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Abstract.
In our daily lives we constantly use and trust Public-Key Cryptography to exchange
keys over insecure communication channels. With the development and progress
in the research field of quantum computers, well established schemes like RSA and
ECC are more and more threatened. The urgent demand to find and standardize
new schemes – which are secure in a post-quantum world – was also realized by the
National Institute of Standards and Technology which announced a Post-Quantum
Cryptography Standardization Project in 2017. Currently, this project is in the third
round and one of the submitted candidates is the Key Encapsulation Mechanism
scheme BIKE.
In this work we investigate different strategies to efficiently implement the BIKE
algorithm on FPGAs. To this extend, we improve already existing polynomial
multipliers, propose efficient strategies to realize polynomial inversions, and implement
the Black-Gray-Flip decoder for the first time. Additionally, our implementation is
designed to be scalable and generic with the BIKE specific parameters. All together,
the fastest designs achieve latencies of 2.69 ms for the key generation, 0.1 ms for the
encapsulation, and 104.04 ms for the decapsulation considering the first security level.
Keywords: BIKE · QC-MDPC · PQC · Reconfigurable Devices · FPGA.

1 Introduction
Public-Key Cryptography (PKC) plays a crucial part of our contemporary life to exchange
keys over insecure communication channels. However, established schemes like RSA
[RSA78] and ECC [Mil85] are threatened by the far advanced development of quantum
computers [Mos09]. In 1999, Peter Shor already presented an algorithm breaking PKC
schemes in polynomial time on quantum computers [Sho99]. Knowing this threat, there was
extensive research to find new schemes which are secure even in the presence of quantum
computers. One research area is characterized by code-based cryptography where hard
problems from coding-theory are used to achieve the desired resistance against quantum
adversaries. The first cryptographic algorithm based on linear error codes was proposed
by McEliece in 1978 [McE78]. Even though the McEliece cryptosystem is viewed to be
secure against classical and quantum-based attacks, it suffers from the drawback of using
large generator matrices serving as public key.

In order to decrease the key size (and the corresponding memory requirements and
transmission bandwidth), a new class of linear codes were designed called Quasi-Cyclic
Moderate-Density Parity-Check (QC-MDPC) codes. They were first presented in [MTSB13]
and gained more and more attention in the recent years due to its performance and security
features. In 2017, the National Institute of Standards and Technology (NIST) announced
the Post-Quantum Cryptography Standardization Project aiming to find and standardize
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suitable Post-Quantum Cryptography (PQC) schemes. One of the submissions was Bit
Flipping Key Encapsulation (BIKE) which is built upon QC-MDPC codes. With the
submission to the third round, the BIKE team reduced the number of algorithms proposed
in earlier specifications [ABB+19] to one single algorithm now just called BIKE. The
remaining algorithm (called BIKE-2 in the second round submission) is based on the
Niederreiter framework including some tweaks [ABB+20].

After the announcement of the Post-Quantum Cryptography Standardization Project,
the NIST published a list of selection-criteria including security, cost and performance,
and algorithm and implementation characteristics on various platforms [AAAS+19]. Be-
sides the reference implementation of BIKE, researchers implemented highly optimized
software implementations for Intel CPUs [DGK20a] as well as an efficient microcontroller
implementation [BOG19]. Until now, there is no complete hardware implementation of the
third round submission of BIKE. In this work we will fill this gap proposing an optimized
hardware design for Field-Programmable Gate Arrays (FPGAs).

Related Work: After the introduction of QC-MDPC codes by Misoczki et al., the authors
of [HVMG13] were the first researchers who implemented the MyEcliece cryptosystem
with QC-MDPC codes on FPGAs. Besides an exploration of different decoders suited for
efficient hardware implementations, they decided to follow a design strategy targeting a
high-speed implementation. To this end, they stored all keys and intermediate results
directly in the FPGA logic and did not use any external or internal memories. Following
this strategy, the implementation can process an entire vector at a time resulting in a
multiplication that finishes in r clock cycles where r defines the size of the public key.

One year later, von Maurich and Güneysu presented a lightweight implementation
of McEliece using QC-MDPC codes [VMG14]. They divided each vector into chunks of
32 bit and processed them separately. This approach also includes internal memory (i.e.,
Block-RAM (BRAM)) to keep the amount of required registers as low as possible.

The authors of [HC17] proposed an area time efficient hardware implementation for
QC-MDPC codes and achieved better results than Heyse et al. in [HVMG13]. The
improvements were mainly gained by a custom designed decoder equipped with a hardware
module estimating the Hamming weight of larger vectors.

With the submission to the second round, the BIKE team presented a hardware
implementation for FPGAs of one of the discarded algorithms called BIKE-1 including the
key generation and encapsulation [ABB+19]. Their design strategy was very similar to the
one presented in [VMG14] but included two optimization levels which mainly parallelized
the encoding process.

Recently, Reinders et al. proposed an efficient hardware design with a constant-time
decoder which was also designed for the older BIKE-1 algorithm [RMGS20]. However, the
decoder proposed in their work differs from the introduced decoder of the current BIKE
specification and corresponding reference implementation. Additionally, as they opted for
BIKE-1, they did not implemented any polynomial inversion.

An efficient algorithm to accomplish polynomial inversions was presented in [HGWC15]
and is based on the classic Itoh-Tsujii Algorithm (ITA) [IT88]. In the inversion algorithm
and in many other parts of BIKE, polynomial multiplications are an essential building
block which can be realized by different design strategies. Two of them – i.e., a row-by-row
strategy and a strategy dividing the vectors into chunks – were described in the above
mentioned designs [HVMG13,VMG14]. Another strategy was recently introduced by Hu
et al. in [HWCW19] where the authors decomposed the quasi-cyclic matrix (constructed
from one of the polynomials) into sub-matrices achieving an enhanced area-time product.

Contribution: In our work we present the first hardware implementation for the entire
BIKE algorithm submitted to the third round of the NIST PQC competition. The first
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challenge lies in the realization of the polynomial inversion required for the key generation.
In our work we investigate different optimization strategies realizing a polynomial inversion
in hardware, which eventually leads us to a highly optimized design. The inversion module
as well as other parts of BIKE require a polynomial multiplier. We slightly improved
the multiplier proposed in [HWCW19] and achieved a design which is to the best of our
knowledge the fastest one reported in literature. Additionally, we provide the first hardware
implementation of the Black-Gray-Flip (BGF) decoder originally proposed in [DGK20c].

In our work we try to develop a hardware implementation which on the one hand can
be instantiated on small devices (with a higher latency) and on the other hand is design for
low-latency applications. This is accomplished by introducing a parameter which allows to
scale our design. Additionally, we provide scripts written in SageMath in order to achieve
a design which is completely generic with respect to all parameters used in BIKE. Besides
the generation of the HDL-files, the scripts invoke the software reference implementation of
BIKE to produce appropriated testvectors ensuring a correct functionality of our hardware
design.

Outline: The remainder of this work is structured as follows: In Section 2 we formally
introduce the BIKE algorithm, describe the underlying decoder, and state our design
considerations. Afterwards, we present the hardware implementations of each individual
building block required to compose BIKE in Section 3. This section is followed by an
overview about the entire hardware design described in Section 4. Before we conclude
our work in Section 6, we evaluate our implementation with respect to required hardware
resources and latencies in Section 5.

2 Preliminaries
In this chapter we briefly summarize the mathematical background of QC-MDPC codes
and describe the BIKE algorithm where we closely follow the notations of [ABB+20].

Starting with specific notations, we define for a given polynomial v, |v| as the Hamming
weight of v. An uniform random sampling of a polynomial v is denoted by v $← U . When
writing hj , we access the j-th row of a matrix H. The notation {0, 1}l

[t] describes the set
of all l-bit strings with Hamming weight t.

2.1 QC-MDPC Codes
Definition 1. An (n, k)-linear code C of length n, dimension k, and co-dimension r =
(n− k) is a k-dimensional subspace of Fn

q .

Note, BIKE considers only binary linear codes so that q = 2 is used in the following.

Definition 2. A matrix G ∈ Fk×n
2 is called a generator matrix of a binary (n, k)-linear

code C if C =
{
mG|m ∈ Fk

2
}
. A matrix H ∈ F(n−k)×n

2 is called parity-check matrix of C if
C =

{
c ∈ Fn

2 |HcT = 0
}
.

Definition 3. A vector c ∈ C is called codeword and is generated from a vector m ∈ Fn−r
2

by c = mG. Given a vector c′ ∈ Fn
2 , the vector s ∈ Fr

2 gained by sT = Hc′T is called
syndrome.

Assuming a given valid codeword c ∈ C and a vector e ∈ Fn
2 such that c′ = c⊕ e, than the

syndrome can be expressed by sT = Hc′T = HcT ⊕HeT = HeT.

Definition 4. A binary square matrix A is called circulant matrix if each row is the
rotation of one element to the right of the preceding row.
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As a result, a circulant matrix is completely defined by its first row. Additionally, a
block-circulant matrix is composed of circulant square blocks of identical size called order.
The number of circulant blocks in a row is called index. A formal definition is given below.

Definition 5. A (binary) Quasi-Cyclic (QC) code of index n0 and order r is a linear code
which admits as generator matrix a block-circulant matrix of order r and index n0. A
(n0, k0)-QC code is a quasi-cyclic code of index n0, length n0r and dimension k0r.

A binary r × r matrix A can be expressed by an element from a quotient polynomial
ring R = F2[X]/(Xr − 1). The mapping between A and R is descried by a natural ring
isomorphism ϕ which maps the first row of A, represented by (a0, a1, ..., ar−1), to the
polynomial ϕ(A) = a0 + a1X + ...+ ar−1X

r−1. To this end, all matrix operations can be
seen as polynomial operations.

Definition 6. The transposition of a polynomial a0 + a1X + ...+ ar−1X
r−1 = a ∈ R is

defined as aT = a0 + ar−1X + ...+ a1X
r−1.

This definition ensures ϕ(AT) = ϕ(A)T. Furthermore, the isomorphism ϕ can be extended
to any binary vector (v0, v1, ..., vr−1) = v ∈ Fr

2 so that ϕ(v) = v0 + v1X + ...+ vr−1X
r−1.

To stay consistent with Definition 6, the transposition of ϕ(v) is defined as ϕ(vT) =
v0 + vr−1X + ...+ v1X

r−1 resulting in ϕ(vA) = ϕ(v)ϕ(A) and ϕ(AvT) = ϕ(A)ϕ(v)T.

Definition 7. A quasi-cyclic code of length n = n0r, dimension k = k0r, order r and
a parity-check matrix with constant row weight w = O(

√
n) is called an (n0, k0, r, w)-

QC-MDPC code.

The structure of QC-MDPC codes allows to apply iterative decoders as proposed by
Gallager in 1962 for Low-Density Parity-Check (LDPC) codes [Gal62].

2.2 BIKE

BIKE consists of three main algorithms namely the key generation, encapsulation and
decapsulation. Dependent on the security level λ, three parameters r, w, and t are
determined. The parameter r defines the block length and needs to be prime such that
(Xr − 1)/(X − 1) ∈ F2[X] is irreducible. The row weight w defines the number of bits
set in the private key and is chosen such that w/2 is odd. The parameter t is a positive
integer and determines the decoding radius, i.e., the Hamming weight of an error vector
e = (e0, e1). As an additional parameter the shared secret size ` is defined as a positive
integer. Note that the code length n is set to n = 2r.

Besides this set of parameters, BIKE defines a set of three functions H,K,L modeled
as random oracles. The functions are defined with the following domains and ranges.

H :{0, 1}` → {0, 1}2r
[t]

K :{0, 1}r+2` → {0, 1}`

L :{0, 1}2r → {0, 1}`

Algorithm 1, Algorithm 2, and Algorithm 3 formally describe the three algorithms key
generation, encapsulation, and decapsulation, respectively. Table 1 lists the suggested
parameters for the security levels 1 and 3. The shared secrete size ` is fixed to 256 for
both cases. For a more detailed description of the scheme, we refer the interested reader
to the specification of BIKE [ABB+20].
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Algorithm 1: Key Generation.
Input :BIKE parameters n,w, t, `.
Output :Private key (h0, h1, σ) and public key h.

1 Generate (h0, h1) $← R2 both of odd weight |h0| = |h1| = w/2.
2 Generate σ $← {0, 1}` uniformly at random.
3 Compute h← h1h

−1
0 .

4 Return (h0, h1, σ) and h.

Algorithm 2: Encapsulation.
Input :Public key h.
Output :Encapsulated key K and ciphertext C = (c0, c1).

1 Generate m $← {0, 1}` uniformly at random.
2 Compute (e0, e1)← H(m).
3 Compute C = (c0, c1)← (e0 + e1h,m⊕ L(e0, e1)).
4 Compute K ← K(m,C).
5 Return (C,K).

Algorithm 3: Decapsulation.
Input :Private key (h0, h1, σ) and ciphertext C = (c0, c1).
Output :Decapsulated key K.

1 Generate (e′0, e′1) $← R2 with |e0|+ |e1| = t.
2 Compute syndrome s← c0h0.
3 Compute {(e′′0 , e′′1),⊥} ← decoder(s, h0, h1).
4 if (e′′0 , e′′1)← decoder(s, h0, h1) and |(e′′0 , e′′1)| = t then
5 Set (e′0, e′1)← (e′′0 , e′′1).
6 end
7 Compute m′ ← c1 ⊕ L(e′0, e′1).
8 if H(m′) 6= (e′0, e′1) then
9 Compute K ← K(σ,C).

10 else
11 Compute K ← K(m′, C).
12 Return K.

2.3 Efficient Decoder
The decapsulation of BIKE invokes a decoder (cf. Algorithm 3) trying to determine the
error vector sampled in the encapsulation process in order to recover the message m. An
efficient algorithm for this task was presented in [DGK20c] and is called Black-Gray-Flip
Decoder. With the submission to the third round of the NIST PQC competition, the
BGF decoder was included in the BIKE scheme. A formal description of the decoder
can be found in Algorithm 4. The decoder is an iterative algorithm, running for NBIter
iterations, taking (s, h0, h1) as input, and returning an error vector e = (e0, e1) in case of
a successful decoding or ⊥ in case the decoding fails. Based on the Hamming weight of
the sum s+ eHT, a threshold T is computed by

threshold(x) = max(df0 · x+ f1e, c) (1)

where f0, f1 and c are constants associated with the security level. The procedure BFIter
counts the Unsatisfied-Parity-Check (UPC) equations by invoking ctr and flipping all
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Table 1: BIKE parameters.

BIKE Specific Decoder Specific
Security r w t f0 f1 c NBIter τ

Level 1 12 323 142 134 0.0069722 13.530 36 5 3
Level 3 24 659 206 199 0.005265 15.2588 52 5 3

bits in the error vector that were indicted by counter values exceeding the threshold T .
Additionally, BFIter generates two lists, namely black and gray, which mark all positions
where the counter exceeds T and T − τ , respectively. In the first iteration of the decoder
these two lists are used to adjust the error vector by applying the procedure BFMaskedIter.
All parameters used to define the decoder are summarized in Table 1 for both security
levels.

We would like to note that the description of the algorithm slightly differs from that
presented in the specifications of BIKE [ABB+20]. The algorithm proposed in [DGK20c]
and the software reference implementation of BIKE recomputes s+ eHT after a bit in e
was flipped. Therefore, ctr always works with an updated sum (cf. line 17, 20 and 26)
effecting the behavior and success rate of the decoder.

2.4 Design Considerations

In general, our implementation tries to keep the footprint as small as possible while
providing a reasonable throughput. This goal is achieved by storing all polynomials in
BRAMs instead of using registers even if that means forgoing the possibility to access all
bits of a polynomial at the same time. This strategy drastically reduces the amount of
registers and therefore slices required to realize all submodules. Nevertheless, we decided
to use registers whenever values of ` bits (e.g., m or c1) need to be stored as spending an
entire BRAM would waste hardware resources.

Besides these trade-offs, our implementation is developed to be generic with the BIKE
specific parameters in case they need to be adapted for e.g., security reasons. Additionally,
we introduce a parameter b which is used to set the internally applied data width, to
determine the bus width of all BRAMs, and to scale several submodules. Hence, all
polynomials are divided into chunks of b bits which will be further processed by the
required submodules (e.g., multiplier or inversion). By writing a[i], we denote b bits of the
polynomial a which are stored at address i where the Least Significant Bit (LSB) a0 of a is
stored in the LSB at address i = 0. In our evaluation we consider b ∈ B = {32, 64, 128} as
larger values would exceed the available hardware resources on Xilinx’s Artix-7 FPGAs1.

The generations of (h0, h1), m and (e′0, e′1) in the key generation, encapsulation and
decapsulation, respectively, require a source of randomness. In our design we assume that
the target device is equipped with an appropriate Random Number Generator (RNG) since
the implementation of a secure RNG is out of scope of this work. All modules requiring
such randomness have implemented ports which could be connected to an available source
of randomness.

Eventually, we do not aim to change or modify any specifications made for BIKE.
Instead we implement everything as proposed in the software reference implementation
meaning that we use the same realizations for e.g., the random oracles and the decoder.
Thus, we can generate and extract testvectors from the reference implementation and can
validate the output of our design.

1Note that the NIST recommended to use Artix-7 FPGAs for PQC hardware implementations.
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Algorithm 4: Black-Gray-Flip Decoder [DGK20c,ABB+20].
Data: H ∈ Fr×n

2 , s ∈ Fr
2

1 e← 0n

2 for i = 1 to NBIter do
3 T ← threshold(|s+ eHT|)
4 e, black, gray ← BFIter(s, e, T,H)
5 if i = 1 then
6 e← BFMaskedIter(s, e, black, (d+ 1)/2 + 1, H)
7 e← BFMaskedIter(s, e, gray, (d+ 1)/2 + 1, H)
8 end
9 end

10 if s = eHT then
11 return e
12 else
13 return ⊥
14 end
15 procedure BFIter(s, e, T,H)
16 for j = 0 to n− 1 do
17 if ctr(H, s+ eHT, j) ≥ T then
18 ej ← ej ⊕ 1
19 blackj ← 1
20 else if ctr(H, s+ eHT, j) ≥ T − τ then
21 grayj ← 1
22 end
23 return e, black, gray

24 procedure BFMaskedIter(s, e,mask, T,H)
25 for j = 0 to n− 1 do
26 if ctr(H, s+ eHT, j) ≥ T then
27 ej ← ej ⊕maskj

28 end
29 end
30 return e

3 Efficient Hardware Implementation
In this section we present our design strategies for all submodules required to assemble the
complete BIKE algorithm. We discuss our approaches and state implementation results
for each submodule separately. All results were generated for a Xilinx Artix-7 FPGA.

3.1 Sampler
With Predefined Hamming Weight The first step in the key generation (cf. Algorithm 1)
is to sample the two polynomials (h0, h1) representing the first part of the secret key. Since
both polynomials are defined to have a Hamming weight of w/2, they can be sampled
in parallel. The samplers are realized by rejection sampling [DG19] both expecting a
dlog2(r)e-bit input xrand,i of fresh randomness every two clock cycles with i ∈ {0, 1}. The
input xrand,i determines the position in the polynomial hi that should be set to one. Since
this procedure works on bit level, we decided to fix b to 32 bits as increasing b would not
improve the throughput of the sampler and just would produce additional overhead in
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Figure 1: Distribution of required clock cycles to sample one polynomial of the secret key
for r = 12 323 and w = 142 based on 100 000 simulations.

terms of hardware resources. Based on this, the sampler uses the lower 5 bits of xrand,i

to identify the desired bit in a target chunk which is read from an address determined
by the remaining bits of xrand,i. Within the first clock cycle of sampling one single bit,
the sampler reads the target address. In the 32-bit output the desired bit is checked and
if it is zero it is set to one otherwise it is left unaltered. The result is written back in
the second clock cycle. In case a bit is set to one and xrand,i < r a valid signal enables a
counter which monitors the Hamming weight of the sampled polynomial.

Rejection sampling avoids biased random values obtained by e.g., reducing xrand,i

modulo r but the sample process does not finish in constant time. This behavior does not
reveal confidential information [DG19] but in order to estimate the latency of the sampler,
we provide a formula to calculate the average clock cycles in the following. The probability
of not getting rejected, i.e., the success probability is s = r

2dlog(r)e . However, this term
needs to be adjusted as collisions getting more likely with an increased number of bits
already set in hi∈{0,1} which is done by a term (1− j−1

r ) where j indicates the number
of bits already been set. Finally, Equation 2 is used to calculate the average clock cycles
Nsample,avg required to finish the sample process for the polynomials hi. The leading factor
of two is due to the read and write accesses to the BRAM mentioned above.

Nsample,avg = 2 ·
w/2∑
j=1

1
s · (1− j−1

r )
(2)

For the first security level Nsample,avg = 2 · 94.67 = 189.34. In order to verify our hardware
implementation, we performed 100 000 simulations and plotted the number of required
clock cycles to finish the sampling in Figure 1. The results confirm a correct functionality
of our implemented sampler and show the expected average number of clock cycles.

One sampler generating a single polynomial hi∈{0,1} consumes around 25 slices which
are partitioned into 66 Look-Up Tables (LUTs) and 19 registers. Our final implementation
instantiates two samplers to generate (h0, h1) in parallel.

Uniform Sampler The sampling process of the second half of the secret key σ is done in
a straightforward way by using a 32-bit input providing fresh randomness. The random
bits are written directly to registers because σ only consists of ` = 256 bit.

3.2 Multiplication
Polynomial multiplication is a basic building block for each of the three algorithms involved
in BIKE. In the key generation h1 is multiplied by h−1

0 (and several multiplication are
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m0 · h0+
m0 · h1+
m0 · h2+

m1 · h0+
m1 · h1+
m1 · h2+

m2 · h0+
m2 · h1+
m2 · h2+

m1 · h9+
m2 · h9+
m2 · h8+

m0 · h3+
m0 · h4+
m0 · h5+

m1 · h3+
m1 · h4+
m1 · h5+

m2 · h3+
m2 · h4+
m2 · h5+

m0 · h6+
m0 · h7+
m0 · h8+

m1 · h6+
m1 · h7+
m1 · h8+

m2 · h6+
m2 · h7+m0 · h9+

c0 =
c1 =
c2 =
c3 =
c4 =
c5 =
c6 =
c7 =
c8 =
c9 =

m3 · h7 + ...

m3 · h8 + ...

m3 · h9 + ...

m3 · h0 + ...

m3 · h1 + ...

m3 · h2 + ...

m3 · h3 + ...

m3 · h4 + ...

m3 · h5 + ...

m3 · h6 + ...

Figure 2: Exemplary decomposition of the partial products for a multiplication with r = 10
and b = 3.

executed in the inversion), in the encapsulation the error vector e1 is multiplied by the
public key h, and in the decapsulation a multiplier is required to compute the syndrome s.
In this work we present a multiplier which is to the best of our knowledge the fastest one
reported in literature and formally defined in Algorithm 6 in Appendix A. As a constant
parameter, the multiplication – computing c = m · h – requires the overhang O = r mod b
indicating the number of valid bits in the polynomial’s most significant word stored in
BRAM, e.g., h [br/bc]. Following our design strategy of processing b bits in parallel, the
multiplier reads b bits of m and b bits of h such that b · b partial products are computed
at the same time. This leads to a multiplication which is conducted column-wise, i.e., all
partial products including the message’s bits m[i] are calculated before the next b bits of
m are read from the BRAM. As an example, we graphically depicted the multiplication
process for r = 10 and b = 3 in Figure 2. For every column – consisting of r · b partial
products – there are two initial steps where the first step computes the partial products
of the upper triangle which consists in our example only of m2 · h8. The second step
computes all partial products that include the current most O significant bits of h and
all bits from m[i] excluding the first bit (in our example these are the products on the
upper right emphasized by a darker background, i.e., m1 · h9 and m2 · h9). Afterwards,
the algorithm proceeds with a regular flow. In each clock cycle the multiplier reads h[j]
and c[j] from the BRAMs and computes the related partial products in the next clock
cycle (illustrated by connected background colors). The lower b bits of the result are
added to the intermediate result which was gained by the upper b− 1 bits of the previous
multiplication’s result. These intermediate results are stored in registers in order to have
direct access. As the authors in [VMG14], we also use the read-first setting of the BRAM
modules. This setting allows to read a result from a specific address and afterwards to
write a new value to the same address in the same clock cycle. Hence, new results from the
multiplication engine, which are added to the current intermediate result c[j], are stored
in the BRAM at position (j + 1) mod r. However, since there are dr/be columns, the final
result c is stored in the correct layout, i.e., c[0] contains the LSBs of the final polynomial.
Besides the result c, the polynomial h also rotates through the BRAM and needs to be
tracked by the implementation. A special case is to determine h[0] as it consists partly of
h[r − 1] and partly of h[r − 2] (in our example h[0] = (h7, h8, h9) for the second column).

This structure performs a multiplication within dr/de · (dr/de+ 3)+1 clock cycles. The
additional three clock cycles in every column originate from the two initial steps described
above and one additional clock cycles to read h[0]. The last additional clock cycle is only
required to switch to a DONE state.

To this end, our design slightly outperforms the polynomial multiplier recently proposed
by Hu et al. [HWCW19] whose implementation conducts a multiplication within d r

b e
2 +

18d r
b e − 9 clock cycles. Our optimized multiplier achieves a latency of d r

b e
2 + 3d r

b e + 1
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clock cycles with a slightly decreased linear part. Table 2 compares our design to the
design by Hu et al. and to the multiplier proposed within the Round-2 submission of the
BIKE specifications [ABB+19]. All results were generated for a Xilinx Artix-7 FPGA
and for r = 10 163 since Hu et al. reported their results for the parameter set of the
second round submission of BIKE. While our implementation consumes slightly more
hardware resources, the latency clearly decreases. However, the area-time product only
shows considerably better results for b = 32 and b = 64.

Table 2: Comparison between different multiplier generated for an Artix-7 FPGA with
r = 10 163.

Resources Performance
Logic Memory Area Cycles Frequency Latency Area × Time

LUT FF BRAM Slices Cycles MHz ms Slices × ms

Round-2 Implementation [ABB+19]
32 bit 87 53 3 40 3 252 161 416 7.818 312.72

Multiplier by Hu et al. [HWCW19]
32 bit N/A N/A 2.5 219 106 839 205 0.521 114.099
64 bit N/A N/A 5 654 28 134 180 0.156 102.024

128 bit N/A N/A 7.5 1 596 7 831 150 0.052 82.992
This work

32 bit 886 90 1.5 274 102 079 312 0.327 89.598
64 bit 2 384 119 3 740 25 759 277 0.093 68.82

128 bit 8 864 248 6 2 519 6 641 147 0.045 113.355

3.3 Inversion
With the decision of the BIKE team to only rely on the BIKE version being built upon
the Niederreiter framework, a new challenge of implementing a polynomial inversion
in hardware arose. Since BIKE is designed to work with ephemeral keys, an efficient
implementation of an inversion algorithm is even more critical to achieve reasonable
throughput. To this end, we decided to implement the inversion of a polynomial a in R
using Fermat’s Little Theorem as

a−1 = a2r−1−2 (3)

holds for every a ∈ R∗ with ord(a) | 2r−1 − 2. To exponentiate a target polynomial a with
2r−1 − 2, we first rewrite the exponent as 2

(
2r−2 − 1

)
. Eventually, the exponentiation is

accomplished by Algorithm 5 which is a slightly adapted version of the algorithm presented
in [HGWC15] in order to work in GF(2) and not as originally proposed in GF(2m).
Note that we do not follow the recently proposed algorithm by Drucker et al. [DGK20b]
(which is used in the software reference implementation of BIKE) as it performs slightly
worse on hardware. However, Algorithm 5 first executes the exponentiation of

(
2r−2 − 1

)
described by lines 2-11 and eventually the final squaring from line 12. To this end,
the inversion consists of exponentiations of the form f2t , of polynomial squarings, and
of polynomial multiplications. The latter operation is realized by using the multiplier
described in Section 3.2. The strategies to implement a squaring module and to realize
the exponentiation with 2t are described in the following.

Squaring Module for Fixed k An exponentiation of a polynomial f with 2t for arbitrary
t can always be accomplished by dividing the exponentiation into a chain of t squarings.
One possibility to speed up the calculation is to implement a module which is able to
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Algorithm 5: Polynomial Inversion.
Data: r − 2 = (rq−1, ..., r0) with ri ∈ 0, 1 and a ∈ R∗
Result: a−1

1 f ← a, t← 1
2 for i← q − 2 to 0 do
3 g ← f2t

4 f ← f · g
5 t← 2t
6 if ri = 1 then
7 g ← f2

8 f ← a · g
9 t← t+ 1

10 end
11 end
12 g ← f2

13 return g

perform k < t squarings in the same time as a single squaring. Hence, a squaring chain
would consist of bt/kc k-squarings and t mod k single squarings.

The strategy implementing squaring modules with fixed k pursues our global design
consideration to achieve submodules which are scalable with b. A polynomial squaring
g = f2k for arbitrary k can be realized by a simple bit-permutation and is mathematically
described by

gi = fi·2−k mod r (4)
where i denotes the i-th element in the target polynomial. Equation 4 indicates that for
each b bits of the target polynomial g, bits from at least 2k different addresses of the
source polynomial f are required where the maximum number of different addresses is
bounded by 2 · 2k − 1. As an example, Figure 3 shows a draft of the permutation and
corresponding memory pattern for a squaring with k = 1, b = 8, and r = 59. It is shown
that bits from three different addresses are required in order to combine them to the
correct result written to the first address. Hence, to write the result to the first address,
all necessary bits from f need to be loaded from the BRAM first. This is done in an initial
phase which is automatically calculated by our scripts to be optimal. Additionally, the
scripts ensure that all upcoming results can be directly written to the BRAM containing
the target polynomial by determining an optimal read sequence of bits from the source
polynomial. The amount of clock cycles required for the initial phase also determines the
number of b-bit registers holding the already read parts from the source polynomial. Note
that after the initial phase, which depends on k and r, the squaring finishes within dr/be
clock cycles.

Table 3 shows implementation results for four different squaring modules with fixed
k and b = 32. Applying modules generated for larger k, linearly decrease the latency as
described above but the implementation costs drastically increase. To this end, we only
consider k-squaring modules with a maximum of k = 4.

Squaring Module for Arbitrary k Besides the above described strategy, we explore
another approach implementing a squaring module which can accomplish a k-squaring
(i.e., g = f2k) for arbitrary k within r clock cycles. For Algorithm 5 this approach is
especially interesting for larger t as the exponentiation has not to be decomposed into a
squaring chain but rather can directly be carried out. Figure 4 shows a schematic drawing
of the hardware implementation and the corresponding operations required to compute
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0 8 16 24 32 40 48 56

0 8 16 24 32 40 48 56

Source Polynomial

Target Polynomial

Figure 3: Exemplary permutation for a squaring module with k = 1, r = 59, and b = 8.

Table 3: Hardware utilization for different k-squaring modules setting r = 12 323 and
b = 32.

Resources k = 1 k = 2 k = 3 k = 4

LUT 81 161 236 4 070
Register 105 186 346 820

Slices 38 62 118 1 124

the addresses of the source and target polynomial and the output data for the target
polynomial g. The bits of the target polynomial are determined in an ascending order
so that the corresponding bits from the source polynomial need to be computed by the
implementation. Therefore, the module requires an input INC which needs to be assigned
to 2−k mod r. Starting with 0, the implementation adds (modulo r) every clock cycle
INC to the current value where the upper bits determine the address and the lower log(b)
bits are used as a selection signal for a b-to-1 multiplexer. The input of the multiplexer is
the current b-bit chunk of the source polynomial. After selecting the desired bit from the
input, a barrel shifter is used to shift the desired bit to the correct position. The resulting
b bits are than added (xored) to the current intermediate result destined for the target
polynomial. After all b bits for a target address of g are collected and shifted to the correct
position, the implementation writes the result to the BRAM.

For r = 12 323 and b = 32 the above described approach requires just 45 slices which are
partitioned into 96 LUTs and 80 registers. The utilization is very similar to the squaring
module for a fixed k = 1 proposed in the paragraph before.

+
INC

"0"
ADDR_POLY_IN

RESET

0

1
/

[log(r)−1: log(b)]

b-to-1
Multiplexer

Barrel
Shifter

DIN_IN DOUT_OUT

/ [log(b)−1:0]

/
b

/
1

/
b

ADDR_POLY_OUT
Counter
0...br/bc

+ Addition modulo r XOR

Figure 4: Schematic drawing of a module being able to perform a k-squaring for arbitrary
k in r clock cycles.
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g ← f
i ← t

i = 0?

g ← g2

i←i−1

return g

NO YES

(a) Strategy 1.

g ← f
i ← t

i = 0?

i ≥ 4?

g ← g2

i←i−1

g ← g24

i←i−4

return g

NO YES

NO YES

(b) Strategy 2.

g ← f
i ← t

i = 0?

i ≥ d r
b
e?

g ← g2

i←i−1

g ← g2t

i←i−t

return g

NO YES

NO YES

(c) Strategy 3.

Figure 5: Different strategies to implement g = f2t required for the polynomial inversion.

Squaring Strategies Given the two different modules to compute a k-squaring, we
investigate three different optimization strategies to implement the exponentiation g = f2t

in Algorithm 5, line 3. The three approaches are depicted in flow charts in Figure 5.
The first strategy only utilizes a squaring module for a fixed k = 1. In this case all
exponentiations are carried out by chains of simple squarings. The second strategy
implements two different but fixed squaring modules: one with k = 1 and the other one
with k = 4. Hence, as long as t and the remaining exponent of the squaring chain is larger
or equal four, the faster module is used. If the remaining exponent is smaller than four
the squaring module with k = 1 is applied. The last strategy uses a combination of a fixed
squaring module with k = 1 and the module being able to perform arbitrary k-squarings.
In this way, all k-squarings with k ≥ dr/be are executed by the latter module.

Note that all strategies have implemented a fixed squaring module with k = 1 because
of two reasons: (1) simple squarings are always needed in the inversion process (cf.
Algorithm 5, line 7 and line 12), and (2) the simple squaring module consumes just 42
slices and speeds up the computation notably.

Independently of the strategy, the inversion process requires four BRAMs. One BRAM
stores the private key, i.e., (h0, h1). The other three BRAM modules are interchangeably
used to perform a squaring chain (two BRAMs are used in alternation as source and target
polynomial) and a subsequent multiplication by the squaring chain’s input polynomial (cf.
Algorithm 5, line 3 and line 4).

3.4 Decoder
The BGF decoder mainly consists of three different modules needed to be implemented
in hardware. The first module is the threshold function described in Equation 1. The
argument for the threshold function is the Hamming weight of the sum (s+ eHT) which
is computed by the second module. The third module is responsible for flipping the bits of
the error vector e and to generate the black and gray lists. In the following we describe
the hardware realizations of these three modules.

Threshold Function In order to determine the threshold, deciding whether a bit in the
error vector is flipped or not, Equation 1 is applied. Since it consists of a multiplication
followed by an addition with a constant term, using a Digital Signal Processor (DSP)
instantiated with an output register stage seems to be the most promising option. In
order to ensure that the bus widths of the input ports are used as optimal as possible, the
corresponding VHDL-code is generated by a Sage script producing binary representations
of both constants. The ceiling-function is realized by producing the binary representation
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of f1 + 1 instead of just f1 and by omitting all fractional digits from the result. As this
procedure sustains a loss of precision, the script also checks if for all possible inputs x the
result is still correct.

Hamming Weight The implementation of the Hamming weight module follows our design
strategy scaling submodules with the parameter b. As for the threshold computation, we
utilize DSPs with one register stage to add up all non-zero bits. To do so, each b-bit chunk
a = g[i] of a target polynomial g is separately feed into the module depicted in Figure 6.
In log(b) stages all bits are added up where each stage consists of

⌈
b/2j ·(j+1)

48

⌉
DSPs2 with

1 ≤ j ≤ log(b). All together, the Hamming weight computation requires

1 +
log(b)∑
j=1

⌈
b/2j · (j + 1)

48

⌉
DSPs where the additional DSP is used to add up all intermediate results at the end.

+

+

+

+

+

+ +

a0

a1
a2

a3

ab−2

ab−1

|g|

log(b) stages

+ Addition executed by DSPs

Figure 6: Hamming weight computation of a polynomial g divided into b-bit chunks a.

Bit-Flipping The last part of the decoder is a module which is responsible for the bit-
flipping of the error vector’s bits, i.e., the functions BFIter and BFMaskedIter from
Algorithm 4. In our implementation we realize both functions in one module and select
the modes of operations (i.e., BFIter producing the black and gray lists, BFIter without
producing the lists, BFMaskedIter processing the black mask, and BFMaskedIter pro-
cessing the gray mask) with a control signal MODE. In order to count the UPC equations,
we decided to rely on a compact representation of the secret key. This allows a faster
processing of ctr as the implementation just has to check w/2 addresses (non-zero bits
in h = (h0, h1)). Unfortunately, the BGF decoder is a bit-oriented algorithm so that we
cannot follow our design consideration of parallelizing and scaling the decoder with b.
Instead we set all bus widths of related BRAMs to b = 32. However, in the following we
briefly outline the hardware implementation of the decoder module which is sketched in
Figure 7. For sake of clarity, we only draft the generation of the data and address signals
of the private key, the syndrome, and the error vector and only show the process for one
polynomial, i.e., for e0 and h0. The specified sizes for r allow to store the addresses of
non-zero bits of h within 16 bits (for the specified values of r even less bits are required)
which is done in the lower 16 bits of SK_DIN. Since the columns of h are processed each
by each in an ascending order, the succeeding columns can be generated by the current
column shifting them one position to the left (for the compact representation each value is
subtracted by one modulo r). Note that we have to perform a left shift instead of a right

2DSPs of Xilinx’s 7-series are able to add at maximum two 48-bit numbers.
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Figure 7: Extract of the bit-flipping module.

shift as we do not store the syndrome in a transposed form. In the upper part of the 32
bits, the current values are saved as they are required to recompute the syndrome in case
ctr exceeds the threshold T . The addresses to read the current positions of non-zero bits
of h are determined by an increasing counter.

The syndrome is used at two points: for calculating the UPC equations and in case
ctr exceeds T and the syndrome needs to be updated. In case the UPC equations are
computed, the address for reading 32-bit chunks of the syndrome are determined by the
upper eleven bits of SK_LO. In case the syndrome – to be more precisely the sum (s+ eHT)
– needs to be updated, the address is determined by the upper eleven bits of SK_HI. The
lower five bits of SK_HI are used as selection signal for a 32-to-1 multiplexer receiving
SYNDROME_DIN as input and they are required to determine the bit position in a target
chunk of the syndrome which need to be flipped. This is done by the one-hot encoding
module and the subsequent addition with SYNDROME_DIN.

Every time ctr exceeds the threshold T , one bit in the error vector needs to be flipped.
The address of the corresponding 32-bit chunk is determined by the error counter which is
initialized with 0 and is decremented by one for every column. Again, this is necessary as
the syndrome as well as the error vector are not stored transposed in the BRAM. Starting
at zero and decrementing the counter, results in stepping through the error vector as
it would be transposed (cf. Definition 6). To determine the output for the error vector
E_DOUT, the implementation distinguishes between three cases: (1) the error bit is flipped
due to BFIter, (2) the error bit is flipped caused by the black mask, and (3) the error
bit is flipped caused by the gray mask. Eventually, the target bit needed to be flipped is
determined by the lower five bits of the error counter and the subsequent one-hot encoding.
Note that the black and gray masks are stored as polynomials, i.e., non-zero bits indicate
the positions in the lists.

All in all, Equation 5 states the order of required clock cycles where Nflips denotes the
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number of error bit flips conducted within the decoding procedure.

BFcycle = (τ + 2) · n · w2 +Nflips ·
w

2 · 2 (5)

Independent of the security level, the module invokes BFIter and BFMaskedIter seven
times (τ + 2). In each iteration the algorithm iterates over all n columns of h where for
each column w

2 clock cycles are required to access the stored positions of non-zero bits
of h. For each bit flip, the implementation requires w

2 · 2 additional clock cycles. Note,
this equation just provides a rough estimation and neglects additional clock cycles for
initial phases to access memory or to switch states. Considering the high latency, the
implementation is very lightweight and just consumes 159 slices divided into 415 LUTs
and 80 registers.

3.5 Random Oracles
In the BIKE specifications the three functions H,K,L are defined as random oracles
[ABB+20]. The functions K and L rely on a standard SHA384 core where K is used
to hash m concatenated with the ciphertext C and L to hash the error vectors e0 and
e1. It is assumed that all data is stored in byte arrays so that the input size to the SHA
function is a multiple of eight. For our hardware design we implemented the SHA core in
a straightforward way, i.e., as a round-based approach including retiming. Since we did
not optimize the core, it consumes 1 162 slices (3 620 LUTs and 2 115 registers).

The H function relies on an AES-256 core (instantiated in counter mode) where the
input to H serves as 256-bit key. After one execution of the AES, the resulting ciphertext
is used as randomness generating the error vectors. More precisely, the 128-bit output is
divided into four 32-bit words which serve as inputs to the sampler described in Section 3.1.
The realization of H utilizes 607 slices composed of 457 registers and 1 873 LUTs.

4 Implementation of the BIKE Scheme
This section covers the composition of the above described submodules to assemble the
key generation, encapsulation, and decapsulation.

4.1 Key Generation
On the top level, the key generation consists of two samplers generating the private key
(h0, h1). The resulting key is written to a generic BRAM module which automatically
picks and connects the minimum number of required BRAM tiles based on the selected
parameters r and b. The private key σ is generated by the sampler described in Section 3.1
and is stored in a 256-bit register. In order to generate the public key h = h1h

−1
0 , one of the

above introduced inversion modules is instantiated. The multiplication is also performed
inside the inversion module as it already contains a multiplication engine. One additional
task of the inversion module is to track the BRAM containing the final public key and to
return it to the output.

4.2 Encapsulation
Figure 8 shows a schematic of the top level of the encapsulation. To sample and store m, a
uniform sampler and a 256-bit register is instantiated. The message m is used as input to
H generating the error vector e = (e0, e1). Afterwards, c0 = e0 +e1h and c1 = m⊕L(e0, e1)
are computed in parallel. A parallel computation is only possible due to an additional
BRAM which is placed in the conversion module and stores a copy of e as input to L. The
final result of the multiplication is stored in the part of the BRAM which initially holds
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Figure 8: Top level view of the encapsulation module.

e0. After C = (c0, c1) was computed, the cryptogram and the message m is fed into a
conversion module to generate the input to the SHA core which realizes K.

4.3 Decapsulation
The decapsulation is composed of the most submodules including a sampler, multiplier,
the decoder, and all three random oracles (see Figure 9). After transmitting the private
key (h0, h1, σ) and the ciphertext C = (c0, c1), the decapsulation is started by randomly
sampling an error vector e′ = (e′0, e′1) with Hamming weight t. The syndrome s = c0h0 is
computed by using the multiplier introduced in Section 3.2. Afterwards, the algorithm
invokes the decoder by using the BFIter module which forms the center of the decapsulation
since it is connected to the most submodules. In case the Hamming weight module returns
zero in the last iteration of BFIter, a success flag is raised indicating that the content of
e′′ is copied to e′ and e′′ is reseted (the current content is overwritten by zeros). However,
if the success flag is zero, only the content of e′′ is overwritten by zeros and no copying is
performed. The content of e′ is converted, forwarded to the SHA core, and added to c1.
The resulting message m′ serves as key for the AES256 core generating an error vector
which is stored in e′′ and compared to the content in e′. In case the polynomials are equal,
the implementation forwards m′ to K. Otherwise σ (part of the secret key) is used as
input to K.
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Figure 9: Top level view of the decapsulation module.
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5 Analysis

Based on the designs presented in Section 4, we now provide implementation results for
Xilinx Artix-7 FPGAs for Level 1. The implementation results for Level 3 can be found in
Appendix B. In the last paragraph of this section we also compare our design to other
Key Encapsulation Mechanism (KEM) schemes submitted to the NIST PQC project.

5.1 Key Generation

Table 4 summarizes the implementation results for the key generation for all three in-
troduced design strategies. Starting with Strategy 1, which utilizes only one squaring
module, the implementation requires for b = 32 in average 7.37 million clock cycles3 which
corresponds to 56.75 ms for a maximum possible frequency of 129.87 MHz. The latency
can roughly be decreased by a factor of four setting b = 128. However, the hardware
utilization scales with a factor of five resulting in an area footprint of 3 354 slices. A
better ratio between latency and hardware utilization is achieved with Strategy 3. The
utilization is very similar to the first strategy but the latency is notably decreased so
that the implementation for b = 128 requires just 2.69 ms to finish one key generation by
consuming 3 554 slices and 10 BRAMs.

The superiority of Strategy 3 is also shown in the Pareto plot in Figure 10 where the
dependency between the required latencies in milliseconds and the amount of slices is
depicted. Strategy 1 and Strategy 2 are clearly Pareto dominated by Strategy 3 for all
considered b.

Table 4: Implementation results for the key generation exploring the introduced strategies
for r = 12 323.

Resources Performance
Logic Memory Area Cycles Frequency Latency

LUT FF BRAM Slices Cycles (average) MHz ms

Strategy 1
32 bit 2 092 589 4 669 7 370 429 129.87 56.75
64 bit 3 607 631 5 1 046 3 070 613 125 24.56

128 bit 11 838 861 10 3 354 1 409 621 104 13.53

Strategy 2
32 bit 6 982 1 396 4 1 986 3 804 192 131.58 28.91
64 bit 9 140 2 303 5 2 570 1 295 190 123.46 10.49

128 bit 23 801 4 567 10 6 742 520 374 106.38 4.89

Strategy 3
32 bit 2 074 659 4 649 2 671 076 131.58 20.30
64 bit 4 432 735 5 1 285 748 964 113.64 6.59

128 bit 12 654 1 044 10 3 554 258 750 96.15 2.69

3The average number of clock cycles was determined by performing a simulation with one set of
testvectors and adjust the resulting number of clock cycles by applying Equation 2.
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Figure 10: Dependency between the latency and required hardware resources. The first
number in parentheses denotes b and the second number the optimization strategy. The
dotted line marks the Pareto-front while all crossed points are Pareto dominated.

5.2 Encapsulation
Table 5 summarizes the implementation results for the encapsulation module for b ∈ B.
Since the main part of the encapsulation is the multiplication to generate c0, the imple-
mentation perfectly scales with b. For b = 32 the design requires 3 BRAMs and 2 133 slices
while performing one encapsulation within 1.25 ms. Switching to b = 128 increases the
hardware utilization roughly by a factor of two while the latency is decreased by a factor
of twelve. The small increase of the hardware utilization originates from the relative large
footprints of the SHA384 and the AES256 which stay constant for each b. Both modules
consume together roughly 1 770 slices (cf. Section 3.5) which are 83 % of the whole design
when setting b = 32.

Table 5: Implementation results of the encapsulation module for Level 1 (r = 12 323).

Resources Performance
Logic Memory Area Cycles Frequency Latency

LUT FF BRAM Slices Cycles (average) MHz ms

32 bit 6 728 3 304 3 2 133 152 694 121.95 1.25
64 bit 8 291 3 333 5 2 560 40 368 121.95 0.33

128 bit 14 894 3 477 10 4 313 12 240 121.95 0.10

5.3 Decapsulation
Table 6 summarizes the implementation results for the decapsulation. Since only the
multiplier scales with b and this computation represents only a small part of the entire
decapsulation, the latency does not noticeably improve with increasing b. Actually, for
b = 128 the latency increases as the maximum frequency decreases due to a more challenging
routing of the multiplier. Hence, for the decapsulation the module with b = 32 achieves
the best efficiency considering latency and hardware utilization.

5.4 Comparison to Related Work and Discussion
Recently, Dang et al. published a paper comparing round 2 candidates of the NIST
PQC standardization process [DFA+20]. We extend their table which compares KEM
schemes by adding our work but only listing the code-based approaches. The evaluation is
shown in Table 7. As for McEliece, we provide numbers for a lightweight and high-speed
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Table 6: Implementation results of the decapsulation module for Level 1 (r = 12 323).

Resources Performance
Logic Memory Area Cycles Frequency Latency

LUT DSP FF BRAM Slices Cycles (average) MHz ms (average)

32 bit 7 393 7 3 699 8 2 321 13 119 558 125 104.96
64 bit 9 005 9 3 727 8 2 774 13 005 385 125 104.04

128 bit 15 796 13 3 864 11 4 637 12 976 784 121.95 106.41

implementation. However, we did not create a composed design but determined the
implementation results by using the prior presented results and just accumulating the
numbers. Here, we assume that the AES and SHA modules are only instantiated once on
the chip and that the encapsulation and decapsulation share them. For the lightweight
approach we selected the designs for b = 32 and for the high-speed design we decided to
select the key generation and encapsulation modules for b = 128 but use the decapsulation
module for b = 32 since an increased b does not remarkably increase the throughput.
The maximum frequency was determined by the slowest implementation among the three
corresponding modules. Note that the BIKE-2 design from [HWCW19] is based on an
older set of parameters (i.e., r = 10 163). Furthermore, BIKE-2 did not specify any random
oracles so that the footprint is notably smaller.

In case a hardware implementation of BIKE does not have to perform the key generation,
encapsulation, and decapsulation in parallel, the design could further be optimized. Besides
instantiating the AES and SHA module only once, one could also just implement one
shared multiplier, shared register banks and shared BRAMs. This would drastically reduce
the required hardware resources.

In Section 5.2 we already discussed the huge footprint of the random oracles. Hence, the
choice of using AES and SHA as underlying building blocks appears not to be optimal for
hardware implementations. To this end, we would suggest to use other standardized cores
like KECCAK which could be used as hash function (for K and L) and as random number
generator (for H). This would notably reduce the overall footprint of our implementation.

Table 7: Comparison to other code-based KEM schemes based on [DFA+20, Table 2].
Key Gen Encaps Decaps

Design LUT FF Slices DSP BRAM Freq.* cycles† µs cycles† µs cycles† µs

mceliece348864 [WSN18] 81 339 132 190 – 0 236 106 202.7 1 920.3 2.7 25.8 12.7 120.7
mceliece348864 [WSN18] 25 327 49 383 – 0 168 108 1 600 14 800 2.7 25.2 18.3 169.8

BIKE-2 [HWCW19] 3 874 2 141 1 312 0 10 160 2 150 13 437 – – – –

This work 10 702 4 940 3 334 7 15 121 2 671 21 903 153 1 252 13 120 107 580
This work 29 448 5 498 8 419 7 28 96 259 2 691 12 127 13 120 136 443
* in MHz. † in thousand.

6 Conclusion
In this work we presented a complete hardware implementation of the round 3 candidate
BIKE submitted to the NIST PQC standardization process. Our implementation is scalable
with respect to the used hardware resources and the corresponding latency. As polynomial
multiplications mainly determine the speed of the key generation and encapsulation, we
designed an optimized multiplier achieving the lowest latency of proposed multipliers
in the literature. For the key generation we investigated three different implementation
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strategies where we demonstrated that one of them clearly outperforms the other ones.
Additionally, we propose the first hardware implementation of the BGF decoder required
in the decapsulation of BIKE. With all these improvements and optimizations we were
able to implement a key generation which only takes 2.69 ms, an encapsulation which can
be accomplished in 0.1 ms, and a decapsulation which finishes in 104.96 ms.

Even if we highly optimized most parts of BIKE, we still see potential to decrease
the latency of the BGF decoder which could be investigated in future work. In the
current implementation the decoder does not significantly scale with the parameter b
which, however, is a challenging task since all operations are bit-oriented and depend on
previous steps.
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A Supplementary Material

Algorithm 6 formally describes our approach to implement the polynomial multiplication.
The two initialization phases require each one clock cycle. Everything inside the for-loop
iterating over j is executed in parallel.

Algorithm 6: Polynomial Multiplication.
Data: Input polynomials h,m ∈ R stored in BRAMs with a bus width of b bits.

Accessing h[i] corresponds to reading from address i from the BRAM.
Result: Product c = m · h ∈ R which is written to a BRAM.

1 O ← r mod b, mask ← (2b − 1), addr ← dr/be
2 for i← 0 to addr − 1 do
3 temp← 0

/* Initialization Phase 1 */
4 for u← O + 1 to b− 1 do
5 temp← temp⊕ ((m[i] >> u) & 1) · (h[addr − 2] >> (b+O − u))
6 end

/* Initialization Phase 2 */
7 t← (h[addr − 1] & (2O − 1)) << (b−O − 1);
8 for u← 1 to b− 1 do
9 temp← temp⊕ ((m[i] >> u) & 1) · (t >> (b− 1− u))

10 end
/* Regular Flow */

11 h′ ← h[0], tmp_c_add← c[i]
12 for j ← 0 to addr − 1 do

/* The following block is executed in parallel on hardware. */
13 temp2← temp
14 temp← 0
15 for u← 0 to b− 1 do
16 p← (((m[i] >> u) & 1) · h′) << u
17 temp2← temp2⊕ (p & mask)
18 temp← temp⊕ ((p >> b) & mask)
19 end
20 tmp_c← c[(j + i+ 1) mod addr]
21 if j = (addr − 1) then
22 c[(j + i+ 1) mod addr]← tmp_c_add⊕

(
temp2 &

(
2O − 1

))
23 h[0]← ((h′ << (b−O)) | (h[j] >> O)) & mask

24 else
25 c[(j + i+ 1) mod addr]← tmp_c_add⊕ temp2
26 tmp_h← h′

27 h′ ← h[j + 1]
28 h[j + 1]← tmp_h
29 end
30 tmp_c_add← tmp_c
31 end
32 end
33 return c
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B Implementation Results for Level 3
Table 8 shows the Level 3 implementation results for all three strategies introduced in
Section 3.3 for the key generation. Some of the reported numbers are slightly smaller than
for the design generated for the first level. This mainly relates to different structures of
the squaring modules in the inversion. For different r the number of initial phases and
corresponding registers to hold the loaded chunks can vary (cf. Figure 3).

Table 9 summarizes the Level 3 implementation results for the encapsulation. The
fastest design finishes within 0.35 ms while consuming 4 278 slices and 10 BRAMs.

Finally, the implementation results for the decapsulation are stated in Table 10. As for
the first security level, the design for b = 32 achieves the best efficiency considering the
latency and area utilization. To this end, the decapsulation process lasts 300.77 ms.

Table 8: Implementation results of the key generation for Level 3 (r = 24 659).

Resources Performance
Logic Memory Area Cycles Frequency Latency

LUT FF BRAM Slices Cycles (average) MHz ms

Strategy 1
32 bit 1 522 557 5 507 30 447 899 138.89 219.33
64 bit 4 309 696 5 1 256 12 494 211 119.05 104.95

128 bit 11 856 794 10 3 288 5 576 559 104.17 53.53

Strategy 2
32 bit 5 979 1 434 5 1 744 16 218 309 131.58 123.26
64 bit 12 653 2 263 5 3 489 5 354 781 119.05 44.98

128 bit 30 818 3 939 10 8 480 2 022 249 100.00 20.22

Strategy 3
32 bit 1 757 628 5 561 11 600 207 135.14 85.84
64 bit 4 580 801 5 1 303 3 089 329 111.11 27.80

128 bit 12 193 970 10 3 491 930 179 96.15 9.67

Table 9: Implementation results of the encapsulation module for Level 3 (r = 24 659).

Resources Performance
Logic Memory Area Cycles Frequency Latency

LUT FF BRAM Slices Cycles (average) MHz ms

32 bit 6 454 3 310 5 2 020 601 099 121.95 4.93
64 bit 8 350 3 371 5 2 606 154 499 121.95 1.27

128 bit 14 994 3 446 10 4 278 42 162 121.95 0.35
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Table 10: Implementation results of the decapsulation module for Level 3 (r = 24 659).

Resources Performance
Logic Memory Area Cycles Frequency Latency

LUT DSP FF BRAM Slices Cycles (average) MHz ms (average)

32 bit 7 090 7 3 709 13 2 184 37 596 111 125 300.77
64 bit 8 894 9 3 769 13 2 778 37 147 593 125 297.18

128 bit 15 532 13 3 838 16 4 642 37 034 309 121.95 303.68
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