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Abstract. Code-based public-key cryptosystems are promising candi-
dates for standardisation as quantum-resistant public-key cryptographic
algorithms. Their security is based on the hardness of the syndrome de-
coding problem. Computing the syndrome in a finite field, usually F2,
guarantees the security of the constructions. We show in this article that
the problem becomes considerably easier to solve if the syndrome is com-
puted in N instead. By means of laser fault injection, we illustrate how
to force the matrix-vector product in N by corrupting specific instruc-
tions, and validate it experimentally. To solve the syndrome decoding
problem in N, we propose a reduction to an integer linear programming
problem. We leverage the computational efficiency of linear program-
ming solvers to obtain real time message recovery attacks against all the
code-based proposals to the NIST Post-Quantum Cryptography stan-
dardisation challenge. We perform our attacks on worst-case scenarios,
i.e. random binary codes, and retrieve the initial message within minutes
on a desktop computer. When considering parameters of the code-based
submissions to the NIST PQC standardisation challenge, all of them can
be attacked in less than three minutes.

1 Introduction

For the last three decades, public key cryptography has been an indispensable
component of digital communications. Communication protocols rely on three
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core cryptographic functionalities: public key encryption (PKE), digital signa-
tures, and key exchange. These are implemented using Diffie-Hellman key ex-
change [15], the RSA cryptosystem [43], and elliptic curve cryptosystems [25,
37]. Their security stands on the difficulty of number theoretic problems such as
the Integer Factorization or the Discrete Logarithm Problem. Shor proved that
quantum computers can efficiently solve each of these problems [45], rendering
all public-key cryptosystems (PKC) based on such assumptions impotent.

Since then, cryptographers proposed alternative solutions which are safe in
the quantum era. These schemes are called post-quantum secure [8]. In 2015,
the National Institute of Standards and Technology (NIST) made a call to the
community to propose post-quantum secure solutions for standardisation. Sev-
eral candidates have been submitted based on various hard problems (lattices,
error-correcting codes, multivariate systems of equations and hash functions).
Here we choose to analyze code-based candidates.

The hardness of general decoding for a linear code is an NP-complete prob-
lem in coding theory [7], which makes it an appealing candidate, especially for
code-based post-quantum cryptography. From the original scheme proposed by
McEliece [34] to the latest variants proposed for the NIST competition [3, 36,
4], the majority of these PKCs assess their security on the syndrome decoding
problem (SDP). Informally, for a binary linear code C of length n and dimen-
sion k, having a parity-check matrix H, the SDP is defined as follows: find a
binary vector x having less than t values equal to one, such that Hx = s, where
s ∈ Fn−k

2 is given.
A possible solution to solve the general decoding problem is to use Integer

Linear Programming (ILP). The idea was first proposed by Feldman [18] and
later improved by Feldman et al. [17]. Since the initial problem is nonlinear, some
relaxation was proposed in order to decrease the complexity. For more details on
these aspects, we refer the reader to the excellent review of Helmling et al. [21].
One of the latest proposals [48], introduces a new method for transforming the
initial decoding problem into an ILP, formalism that fits perfectly the ideas that
we will put forward in this article. Let us briefly explain the idea of Tanatmis et
al. [48].

The general decoding problem can be tackled using the well-known Maximum-
Likelihood decoder. Let C be a binary linear code of length n and dimension k,
with parity-check matrix H. The integer linear programming formulation of
maximum-likelihood decoding is given in Equation (1).

min{vxt |Hx = 0 ,x ∈ {0, 1}n}, (1)

where v is the log-likelihood ratio (see [31, 17]). Tanatmis et al. proposed to
introduce an auxiliary positive variable z ∈ Nn−k and define a new problem
given in Equation (2).

min{vxt |Hx = 2z ,x ∈ {0, 1}n, z ∈ Nn−k}. (2)

The advantage of (2) compared to (1) is that z introduced real/integer con-
straints, which are much easier to handle for solvers than binary constraints.
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Also, there are as many constraints as rows in H. Finding an appropriate vari-
able z is not trivial and algorithms such as [48] are constantly modifying the
values of z in order to find the correct solution.

Inspired by the ideas of Tanatmis et al., we define the SDP as an ILP. Then
we propose to determine a valid constraints integer vector z such as the problem
becomes easier to solve. To achieve this, we will put forward a recent result in
laser fault injection [13].

Understanding how fault attacks allow to corrupt the instructions executed
by a microcontroller has been a vivid topic of research in recent years. While
electromagnetic fault injection is probably the most commonly used technique,
certainly because of its relatively low cost, it has several drawbacks. Indeed,
while the ”instruction skip” or ”instruction replay” fault models were clearly
identified [44], most of the time going down to the instruction set level leaves
a lot of question open [38]. As such, only a handful of the observed faults can
be tracked down and explained by a modification of the bits in the instruction
[29]. Last, but not least, electromagnetic fault injection usually exhibits poor
repeatability [12], as low as a few percents in some cases.

Conversely, another actively studied technique is laser fault injection, which
exhibits several advantages when it comes to interpreting the observed faults.
For example, the instruction skip fault model has been experimentally validated
by laser fault injection, with perfect repeatability and the ability to skip one
or multiple instructions [16]. On a deeper level of understanding, it has been
shown in [13] that it was possible to perform a bit-set on any of the bits of
an instruction while it is fetched from the Flash memory of the microcontroller.
This modification is temporary since it is performed during the fetch process. As
such, the instruction stored in the Flash memory remains untouched. We place
ourselves in this framework here, and will show how this powerful fault model
gives the possibility to actively corrupt the instructions and allows to mount a
fault attack on code-based cryptosystems.

Contributions This article makes the following contributions. First, we propose
a new attack on code-based cryptosystems which security relies on the SDP. We
show by simulations that, if the syndrome is computed in N instead of F2, then
SDP can be solved in polynomial time by linear programming. Second, we ex-
perimentally demonstrate that such a change of set is feasible by corrupting the
instructions executed during the syndrome computation. To this end, we rely on
backside laser fault injection in Flash memory in order to transform an addition
over F2 into an addition over N. We perform this by corrupting the instruc-
tion when it is fetched from Flash memory, thereby replacing the exclusive-OR
operation with an add-with-carry operation. We then show, starting with the
faulty syndrome, that the secret error-vector can be recovered very efficiently by
linear programming. By means of software simulations we show that, in particu-
lar, this attack scales to cryptographically strong parameters for the considered
cryptosystems. Finally, we highlight a very practical feature of the attack, which
is that only a fraction of the syndrome entries need to be faulty in order for the
attack to be successful. On top of that, this fraction decreases when the crypto-
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graphic parameters grow. This has important practical consequences, since the
attack can be carried out even if the fault injection is not perfectly repeatable.
Moreover, this also drastically reduces the number of inequalities to be consid-
ered in the linear programming problem, thereby making the problem easier to
solve.

We perform a message recovery attack (MRA) against code-based cryptosys-
tems based on Niederreiter’s model. Specifically, we recover the message from
one faulty syndrome and the public key. The attacker must have physical access
to the device, where he performs a laser fault injection during encryption, i.e., in
the matrix-vector multiplication. The total number of faults the attacker must
inject is upper-bounded by the code dimension.

Our attack was performed on a real microcontroller, embedding an ARM
Cortex-M3 core, where we corrupted the XOR operation and obtained the faulty
outputs. As in our case, one needs to perform single-bit and double-bit faults,
in a repeatable and controlled manner. This method strongly relies on the work
of Colombier et al. [13] and thus can be verified and repeated experimentally.
These faults are transient and the content of the Flash memory is unchanged. We
stress out that constant-time implementations are of great help for this attack
setting.

We chose to attack here two multiplication methods, i.e., the schoolbook and
the packed version. The former is considered in the NTL library, while the later
is the reference implementation of the Classic McEliece proposal.

The article is organised as follows. In Section 2, we detail the main code-
based cryptosystems, and in particular the candidates to the NIST post-quantum
cryptography competition. Section 3 defines the SDP in N and shows how it
relates to linear programming. In Section 4, we show how the corruption of
instructions by laser fault injection allows to switch from F2 to N during the
syndrome computation. Section 5 presents experimental results following the
attack path, from laser fault injection to the exploitation of the faulty syndrome
by linear programming. Finally, we conclude this article in Section 6.

2 Code-based cryptosystems

2.1 NIST competition

The main goal of the process started by the NIST is to replace three standards
that are considered the most vulnerable to quantum attacks, i.e., FIPS 186-45

(for digital signatures), NIST SP 800-56A6 and NIST SP 800-56B7(both for keys
establishment in public-key cryptography). For the first round of this competi-
tion, 69 candidates met the minimum criteria and the requirements imposed by

5 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
6 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-56Ar2.pdf
7 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-56Br1.pdf
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the NIST. 26 out of 69 were announced on January 30, 2019 for moving to the sec-
ond round. From these, 17 are public-key encryption and/or key-establishment
schemes and 9 are digital signature schemes. The majority of these proposals
are based on the two important theoretical fields, i.e., coding theory and lattice
theory.

Here, we will analyse solutions relying on error-correcting codes in the Ham-
ming metric. The main code-based candidates for PKE and KEM (Key En-
capsulation Mechanism) are: Classic McEliece and NTS-KEM, BIKE, HQC,
LEDAcrypt. All of these have in common the same hard problem on which they
sustain their security, i.e., the binary SDP.

2.2 Coding theory – preliminaries

We choose the following conventions and notations. A finite field is denoted by
F, and the ring of integers by N. Vectors (column vectors) are written in bold,
e.g., a binary vector of length n is x ∈ {0, 1}n. Matrices are written in bold
capital letters, e.g., an m× n integer matrix is A = (ai,j)0≤i≤m−1

0≤j≤n−1
∈Mm,n (N).

A row sub-matrix of A indexed by a set I ⊆ {0, . . . ,m − 1} is denoted by
AI, = (ai,j)i∈I,0≤j≤n−1. The same applies to column vectors, i.e., xI is the
sub-vector induced by the set I on x.

Error correcting codes We say that C is an [n, k] linear error-correcting code, or
simply a linear code, over a finite field F if C is a linear subspace of dimension k
of the vector space Fn, where k, n are positive integers with k < n. The elements
of C are called codewords. The support of a codeword Supp(c) is the set of
non-zero positions of c. We will represent a code either by its generator matrix,
G ∈ Mk,n (F) (rank(G) = k), or by its parity-check matrix, H ∈ Mn−k,n (F),
(rank(H) = n− k). H satisfies Hct = 0,∀c ∈ C.

Decoding The main goal of an error correcting code, as its name strongly sug-
gests, is to correct errors, mainly coming in a communication process, from a
noisy channel. To correct errors, R. Hamming [20], proposed to endow the vector
space Fn with a metric, that carries his name. The Hamming distance between
two vectors, dH(x,y), is the number of coordinates on which x and y differ. dH
induces a weight, wt(x) = #Supp(x). ∀ C, we define the minimum distance of C
as dmin = min{dH(c, c∗) | (c, c∗) ∈ C × C, c 6= c∗}. Any vector y 6∈ C at distance
at most t = b(dmin − 1)/2c from a codeword c can be uniquely decoded into c,
i.e., c is the closest codeword to y. One general strategy of finding c given y is
using its syndrome. Let us suppose, for the sake of simplicity, that F = F2 and
y = c⊕ x ∈ Fn

2 where x is the error vector. Since Hct = 0n−k we deduce that
Hyt = Hxt. Now, we define the SDP.

Definition 1 (SDP).
Input: F a field, H ∈Mn−k,n (F) of rank n− k,

a vector s ∈ Fn−k, and t ∈ N∗, t 6= 0.
Output: x ∈ Fn, with wt(x) ≤ t, such that Hx = s
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2.3 NIST second-round code-based PKC

There are three major types on KEM/PKE code-based schemes accepted in the
second round of the NIST challenge.

The first type is based on binary Goppa codes and it is represented by the
recent merge of classic McEliece (classic McEliece) and a variant of the com-
bined McEliece and Niederreiter scheme (NTS-KEM). Here, the private key is a
structured code, and the public key its masked variant.

The second type is based on quasi-cyclic Low Density Parity-Check codes
(LEDAcrypt) or quasi-cyclic Moderate Density Parity-Check codes (BIKE), in
a rather similar construction to the McEliece scheme. The public and private
keys follow the same idea as for the first type.

The third type is completely different from the previous ones in the sense
that it does not require a masking technique applied to a structured code. It
uses, like the second type, quasi-cyclic codes (HQC).

As the first two types of proposals base their construction on the the McEliece
[34] and the Niederreiter scheme [40] we choose to illustrate here these two basic
schemes. (see Table 1). There are three algorithms defining PKE scheme, i.e.,
key generation (KeyGen), encryption (Encrypt) and decryption (Decrypt).

Table 1. McEliece and Niederreiter PKE schemes

McEliece PKE Niederreiter PKE

KeyGen(n, k, t) = (pk, sk)

H-parity-check matrix of C G-generator matrix of C
\\ C an [n, k] that corrects t errors
An n× n permutation matrix P

A k × k invertible matrix S An (n− k)× (n− k) invertible
matrix S

Compute Gpub = SGP Compute Hpub = SHP

pk = (Gpub, t) pk = (Hpub, t)
sk = (S,G,P ) sk = (S,H,P )

Encrypt(m, pk) = z

Encode m→ c = mGpub Encode m→ e
Choose e

\\ e a vector of weight t

z = c + e z = Hpube

Decrypt(z, sk) = m

Compute z∗ = zP−1 Compute z∗ = S−1z
z∗ = mSG + eP−1 z∗ = HPe
m∗ = Decode(z∗,G) e∗ = Decode(z∗,H)
Retrieve m from m∗S−1 Retrieve m from P−1e∗
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2.4 Security and practical parameters

Basically, all the aforementioned schemes support their security on the hard-
ness of the SDP. Hence, state-of-the-art algorithms for solving the SDP are used
to set up the security level. The best strategy in this direction is the so-called
class of Information Set Decoding (ISD) algorithms. The original algorithm pro-
posed by Prange [42] was significantly improved [28, 46, 26, 32, 6, 33]. Under the
assumption that the public code is indistinguishable from a random code, the
ISD techniques are considered the best strategy for tackling the MRA. In all the
code-based NIST proposals, the error weight t is of order o(n), when n→∞. In
this case, the time complexity of the ISD variants equals 2ct(1−o(1)), where c is
a constant given by the code rate. Table 2 summarizes the second round code-
based proposals, with practical parameters for three security levels, as required
by the NIST.

3 Syndrome decoding over N

In this section we will introduce a new problem, extremely similar to the SD,
for which we propose an efficient algorithm.

3.1 Description of the problem

Definition 2 (N-SDP).
Input: H ∈Mn−k,n (N) with hi,j ∈ {0, 1} for all i, j

s ∈ Nn−k and t ∈ N∗ with t 6= 0.
Output: x ∈ Nn with xi ∈ {0, 1} and wt(x) ≤ t,

such that Hx = s.

Notice that H and x are binary, as in the SDP, whereas s is integer. Basically,
H and x are sampled exactly as for the SDP, it is only the operation, i.e., matrix-
vector multiplication, that changes, and thus its result.

Possible solutions Based on the similarities with SDP, one might try to solve
N-SDP using techniques from coding theory. We briefly enumerate three possible
solutions.

1. The simplest solution is to solve it as a linear system. If we consider the
system Hx = s, it has n − k equations and n unknowns, and hence, can
be solved efficiently. However, there are k free variables, and 2k possible
solutions, since x ∈ {0, 1}. For each instance, compute the Hamming weight,
and stop when the value is smaller than or equal to t. This procedure is not
feasible in practice for cryptographic parameters, due to the values of k.

2. Another possible solution is combinatorial. One can choose subsets of si el-
ements from Supp(Hi,) for increasing values of i, until it finds the correct
combinations. This solution can be further optimised by choosing subsets
from a smaller set at each iteration, where previously selected positions are
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Table 2. Code-based cryptosystems in the second round NIST challenge.

Security level Scheme (variant) n k t

128

Classic McEliece 3488 2720 64
NTS-KEM 4096 3328 64

BIKE (2-CPA) 20 326 10 163 134
BIKE (3-CPA) 22 054 11 027 154
BIKE (2-CCA) 23 558 11 779 134
BIKE (3-CCA) 24 538 12 269 154

LEDAcrypt (CPA) 21 706 10 853 133
LEDAcrypt (CCA) 39 626 19 813 131

HQC (1) 24 667 256 77

192

Classic McEliece 4608 3360 96
NTS-KEM 8192 7152 80

BIKE (2-CPA) 39 706 19 853 199
BIKE (3-CPA) 43 366 21 683 226
BIKE (2-CCA) 49 642 24 821 199
BIKE (3-CCA) 54 086 27 043 226

LEDAcrypt (CPA) 41 962 20 981 198
LEDAcrypt (CCA) 76 138 38 069 196

HQC (1) 43 669 256 117
HQC (2) 46 747 256 117

256

Classic McEliece 6688 5024 128
Classic McEliece 6960 5413 119
Classic McEliece 8192 6528 128

NTS-KEM 8192 6424 136

BIKE (2-CPA) 65 498 32 749 264
BIKE (3-CPA) 72 262 36 131 300
BIKE (2-CCA) 81 194 40 597 264
BIKE (3-CCA) 89 734 44 867 300

LEDAcrypt (CPA) 70 234 35 117 263
LEDAcrypt (CCA) 122 422 61 211 261

HQC (1) 63 587 256 153
HQC (2) 67 699 256 153
HQC (3) 70 853 256 153

rejected from the updated set. Even so, the time complexity will be domi-
nated by a product of binomial coefficients that is asymptotically exponential
in t.

3. A modified ISD to the integer requirements. Let us choose the original algo-
rithm of Prange [41],that is randomly permuting the matrix H (denote P
such a permutation) until the support of the permuted x is included in the
set {0, . . . , n− k − 1}, i.e., the set where the HP is under upper triangular
form. To put an integer matrix under upper triangular form, one has to use
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the equivalent of the Gaussian elimination for the integers, i.e., the Hermite
normal form. So, by computing an integer matrix A and H∗, s.t. H∗ is
upper triangular on its first n− k positions we obtain:

AHP
(
P tx

)
= AH ′x′ = H∗x′ = As. (3)

If Supp(x′) ⊆ {0, . . . , n − k − 1} then the new syndrome s∗ = As has
rather small integer entries, that directly allow the computation of x′. This
algorithm has time complexity similar to the classic ISD, and hence, remains
exponential in t.

Since all these methods are not feasible in practice for cryptographic param-
eters, we propose another solution. For that, let us notice the following fact.

Remark 1. As for the maximum-likelihood decoding problem, we can reformu-
late N-SDP as an optimization problem, i.e.,

min{wt(x) |Hx = s,x ∈ {0, 1}n}, (4)

where H and s are given as in Definition 2.

This fact leads us to searching for mathematical optimization techniques,
such as integer linear programming.

3.2 Integer Linear programming

ILP was already used in a cryptographic context, mainly for studying stream
ciphers [11, 10, 39]. The authors of [39] implemented ILP-based methods that
gave practical results for Enocoro-128v2, as well as for calculating the number
of active S-boxes for AES. In [10, 11] ILP was used for studying the Trivium
stream cipher and the lightweight block cipher Ktantan. In all of these, the
technique was to reformulate the original cryptographic problems by means of
ILP, and use some well-known solvers in order to obtain practical evidence of
their security. Typically, in [11] the authors used the CPLEX solver. There are
mainly three big solvers for LP and ILP problems: lpSolve8, IBM CPLEX9 and
Gurobi10, recently tested for various types of practical problems [30].

We point here some necessary facts about ILP, as we will use ILP as a tool
only. Interested readers might check [9, 22] for a deeper introspection.

Definition 3 (ILP problem). Let n,m be two positive integers and b ∈ Nn, s ∈
Nm and A ∈Mm,n (N). The ILP problem is defined as the optimization problem

min{btx|Ax = c,x ∈ Nn,x ≥ 0}. (5)

Any vector x satisfying Ax = s is called a feasible solution. If a feasible
solution x∗ satisfies the minimum condition in (5) then x∗ is optimal. In order
to redefine our initial problem, i.e., (4) into an ILP problem, we need to redefine
the Hamming weight of a vector as a linear operation.

8 http://lpsolve.sourceforge.net/5.5/
9 https://www.ibm.com/products/ilog-cplex-optimization-studio

10 https://www.gurobi.com
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3.3 Solving N-SDP using ILP

Theorem 1. Let us suppose that there exists a unique vector x∗ ∈ {0, 1}n with
wt(x∗) = t, solution to the N-SDP. Then x∗ is the optimum solution of an ILP
problem.

Proof. Suppose that such an x∗ exists and is unique, i.e., Hx∗ = s with s ∈
Nn−k and wt(x∗) = t. We will construct an ILP problem for which x∗ is the
optimum solution. For that, we simply set At = H, c = s, and bt = (1, . . . , 1) in

(5). Since x ∈ {0, 1}n wt(x) =

n∑
i=1

xi = (1, . . . , 1) · x, but this is equal to btx∗.

The ILP problem we need to solve can now be defined as:

min{btx|Htx = s,x ∈ {0, 1}n}, (6)

which is exactly (4). This implies that x∗ is a feasible solution to (6), and as
x∗ is the unique vector satisfying Htx∗ = s with wt(x∗) ≤ t, x∗ is optimum for
the minimum weight condition.

ILP problems are defined as LP problems with integer constraints, hence any
algorithm for solving an LP problem could potentially be used as a subroutine
for solving the corresponding ILP problem. Usually, these are formalised in a
sequential process, where the solution to one LP problem is close to the solution
to the next LP problem, and so on, until eventually the ILP problem is solved.
One of the most efficient method for solving ILP problems is the branch and
cut method. In a branch and cut algorithm, an ILP problem is relaxed into an
LP problem that is solved using an algorithm for LP problems. If the optimal
solution is integral then it gives the solution to the ILP problem. There are
mainly two famous methods for solving the linear problem: the simplex and the
interior point method.

The simplex algorithm, introduced by Dantzig in [14], is one of the most
popular methods for solving LP problems. The idea of this algorithm is to move
from one vertex to another on the underlying polytope, as long as the solution is
improved. The algorithm stops when no more neighbours of the current vertex
improve the objective function. It is known to be really efficient in practice, by
solving a large class of problems in polynomial time. However, it was proved in
[24] that there are instances where the simplex falls into the exponential time
complexity class.

Interior point algorithms are alternative algorithms to the simplex method,
and were first proposed by [23]. Several variants improved the initial method,
also by providing polynomial time complexity [49, 27]. As the name suggests,
this method starts by choosing a point in the interior of the feasible set. Moving
inside the polyhedron, this point is improved, until the optimal solution is found.

Efficient solutions using interior point methods were proposed for the maximum-
likelihood decoding of binary codes [47, 51, 52]. These have running times domi-
nated by low-degree polynomial functions in the length of the code. Also, they
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are in particular very efficient for large scale codes [47, 51]. For these particu-
lar interesting arguments, we choose the interior point method for solving the
N-SDP.

Solving the N-SDP The algorithm we propose here to solve the N-SDP can be
described as follows. Initiate the parameters from (6), solve a relaxation of the
N-SDP (using the interior point methods), round the solution to binary entries
(using the method from [35]) and finally verify if the binary solution satisfies
the parity-check equations and the weight condition. The relaxation of the ILP
problem to LP problem is a common method, more exactly, the LP problem
that we have to solve is:

min{btx |Hx = s,0 � x � 1,x ∈ Rn}, (7)

where the ordering � is defined by x � y if and only if xi ≤ yi for all 0 ≤ i ≤
n− 1.

Algorithm 1 ILP solver for N-SDP

Input: H, s, t
Output: x solution to N-SDP or ERROR

1: Set b = (1, . . . , 1)t

2: Solve equation (7) . Using interior point method
3: round the solution x∗ to x∗ ∈ {0, 1}n . using [35]
4: if Hx∗ = s and wt(x) ≤ t then
5: return x∗

6: else
7: return ERROR
8: end if

3.4 Optimization

In this paragraph we propose an optimisation to Algorithm 1. Let us first define
the following sets :

Definition 4. Let 0 < ` < n − k and ∅ ⊂ I0 ⊂ · · · ⊂ I` ⊆ {0, . . . , n − k − 1}.
For 0 ≤ i ≤ ` we define HIj = {x ∈ {0, 1}n | HIj ,x = sIj}, and H = {x ∈
{0, 1}n |Hx = s}.

Now, let us prove how to reduce the number of constraints to our initial prob-
lem. Firstly, notice that N-SDP can be written as min{xbt | x ∈ H}. Secondly,
we prove that:

Proposition 1. Let 0 < ` < n − k and ∅ ⊂ I0 ⊂ · · · ⊂ I` ⊆ {0, . . . , n − k − 1}
and x∗Ij = min{xbt | x ∈ HIj}, for any 0 ≤ j ≤ `. Then wt(x∗) ≥ wt(x∗I`) ≥
· · · ≥ wt(x∗I0).
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Proof. From definition 4 we deduce

H ⊆ HIl · · · ⊆ HI0 . (8)

Now, as the setsHIj are finite we can take the minimum and use the inclusion
from (8) to deduce the result.

We will thus use Proposition 1 as a reduction of our initial problem to a
shorter one, in terms of constrains, or equivalently in the dimension of the sys-
tem. The resulting algorithm randomly chooses a set of initial row indexed for
which it calls the ILP solver for N-SDP (Algorithm 1). If the output is an op-
timum solution for the full problem then it stops, if not it adds a random row
and continues until it finds the solution. This procedure allows us to solve an
easier instance and reduce the overall time complexity of our algorithm. As we
shall see in Section 5.2, the reduction decreases the experimentally observed
time complexity of the N-SDP from O(n3) to O(n2). In addition, the proposed
optimisation allows us to perform practical attacks on all the parameters from
Table 2 on a regular desktop computer.

4 Fault injection

As shown in the previous section, computing the syndrome in N instead of F2

makes the SDP considerably easier to solve. In order to perform this change, we
must have the processor perform the additions in N instead of F2 during the syn-
drome computation. This is done by replacing the exclusive-OR instruction with
an addition instruction. Since both these arithmetic instructions are performed
by the arithmetic–logic unit of the processor, their associated opcodes are close,
in the sense that the Hamming distance between them is small. Therefore, only
few bits must be modified to switch from one to the other.

We focus on the Thumb instruction set here since it is widely used in em-
bedded systems. The fact that, in the Thumb instruction set, the exclusive-OR
instruction can be transformed into an add-with-carry instruction by a single
bit-set can be considered pure luck. This is at least partially true but this is not
so as surprising as it seems when given a second thought. Indeed, both these
instructions are ”data processing” instructions. As such, they are handled by
the arithmetic and logic unit. Therefore, the opcode bits are used to generate
similar control signals, and it is not surprising that they differ by only a few bits.
A few examples of corruptions in other instruction sets are given in Appendix A,
showing that this attack could be easily ported to other targets.

4.1 Previous work

The single-bit fault model is a very powerful one and allows an attacker to mount
efficient attacks [19]. However, performing a single-bit fault in practice is far from
trivial. While these can be performed by global fault injection techniques, such
as under-powering [5], further analysis is necessary to filter the exploitable faults.
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Indeed, while performing a single-bit fault at an unpicked position is feasible,
targeting one bit specifically is much more complicated.

To this end, a more precise fault injection technique is required. In this
regard, laser fault injection is a well-suited method. Indeed, as shown in [13],
it is possible to perform a single-bit bit-set fault on data which is fetched from
the Flash memory. This makes it possible to alter the instruction when it is
fetched, before it is executed by the processor. We insist here on the fact that, as
detailed in [13], the corruption is temporary, and only performed on the fetched
instruction. The content of the Flash memory is left untouched. Therefore, if the
instruction is fetched again from the Flash memory while no laser fault injection
is performed then the instruction is executed normally.

Colombier et al. showed that targeting a single bit in a precise manner is
relatively easy, since it only requires to position the laser spot at the right lo-
cation on the y-axis in the Flash memory [13], aiming at different word lines.
Indeed, moving along the x-axis does not change the affected bit, since the same
word line is covered by the laser spot. Therefore, targeting a single bit of the
fetched instruction is possible. Moreover, they also showed that two adjacent
bits can also be set by shooting with sufficient power between two word lines.
This single-bit or dual-bit bit-set fault model is the one we use as a framework
for the rest of the article.

4.2 Bit-set fault on an exclusive-OR instruction

Using the fault injection technique described above, we now show how to apply
it to replace an exclusive-OR instruction with an add-with-carry instruction.
Figure 1 shows the Thumb encoding of both instructions, as available from the
ARMv7-M Architecture Reference Manual11. When comparing both instruc-
tions, we observe that only one single-bit bit-set fault, on the bit of index 8, is
required to replace the exclusive-OR instruction with an add-with-carry instruc-
tion. This is highlighted in red in Figure 1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic EORS: Rd = Rm ^ Rn
0 1 0 0 0 0 0 0 0 1 Rm Rdn

Generic ADCS: Rd = Rm + Rn
0 1 0 0 0 0 0 1 0 1 Rm Rdn

Fig. 1. Thumb encoding of the exclusive-OR (EORS) and add-with-carry (ADCS) instruc-
tions. The bit which must be set by laser fault injection is highlighted in red.

11 https://static.docs.arm.com/ddi0403/e/DDI0403E_B_armv7m_arm.pdf
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4.3 Bit-set fault on schoolbook matrix-vector multiplication

Now that we have shown that a single-bit fault can replace an exclusive-OR in-
struction with an add-with-carry instruction, we will extend it to a matrix-vector
multiplication, used to compute the syndrome in code-based cryptosystems. The
syndrome computation is typically implemented as shown in Algorithm 2. This
is how it is done in the NTL12 library for instance, which is widely used by NIST
PQC competition candidates.

Algorithm 2 Matrix-vector multiplication.

1: function Mat vec mult(matrix, error vector)
2: for r ← 0 to k − 1 do
3: syndrome[r] = 0 . Initialisation

4: for r ← 0 to k − 1 do
5: for c ← 0 to n− 1 do
6: syndrome[r] ^= matrix[r][c] & error vector[c]

7: . Multiplication and addition

8: return syndrome

When performing laser fault injection in this setting, an attacker has essen-
tially three delays to tune. According to this implementation, an exclusive-OR
instruction will be executed at each run of the inner for loop. The delay between
the execution of these instructions is constant. We refer to it as tinner. The sec-
ond delay of interest is between the last and the first exclusive-OR instruction
of the inner for loop, when one iteration of the outer for loop is performed. This
delay is constant too. We refer to it as touter. Finally, the last delay to tune is
the initial delay, before the matrix-vector multiplication starts. We refer to it as
tinitial. Figure 2 shows these three delays on an example execution.

execution
starts X
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R

X
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X
O
R

X
O
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X
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X
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X
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X
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X
O
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X
O
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X
O
R

X
O
R

tinitial tinner touter
time

Fig. 2. Laser fault injection delays to tune

These delays are easy to tune, since they are not inter-dependent. The first
delay to tune is tinitial, then tinner and finally touter. Therefore, performing
laser fault injection on the schoolbook matrix-vector multiplication does not
induce much additional practical complexity compared with the exclusive-OR
instruction alone because of the regularity of the computation.

12 https://www.shoup.net/ntl/
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Overall, (n − k) × n faults are necessary to obtain the full faulty syndrome
in N.

4.4 Bit-set fault on a packed matrix-vector multiplication

The matrix-vector multiplication method described in Algorithm 2 makes poor
use of the capacity of the machine words when matrix entries are in F2. Indeed,
even if both the matrix and the error-vector are binary, their elements are stored
in a full machine word. Although the smallest type available, unsigned char,
can be used, it still take eight bits to store only one bit of information.

To overcome this, consecutive bits in the rows of the parity-check matrix can
be packed together in a single machine word. Typically, eight bits are packed in
a byte. In this setting, the dimensions of the matrix, error-vector and syndrome
are changed. The parity-check matrix now has k rows and n/8 columns. The
error-vector now has n/8 entries. The syndrome now has k/8 entries.

Algorithm 3 Matrix-vector multiplication with packed bits.

1: function Mat vec mult packed(matrix, error vector)
2: for r ← 0 to k − 1 do
3: syndrome[r/8] = 0 . Initialisation

4: for r ← 0 to k − 1 do
5: b = 0

6: for c ← 0 to (n− 1)/8 do
7: b ^= matrix[r][c] & error vector[c] . Multiplication and addition

8: b ^= b >> 4; .
9: b ^= b >> 2; . Exclusive-OR folding

10: b ^= b >> 1; .
11: b &= 1; . LSB extraction
12: syndrome[r/8] |= b << (r%8) . Bits packing

13: return syndrome

Compared to the schoolbook method shown in Algorithm 2, a variable b is
used to store the intermediate result of the multiplication and addition (see line 7
of Algorithm 3). Next, a few extra steps are performed on this variable. First,
it is necessary to compute the exclusive-OR of all the bits of this variable. This
is done by computing the exclusive-OR of the lower half and the upper half, by
shifting by four positions (see line 8 of Algorithm 3). This is repeated again by
shifting by two and finally one position (see lines 9 and 10 of Algorithm 3). We
refer to this technique as exclusive-OR folding. The least-significant bit is then
extracted (see line 11 of Algorithm 3). Finally, it is packed into the syndrome
byte at the correct position (see line 12 of Algorithm 3).

Compared to the schoolbook matrix-vector multiplication shown in Algo-
rithm 2, several different faults are required here. They are detailed below.
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Fault on the multiplication and addition for loop The first specific fault
to perform on the packed matrix-vector multiplication is on the inner for loop
found on line 6 of Algorithm 3. Indeed, since the bits of the parity-check matrix
are now packed, we cannot perform the sum over N and expect the final value to
be the sum of all individual bits. This is because, when bits are stored in a word,
performing the addition in N will incur carries which will propagate and make
the final byte useless, since individual contributions of the rows of the parity
check matrix are mixed.

To overcome this issue, we propose to prematurely exit this for loop. Before
explaining how this can be achieved in practice by laser fault injection, we detail
the consequences it has on the packed matrix-vector multiplication.

Consequence of a premature exit of the inner for loop of the packed matrix-
vector multiplication If we are able to prematurely exit the inner for loop, then
the value of the intermediate variable b, which holds the temporary result of the
multiplication and addition, is changed. We shall identify the possible values of
b by induction. Let us refer to the value of b after the i-th execution of the for
loop as bi.

Let us first identify the base case, that is, exiting after only one execution.
We have:

b0 = matrix[r][0] & error vector[0] (9)

We can now identify the induction step, which corresponds to the subsequent
executions of the for loop. We then have:

bi = bi−1 ˆ (matrix[r][i] & error vector[i]) (10)

Therefore, we now have the values of b from b0 to b(n−1)/8. The value bi is
obtained by executing the for loop i times and prematurely exiting it only then.
As mentioned in subsection 4.1, this is feasible since instructions are corrupted
”on the fly”, only when they are fetched from the Flash memory.

In order to obtain the faulty syndrome entry, that is, the sum over N, we
must compute the sum given in Equation (11). We use the Hamming weight
(wt) to obtain the sum of the individual bits.

wt(b0) +

(n−1)/8∑
i=1

wt(bi ˆ bi−1) (11)

We then obtain a faulty syndrome entry just like the one we got after per-
forming fault injection on the schoolbook matrix-vector multiplication. The next
paragraph describes how to perform it practically by laser fault injection.

Premature exit of a for loop by laser fault injection As discussed in [13], prema-
turely exiting a for loop is feasible by corrupting the loop variable increment.
Instead of incrementing the loop variable by only 1, we can try to make this
increment as large as possible. As shown in Figure 3, the increment of the loop
variable at the end of the for loop is performed by a 16-bit ADD instruction. It
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mov r1, #0

inner:

...

...

...

add r1, #1

cmp r1, #N/8

ble @inner

(a) Typical assembly code of a for loop.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic ADD: Rdn += imm8

0 0 1 1 0 Rdn imm8

ADD r1 #1

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

ADD r1 #193

0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1

(b) Thumb encoding of the ADD instruction and two examples
with different immediate values. The bits which must be set by
laser fault injection are highlighted in red.

Fig. 3. Assembly code of a for loop and a way to exit it prematurely by corrupting
the loop variable increment.

has been demonstrated in [13] that it is possible to perform a bit-set fault on
two adjacent bits of the instruction. Here, we can thus make the increment step
as large as 193 by setting the bits of index 6 and 7 of the ADD instruction.

As shown in Algorithm 3, the body of the inner for loop normally executes
n/8 times. By performing the previously described fault, we can make the loop

variable increment step as large as 193. Therefore, the loop is executed
⌈

n
8×193

⌉
=⌈

n
1544

⌉
times. Our objective is to exit the for loop prematurely. In this regard,

for large values of n, executing the loop
⌈

n
1544

⌉
times can lead to execute the for

loop for a few more iterations.
For instance, if n = 3488, then the loop should be executed n

8 = 436 times.
If we want to exit after 5 iterations to obtain b5, then we will in fact obtain:

b5 = b4 ˆ matrix[r][5] & error vector[5] ˆ

matrix[r][198] & error vector[198] ˆ (12)

matrix[r][391] & error vector[391]

instead of:

b5 = b4 ˆ matrix[r][5] & error vector[5] (13)

since 391 ≡ 198 ≡ 5 mod 193.
Therefore, we have a few parasitic extra elements in the bi value. How-

ever, since the error-vector has low weight, we can expect the associated bytes,
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error vector[198] and error vector[391] in Equation 12, to be all zeros and
therefore not change the bi value.

Another approach would be to obtain multiple values for every bi, by explor-
ing several increment steps. The correct one could then potentially be extracted
as the common pattern of all these values. This will not be investigated further
in this article but could be the subject of future research.

Fault on the exclusive-OR folding Now that we obtained a temporary faulty
syndrome entry stored in the intermediate variable b, we must deal with the
exclusive-OR folding (see lines 8 to 10 of Algorithm 3) in order to keep this
value intact.

There are two ways to address the exclusive-OR folding. The first possibility
is to corrupt the destination register in the instruction. Depending on the level
of optimisation used for the compilation, the exclusive-OR folding can be either
decomposed into three consecutive shift-exclusive-OR pairs or be performed di-
rectly by three consecutive wide exclusive-OR operations. Indeed, as specified
in the ARM reference manual, the exclusive-OR instruction can be made wide
to include an optional shift of one of the operands (see ARMv7-M Reference
Manual). In both cases, corrupting the destination register is easy and consists
only in performing a bit-set on the Rd part of the instruction.

The second possibility, which is the one we consider more practical, is to
notice that the sequence of three operations that make up the exclusive-OR
folding constitute a permutation over F8

2. We verified it exhaustively for the
256 possible values. Therefore, rather than performing the destination register
corruption described previously, one can simply inverse the permutation.

Fault on the least-significant bit extraction The next operation to address
is the least-significant bit (LSB) extraction (see line 11 of Algorithm 3).

Again here, there are two possible faults. Similarly to what was presented
before for the exclusive-OR folding, it is also possible to corrupt the destination
register. This would leave the source register untouched and preserve the full
value of bi, not only its LSB. The second option is to corrupt the ”immediate”
operand of the AND instruction that performs the masking to extract the LSB.
To extract the LSB, this immediate value is 0x01. The objective here is to set as
many bits as possible to 1 in the immediate value, in order for the AND masking to
reset as few bits as possible. Depending on the level of optimisation used for the
compilation, the LSB extraction can be performed in one or two instructions. For
the sake of readability, we consider only the case where two 16-bit instructions
are used instead of a condensed 32-bit one. However, the idea to apply is exactly
the same.

Figure 4a shows the two assembly instructions that perform the LSB extrac-
tion. First, the mask value is loaded. It is then used as a mask in the subsequent
AND instruction. Ideally, we would like to load 255 as a mask instead, so that no
bits are reset by the AND masking. However, this requires to perform a bit-set
on seven adjacent bits, which is out of reach with a single-spot laser that can
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mov r1, #1

and r1, r2

(a) Assembly code of the LSB extraction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic MOV: Rd = imm8

0 1 0 0 0 Rd imm8

MOV r1 #1

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

MOV r1 #3

0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

MOV r1 #13

0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1

MOV r1 #49

0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1

MOV r1 #193

0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1

(b) Thumb encoding of the MOV instruction and the set of four
corruptions required to get the full byte value. The bits which
must be set by laser fault injection are highlighted in red.

Fig. 4. Assembly code of the LSB extraction and the four necessary corruptions re-
quired to prevent it and obtain the full byte value.

at most fault two adjacent bits [13]. Therefore, four intermediate faults are nec-
essary. For each of them, two bits of the mask are set, as shown in Figure 4b,
giving the following mask values: 0x03, 0x0D, 0x31 and 0xC1. We refer to the four
consecutive faulty byte values as b#3, b#13, b#49 and b#193. Then the correct b
value, without LSB extraction, is given in Equation (14).

b = b#3 | b#13 | b#49 | b#193 (14)

Fault on the bits packing operation The previous sections showed how it
is possible to keep the b value intact. Finally, the last operation to address is
the bits packing operation (see line 12 of Algorithm 3). There are two issues to
address here. First, we must deal with the left shift that will cause the most
significant bits of b to be dropped. Second, we must address the eight successive
OR operations performed for each syndrome entry.

We will actually start without dealing with the shift. The objective here is
to have the b stored in the syndrome vector directly, to make them available
to the attacker. To this end, we will apply again the idea of modifying the
loop increment (as shown in Figure 3 but this time for the outer for loop. The
pattern to observe is the following. If we increase the loop increment after the
first execution of the outer for loop, then we have: s[0] = b, with b not being
shifted. All other syndrome entries are altered and unusable. If we increase the
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loop increment after the ninth execution of the outer for loop, then we have:
s[1] = b, with b not being shifted. Again, all other syndrome entries are altered
and unusable. We then repeat this process and exit the outer for loop after the
i-th execution, i ∈ {8m + 1 | m ∈ N, m < k/8}.

This fault leaves us with a syndrome vector which entries contain every eighth
faulty syndrome value, those for which the row index r verifies r ≡ 0 mod 8.
Therefore, we only have 12.5 % of the faulty syndrome entries to feed to the
linear programming solver. While we show in Section 5.2 that this is actually
more than necessary to successfully recover the error-vector by integer linear
programming for large values of n, we briefly examine some possibilities to obtain
a higher percentage.

The issue here is with the left shift operation, which discards the most sig-
nificant bits of the byte b. This shift is implemented with the LSL instruction.
As it turns out, performing a one-bit bit-set at different positions of this in-
struction leads quite a few corrupted instructions. They are listed in Figure 5.
The most interesting corruption is probably to turn the LSL instruction into a
CMP instruction, which compares the values stored in the registers and updates
the processor flags but does not modify the content of the registers. Therefore,
this is the corruption that we pick. Alternatively, other corruptions such as LSR
(logical shift right) or SBC (subtract with carry) could also be exploited, but
would require more analysis.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic LSL: Rdn <<= Rm
0 1 0 0 0 0 0 0 1 0 Rm Rdn

Generic LSR: Rdn >>= Rm
0 1 0 0 0 0 0 0 1 1 Rm Rdn

Generic SBC: Rdn -= Rm
0 1 0 0 0 0 0 1 1 0 Rm Rdn

Generic CMP: Compare(Rm, Rn)

0 1 0 0 0 0 1 0 1 0 Rm Rn

Fig. 5. Possible corruptions of the LSL instruction with a one-bit bit-set fault

At last, the final operation to deal with is the OR operation which packs the
bits together without affecting the ones which have already been packed. This
must be addressed by premature exit of the outer for loop again.

After the row of index r ≡ 0 mod 8 has been processed, the syndrome entry
holds the correct value, as mentioned before, making 12.5 % of the faulty entries
readily available. However, if we run the outer for loop for one more iteration,
the row of index r ≡ 1 mod 8 is processed. The syndrome entry value is then:
br≡0 | (br≡1 << 1). If the value br≡0 had many zeroes and the most significant
bit of br≡1 is not 1, then the value of br≡1 can be deduced. However, this might
not be correct. A trial-and-error process could then be followed, trying to include
those new faulty syndrome entries into the problem fed to the solver. Again, in
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many realistic cases this is not necessary, since 12.5 % of faulty syndrome entries
are enough to mount the attack.

Summary and feasibility of faulting the packed matrix-vector multi-
plication Figure 6 summarises the steps performed in the packed matrix-vector
multiplication and the associated faults required to compute the multiplication
in N instead of F2. Essentially, a lot of required faults involve prematurely exiting
the inner and outer for loops.

For loop of
multiplications
and additions

Exclusive-OR
folding

LSB extraction Bits packing

Prematurely
exiting F8

2 permutation

OR after four
complementary

mask corruptions

Prematurely
exiting the

outer for loop

Fig. 6. Summary of the operations found in the packed matrix-vector multiplication
and the required associated faults.

For practical reasons, it is worth noting which bits of the instructions must be
set. Indeed, this determines the position of the laser spot in the Flash memory.
The timing of the laser fault injection can be tuned very precisely, allowing to
selectively target one instruction only. However, given the linear speed at which
a typical XYZ stage holding the objective lens travels, it is foolish to try to fault
consecutive instructions at different bit positions. Premature exit of a for loop
requires to set the bits of index 7 and 6. Corrupting the MOV instruction to avoid
LSB extraction, as depicted in Figure 4b, requires to set the bits 7 and 6, then
5 and 4, then 3 and 2, and finally 1. This is thus not feasible with a single-spot
laser injection station, but would be possible with a multi-spot station.

5 Experimental results

5.1 Fault injection

We did perform the fault described above by laser fault injection. This allowed
us to replace the exclusive-OR instruction by an add-with-carry instruction. We
use a laser that emits light in the infrared region, at a wavelength of 1064 nm
and perform backside injection on the target. We reused the laser fault injec-
tion parameters provided in [13]. The injection power is 1 W. The laser spot has
a diameter of 5 µm. The duration of the laser pulse is 135 ns. This is roughly
equal to the clock period of the microcontroller, which runs at 7.4 MHz. Laser
synchronisation is becoming more precise and circuit with faster clocks are def-
initely within reach. Then, the fault is achieved by placing the laser spot in
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the Flash memory of the 32-bit microcontroller. This device embeds an ARM
Cortex-M3 core, which is a very common base found in many embedded sys-
tems. We validated that the fault injection was indeed correctly performed by
comparing input/output pairs with and without fault injection. This confirmed
that the exclusive-OR instruction can indeed be replaced with an add-with-carry
instruction.

Figure 7 shows a detailed example of instruction corruption by laser fault
injection. The example code simply loads an identical constant value into two
registers and performs the exclusive-OR of them. The value is then read out
from the destination register.

Fault Assembly code Binary machine code Readout

mov r3, #90 0010 0011 0101 1010

No mov r4, #90 0010 0100 0101 1010 r3 = 0x00

eors r3, r4 0010 0000 0110 0011

mov r3, #90 0010 0011 0101 1010

Yes mov r4, #90 0010 0100 0101 1010 r3 = 0xB4

adcs r3, r4 0010 0001 0110 0011

Fig. 7. Detailed example of instruction corruption by laser fault injection. The effects
of the fault are highlighted in red

On the first line, no fault injection is performed. Since the value loaded into
the registers is the same, the exclusive-OR leads to a byte where all bits are zero,
as shown in the readout value of the destination register.

On the second line, a fault is injected. This allows to perform a bit-set on the
bit of index 8, as shown in red in the ”Binary machine code” column. This in
turns changes the exclusive-OR operation into an add-with-carry operation. This
is visible in the ”Assembly code” column, where the eors instruction is replaced
with an adcs instruction. As a consequence, the value stored in the destination
register is different from zero and equal to the sum of both registers instead.
Since we observe precisely this value in our experimentation, this validates that
the instruction has been successfully corrupted.

Following the fault injection strategies detailed in Section 4, we are able to
obtain a syndrome with values in N. The following section describes the actual
exploitation of this syndrome to recover the binary error-vector.

5.2 Syndrome decoding over N with integer linear programming

After obtaining a faulty syndrome with entries in N, we feed it and the parity-
check matrix to the programming solver. We used the linprog function of the
scipy.optimize [50] Python module. It implements the interior point method as
described in [2]. As mentioned in Section 3 we chose the interior point method
over the simplex, for several already known arguments. We still performed a
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comparison between these two methods for our specific problem, and indeed,
the interior point method turned out to be much faster.

In order to remain as general as possible, we consider parity-check matrices of
random binary codes. Since no efficient decoding algorithm exists for these, they
can be considered the worst-case scenario. Also, all the code-based proposals to
the NIST challenge state that the public codes are indistinguishable from random
codes. Parity-check matrices which are associated with structured codes thus
cannot be harder to handle than the ones of random binary codes. We explore
values of n from 103 to 105 as they are representative of modern parameters for
code-based cryptosystems, as shown in Table 2. The N-SDP instance that we
have to solve for the code-based candidates have the following properties.

– The parameter t ranges in t = O(
√
n) or t = O(

√
n log(n)) for all the

schemes.
– For McEliece, NTS-KEM, BIKE, and LEDAcrypt, the SDP instance that

we have to solve comes directly from the parameters specifications, as they
follow from the McEliece/Niederreiter scheme.

– For HQC, the SDP instance that we solve is constructed as in [1]. Hence,
the parity-check matrix has length 2n and dimension n, where n is given in
Table 2.

All experiments are conducted on a standard desktop computer, embedding a
6-core CPU clocked at 2.8 GHz and 32 GB of RAM.

Required percentage of faulty syndrome entries As highlighted in Sec-
tion 3.4, only a fraction of the parity-check matrix rows and syndrome entries
are required to solve the linear programming problem. Figure 8 shows how the
percentage of required syndrome entries changes for different values of n. This
depends not only on n but also on the weight of the error-vector. Figure 8a
shows the required percentage of syndrome entries for t =

√
n. Figure 8b shows

the required percentage of syndrome entries for t =
√
n log(n). For each value

of n and every percentage from 1 to 54, we estimate the success rate by solving
the linear programming problem 20 times.

We can clearly see that the number of required syndrome entries decreases
when n increases. It drops below the 12.5 % threshold derived in Section 4.4
after n = 9000 approximately. This makes most of the cryptosystems listed in
Table 2 vulnerable to the attack without dealing with the bits packing if the
packed matrix-vector multiplication is used. For large values of n and t =

√
n,

the required number of syndrome entries even drops below 5 %.
For t =

√
n log(n), as shown in Figure 8b, the required percentage of syn-

drome entries does not drop as fast. Moreover, this leads to an issue related to
large values of t. For example, n = 10000 leads to t =

√
n log(n) = 303. This is

already higher than any t found in Table 2. At this number of errors, since n is
not so large, the linear programming problem to solve is better satisfied by non-
binary vectors. Therefore, it is necessary to add bounds on the variables of the
linear programming problem to make sure that they remain in the [0, 1] inter-
val. This dramatically increases the memory requirements of the solver, thereby
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Fig. 8. Success rate of solving the liner programming problem for different values of n
and percentage of syndrome entries considered.

limiting the largest value of n to 2× 104 approximately. Note that this is only
dictated by the RAM available on the desktop computer we used and is not an
algorithmic limit.

To conclude this part, we stress that only a small percentage of rows suffices
to solve the full problem. Also, for t <

√
n log(n), the ILP solver finds the binary

solution directly, which makes it really efficient. However, for larger values of t, we
need to bound the solution to the [0, 1] interval in order to be able to practically
solve the ILP.

Execution time Figure 9 shows how the execution time of the linear program-
ming solver changes for different values of n. Two cases are displayed. In the
”Full” case, the whole faulty syndrome is fed to the solver. In the ”Optimal”
case, only the required percentage of syndrome entries are used.

We can observe that taking only the required percentage of syndrome entries
drastically reduces the computation time. For n = 18000, and t =

√
n, two orders

of magnitude of computation time are gained. Above n = 18000, the memory
available on our desktop computer is not sufficient to handle the t =

√
n log(n)

case. However, in the case where t =
√
n and only the required percentage of

syndrome entries are considered, then the memory is not limiting, even for values
of n as large as 105. The computation time remains low too, since it takes only
two minutes so solve the problem for n = 105.

We can empirically observe on Figure 9 that the slope is different for the
”Full” and the ”Optimal” cases, having respectively O(n3) and O(n2) time
complexities. This difference of exponent could be investigated further in fu-
ture works.

When considering the parameters of the NIST PQC competition candidates,
given in Table 2, we see that they are close to the t =

√
n case. For the largest

parameters, n = 122 422, k = 61 211, t = 261, only 4 % of the syndrome entries
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Fig. 9. Execution time of the linear programming solver for different values of n. In
the ”Full” case, all syndrome entries are considered. In the ”Optimal” case, only the
required percentage of syndrome entries are considered.

are required to solve the problem, and this is done in 142 s approximately. We
did not extend our experiments beyond this limit but this is definitely feasible,
even on our desktop computer, without hitting the memory limit. Overall, all
NIST PQC competition candidates can be attacked within a few minutes with
a desktop computer.

6 Conclusion

We have shown in this paper that, using laser fault injection, we are able to mod-
ify one of the building blocks of code-based cryptosystems, i.e., the well-known
syndrome decoding problem. We modelled the modified instance by means of
an integer linear programming problem, and further solve it experimentally in
polynomial time. We have provided real time attacks against all the parameters
of the code-based solution in the NIST post-quantum challenge.

Furthermore, we have shown that the number of fault injected can be dras-
tically reduced if we focus on only a few percent of the number of rows of the
matrices involved. Combining laser fault injection to obtain an easier problem
such as the syndrome decoding problem over N instead of F2 and then using
linear programming to solve this problem is an interesting combination that po-
tentially could be applied to other interesting problems, such as Shortest Integer
Problem or Shortest Vector Problem.

Our results open the road to other research directions. Take for example the
maximum-likelihood decoding problem. If one is able to modify the multiplica-
tion from F2 to integer multiplication, the modified problem is almost identical
to what we propose here, as we point out in the beginning of our article. An-
other direction which our article opens is a more theoretical one. Our simulations
provide evidence of the polynomial time complexity of this problem. However,
known results on this issue, e.g., totally unimodular binary matrices, fixed vari-
able problems, bounded determinant binary matrices (solvable in polynomial
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time), do not apply to our case. The question is whether the worst case N-SPD
is still solvable in polynomial time.
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- EUROCRYPT 2015. Lecture Notes in Comput. Sci., vol. 9056, pp. 203–228.
Springer (2015)

34. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–
116. Jet Propulsion Lab (1978), dSN Progress Report 44

35. Megiddo, N.: On finding primal-and dual-optimal bases. ORSA Journal on Com-
puting 3(1), 63–65 (1991)

36. Melchor, C.A., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Hauteville, A., Ruatta, O., Tillich, J.P., et al.: ROLLO-Rank-
Ouroboros, LAKE & LOCKER (2018)

37. Miller, V.S.: Use of elliptic curves in cryptography. In: Conference on the Theory
and Application of Cryptographic Techniques. pp. 417–426. Springer (1985)

38. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electro-
magnetic fault injection: Towards a fault model on a 32-bit microcontroller. In:
Fischer, W., Schmidt, J. (eds.) Workshop on Fault Diagnosis and Tolerance in
Cryptography. pp. 77–88. IEEE Computer Society, Los Alamitos, CA, USA (8
2013). https://doi.org/10.1109/FDTC.2013.9

39. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.K., Yung, M., Lin, D. (eds.)
Information Security and Cryptology. pp. 57–76. Springer Berlin Heidelberg (2012)

40. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15(2), 159–166 (1986)

41. Prange, E.: Cyclic error-correcting codes in two symbols. Electronics Research
Directorate, Air Force Cambridge Research Center (September 1957), no. AFCRC-
TN-57-103. ASTIA Document No. AD133749

42. Prange, E.: The use of information sets in decoding cyclic codes.
IRE Transactions on Information Theory 8(5), 5–9 (1962).
https://doi.org/10.1109/TIT.1962.1057777, http://dx.doi.org/10.1109/TIT.

1962.1057777

43. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

44. Rivière, L., Najm, Z., Rauzy, P., Danger, J., Bringer, J., Sauvage, L.:
High precision fault injections on the instruction cache of armv7-m archi-
tectures. In: International Symposium on Hardware Oriented Security and
Trust. pp. 62–67. IEEE Computer Society, Washington, DC, USA (5 2015).
https://doi.org/10.1109/HST.2015.7140238

45. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

46. Stern, J.: A method for finding codewords of small weight. In: Cohen, G.D., Wolf-
mann, J. (eds.) Coding Theory and Applications. Lecture Notes in Comput. Sci.,
vol. 388, pp. 106–113. Springer (1988)

47. Taghavi, M.H., Shokrollahi, A., Siegel, P.H.: Efficient implementation of linear
programming decoding. IEEE transactions on information theory 57(9), 5960–
5982 (2011)

48. Tanatmis, A., Ruzika, S., Hamacher, H.W., Punekar, M., Kienle, F., Wehn, N.: A
separation algorithm for improved lp-decoding of linear block codes. IEEE Trans-
actions on Information Theory 56(7), 3277–3289 (2010)

49. Vaidya, P.M.: Speeding-up linear programming using fast matrix multiplication.
In: 30th annual symposium on foundations of computer science. pp. 332–337. IEEE
(1989)



Message-recovery Laser Fault Injection Attack on Code-based Cryptosystems 29

50. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J.,
Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A.R.J., Jones, E.,
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A Possible corruptions of the exclusive-OR instruction in
a few other instruction sets

We provide here a few examples of possible corruptions of the exclusive-OR
instruction in other instruction sets than the Thumb that we considered in the
article. These instruction sets are ARMv713, PIC14 and RISC-V compressed15.

ARMv7 In the ARMv7 instruction set, the exclusive-OR instruction (EORS.W)
can be corrupted into a saturated addition instruction (QADD) as shown in Fig-
ure 10. For readability reasons, we split the 32-bit instructions into two 16-bit
blocks.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Generic EORS.W: Rd = Rm ^ Rn (upper half)

1 1 1 0 1 0 1 0 1 0 0 0 Rn
Generic QADD: Rd = Rm + Rn (upper half)

1 1 1 1 1 0 1 0 1 0 0 0 Rn

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic EORS.W: Rd = Rm ^ Rn (lower half)

0 imm3 Rd imm2 type Rm
Generic QADD: Rd = Rm + Rn (lower half)

1 1 1 1 Rd 1 0 0 0 Rm

Fig. 10. ARMv7 encoding of the exclusive-OR instruction and a possible fault feasible
by bit-sets

13 https://static.docs.arm.com/ddi0403/e/DDI0403E_B_armv7m_arm.pdf
14 http://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf
15 https://riscv.org/specifications/isa-spec-pdf/
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PIC In the PIC instruction set, the exclusive-OR instruction (XORWF) can be
corrupted into an addition instruction (ADDWF) as shown in Figure 11.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic XORWF: W = W ^ Rf
0 0 0 1 1 0 d Rf

Generic ADDWF: W = W + Rf
0 0 0 1 1 1 d Rf

Fig. 11. PIC encoding of the exclusive-OR instruction and a possible fault feasible by
bit-set

RISC-V compressed In the RISC-V compressed instruction set, the exclusive-
OR instruction (C.XOR) can be corrupted into an addition instruction (C.ADDW)
as shown in Figure 12.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic C.XOR: Rd = Rs1 ^ Rs2
1 0 0 0 1 1 Rs1/d 0 1 Rs2 0 1

Generic C.ADDW: Rd = Rs1 + Rs2
1 0 0 1 1 1 Rs1/d 0 1 Rs2 0 1

Fig. 12. RISC-V encoding of the exclusive-OR instruction and a possible fault feasible
by bit-set


