced by Pease et al. [20]. Another
line of works studies the round complexity of BC, examples are [10,5,23,21]. We
give an overview over communication efficient protocols in Table 1.

2 Preliminaries and Notation

We denote as X ← Π the random variable X output by probability experiment
Π. Our protocols are run among a set of n parties out of which t = (1−ε) ·n can
be malicious, for constant ε < 1. We use κ to indicate the security parameter.
Bulletin PKI. For the first part of our work, we assume that parties share a
public key infrastructure (PKI). That is, each party i has a secret key ski and
a public key pki, where pki is known to all parties. The secret key ski and the
public key pki are not assumed to be computed in a trusted manner. Instead,
we assume only that each party i generates its keys (ski, pki) locally and then
makes pki known by using a public bulletin board. Each party i can compute a
signature σ on a message m via σ ← sig(ski,m). Later, anybody can verify σ
via calling ver(pki, σ,m). As is standard for this line of work, we assume that
signatures are idealized, that is, we treat signatures as perfectly unforgeable in the
sense that it is impossible, without ski, to create a signature σ on a message m
such that ver(pki, σ,m) = 1. We also assume perfect correctness, meaning that
for any m, ver(pki, sig(ski,m),m) = 1. To simplify notation, we write sigi(m)
to indicate sig(ski,m) and veri(σ,m) to indicate ver(pki, σ,m).
Network and Synchrony Model. We consider the standard synchronous
model of communication. In this model, parties are assumed to share a global
clock that progresses at the same rate for all parties. Furthermore, they are
connected via pairwise, authenticated channels. Any message that is sent by an
honest party at time T is guaranteed to arrive at every honest party at time
T +∆, where ∆ is the maximum network delay. In particular, this means that
messages of honest parties can not be dropped from the network and are always
delivered. It is assumed that all parties know the parameter ∆. As such we con-
sider protocols that execute in a round based fashion, where every round in the
protocol is of length ∆ and parties start executing the r-th round of a protocol
at time (r− 1) ·∆. LetM be a set of messages and P be a set of parties. When
a party i calls Send(M,P) at round r, then the set of messagesM is delivered
to parties in P by round r+1. Finally, when a party i calls Receive() in round
r, then all messages that were sent to i in round r − 1 via Send commands are
stored in i’s local storage.
t-Secure Broadcast and t-Secure Parallel Broadcast. We now begin with
the definitions of t-Secure broadcast and t-Secure Parallel Broadcast which are
the focus of Section 3 and Section 5 respectively.

Definition 1 (t-Secure Broadcast). A protocol Π executed by n parties, where
a designated party s ∈ [n] (the sender) holds an input v and parties terminate
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with an output is a t-secure broadcast protocol if the following properties are
satisfied with probability 1− negl(κ) whenever at most t parties are corrupted:

t-validity: if the sender is honest, all honest parties output v.
t-consistency: all honest parties output the same value v′.

Definition 2 (t-Secure Parallel Broadcast). A protocol Π executed by n
parties, where each party pi holds an input vi and defines a slot i and all par-
ties terminate with some output, is a t-secure parallel broadcast protocol if the
following properties are satisfied with probability 1− negl(κ) whenever at most t
parties are corrupted:

t-validity: for all slots s ∈ [n] with ps honest, all honest parties output vs.
t-consistency: for all slots s ∈ [n], all honest parties output same value v′s.

Adversary Models. In general for all our protocols we consider a polynomial-
time adversary that can corrupt up to t parties in a malicious fashion. The
adversary can make them deviate from the protocol description arbitrarily. Our
adversary is also rushing, being able to observe the honest parties’ messages
in any synchronous round r of a protocol, and delay them until the end of that
round. In this way, it can choose its own messages for that round before delivering
any of the honest messages.

Now, specifically for our RandomBroadcast in Section 3, the adversary is
static in that the adversary chooses what parties to corrupt before the execution
of the protocol. For our ParallelBroadcast in Section 5, the adversary is
adaptive, being able to corrupt up to t parties, each at any point during the exe-
cution of the protocol, learning its internal state which consists of any longterm
secret keys and ephemeral values that have not been deleted at that point. We do
not consider strongly adaptive adversaries that could, after corrupting a party,
observe what message that party attempted to send during that round and then
replace its message with another one (or simply delete it).
MPC Model. One part of our parallel broadcast protocol will be modeled using
an ideal functionality Fprop (See Figure 4.) To show that a specific implementa-
tion realizes Fprop, we will be using the definition of synchronous MPC in the
standalone model by Canetti [4] which we briefly recall here. Let f be a (possi-
bly randomized) function that takes n inputs. We denote the input of party i as
xi. All parties also hold some common auxiliary input z. The goal of running a
protocol Π is for all honest parties to learn outputs [y1, . . . , yn]← f(x1, . . . , xn).
During the execution, the adversary A can corrupt any party adaptively, upon
which it learns the internal state of this party. The adversary A outputs its entire
view. We write RealΠ,A(1

κ,x, z) to denote the distribution of the adversary’s
view that results from the above experiment.

We define security of Π relative to an ideal world where a trusted party
securely computes f and outputs the result to all parties. As before, parties hold
input vector x; the adversary in the ideal world is denoted as S. The ideal-world
execution now works as follows.
Initial corruptions. S adaptively corrupts parties and learns their inputs.
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Evaluation by trusted party. The inputs x of honest parties are sent to the trusted
party. The ideal-world adversary S can specify the inputs on behalf of any of the
parties it has corrupted. The trusted party evaluates the function f and returns
the computed outputs yi to the respective party i.
Additional corruptions. At any point in time (after output has been provided by
the trusted party), S may adaptively corrupt additional parties i.
Output. The honest parties output their view.
Post-execution corruptions. S may corrupt additional parties and output (any
function of) its view.

We write Idealf,S(1
κ,x, z) to denote the distribution of S that results from

the above experiment.

Definition 3 (Secure Computation.). Π is said to t-securely compute f if
for all PPT adversaries A that corrupt at most t parties, there exists a PPT
simulator S such that

{RealΠ,A(1
κ,x, z)}κ∈N,x,z∈{0,1}∗ ≈ {Idealf,S(1κ,x, z)}κ∈N,x,z∈{0,1}∗ .

3 Single-Sender Broadcast

We are now ready to describe our proposed communication-efficient BC protocol
in detail. As we mentioned in the introduction, our protocol replaces Dolev-
Strong’s SEND-ALL instruction with a SEND-RANDOM instruction. We model
SEND-RANDOM with a randomized procedure that we call AddRandomEdges
(see Figure 1) that simulates the propagation of messages from honest nodes
to the rest of the network in our protocol, between two consecutive rounds.
Separately analyzing it allows us to argue about consistency and validity of our
protocol RandomBroadcast in a structured manner.

3.1 The Procedure AddRandomEdges

AddRandomEdges works over a graph G whose n vertices V are partitioned
into three disjoint sets and which is initially empty, i.e., has no edges. Given
an arbitrary partition of V into three disjoint sets S1, S2, S3, and a set S ⊆ S1,
AddRandomEdges adds the edge (v, u) to the graph G with probability m/n
for every pair of nodes v ∈ S and u ∈ V . Note that S1 is fully defined by S2, S3

and V as S1 = V −(S2∪S3), therefore S1 is not an input to AddRandomEdges.
The procedure outputs the resulting graph G (i.e., with all the added edges).

Looking ahead, S will represent the set of parties that send a message q at a
specific round r and S2 will represent the set of parties that have not received q
in a previous round. An edge from v ∈ S to u ∈ V represents that party v sends
q to party u in round r. Since we are trying to figure out how many parties in
S2 will receive q (for the first time) during round r, we can study the degree of
nodes in S2. We now prove a useful property of AddRandomEdges. First, let
us define the following indicator random variables.
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1: procedure G← AddRandomEdges(V, S2, S3, S,m)
Input: Set of n nodes V ; disjoint sets S2, S3 both subsets of V ; S ⊆ V −(S2∪S3);
Integer m ≤ n.
Output: A graph G.

2: Let G be an empty graph with node set V ;
3: for every node v ∈ S do
4: for every node u ∈ V do
5: Add an edge (v, u) to G with probability m/n;
6: return G;

Fig. 1. The AddRandomEdges procedure.

Definition 4. Let G← AddRandomEdges(V, S2, S3, S,m). For all u ∈ S2 let
Zu ∈ {0, 1} such that Zu = 1 if and only if u has nonzero degree in G.

In Lemma 1 we show that the number of nodes in S2 that acquire an edge
in G is at least twice the number of nodes in S. Intuitively, this will allow us to
show that messages propagate very quickly in our broadcast protocol.

Lemma 1. Let (S1, S2, S3) be a partition of n nodes into disjoint sets with τ =
|S1| ≤ ε ·n/3, |S2| = ε ·n−|S1|, |S3| = n−ε ·n, where ε ∈ (0, 1) is a constant. Let
also S ⊆ S1 with |S| ≥ 2 · τ/3 and let {Zu}u∈S2

be the random variables defined
by AddRandomEdges(V, S2, S3, S,m) per Definition 4. Then for m ≥ 15/ε,

Pr

[∑
u∈S2

Zu ≥ 2 · τ

]
≥ 1− p, where p = max

{
ε · n · e−ε·m/9,

(e
2

)−ε·m/4}
.

Proof. Denote E the set of edges in G (note that E is a random variable). First,
note that by definition of the propagation process, the random variables Zu,
(u ∈ S2) are independent and identically distributed with

Pr [Zu = 0] = Pr [∀v ∈ S : (v, u) 6∈ E] =
∏
v∈S

Pr [(v, u) 6∈ E] = (1−m/n)|S| .

The proof will consider two cases, one for |S1| > ε ·n/6 and one for |S1| ≤ ε ·n/6.

Case |S1| > ε · n/6: For this case, we have that |S| ≥ 2 · τ/3 = 2 · |S1|/3 > ε ·
n/9 and therefore, according to the random process of AddRandomEdges,
the probability that Zu = 0 for a fixed u ∈ S2 is

Pr [Zu = 0] = (1−m/n)|S| < (1−m/n)ε·n/9 ≤ e−ε·m/9 ,
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where the last step is due to 1+x ≤ ex. Since |S2| = ε ·n−|S1| ≥ 2 · ε ·n/3 ≥
2 · τ ,

Pr

[∑
u∈S2

Zu ≥ 2 · τ

]
≥ Pr

[∑
u∈S2

Zu = |S2|

]
= Pr

[ ⋂
u∈S2

Zu = 1

]

= 1− Pr

[ ⋃
u∈S2

Zu = 0

]
≥ 1− (ε · n− |S1|) · e−ε·m/9 > 1− ε · n · e−ε·m/9 .

Case |S1| ≤ ε · n/6:
Since variables Zu are iid, we can use the lower tail Chernoff bound (see
Appendix) for Z =

∑
u∈S2

Zu, i.e.,

Pr[Z < (1− δ)µ] <
(

e−δ

(1− δ)1−δ

)µ
.

Note that µ = E [Z] =
∑
u∈S2

Pr[Zu = 1] = (ε · n− |S1|)
(
1− (1−m/n)|S|

)
.

Therefore

µ ≥ (5/6) · ε · n ·
(
1− (1−m/n)|S|

)
(since |S1| ≤ ε · n/6)

≥ (5/6) · ε · n · (1− (1−m/n)) (since |S| ≥ 1)

= (5/6) · ε · n · m
n

= (5/6) · ε ·m > 0.5 · ε ·m.

For δ = 1/2 this yields

Pr[Z < µ/2] <

(
e−0.5

(0.5)0.5

)0.5·ε·m

=
(e
2

)−ε·m/4
.

Recall that we want to bound the probability Pr[Z < 2 · τ ]. Therefore it
is enough to show that µ ≥ 4 · τ . Indeed, starting with the expression µ =
(ε · n− |S1|)

(
1− (1− m

n )
|S|) we have that

µ ≥ (5/6) · ε · n ·
(
1− e−mn |S|

)
(by 1 + x ≤ ex)

≥ 5 · |S1| ·
(
1− e−

m·ε
6|S1|

|S|
)

(since n ≥ 6|S1|
ε

and for α > 0, n ·
(
1− e−αn

)
↗ in n)

≥ 5 · τ ·
(
1− e−m·ε6τ 2·τ/3

)
(since |S1| = τ and |S| ≥ 2 · τ/3)

= 5 · τ ·
(
1− e−m·ε/9

)
> 4 · τ (since m ≥ 15/ε) .

Therefore the statement holds with the stated probability.

3.2 The Protocol RandomBroadcast

We now describe our protocol RandomBroadcast. For simplicity, we will de-
scribe our protocol for the case where values agreed upon are from the binary
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domain, but we discuss how to generalize to an arbitrary domain of values in
Section 6.
Intuition: From SEND-ALL to Gossiping. As we mentioned in the intro-
duction, our protocol is inspired by the protocol of Dolev and Strong [7] that
achieves O(n3 · κ) communication complexity in the bulletin board PKI model.
We give a detailed description of the Dolev-Strong protocol here. Each party
i ∈ [n] maintains a set Extractedi that is initialized as empty. The protocol pro-
ceeds in t+1 rounds as follows (Again, t < n is the number of corrupted parties.)
In the first round, the designated sender s signs her input bit and sends the sig-
nature to all n − 1 parties. In rounds 2 ≤ r ≤ t, for each bit b ∈ {0, 1}, if an
honest party i has seen at least r signatures on b (including a signature from the
designated sender) and b is not in her extracted set, then party i adds b to her
local extracted set, signs b and sends the r+1 signatures to all n− 1 parties. In
the final round t+ 1, i accepts a bit b iff b is the only bit in Extractedi.

What makes the above protocol work is the fact that when party i sends the
r+ 1 signatures, all honest parties see these signatures in the next round, since
these signatures are sent to all other n − 1 parties. In the final round, it is not
necessary to send again, since holding t+ 1 signatures on b means that at least
one honest party has sent r + 1 signatures upon receiving r signatures on b in
round r < t + 1. Hence, all parties must have received these r + 1 signatures
in round r + 1 and added b to their extracted sets in that round. In terms of
communication complexity, note that all honest parties send an O(t · κ)-sized
message to n− 1 parties (κ is due to the size of the signature), which results in
O(n2 · t · κ) communication. Given that t = O(n), this is O(n3 · κ).

Our protocol does away with the SEND-ALL instructions, and introduces a
form of gossiping: it does not require an honest party to send the r+1 signatures
to all n− 1 parties. Instead, an honest party sends the r + 1 signatures to each
other party with probability m

n . The hope is that after a certain number of
rounds, enough honest parties will see these messages. As expected, the total
number of rounds must now increase. Fortunately, our protocol requires just
an additional R = O(log n) rounds, yielding a communication complexity of
O(n2 ·m · κ) = O(n2 · κ2) and a round complexity of O(n).
Formal Description and Proof of RandomBroadcast. Figure 2 con-
tains the pseudocode of our protocol from the view of an honest party p (i.e., this
is the algorithm that runs at each distributed (honest) node p). It takes as input
an initial bit b in the case of the designated sender (no input else) and returns
the final bit b′. Note three major differences from the Dolev-Strong protocol [7]:
(1) we increase the number of rounds from t to t + R + 1 (Line 3); (2) instead
of sending to all parties we send to each party randomly with probability m/n
(Lines 4 and 12); (3) for all rounds r ≥ t+ 1 we do not require r + 1 signatures
to add to the extracted set but just t + 1—that is why we use the expression
min{r, t + 1} in Line 10. We now continue with the proof of consistency and
validity of RandomBroadcast. We first define, using notation consistent with
AddRandomEdges, the following sets of parties (wrt a bit b and a round r):

1. S(b, r): honest parties i that added b to their Extractedi set at round r;
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1: procedure b′ ← RandomBroadcastp()
Input: A bit b if p = s, no input otherwise.
Output: Decision bit b′.

2: Extractedp = Localp = ∅;
3: if p is the designated sender s then
4: Send(sigs(b), [n]);
5: for round r = 2 to t+R do
6: Localp ← Localp ∪Receive();
7: for bit x ∈ {0, 1} do
8: S ← DistinctSigs(x, Localp, s);
9: if |S| ≥ min{r, t+ 1} ∧ x /∈ Extractedp then
10: Extractedp = Extractedp ∪ x;
11: for party i = 1 to n do
12: Send(sigp(x) ∪ S, i) with probability m

n
;

13: return b′ ∈ Extractedp if |Extractedp| = 1, otherwise return canonical bit 0;

Fig. 2. Our RandomBroadcastp protocol for party p. DistinctSigs(x, Localp, s)
returns the set of valid signatures from distinct signers on x contained in Localp if this
set includes a signature from s, otherwise it returns ∅. Note that only the designated
sender receives an input bit in the protocol.

2. S1(b, r): honest parties i that added b to their Extractedi set by round r;
3. S2(b, r): honest parties i that have not added b to their Extractedi set by round r.

Also, define S3 contain the set of malicious parties (|S3| = n− ε ·n). We now
prove our main technical lemma showing (roughly) that the number of parties
that receive a message at round r′ that was sent at round r < r′ increases
exponentially with r′ − r with overwhelming probability.

Lemma 2 (Gossiping bounds). For a specific bit b, let r be the first round
of RandomBroadcast where an honest party i adds b to Extractedi. Let R =
dlog3(ε · n)e. Let p be the probability defined in Lemma 1. Then:

1. For all rounds ρ such that r ≤ ρ ≤ r+R and |S1(b, ρ− 1)| ≤ ε ·n/3 we have

|S(b, ρ)| ≥ (2/3) · |S1(b, ρ)| and |S1(b, ρ)| ≥ 3ρ−r

with probability at least (1− p)ρ−r.
2. Let r∗ > r be a round such that |S1(b, r

∗ − 1)| > ε · n/3. Then

|S1(b, r
∗)| = ε · n

with probability at least (1− p∗) · (1− p)r∗−r−1, where p∗ = ε · n · e−2ε·m/9.

Proof. We first prove (1) by induction on ρ. For the base case where ρ = r,
we have that by definition of S(b, r + 1) and S1(b, r + 1), i ∈ S(b, r + 1) and
i ∈ S1(b, r+ 1). Therefore |S(b, ρ)| = |S(b, r)| ≥ 1 and |S1(b, ρ)| = |S1(b, r)| ≥ 1,
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with probability 1, and the base case holds. For the inductive step, assume the
claim holds for some round ρ ≤ r+R−1, i.e., with probability at least (1−p)ρ−r:

|S(b, ρ)| ≥ (2/3)|S1(b, ρ)| and |S1(b, ρ)| ≥ 3ρ−r . (1)

Recall now that the protocol proceeds from round ρ to round ρ + 1 by having
parties in S(b, ρ) send a valid message on b to party i (i ∈ [n]) with probability
m/n. We define the events A : |S(b, ρ+ 1)| ≥ 2 · |S1(b, ρ)| and

B : |S(b, ρ)| ≥ (2/3)|S1(b, ρ)| and |S1(b, ρ)| ≥ 3ρ−r.

To figure out a bound on how many new honest parties will receive this message
in the next round (which is the set S(b, ρ+ 1)), and since |S1(b, ρ)| ≤ ε · n/3 by
hypothesis, it is enough to call AddRandomEdges(V, S2(b, ρ), S3, S(b, ρ),m)
from Figure 1. By applying Lemma 1 for τ = S1(b, ρ), we get that, assuming
m ≥ 15/ε, Pr[A|B] ≥ 1− p, and thus Pr[|S(b, ρ+ 1)| ≥ 2 · |S1(b, ρ)||B] ≥ 1− p.
By the inductive hypothesis in Equation 1 we know that Pr[B] ≥ (1 − p)ρ−r,
and therefore by the identity Pr[A] ≥ Pr[B] · Pr[A|B] we have that

|S(b, ρ+ 1)| ≥ 2 · |S1(b, ρ)| , (2)

with probability at least (1− p)ρ−r · (1− p) = (1− p)ρ+1−r. Now by Equation 2
we have |S(b, ρ+ 1)| ≥ 2 · |S1(b, ρ)| ≥ (2/3) · |S1(b, ρ+ 1)|, as required. The last
part is because, by definition of S1() and S() we have

|S1(b, ρ+ 1)| = |S(b, ρ+ 1)|+ |S1(b, ρ)| .

Finally, by Equation 2, the above can be written again as

|S1(b, ρ+ 1)| = |S(b, ρ+ 1)|+ |S1(b, ρ)| ≥ 3 · |S1(b, ρ)| ≥ 3 · 3ρ−r = 3(ρ+1)−r ,

as required.
For (2), take r∗ to be the first round with |S1(b, r

∗ − 1)| > ε · n/3. It has to
be the case that |S1(b, r

∗−2)| ≤ ε ·n/3. Thus, we can apply Item (1) for round
r∗−1 and we have that |S(b, r∗−1)| ≥ (2/3) · |S1(b, r

∗−1)| > (2/3) ·ε ·n/3, with
probability at least (1− p)r∗−r−1, where p = ε · n · e−ε·m/9. The set S(b, r∗ − 1)
contains all honest parties i who added b to Extractedi at round r∗ − 1. These
are all the parties who will propagate b during round r∗. For each honest party
1, . . . , ε · n (without loss of generality, we assume ε ·n is an integer) we define an
indicator random variable Zi = 1, if party i adds b to Extractedi at round r∗,
i.e., if i receives a valid message of b within this round and Zi = 0 otherwise. We
want to bound the probability Pr

[⋃ε·n
i=1{Zi = 0}

]
, since this is the probability

with which at least one honest party i will not add b to Extractedi at round r∗.
From the union bound of this probability we get that

Pr

[
ε·n⋃
i=1

{Zi = 0}

]
≤

ε·n∑
i=1

Pr[Zi = 0] = ε · n ·
(
1− m

n

)|S(b,r∗−1)|
≤ ε · n ·

(
1− m

n

)(2/3)·ε·n/3
= ε · n ·

((
1− m

n

) n
m

)(2/3)·ε·m/3

≤ ε · n · e−2ε·m/9 .
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Therefore, all honest parties will receive b at round r∗, i.e. |S1(b, r
∗)| = ε · n,

with probability at least (1 − ε · n · e−2ε·m/9) · (1 − p)r∗−r−1, as required. For
any round after r∗, the same holds with the same probability and it holds with
certainty, conditioned that it holds for r∗.

Lemma 3 (t-consistency of RandomBroadcast). Let R = dlog3(ε · n)e
and m = 15/ε+κ. RandomBroadcast satisfies t-consistency, per Definition 1,
with probability 1− negl(κ).

Proof. Suppose an honest party i adds bit b to Extractedi at some round r. We
prove by the end of the protocol all honest parties j will add b to their Extractedj
sets with probability 1 − negl(κ)—this will mean that all honest parties will
have identical Extracted sets by the end of the protocol, which is equivalent to
consistency. We distinguish the two cases:
Case r < t+ 1: We distinguish two cases. If S1(b, r) > ε ·n/3, then by Item (2) of
Lemma 2, all ε ·n honest parties will add bit b in their extracted set by the next
round with probability at least 1−ε ·n ·e−2ε·m/9 = 1−negl(κ), since n = poly(κ).
Now, if S1(b, r) ≤ ε · n/3, let r be the round r +R− 1. If S1(b, r) > ε · n/3, the
previous case applies. Otherwise, Item (1) of Lemma 2 applies, saying that at
round r+ 1 = r +R,

S1(b, r +R) ≥ 3R = 3dlog3(ε·n)e ≥ 3log3(ε·n) = ε · n

with probability at least (1 − p)R ≥ 1 − R · p, by Bernoulli’s inequality4 and
since −p ≥ −1, R ≥ 1. Note however that for m = 15/ε+ κ we get that R · p is
negl(k), again since n = poly(κ).
Case r ≥ t+ 1: Suppose an honest party i adds bit b to Extractedi at some round
r ≥ t+1. This means that i has received valid signatures on b from t+1 distinct
parties. Thus an honest party j added bit b to Extractedj at some round r′′ < t+1.
So, the case r′′ < t + 1 from above applies for honest party j and therefore all
honest parties will add b to their Extracted sets by the end of the protocol, with
probability 1− negl(κ).

Lemma 4 (t-validity of RandomBroadcast). Let R = dlog3(ε · n)e and
m = 15/ε + κ. RandomBroadcast satisfies t-validity, per Definition 1, with
probability 1− negl(κ).

Proof. Follows from the proof of consistency in Theorem 3. After R = dlog3(ε·n)e
rounds, all honest parties will have received the bit of the honest sender, with
probability 1− negl(κ).

Theorem 1 (t-security of RandomBroadcast). The protocol Random-
Broadcast is a t-secure broadcast protocol according to Definition 1 and against
a static adversary.

4 For every x, r ∈ <, x ≥ −1, r ≥ 1 it holds that (1 + x)r ≥ 1 + rx.

14



Proof. The protocol RandomBroadcast runs for a deterministic and fixed
number of rounds, equal to t+R+ 1, thus every party terminates with a value
(which could be the canonical 0 bit in cases). As proven in Lemmata 3, 4, the
protocol achieves consistency and validity for any t = (1− ε) · n < n. Therefore,
the protocol satisfies Definition 1.

Theorem 2 (Communication complexity of RandomBroadcast). Let
R = dlog3(ε · n)e and m = 15/ε + κ. The total number of bits exchanged by all
parties in RandomBroadcast is Õ(n2 · κ2).

Proof. Every honest party sends at most one time to m = 15/ε + κ parties
a message of at most t signatures. Since there are O(n) honest parties, t =
O(n) and the size of each signature is κ, the total number of bits exchanged is
O(n2 ·m · κ) = Õ(n2 · κ2).

4 ConvergeRandom Protocol

In this section we introduce the Converge problem, an efficient solution of
which will be used as a black box in our parallel broadcast protocol in Section 5.
Informally, in the Converge problem, honest parties begin with individual
subsets (of a fixed set M) as inputs and in the end of the protocol all honest
parties must have a superset of the union of all the initial honest-owned subsets.
We want to design Converge protocols in the presence of an adversary that can
corrupt at most t parties, adaptively. We now define the Converge problem
formally.

Definition 5 (t-secure Converge protocol). LetM be a fixed set of mes-
sages. A protocol Π executed by n parties, where every honest party p initially
holds a set Mp ⊆ M, is a t-secure Converge protocol if all honest parties,
upon termination, output a set

Sp ⊇
⋃
p∈H

Mp ,

whenever at most t parties are corrupted and where H is the set of honest parties
in the beginning of the protocol, with probability 1− negl(κ).

We note that there is a very simple t-secure Converge protocol: All hon-
est parties just send their local sets to all other parties, in one round. Unfortu-
nately, since every local set has size at most |M|, the communication complexity
of such a protocol is O(n2 · |M)|. In this section we propose a protocol, Con-
vergeRandom (see Figure 6) that uses gossiping to reduce communication to
Õ(n · |M|). Before we present our protocol, we will be introducing two neces-
sary tools that will help with the analysis and clear exposition respectively, the
procedure AddRandomEdgesAdaptive and the functionality Fprop.
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4.1 The Procedure AddRandomEdgesAdaptive

Recall that central in the analysis of our single-sender broadcast result was the
standalone randomized procedure AddRandomEdges that was presented in
Section 3.1. Roughly speaking, AddRandomEdges was adding edges from a
set S of nodes (i.e., senders of a message x) to other nodes (i.e., recipients of
message x) of the graph. Among recipients, some nodes were malicious and we
were interested in computing the number of honest nodes with a nonzero degree
(i.e., those receiving the message). Crucially for our analysis, the set of malicious
nodes in AddRandomEdges was fixed before the edges were drawn.

Here we will be working with an adaptive adversary, and we will introduce the
respective standalone randomized procedure which we call AddRandomEdge-
sAdaptive—see Figure 3. Analyzing AddRandomEdgesAdaptive will help
us with the proof of our ConvergeRandom procotol later.

In AddRandomEdgesAdaptive, a set of honest senders S ⊆ H (H is the
set of initial honest nodes) are sending a message x using AddRandomEdges,
as in Section 3.1. However, the set of malicious nodes are not fixed a priori
(as in AddRandomEdges) and the adversary A decides who to corrupt after
the edges have been placed. Our goal is to prove that after the adversary has
finished with the adaptive corruptions, still a good amount (in particular 2 ·
|S|) among the remaining honest nodes (i.e., nodes in H ′) will be receiving
message x with overwhelming probability. Clearly if we do not confine the view
of the adversary, we cannot prove something meaningful since the adversary
can go ahead and corrupt exactly the nodes that received x. For this reason,
in AddRandomEdgesAdaptive we strategically allow the adversary to access
just the list RevealedEdges (see Line 5) before making the next corruption—these
are the edges that correspond to nodes that have already been corrupted (Note
that this restriction of the adversary will be enforced by the implementation of
our protocol later.) We now formalize this intuition.

Definition 6. Let (G,H ′)← AddRandomEdgesAdaptiveA(V, S,H,m). For
all u ∈ H define random variables Zu ∈ {0, 1} such that Zu = 1 if and only if u
has nonzero degree in G and u ∈ H ′.

Lemma 5. Let (G,H ′)← AddRandomEdgesAdaptiveA(V, S,H,m). Fix ε ∈
(0, 1). Then for m ≥ 10/ε and |S| ≤ ε · n/2,

Pr

[∑
u∈H

Zu ≥ 2|S|

]
≥ 1− p ,

where p = max{n · e−ε·m/5, ( e2 )
−ε·m/2}.

Proof. For any set H∗, define EH∗ to be the event that AddRandomEdge-
sAdaptiveA(V, S,H,m) outputs (·, H∗). Also, supp(E) = {H ′ : Pr[EH′ ] > 0}.
Fix H∗ ∈ supp(E) such that

Pr

[∑
u∈H

Zu ≥ 2|S|
∣∣∣∣ EH′

]
≥ Pr

[∑
u∈H

Zu ≥ 2|S|
∣∣∣∣ EH∗

]
,
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1: procedure (G,H ′)← AddRandomEdgesAdaptiveA(V, S,H,m)
Input: Set of n nodes V ; sets S and H with S ⊆ H ⊆ V ; Integer m ≤ n.
Output: A graph G a set of nodes H ′ ⊆ H.

2: G← AddRandomEdges(V, S,m);
3: Initialize RevealedEdges to be all edges incident to nodes in v ∈ V −H;
4: while |H| ≥ ε · n do
5: vi ← A(V,H,RevealedEdges) such that vi ∈ H;
6: if vi 6= null then
7: Add {(u, vi) : u ∈ neighbor(vi)} to RevealedEdges;
8: H = H − vi;
9: else
10: break;
11: Set H ′ = H;
12: return (G,H ′);

Fig. 3. Experiment AddRandomEdgesAdaptive.

for all H ′ ∈ supp(E). Therefore

Pr

[∑
u∈H

Zu ≥ 2|S|

]
=

∑
H′∈supp(E)

Pr

[∑
u∈H

Zu ≥ 2|S|
∣∣∣∣ EH′

]
Pr[EH′ ]

≥
∑

H′∈supp(E)

Pr

[∑
u∈H

Zu ≥ 2|S|
∣∣∣∣ EH∗

]
Pr[EH′ ]

= Pr

[∑
u∈H

Zu ≥ 2|S|
∣∣∣∣ EH∗

]
≥ Pr

[ ∑
u∈H∗

Zu ≥ 2|S|
∣∣∣∣ EH∗

]
,

since H∗ ⊆ H. The remaining proof lower-bounds Pr[
∑
u∈H∗ Zu ≥ 2|S| | EH∗ ].

This will be done in three steps.
Step 1: Computing the probabilities Pr [Zu = 1 | EH∗ ] for all u ∈ H∗. For u ∈ H∗
let Yu be a random variable such that Yu = 1 iff u has nonzero degree in G. By
definition of Zu (Zu = (Yu = 1) ∩ (u ∈ H ′)) we have that, for all u ∈ H∗,

Pr[Zu = 1 | EH∗ ] = Pr[Yu = 1 | EH∗ ].

Suppose now H∗ = H − {v1, . . . , v`}, where v1, . . . , v` are nodes chosen by the
adversary in Line 5 of the experiment. Because the adversary, in his picking
v1, . . . , v`, never accesses information related to nodes in H∗ (his access is con-
fined to information in V −H∗ through the RevealedEdges list), it follows that
EH∗ (the event of the adversary picking v1, . . . , v`) and Yu (for every u ∈ H∗)
are independent events. Therefore for all u ∈ H∗ it is

Pr[Zu = 1 | EH∗ ] = Pr[Yu = 1 | EH∗ ] = Pr[Yu = 1] = 1− (1−m/n)|S| .
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Step 2: Showing {Zu}u∈H∗ , conditioned on EH∗ , are independent. By using the
above findings and by the independence of Yu we have that for all bu ∈ {0, 1}

Pr

[( ⋂
u∈H∗

Zu = bu

) ∣∣ EH∗] = Pr

[( ⋂
u∈H∗

Yu = bu

) ∣∣ EH∗]

= Pr

[ ⋂
u∈H∗

Yu = bu

]
=
∏
u∈H∗

Pr[Yu = bu] =
∏
u∈H∗

Pr[Zu = bu | EH∗ ]

and therefore {Zu}u∈H∗ are independent conditioned on EH∗ .
Step 3: Applying a Chernoff bound. We consider two cases, one for |S| > ε · n/5
and one for |S| ≤ ε · n/5. For |S| > ε · n/5, we have that for u ∈ H∗

Pr[Zu = 0 | EH∗ ] = (1−m/n)|S| < (1−m/n)ε·n/5 ≤ e−ε·m/5 .

Note now that since |H∗| ≥ ε · n and |S| ≤ ε · n/2 it is |H∗| ≥ 2 · |S|. Therefore

Pr

[ ∑
u∈H∗

Zu ≥ 2 · |S| | EH∗
]
≥ Pr

[ ∑
u∈H∗

Zu = |H∗| | EH∗
]

= Pr

[ ⋂
u∈H∗

Zu = 1 | EH∗
]
= 1− Pr

[ ⋃
u∈H∗

Zu = 0 | EH∗
]

≥ 1−
∑
u∈H∗

Pr [Zu = 0 | EH∗ ] = 1− |H∗| · e−ε·m/5

> 1− n · e−ε·m/5, since |H∗| < n .

For the case |S| ≤ ε · n/5, since Zu (u ∈ H∗) are independent random variables
conditioned on EH∗ we can use the lower tail Chernoff bound (Inequality 6.2)
for Z =

∑
u∈H∗ Zu, i.e.,

Pr[Z < (1− δ)µ | EH∗ ] <
(

e−δ

(1− δ)1−δ

)µ
.

Now µ = E [Z | EH∗ ] =
∑
u∈H∗ Pr[Zu = 1 | EH∗ ] ≥ ε ·n · (1− (1−m/n)|S|) since

|H∗| ≥ ε · n. Now since |S| ≥ 1 it is

µ ≥ ε · n · (1− (1−m/n)|S|) ≥ ε · n · (1− (1−m/n)) = ε ·m.

For δ = 1/2 this yields

Pr[Z < µ/2 | EH∗ ] <
(

e−0.5

(0.5)0.5

)ε·m
=
(e
2

)−ε·m/2
.

Recall however that we must bound the probability Pr[Z < 2|S| | EH∗ ].
Therefore it is enough to also show that µ ≥ 4 · |S|. Starting with the expression
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Functionality: Fprop

Let n be the number of parties and m = 10/ε+κ. For every party i ∈ [n], Fprop

keeps a set Oi which is initialized to ∅. Let Mi be input messages of party i.

On input (SendRandom,Mi) by honest party i:
˘ For all x ∈Mi and for all j ∈ [n] add (i, x) to Oj with prob. m/n;
˘ return Mi to adversary A;
˘ return Oi to party i.

On input (SendDirect,x, J) by adversary A (for a corrupted party i):
˘ Add (i, x[j]) to Oj for all j ∈ J ;
˘ return Oi to adversary A.

Fig. 4. Functionality Fprop.

µ ≥ ε · n ·
(
1− (1−m/n)|S|

)
we have that

µ ≥ ε · n · (1− e−mn |S|) (by 1 + x ≤ ex)

≥ 5 · |S| ·
(
1− e−m·ε5

)
(since n ≥ 5|S|

ε
and for α > 0, n

(
1− e−αn

)
↗ in n)

> 4 · |S| (since m ≥ 10/ε) .

4.2 Ideal Functionality Fprop

To facilitate the exposition of our ConvergeRandom protocol, we will be using
an ideal functionality Fprop—see Figure 4. In summary, functionality Fprop en-
ables a party i to send a set of messages M to, on average, m out of n randomly
selected parties without leaking which those parties are to the adversary. (We
stress that each message in M is sent to different parties.) In our protocol Fprop

is called, via (SendRandom,M), by all honest parties i in the beginning of every
round ρ and returns a set Oi, in the end of round ρ, which contains messages
sent from other parties to i in the beginning of round ρ5. The adversary in Fprop

gets a special interface to the functionality via the instruction (SendDirect,x, J)
by which it can send messages in x to parties specified in the vector J directly
rather than randomly. We also assume the adversary learns the input set of an
honest party to Fprop. Finally the adversary gets access to all the sets Oi for the
parties i that have been corrupted. We note here that Fprop does not maintain
state across calls and therefore all Oi = ∅, in the beginning of every round.

5 We slightly abuse the term round here; in our protocol, a round ρ will actually
consist of two synchronous rounds. If ρ were considered, instead, as a synchronous
round, Fprop is assumed to return at the end of (synchronous) round ρ + 2∆, after
all honest parties provide input at (synchronous) round ρ.
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Implementing Fprop with Propagate(). In Figure 5 we define the process
that will instantiate Fprop and give it the fitting name Propagate(). As usual,
we describe the protocol Propagate() from the view of a party p. Consistent
with the interface of Fprop, Propagate() takes as input a set of messages Mp

(that are to be sent out to other parties) and returns a set of messages Op that
were sent to p. In the first step of Propagate(), every party creates a fresh pair
of secret and public keys.

Next, note that Propagate() does not send a message x ∈ Mp directly
to party j (with probability m/n) since this would reveal the recipient of x to
the adversary. Instead, before sending, it locally computes a list Lj , for every
party j ∈ [n], and adds x to Lj with probability m/n. All lists Lj are padded
to a maximum bound Λ = 2|M| · mn and are encrypted using the fresh public
keys (Recall that M is the fixed set of the Converge problem.) Then the
plaintext lists are erased from memory and only after erasure the encrypted
lists are sent out. In the end, the fresh secret key is also erased from memory.
Intuitively, security is guaranteed because (i) the communication graph does
not reveal anything (irrespectively of who the recipient of x is, the adversary
just sees equally-sized encrypted lists sent to all parties); and (ii) even if the
adversary adaptively corrupts a party, no information about who that party
sent to is revealed (because of erasure)—the only information that is revealed is
from whom that party received, which is harmless. We now show that the lists
Lj constructed by Propagate() will overflow with negligible probability.

Lemma 6. LetM be the fixed set of the Converge problem with |M| = Ω(n).
The number of elements x added to list Lj at Line 7 of Propagate() is at most
Λ with probability 1− negl(κ).

Proof. Fix a recipient party j. For i = 1, . . . , |M |, let Xi be a 0-1 random
variable such that Xi = 1 iff the i-th message in M is assigned to list Lj . Note
that Pr[Xi = 1] = m/n. Let us also define Yi, for i = 1, . . . , |M| − |M | to be
a 0-1 random variable such that Pr[Yi = 1] = m/n. Define X =

∑|M |
i=1Xi and

Y =
∑|M|−|M |
i=1 Yi. Note that E [X + Y ] = µ = |M| ·m/n = Λ/2. By Chernoff,

Pr [X > Λ] ≤ Pr [X + Y ≥ Λ] = Pr [X + Y ≥ 2 · µ] ≤ e−µ/3 ≤ e−c·m = negl(κ) ,

for some constant c and since µ = |M| ·m/n, |M| = Ω(n) and m = Θ(κ).

Lemma 7. LetM be the fixed set of the Converge problem with |M| = Ω(n).
Let s be the number of bits of a message in M. The communication complexity
induced by one call Propagate() is O(|M| ·m · s).

Proof. When a party calls Propagate(), it first sends the fresh public key to
all parties and then it creates n lists Li, each of size Λ · s, by Lemma 6. Thus,
the communication complexity of one call of the process is O(|M| ·m · s).

Security of Propagate(). Below, we prove that Propagate() securely in-
stantiates Fprop. The key property of Propagate() that we leverage is that all
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1: procedure Propagatep(SendRandom,Mp)
Input: A set of of messages Mp.
Output: A set of messages Op.

2: Set (skp, pkp)← KeyGen(1κ); . at time 0
3: Send(pkp, [n]);
4: Receive(); . at time ∆
5: for all x ∈Mp do
6: for j = 1 to n do
7: Add x to list Lj with probability m/n;
8: for j = 1 to n do
9: Pad list Lj to maximum size Λ = 2|M| · m

n
;

10: ctj ← Enc(pkj ,Lj);
11: Erase Lj from memory;
12: for j = 1 to n do
13: Send(ctj , j);
14: C ← Receive(); . at time 2∆
15: for all ct ∈ C do
16: Decrypt ct using skp and output a list L;
17: Add L to Op;
18: Erase skp from memory;
19: return Op;

Fig. 5. Propagate(), our implementation of Fprop. We note that the secret and public
keys that are generated in Line 2 are one-time and are never used again.

parties send the same amount of information to every other party, regardless
of their inputs. This trivializes the simulation of honest parties’ communica-
tion in the protocol, since it is independent of the actual values they input to
Propagate().

Lemma 8. Assume a CPA-secure PKE scheme (KeyGen,Enc,Dec). Then pro-
cedure Propagate() t-securely computes Fprop according to Definition 3.

Proof. We describe a simulator S. To simulate an honest party p the simulator
first generates (skp, pkp) ← KeyGen(1λ) and sends pkp to all parties. Then for
each j ∈ n, the simulator samples some cj of size Λ as a ciphertext with respect to
pkj as follows. LetMp be p’s input to Fprop. Then cj is computed as Enc(pkj , Lj),
where each message inMp is added to Lj with probabilitym/n. Note that due to
Lemma 6, the size of Lj will always be less than Λ with overwhelming probability.
Then the simulator sends cj to pj .

Static corruptions.When corrupted party p sends ciphertext c to honest party
pj , S attempts to decrypt c using skj . If this succeeds, store the resulting plain-
text. At the end of the protocol, S constructs a vector x of all so obtained plain-
texts and stores the intended recipients in J . Then, it inputs (SendDirect,x, J)
to Fprop on behalf of party pi (It inputs nothing if all decryptions fail.)
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1: procedure Sp ← ConvergeRandomp(Mp,M)
Input: A set Mp ⊆M.
Output: A set Sp.

2: for round ρ = 1 to dlog(ε · n)e do
3: ReceiveFprop ← Fprop(SendRandom,Mp);
4: Localp ← Localp ∪ReceiveFprop ;
5: Mp = Localp ∩M;
6: return Localp;

Fig. 6. Our ConvergeRandomp protocol.

Adaptive corruptions. The first time a party can be corrupted is when it
sends its first message, in Line 13 (If it is corrupted before, there is no state to
simulate.) There are two subcases:

p is corrupted before the output step. Simulation of p’s internal state
apart from the received ciphertexts is trivial, as p keeps only its own honestly
generated ciphertexts as well as its secret key sk (which S knows) in the
protocol prior to sending; everything else, including the plaintext lists, is
erased at this point. All the received ciphertexts (prior to corruption) already
have the proper distribution.
p is corrupted after the output step. In this case, S has to ensure that
the ciphertexts received by p over the course of the protocol match what it
has output (i.e., what it received from Fprop). This, however, follows directly
from the CPA security of the public key encryption scheme, because p erases
its secret key prior to outputting.

It is easy to verify that S provides a perfect simulation of A’s view in a
real-world execution of the protocol Propagate(). This view is also consistent
with the outputs of parties which remain honest throughout Propagate(), as
S uses the inputs of the honest senders to Fprop to simulate the internal states
of adaptively corrupted parties.

4.3 Our ConvergeRandom Protocol

We are now ready to present and analyze our ConvergeRandom protocol,
depicted in Figure 6, for solving the Converge problem with improved com-
munication complexity. Our protocol proceeds in dlog(ε · n)e rounds where in
each round every honest party uses Fprop to send his local set to a few randomly
selected parties (Line 3). To decide what to send in the next round, each honest
party takes the union of the received messages (Line 4), and from the resulting
set of messages, keeps only messages that could have originated by honest parties
(Line 5). For example, messages m /∈ M, sent by the adversary can be safely
discarded.

We now continue with proving t-security. Recall our adversary observes the
execution of round ρ and decides who to corrupt next, adaptively. Clearly, it is
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important to conceal recipients of messages (as achieved by Fprop) since otherwise
the adversary can block the propagation of a certain message m ∈Mp for some
honest party p and therefore the final set Sp′ output by some other party p′ will
not be a superset of ∪p∈HMp, as required. We now prove the following.

Lemma 9 (Propagation in presence of an adaptive adversary). Fix an
initially-honest party p and a message m∗ ∈ Mp. Let hρ ≥ ε · n be the number
of honest parties that remain after the adversary has performed corruptions for
round ρ of ConvergeRandom. At the end of round ρ ≤ dlog(ε · n)e, with
probability 1− negl(κ), there are ≥ min{2ρ, hρ} honest parties that receive m∗.

Proof. Recall that in ConvergeRandom, a message m∗ at round ρ is propa-
gated in a randomized fashion using Fprop. Therefore the adversary does not see
which party receives the message unless this party is already corrupted—this
is exactly what is modeled by AddRandomEdgesAdaptive with the use of
RevealedEdges. Therefore, since hρ ≥ ε ·n, we can compute the number of honest
receivers Rρ of message m in the end of round ρ by (almost) directly applying
Lemma 5. Denote with Sρ the number of senders in the beginning of some round
ρ. We use induction. For ρ = 1, we have one sender (S1 = 1) and therefore by
applying Lemma 5 we have

Pr[R1 ≥ 2|S1|] = Pr[R1 ≥ min{2, h1}] ≥ 1− negl(m) ≥ 1− negl(κ) ,

since m ≥ κ and therefore the base case holds. Let us assume the claim holds
for round ρ ≤ dlog(ε ·n)e− 1, i.e., the number of honest receivers Rρ of message
m in the end of round ρ is at least min{2ρ, hρ} with overwhelming probability,
i.e.,

Pr[Rρ ≥ 2ρ] = Pr[Rρ ≥ min{2ρ, hρ}] ≥ 1− negl(κ) ,

We want to prove that Pr[Rρ+1 ≥ min{2ρ+1, hρ+1}] ≥ 1− negl(κ). According to
how ConvergeRandom works, all remaining honest receivers in round ρ are
senders in round ρ+ 1 and therefore Sρ+1 ≥ Rρ. We distinguish two cases.
Case Sρ+1 ≤ ε · n/2: Using the identity Pr[x ≥ min{a, b}] ≥ Pr[x ≥ a] we have
that Pr[Rρ+1 ≥ min{2ρ+1, hρ+1}] ≥ Pr[Rρ+1 ≥ 2ρ+1].
From the inductive hypothesis, we know that Pr[Sρ+1 ≥ 2ρ] ≥ Pr[Rρ ≥ 2ρ] ≥
1− negl(κ). So, by Lemma 5 and the inductive hypothesis we have that

Pr[Rρ+1 ≥ min{2ρ+1, hρ+1}] ≥ Pr[Rρ+1 ≥ 2ρ+1]

≥ Pr[Rρ+1 ≥ 2 · Sρ+1, Sρ+1 ≥ 2ρ]

= Pr[Rρ+1 ≥ 2 · Sρ+1 | Sρ+1 ≥ 2ρ] · Pr[Sρ+1 ≥ 2ρ]

≥ (1− negl(κ)) · (1− negl(κ))

= 1− negl(κ) .

Case Sρ+1 > ε · n/2: We have Pr[Rρ+1 ≥ min{2ρ+1, hρ+1}] ≥ Pr[Rρ+1 ≥ hρ+1].
Now note that the probability that at least one honest party (from the hρ+1

parties) will not receive when Sρ+1 > ε · n/2 nodes are sending is at most

hρ+1(1−m/n)Sρ+1 < hρ+1(1−m/n)ε·n/2 ≤ hρ+1 · e−ε·m/2 = negl(κ) ,

23



since m ≥ κ. As such all hρ+1 nodes receive with overwhelming probability.
Therefore Pr[Rρ+1 ≥ hρ+1] ≥ 1− negl(κ) and this completes the proof.

Theorem 3. Protocol ConvergeRandom from Figure 6 is an adaptively t-
secure Converge protocol. Moreover its communication complexity is O(n ·
log n · |M| ·m · s) where s is the size of a message inM.

Proof. Follows by applying Lemma 9 for all initially-honest parties and for all of
their initial messages. Every message m∗ will be delivered to all honest parties
that remain after the termination of the protocol, as required by Definition 5.
The communication complexity follows directly from Lemma 7, since every party
needs to call Propagate() O(log n) times.

4.4 An Extension: The DistinctConverge Protocol

Recall that the Converge problem was defined with respect to a message set
M. For our application, we will need a slightly different version of the Converge
problem, namely the DistinctConverge problem, defined with respect to a
parameter k. In DistinctConverge, some elements of the setM, while differ-
ent, are considered the “same” because their k-bit prefixes are the same. Looking
ahead, our set M is the set of all possible valid r-batches (a valid r-batch is a
set of at least r signatures) on bit-slot pairs (b, s), denoted (b, s, r). In this set,
two valid r-batches with different set of signatures but on the same (b, s) are
considered the same. Our prior analysis applies as is to DistinctConverge
but presenting Converge first simplified our exposition. We now give some
definitions.

Definition 7 (distinctk function). For any set M , distinctk(M) is a sub-
set of M that contains all messages in M with distinct k-bit prefixes.

E.g., for M = {01001, 01111, 11000, 10000} we have that distinct2(M) =
{01001, 11000, 10000}. Note that distinctk is an one-to-many function. For ex-
ample, distinct2(M) is also {01111, 11000, 10000}. We are now ready to present
the DistinctConverge problem.

Definition 8 (t-secure DistinctConverge protocol). Let M be a fixed
set of messages and k > 0. A protocol Π executed by n parties, where every
honest party p initially holds a set Mp ⊆M, is a t-secure DistinctConverge
protocol if all honest parties, upon termination, output a set

Sp ⊇ distinctk

⋃
p∈H

Mp

 ,

whenever at most t parties are corrupted and where H is the set of honest parties
in the beginning of the protocol, with probability 1− negl(κ).

Our DistinctConvergeRandom, a slight modification of ConvergeRandom,
is shown in Figure 7.
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1: procedure Sp ← DistinctConvergeRandomp(Mp,M, k)
Input: A set Mp ⊆M and a parameter k.
Output: A set Sp.

2: for round ρ = 1 to dlog(ε · n)e do
3: ReceiveFprop ← Fprop(SendRandom, distinctk(Mp));
4: Localp ← Localp ∪ReceiveFprop ;
5: Mp = Localp ∩M;
6: return Localp;

Fig. 7. Our DistinctConvergeRandomp protocol.

Theorem 4. Let k > 0. Protocol DistinctConvergeRandom from Figure 7
is an adaptively t-secure DistinctConverge protocol. Moreover its communi-
cation complexity is

O(n · log n · |distinctk(M)| ·m · s)

where s is the size of a message inM.

Proof. Follows from Theorem 3 and since in DistinctConvergeRandom an
honest party always uses the function distinctk before sending.

5 Our Parallel Broadcast Protocol

In this section we present our PBC protocol ParallelBroadcast by using our
protocol DistinctConvergeRandom from Section 4.4. We recall that in PBC
we have a set of n parties and each party pi has an input bit bi and acts as the
designated sender. Therefore for each party pi, a slot i is naturally defined as
the underlying (single sender) broadcast with respect to the designated sender
pi. For the definition of a t-secure PBC protocol see Definition 2 in Section 2.
We note that the PBC protocol that we will present here is secure against an
adaptive adversary, as defined in Section 2.

To facilitate the exposition and our proof, our protocol ParallelBroad-
cast in Figure 9 is given in a hybrid world where two functionalities exist. The
first one is Fprop which was presented and instantiated in Section 4.2.

The second functionality is Fmine (Figure 8), which was also presented and
used in Chan et al. [5] and was shown to be instantiable from standard assump-
tions (with setup) by Abraham et al. [1]. We assume that when a party calls
Fmine then it returns instantaneously. A party p in our protocol queries Fmine on
input (Mine, b, s) in some round i, where s ∈ [n] refers to one of the slots and
b ∈ {0, 1}. If it receives response 1, it considers itself a member of a randomly
selected subset of all the parties, which we will refer to as the “(b, s)-committee”.
More concretely, when Fmine receives such a query, it flips a random coin to de-
cide whether the party p is in that committee. Fmine keeps the information and
returns the same answer to all future identical queries by any party. We now
give some necessary definitions.
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Functionality: Fmine

Fmine is parameterized by parties 1, . . . , n and “mining” probability pmine. Let
s ∈ [n] and b ∈ {0, 1}. Let call be vector of n entries initialized with −1.

On input (Mine, b, s) from party i:
˘ If calli = −1 output b = 1 with probability pmine or b = 0 with

probability 1− pmine and set calli = b;
˘ Else output calli.

On input (Verify, b, s, j) from party i output 1 if callj = 1 and 0 otherwise.

Fig. 8. Functionality Fmine.

Definition 9 ((b, s)-committee). For each pair of bit b and slot s, the (b, s)-
committee is a subset of parties such that for each party c in the (b, s)-committee,
whenever the Fmine is queried on input (Verify, b, s, c), Fmine outputs 1.

Lemma 10 (Honest Committees). Let pmine = min {1, κ/(ε · n)} be the prob-
ability of success for Fmine. Also set R = 2κ/ε. Then, with probability 1−negl(κ),
for each bit b ∈ {0, 1} and slot s ∈ [n], the (b, s)-committee will contain (i) at
least one honest party and (ii) at most R dishonest parties.

The proof of the above lemma is given in the Appendix.

Definition 10 (Valid r-batch). A valid r-batch on pair (b, s) is the element

b||s||SIGr ,

where SIGr is a set of at least r signatures on [b, s] consisting of one signature
from party s and at least r − 1 signatures from parties in the (b, s)-committee.

Definition 11. We define Mr to be a set that contains all possible valid r-
batches for all b ∈ {0, 1} and for all s ∈ [n].

Lemma 11. It is |distinctk∗(Mr)| = 2 · n, where k∗ is the number of bits
needed to represent b||s and where distinctk∗ is defined in Definition 7.

Proof. Follows from the fact thatMr contains exactly 2 ·n elements with unique
b||s prefixes, since b ∈ {0, 1} and s ∈ [n].

5.1 Detailed Description of ParallelBroadcast

Our protocol (see Figure 9) is inspired by the single-sender protocol of Chan et
al. [5] (ChBC protocol), of which we gave a detailed overview in the introduction.
In particular, our protocol works in R+1 rounds as follows (Round R+1 is only
used for updating the local sets and no sending takes place.)

First of all, every party p maintains n Extractedps and Votedsp sets, s ∈ [n],
that are initialized as ∅. Roughly speaking, a bit b ∈ Extractedps if p has observed
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1: procedure {b1, . . . , bn} ← ParallelBroadcastp(bp)
Input: Local bit bp.
Output: Decision bits b1, . . . , bn.

2: Extractedip = ∅, for i = 1, . . . , n; . global variable
3: Votedip = ∅, for i = 1, . . . , n; . global variable
4: Localp = ∅; . global variable
5: Send(sigp([bp, p]), [n]);
6: for round r = 1 to R+ 1 do . R is also a global variable
7: Distributep(r);
8: Votep(r);
9: for slot i = 1, . . . , n do
10: return bi ∈ Extractedip if |Extractedip| = 1 else return canonical bit 0;

Fig. 9. Our protocol. All global variables can be accessed by Distribute and Vote.

a valid r-batch on [b, s]; a bit b ∈ Votedps if it has already been revealed that p
is part of the (b, s)-committee (i.e., p has “voted”).

In round 0, party i (for all i ∈ [n]) signs her input bit bi, adds it to her
Extractedii set and sends bi to all n − 1 parties along with its signature on bi,
sigi([bi, i]). From that point on, the distribution (Figure 10) and voting (Fig-
ure 11) phases follow, for every round r = 1, . . . , R. These are non-trivial mod-
ifications (for many slots and using parallel gossiping) of the distribution and
voting phases of ChBC. Our new distribution/voting phases, for round r ≤ R,
work as follows.

1. (Distribution) An honest party p first collects the set V of valid r-batches
v1, . . . , vw on messages [b1, s1], . . . , [bw, sw] that are not in the respective p’s
Extracted sets. Then, instead of every node using a SEND-ALL to send each vi
(as ChBC would do), all nodes run DistinctConvergeRandom from Fig-
ure 7. As we showed, running DistinctConvergeRandom assures that all
parties will eventually see the inputs from other parties but because there is
overlap between input messages, it achieves its goal using less communication
complexity. The pseudocode of Distribute is in Figure 10.

2. (Voting) An honest party p checks which valid r-batches in their local set
correspond to pairs (b, s) : b /∈ Votedsp. For each such pair, they check whether
they are members of the respective committee by using the functionality
Fmine. If they are, they add their own signature to extend the valid r-batch
to a valid (r + 1)-batch. See the pseudocode of Vote in Figure 11.

We are now ready to prove the consistency and the validity of our protocol.

Lemma 12 (t-consistency of ParallelBroadcast). Let R = 2κ/ε and
m = 10/ε + κ. ParallelBroadcast satisfies t-consistency, per Definition 2,
in the (Fmine,Fprop)-hybrid world with probability 1− negl(κ).

Proof. Suppose for some slot s, an honest party p adds bit b to Extractedsp at
some round r. We prove by the end of the protocol all honest parties j will add b
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1: procedure Distributep(r)

2: Localp ← Localp ∪Receive();
3: Let V = {vi} be valid r-batches (in Localp) on {[bi, si]} s.t. bi /∈ Extractedsip ;
4: for all vi ∈ V do
5: Add bi to Extractedsip ;
6: if r ≤ R then
7: Localp ← DistinctConvergeRandomp(V,Mr, k

∗);

Fig. 10. The Distribute procedure for a round r. Note that k∗ is the number of bits
required to represent b||s.

1: procedure Votep(r)

2: if r ≤ R then
3: Let V = {vi} be valid r-batches (in Localp) on {[bi, si]} s.t. bi /∈ Votedsip ;
4: for all vi ∈ V s.t. Fmine(Mine, bi, si) = 1 do
5: Add bi to Votedsip ;
6: Add bi in Extractedsip if bi /∈ Extractedsip ;
7: Extend vi to a valid (r+ 1)-batch v′i by adding p’s signature on [bi, si];
8: Send(v′i, [n]);

Fig. 11. The Vote procedure for a round r.

to their Extractedsj sets with probability at least 1−negl(κ)—this will mean that
for every slot s all honest parties will have identical Extracteds sets by the end
of the protocol, which is equivalent to consistency. We distinguish the following
cases according to the step when p adds bit b to Extractedsp (We sometimes omit
“with probability 1− negl(κ)” when it is clear from the context.)

1. r ≤ R and p adds b to Extractedsp in Line 6 of Votep(r). This means
that p sends a valid-(r+1) batch v′i for (b, s) to all parties via Send(v′i, [n]) in
Line 8 of Votep(r) and therefore all parties j will add b to their Extractedsj
sets during Distributej(r + 1).

2. r ≤ R and p adds b to Extractedsp in Line 5 of Distributep(r): For this
to happen, p has received, at round r, a valid r-batch v for (b, s) in Line 2
of Distributep(r). Valid r-batch v belongs to the set V provided as input
to DistinctConvergeRandom in Line 7 of Distributep(r). Since proto-
col DistinctConvergeRandom is t-secure (Theorem 4), all honest parties
output a set that contains v after Distributep(r) ends. By Lemma 10(i),
there will be at least one honest voter ` in the (b, s)-committee. We distin-
guish two cases.
(a) ` has not voted before for (b, s), i.e., b /∈ Voteds` . This means that ` sends

a valid-(r+1) batch v′i for (b, s) to all parties via Send(v′i, [n]) in Line 8
of Votep(r) and therefore all parties j will add b to their Extractedsj sets
during Distributej(r + 1);
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(b) ` voted before for (b, s), i.e., b ∈ Voteds` . Let r′ < r be the round when `
voted for (b, s). This means that ` sent a valid-(r′+1) batch v′i for (b, s)
to all parties via Send(v′i, [n]) in Line 8 of Votep(r′) and therefore all
parties j added b to their Extractedsj sets during Distributej(r′ + 1).

3. p adds b to Extractedsp in Line 5 of Distributep(R + 1): In this case,
p observes a valid (R + 1)-batch for (b, s). By Lemma 10(ii), at least one of
the voters, say voter `, will be honest. Let r′ < R + 1 be the round when `
voted for (b, s). This means that ` sent a valid-(r′ + 1) batch v′i for (b, s) to
all parties via Send(v′i, [n]) in Line 8 of Votep(r′) and therefore all parties
j added b to their Extractedsj sets during Distributej(r′ + 1).

This completes the proof.

Lemma 13 (t-validity of ParallelBroadcast). Let R = 2κ/ε and m =
10/ε + κ. ParallelBroadcast satisfies t-validity, per Definition 2, in the
(Fmine,Fprop)-hybrid world with probability 1− negl(κ).

Proof. Follows directly from ParallelBroadcast and Distribute and the
security of the signature scheme. Every honest sender s with input bit bs, will
execute Line 5 of ParallelBroadcast and thus will send to all parties message
a valid 1-batch (their signature) for (bs, s) at the beginning of the protocol. So,
all honest parties h will add bs to their Extractedsh sets at the beginning of
Distribute(1). Also, by the security of the signature scheme, with probability
at least 1− negl(κ) no other bit b′ could bare a valid signature from designated
sender ps, thus no other bit b′ could be in an honest party’s Extracteds set.

Theorem 5 (t-security of ParallelBroadcast). Let R = 2κ/ε and m =
10/ε + κ. ParallelBroadcast satisfies t-security, per Definition 2, in the
(Fmine,Fprop)-hybrid world.

Proof. Adaptive security follows directly from Lemmata 12 and 13.

Theorem 6 (t-security and communication of ParallelBroadcast).
Let R = 2κ/ε and m = 10/ε+κ. The total number of bits exchanged by all parties
in ParallelBroadcast is Õ(n2 · κ4).

Proof. The commuication complexity of ParallelBroadcast is dominated
by the communication complexity of DistinctConvergeRandom, which by
Theorem 4 and Lemma 11 is O(n2 · log n · m · s). Since m is Θ(κ) and s, the
size of every message/batch, is at most R = 2κ/ε (each element of the batch
being a κ-bit signature) and DistinctConvergeRandom is run for R rounds,
it follows that the communication complexity is Õ(n2 · κ4).

6 Discussion and Conclusions

In this paper, we studied the communication complexity of BC and PBC with
dishonest majority. We showed two protocols that achieve close to O(n) improve-
ment in communication complexity over the best existing protocols in their re-
spective settings. We believe that there is room for future work in this direction.
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6.1 Complexity for the Multivalued Case

Our protocols, as presented, work only for the case of binary domain. To extend
our protocols to messages of ` bits, the trivial approach of broadcasting an `-bit
message bit by bit yields a communication complexity of Õ(n2 · κ3 · `) (for our
PBC protocol) and Õ(n2 · κ2 · `) for our BC protocol. It would be interesting
to see whether one can obtain protocols that achieve a better complexity, i.e.,
O(n2 · `+poly(n, κ)) by combining our ideas with approaches from the literature
on broadcast extension for dishonest majority (see, e.g., [12,6]). Namely, this line
of work uses broadcast on short messages and techniques from coding theory to
obtain BC protocols with asymptotically optimal complexity O(n`), given ` is
large enough. It is interesting whether such techniques can also be used to im-
prove the complexity for the specific case of PBC (where the optimal complexity
is O(n2`), asymptotically).

6.2 Further Work on PBC

We have initiated the study of PBC protocols which leverage parallelity to ob-
tain better communication complexity and security than what is possible from
naively combining n single sender BCs. There are many open questions in this
area; we elaborate on a few of them here. Most closely related to our own work
is the question of studying PBC under different trust assumptions (bulletin PKI
vs. trusted PKI). For example: is it possible to get an adaptively secure PBC
protocol under bulletin PKI which has o(n4) communication complexity in the
dishonest majority setting? (Note that a naive version of PBC via n Dolev-
Strong BCs would lead to O(n4κ) communication complexity.) With regards to
adaptivity, another interesting question for follow up work would be to consider
the communication efficiency of PBC protocols in the strongly adaptive adver-
sarial model, where the adversary can observe a party p’s messages for round
r, then adaptively corrupt p and delete any of p’s messages for round r. In this
manner, the adversary can replace p’s messages with its own, or send conflicting
messages to the messages that p sent prior to being corrupted. Similar to [5],
our protocol would become insecure in such a scenario. However, recent work
of Wan et al. [21] shows how to overcome this issue by using time-locked puz-
zles. It would be interesting to see if their approach could also be applied to
our PBC protocol to yield a protocol with o(n3) communication complexity in
the dishonest majority setting. Finally, studying PBC under different corruption
thresholds (i.e., t < n/2 or t < n/3) is also a completely open direction for future
research.
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Appendix

Chernoff Bound for independent random variables

Lemma 14. Let X1, . . . , Xn be independent Bernoulli random variables, with

Pr[Xi = 1] = pi, for each i = 1, . . . , n. Also, let X =
n∑
i=1

Xi and µ = E [X] =

n∑
i=1

pi. Then, for any δ > 0, it holds that:

1. (Upper tail Chernoff Bound) Pr[X > (1 + δ)µ] <
(

eδ

(1+δ)1+δ

)µ
,

2. (Lower tail Chernoff Bound) Pr[X < (1− δ)µ] <
(

e−δ

(1−δ)1−δ

)µ
.

Deferred Proofs

Proof of Lemma 10. The trivial case κ ≥ εn is of no interest, since then R ≥ 2·n,
so we will focus on the case κ < εn and thus pmine < 1.
For each party i (honest or dishonest), we define indicator random variables
Xi = 1 if Fmine has i in the respective committee. The r.v.s are independent, since
Fmine throws an independent random coin for each choice, with Pr[Xi = 1] = κ

ε·n .
We prove each case separately:
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1. We bound the probability of the event that no honest party is elected to the
respective committee.
Define X1 =

∑
i honest

Xi, then:

Pr[X1 = 0] = Pr

[ ⋂
i honest

Xi = 0

]
=

∏
i honest

Pr [Xi = 0] (due to independence)

≤
ε·n∏
i=1

Pr [Xi = 0] (at least ε · n honest parties )

= (1− pmine)
ε·n

≤ e−ε·n·pmine (by use of 1 + x ≤ ex)

= e−κ (since pmine =
κ

ε · n
)

2. We bound the probability of the event that more than R dishonest parties
are elected to the respective committee.
DefineX2 =

∑
j dishonest

Xj , with E [X2] =
∑

j dishonest
Pr[Xj = 1] = |S3|·pmine =

|S3| · κ
ε·n ≤

1−ε
ε · κ.

Also, R = 2κ
ε ≥ (1+ δ)(1− ε) ·n · κε·n ≥ (1+ δ) ·E [X2], for any δ ∈

(
0, 1+ε1−ε

]
.

So, if we define as X∗2 the random variable X∗2 =
(1−ε)n∑
j=1

Xj , from applying a

Chernoff bound, we have

Pr [X2 > R] ≤ Pr [X∗2 > R]

≤ Pr [X∗2 ≥ (1 + δ)E [X∗2 ]]

≤
(

eδ

(1 + δ)(1+δ)

) 1−ε
ε ·κ

. (3)

We distinguish the cases:

ε < 1/2: Then, 1− ε > 1/2 and 1/ε > 2, thus (1− ε)/ε > 1. Pick δ = 1/2,
then Equation 3 becomes

Pr [X2 > R] ≤

[(
8 · e
27

)1/2
] 1−ε

ε ·κ

<

[(
8 · e
27

)1/2
]κ

.
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ε ≥ 1/2: Set δ = 1+ε
1−ε , thus 1 + δ = 1+ε+1−ε

1−ε = 2
1−ε . Then, Equation 3

becomes

Pr [X2 > R] ≤ e−(1−ε)κε ·
(

e

1 + δ

)(1+δ)(1−ε)κε

≤
(

e

1 + δ

)(1+δ)(1−ε)κε
, (since

1− ε
ε
· κ > 0)

=

(
e · (1− ε)

2

) 2κ
ε

, (since 1 + δ =
2

1− ε
)

≤
(e
4

)2κ
, (since ε ≥ 1/2⇒ e · (1− ε)

2
≤ e

4
and 1/ε > 1) .
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