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Abstract6

In this paper, we present an optimally-resilient, unconditionally-secure asynchronous multi-party7

computation (AMPC) protocol for n parties, tolerating a computationally unbounded adversary,8

capable of corrupting up to t < n
3 parties. Our protocol needs a communication of O(n4) field9

elements per multiplication gate. This is to be compared with previous best AMPC protocol (Patra10

et al, ICITS 2009) in the same setting, which needs a communication of O(n5) field elements per11

multiplication gate. To design our protocol, we present a simple and highly efficient asynchronous12

verifiable secret-sharing (AVSS) protocol, which is of independent interest.13
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1 Introduction23

Secure multi-party computation (MPC) [22, 14, 7, 20] is a fundamental problem, both in24

cryptography as well as distributed computing. Informally a MPC protocol allows a set of n25

mutually-distrusting parties to perform a joint computation on their inputs, while keeping26

their inputs as private as possible, even in the presence of an adversary Adv who can corrupt27

any t out of these n parties. Ever since its inception, the MPC problem has been widely28

studied in various flavours (see for instance, [15, 13, 17, 16] and their references). While the29

MPC problem has been pre-dominantly studied in the synchronous communication model30

where the message delays are bounded by known constants, the progress in the design of31

efficient asynchronous MPC (AMPC) protocols is rather slow. In the latter setting, the32

communication channels may have arbitrary but finite delays and deliver messages in any33

arbitrary order, with the only guarantee that all sent messages are eventually delivered. The34

main challenge in designing a fully asynchronous protocol is that it is impossible for an35

honest party to distinguish between a slow but honest sender (whose messages are delayed)36

and a corrupt sender (who did not send any message). Hence, at any stage, a party cannot37

wait to receive messages from all the parties (to avoid endless waiting) and so communication38

from t (potentially honest) parties may have to be ignored.39

In this work, we consider a setting where Adv is computationally unbounded. In this40

setting, we have two class of AMPC protocols. Perfectly-secure AMPC protocols give the41

security guarantees without any error, while unconditionally-secure AMPC protocols give the42

security guarantees with probability at least 1− εAMPC, where εAMPC is any given (non-zero)43

error parameter. The optimal resilience for perfectly-secure AMPC is t < n/4 [6], while that44
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for unconditionally-secure AMPC it is t < n/3 [8]. While there are quite a few works which45

consider optimally-resilient perfectly-secure AMPC protocol [5, 19], not too much attention46

has been paid to the design of efficient unconditionally-secure AMPC protocol with the47

optimal resilience of t < n
3 . In this work, we make inroads in this direction, by presenting a48

simple and efficient unconditionally-secure AMPC protocol.49

1.1 Our Results and Comparison with the Existing Works50

In any unconditionally-secure AMPC protocol (including ours), the function to be computed51

is abstracted as a publicly-known ckt over some finite field F, consisting of addition and52

multiplication gates over F and the goal is to let the parties jointly and“securely" evaluate53

ckt. The field F is typically the Galois field GF(2κ), where κ depends upon1 εAMPC. The54

communication complexity of any AMPC protocol is dominated by the communication needed55

to evaluate the multiplication gates in ckt (see the sequel for details). Consequently, the focus56

of any generic AMPC protocol is to improve the communication required for evaluating the57

multiplication gates in ckt. The following table summarizes the communication complexity58

of the existing AMPC protocols with the optimal resilience of t < n
3 and our protocol.59

Reference Communication Complexity (in bits) for Evaluating
a Single Multiplication Gate

[8] O(n11κ4)
[18] O(n5κ)

This paper O(n4κ)

60

We follow the standard approach of shared circuit-evaluation, where each value during the61

evaluation of ckt is Shamir secret-shared [21] among the parties, with threshold t. Informally,62

a value s is said to be Shamir-shared with threshold t, if there exists some degree-t polynomial63

with s as its constant term and every party Pi holds a distinct evaluation of this polynomial64

as its share. In the AMPC protocol, each party Pi verifiably secret-shares its input for ckt.65

The verifiability here ensures that if the parties terminate this step, then some value is66

indeed Shamir secret-shared among the parties on the behalf of Pi. To verifiably secret-share67

its input, each party executes an instance of asynchronous verifiable secret-sharing (AVSS).68

Once the inputs of the parties are secret-shared, the parties then evaluate each gate in ckt,69

maintaining the following invariant: if the gate inputs are secret-shared, then the parties70

try to obtain a secret-sharing of the gate output. Due to the linearity of Shamir secret-71

sharing, maintaining the invariant for addition gates do not need any interaction among the72

parties. However, for maintaining the invariant for multiplication gates, the parties need to73

interact with each other and hence the onus is rightfully shifted to minimize this cost. For74

evaluating the multiplication gates, the parties actually deploy the standard Beaver’s circuit-75

randomization technique [3]. The technique reduces the cost of evaluating a multiplication76

gate to that of publicly reconstructing two secret-shared values, provided the parties have77

access to a Shamir-shared random and multiplication triple (a, b, c), where c = a · b. The78

shared multiplication triples are generated in advance in a bulk in a circuit-independent79

pre-processing phase, using the efficient framework proposed in [11]. The framework allows80

to efficiently and verifiably generate Shamir-shared random multiplication triples, using81

any given AVSS protocol. Once all the gates in ckt are evaluated and the circuit-output82

1 Instead of the Galois field, one can also use any sufficiently large field, to bound the error probability by
εAMPC.
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is available in a secret-shared fashion, the parties publicly reconstruct this value. Since all83

the values (except the circuit output) during the entire computation remains Shamir-shared84

with threshold t, the privacy of the computation follows from the fact that during the shared85

circuit-evaluation, for each value in ckt, Adv learns at most t shares, which are independent86

of the actual shared value. While the AMPC protocols of [8] and [18] also follow the above87

blue-print of shared circuit-evaluation, the difference is in the underlying AVSS protocol.88

AVSS [6, 8] is a well-known and important primitive in secure distributed computing. On89

a very high level, an AVSS protocol enhances the security of Shamir secret-sharing against90

a malicious adversary (Shamir secret-sharing achieves its properties only in the passive91

adversarial model, where even the corrupt parties honestly follow protocol instructions). The92

existing unconditionally-secure AVSS protocols with t < n/3 [8, 18] need high communication.93

This is because there are significant number of obstacles in designing unconditionally-secure94

AVSS with exactly n = 3t + 1 parties (which is the least value of n with t < n/3). The95

main challenge is to ensure that all honest parties obtain their shares of the secret. We call96

an AVSS protocol guaranteeing this “completeness" property as complete AVSS. However,97

in the asynchronous model, it is impossible to directly get the confirmation of the receipt98

of the share from each party, as corrupt parties may never respond. To get rid off this99

difficulty, [8] introduces a “weaker" form of AVSS which guarantees that the underlying100

secret is verifiably shared only among a set of n− t parties and up to t parties may not have101

their shares. To distinguish this type of AVSS from complete AVSS, the latter category of102

AVSS is termed an asynchronous complete secret-sharing (ACSS) in [8], while the weaker103

version of AVSS is referred as just AVSS2. Given any AVSS protocol, [8] shows how to104

design an ACSS protocol using n instances of AVSS. An AVSS protocol with t < n/3 is also105

presented in [8]. With a communication complexity of Ω(n9κ) bits, the protocol is highly106

expensive. This AVSS protocol when used in their ACSS protocol requires a communication107

complexity Ω(n10κ). Apart from being communication expensive, the AVSS of [8] involves a108

lot of asynchronous primitives such as ICP, A-RS, AWSS and Two & Sum AWSS. In [18], a109

simplified AVSS protocol with communication complexity O(n3κ) bits is presented, based on110

only few primitives, namely ICP and AWSS. This AVSS is then converted into an ACSS in111

the same way as [8], making the communication complexity of their ACSS O(n4κ) bits.112

In this work, we further improve upon the communication complexity of the ACSS of113

[18]. We first design a new AVSS protocol with a communication complexity O(n2κ) bits.114

Then using the approach of [8], we obtain an ACSS protocol with communication complexity115

O(n3κ) bits. Our AVSS protocol is conceptually simpler and is based on just the ICP116

primitive and hence easy to understand. Moreover, since we avoid the usage of AWSS in117

our AVSS, we get a saving of Θ(n) in the communication complexity, compared to [18] (the118

AVSS of [18] invokes n instances of AWSS, which is not required in our AVSS).119

Paper Organization: As the main contribution of this work is the design of a new AVSS120

protocol, we mainly focus on the AVSS protocol and the proof of its properties in Section 3.121

The upgradation from AVSS to ACSS follows the blueprint of [8, 18] and given in Section 4.122

In Section 5 we present a high level discussion of our AMPC protocol.123

2 We stress that the weaker form of AVSS is not sufficient for the shared circuit-evaluation. This is
because the set of n− t share-holders might be different for different shared values.
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2 Preliminaries, Definitions and Existing Tools124

We assume a set of n parties P = {P1, . . . , Pn}, connected by pair-wise private and authentic125

asynchronous channels. A computationally unbounded adversary Adv can corrupt any t < n/3126

parties. We assume n = 3t + 1, so that t = Θ(n). In our protocols, all computation are127

done over a Galois field F = GF(2κ). The parties want to compute a function f over F,128

represented by a publicly known arithmetic circuit ckt over F. For simplicity and without129

loss of generality, we assume that each party Pi ∈ P has a single input x(i) for the function f130

and there is a single function output y = f(x(1), . . . , x(n)), which is supposed to be learnt by131

all the parties. Apart from the input and output gates, ckt consists of 2-input gates of the132

form g = (x, y, z), where x and y are the inputs and z is the output. The gate g can be either133

an addition gate (i.e. z = x + y) or a multiplication gate (i.e. z = x · y). The circuit ckt134

consists of cM multiplication gates. We require |F| > n. Additionally, we need the condition135

n5κ
2κ−(3cM+1) ≤ εAMPC to hold. Looking ahead, this will ensure that the error probability of136

our AMPC protocol is upper bounded by εAMPC. We assume that α1, . . . , αn are distinct,137

non-zero elements from F, where αi is associated with Pi as the “evaluation point". By138

communication complexity of a protocol, we mean the total number of bits communicated by139

the honest parties in the protocol. While denoting the communication complexity, we use140

the term BC(`) to denote that ` bits are broadcasted in the protocol.141

2.1 Definitions142

A degree-d univariate polynomial is of the form f(x) = a0 + . . .+ adx
d, where each ai ∈ F. A143

degree-(`,m) bivariate polynomial F (x, y) is of the form F (x, y) =
∑i=`,j=m
i,j=0 rijx

iyj , where144

each rij ∈ F. Let fi(x) def= F (x, αi), gi(y) def= F (αi, y). We call fi(x) and gi(y) as ith row145

and column polynomial respectively of F (x, y) and often say that fi(x), gi(y) lie on F (x, y).146

We use the following well-known lemma, which states that if there are “sufficiently many"147

degree-t univariate polynomials which are “pair-wise consistent", then there exists a unique148

degree-(t, t) bivariate polynomial, passing through these univariate polynomials.149

I Lemma 1 (Pair-wise Consistency Lemma [10, 1]). Let fi1(x), . . . , fi`(x), gj1(y),150

. . . , gjm(y) be degree-t polynomials where `,m ≥ t+ 1 and i1, . . . , i`, j1, . . . , jm ∈ {1, . . . , n}.151

Moreover, let for every i ∈ {i1, . . . , i`} and every j ∈ {j1, . . . , jm}, fi(αj) = gj(αi) holds.152

Then there exists a unique degree-(t, t) bivariate polynomial, say F (x, y), such that the row153

polynomials fi1(x), . . . , fi`(x) and the column polynomials gj1(y), . . . , gjm(y) lie on F (x, y).154

We next give the definition of complete t-sharing, which is central to our AMPC protocol.155

I Definition 2 (t-sharing and Complete t-sharing). A value s ∈ F is said to be t-shared156

among C ⊆ P, if there exists a degree-t polynomial, say f(x), with f(0) = s, such that each157

honest Pi ∈ C holds its share si
def= f(αi). The vector of shares of s corresponding to the158

honest parties in C is denoted as [s]Ct . A set of values S = (s(1), . . . , s(L)) ∈ FL is said to be159

t-shared among a set of parties C, if each s(i) ∈ S is t-shared among C.160

A value s ∈ F is said to be completely t-shared, denoted as [s]t, if s is t-shared among the161

entire set of parties P; that is C = P holds. Similarly, a set of values S = (s(1), . . . , s(L)) ∈ FL162

is completely t-shared, if each s(i) ∈ F is completely t-shared163

Note that complete t-sharings are linear: given [a]t, [b]t, then [a + b]t = [a]t + [b]t and164

[c · a]t = c · [a]t hold, for any public c ∈ F.165
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I Definition 3 (Asynchronous Complete Secret Sharing (ACSS) [8, 18]). Let CSh166

be an asynchronous protocol, where there is a designated dealer D ∈ P with a private input167

S = (s(1), . . . , s(L)) ∈ FL. Then CSh is a (1 − εACSS) ACSS protocol for a given error168

parameter εACSS, if the following requirements hold for every possible Adv.169

• Termination: Except with probability εACSS, the following holds. (a): If D is honest170

and all honest parties participate in CSh, then each honest party eventually terminates171

CSh. (b): If some honest party terminates CSh, then every other honest party eventually172

terminates CSh.173

• Correctness: If the honest parties terminate CSh, then except with probability εACSS,174

there exists some S ∈ FL which is completely t-shared, where S = S for an honest D.175

• Privacy: If D is honest, then the view of Adv during CSh is independent of S.176

We next give the definition of asynchronous information-checking protocol (AICP), which177

will be used in our ACSS protocol. An AICP involves three entities: a signer S ∈ P, an178

intermediary I ∈ P and a receiver R ∈ P, along with the set of parties P acting as verifiers.179

Party S has a private input S. An AICP can be considered as information-theoretically180

secure analogue of digital signatures, where S gives a “signature" on S to I, who eventually181

reveals it to R, claiming that it got the signature from S. The protocol proceeds in the182

following three phases, each of which is implemented by a dedicated sub-protocol.183

• Distribution Phase: Executed by a protocol Gen, where S sends S to I along with some184

auxiliary information and to each verifier, S gives some verification information.185

• Authentication Phase: Executed by P through a protocol Ver, to verify whether S186

distributed “consistent" information to I and the verifiers. Upon successful verification187

I sets a Boolean variable VS,I to 1 and the information held by I is considered as the188

information-checking signature on S, denoted as ICSig(S → I,S). The notation S → I189

signifies that the signature is given by S to I.190

• Revelation Phase: Executed by I,R and the verifiers by running a protocol RevPriv,191

where I reveals ICSig(S→ I,S) to R, who outputs S after verifying S.192

I Definition 4 (AICP [18]). A triplet of protocols (Gen,Ver,RevPriv) where S has a private193

input S ∈ FL for Gen is called a (1− εAICP)-secure AICP, for a given error parameter εAICP,194

if the following holds for every possible Adv.195

• Completeness: If S, I and R are honest, then I sets VS,I to 1 during Ver. Moreover, R196

outputs S at the end of RevPriv.197

• Privacy: If S, I and R are honest, then the view of Adv is independent of S.198

• Unforgeability: If S and R are honest, I reveals ICSig(S → I, S̄) and if R outputs S̄199

during RevPriv, then except with probability at most εAICP, the condition S̄ = S holds.200

• Non-repudiation: If S is corrupt and if I,R are honest and if I sets VS,I to 1 holding201

ICSig(S→ I, S̄) during Ver, then except with probability εAICP, R outputs S̄ during RevPriv.202

Note that we do not put any termination condition for AICP. Looking ahead, we use AICP203

as a primitive in our ACSS protocol and the termination conditions in our instantiation of204

ACSS ensure that the underlying instances of AICP also terminate.205

Finally, we give the definition of two-level t-sharing with IC-signatures, which is the data206

structure generated by our AVSS protocol, as well as by the AVSS protocols of [8, 18]. This207

sharing is an enhanced version of t-sharing, where each share is further t-shared. Moreover,208

for the purpose of authentication, each second-level share is signed.209

I Definition 5 (Two-level t-Sharing with IC-signatures [18]). S = (s(1), . . . , s(L)) is210

said to be two-level t-shared with IC-signatures if there exists a set C ⊆ P with |C| ≥ n− t211

and a set Cj ⊆ P for each Pj ∈ C with |Cj | ≥ n− t, such that the following conditions hold.212
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• Each s(k) ∈ S is t-shared among C, with each party Pj ∈ C holding its primary-share s(k)
j .213

• For each primary-share holder Pj ∈ C, there exists a set of parties Cj ⊆ P, such that each214

primary-share s(k)
j is t-shared among Cj, with each Pi ∈ Cj holding the secondary-share215

s
(k)
j,i of the primary-share s(k)

j .216

• Each primary-share holder Pj ∈ C holds ICSig(Pi → Pj , (s(1)
j,i , . . . , s

(L)
j,i )), corresponding to217

each honest secondary-share holder Pi ∈ Cj.218

We stress that the Cj sets might be different for each Pj ∈ C. We finally define AMPC.219

I Definition 6 (Unconditionally-secure AMPC [8]). Let f : Fn → F be a publicly220

known function where each Pi has a private input x(i) ∈ F. Any AMPC consists of three221

stages. In the first stage, each Pi commits its input. Even if Pi is corrupt, if it completes222

this step, then it is committed to some value x(i) (not necessarily x(i)), where x(i) = x(i) for223

an honest Pi. Then the parties agree on a common subset, say R, of n− t committed inputs.224

In the last stage, the parties compute f(x(1), . . . , x(n)), where x(i) = 0 if Pi 6∈ R.225

An asynchronous protocol Π among P for computing f is called a (1−εAMPC) unconditionally-226

secure AMPC protocol, if it satisfies the following conditions for every possible Adv.227

• Termination: If all honest parties participate in Π, then the honest parties eventually228

terminates Π with probability at least 1− εAMPC.229

• Correctness: Honest parties output f(x(1), . . . , x(n)), with probability at least 1− εAMPC.230

• Privacy: The view of the Adv is independent of the inputs of the honest parties in R.231

2.2 Existing Asynchronous Protocols Used in Our ACSS protocol232

We use the AICP protocol of [18] (see Appendix A for the details), where εAICP ≤ nκ
2κ−(L+1)233

and where Gen, Ver and RevPriv has communication complexity of O((L + nκ)κ), O(nκ2)234

and O((L+ nκ)κ) bits respectively. In the AICP, any party in P can play the role of S, I235

and R. In the rest of the paper, we use the following terms which using the AICP of [18].236

• “Pi gives ICSig(Pi → Pj ,S) to Pj" to mean that Pi acts as a signer S and invokes an237

instance of the protocol Gen(S, I,S), where Pj plays the role of intermediary I.238

• “Pj receives ICSig(Pi → Pj ,S) from Pi" to mean that Pj as an intermediary I holds239

ICSig(Pi → Pj ,S) and has set VPi,Pj to 1 during Ver, with Pi being the signer S.240

• “Pj reveals ICSig(Pi → Pj ,S) to Pk" to mean Pj as an intermediary I invokes an instance241

of RevPriv, with Pi and Pk playing the role of S and R respectively.242

• “Pk accepts ICSig(Pi → Pj ,S)" to mean that Pk as a receiver R outputs S, during the243

instance of RevPriv, invoked by Pj as I, with Pi playing the role of S.244

We also use the asynchronous broadcast protocol of Bracha [9], which allows a sender245

S ∈ P to identically send a message m to all the parties, even in the presence of Adv. If S246

is honest, then all honest parties eventually terminate with output m. If S is corrupt but247

some honest party terminates with an output m?, then eventually every other honest party248

terminates with output m?. The protocol has communication complexity O(n2 · `) bits, if249

sender’s message m consists of ` bits. We use the term Pi broadcasts m to mean that Pi acts250

as S and invokes an instance of Bracha’s protocol to broadcast m. Similarly, the term Pj251

receives m from the broadcast of Pi means that Pj (as a receiver) completes the execution of252

Pi’s broadcast (namely the instance of broadcast protocol where Pi is S), with m as output.253

3 Verifiably Generating Two-Level t-sharing with IC Signatures254

We present a protocol Sh, which will be used as a sub-protocol in our ACSS scheme. In255

the protocol, there exists a designated D ∈ P with a private input S ∈ FL and the goal is256
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to verifiably generate a two-level t-sharing with IC signatures of S. The verifiability allows257

the parties to publicly verify if D behaved honestly, while preserving the privacy of S for an258

honest D. We first present the protocol Sh assuming that D has a single value for sharing,259

that is L = 1. The modifications needed to share L values are straight-forward.260

To share s, D hides s in the constant term of a random degree-(t, t) bivariate polynomial261

F (x, y). The goal is then to let D distribute the row and column polynomials of F (x, y) to262

respective parties and then publicly verify if D has distributed consistent row and column263

polynomials to sufficiently many parties, which lie on a single degree-(t, t) bivariate polynomial,264

say F̄ (x, y), which is considered as D’s committed bivariate polynomial (if D is honest then265

F̄ (x, y) = F (x, y) holds). Once the existence of an F̄ (x, y) is confirmed, the next goal is266

to let each Pj who holds its row polynomial F̄ (x, αj) lying on F̄ (x, y), get signature on267

F̄ (αi, αj) values from at least n− t parties Pi. Finally, once n− t parties Pj get their row268

polynomials signed, it implies the generation of two-level t-sharing of s = F̄ (0, 0) with IC269

signatures. Namely, s will be t-shared through degree-t column polynomial F̄ (0, y). The set270

of signed row-polynomial holders Pj will constitute the set C, where Pj holds the primary-271

share F̄ (0, αj), which is the constant term of its row polynomial F̄ (x, αj). And the set of272

parties Pi who signed the values F̄ (αi, αj) for Pj constitute the Cj set with Pi holding the273

secondary-share F̄ (αi, αj), thus ensuring that the primary-share F̄ (0, αj) is t-shared among274

Cj through degree-t row polynomial F̄ (x, αj). For a pictorial depiction of how the values on275

D’s bivariate polynomial constitute the two-level t-sharing of its constant term, see Fig 1.

Figure 1 Two-level t-sharing with IC signatures of s = F (0, 0). Here we assume that C =
{P1, . . . , P2t+1} and Cj = {P1, . . . , P2t+1} for each Pj ∈ C. Party Pj will possess all the values along
the jth row, which constitute the row polynomial fj(x) = F (x, αj). Column-wise, Pi possesses the
values in the column labelled with Pi, which lie on the column polynomial gi(y) = F (αi, y). Party
Pj will possess Pi’s information-checking signature on the common value fj(αi) = F (αi, αj) = gi(αj)
between Pj ’s row polynomial and Pi’s column polynomial, denoted by blue color.

[s = F (0, 0)]Ct P1 . . . Pi . . . P2t+1

⇓ ⇓ ⇓ ⇓
P1 ⇒ F (0, α1) F (α1, α1) . . . F (αi, α1) . . . F (α2t+1, α1) ⇐ [F (0, α1)]C1

t

...
...

...
...

...
...

...
...

Pj ⇒ F (0, αj) F (α1, αj) . . . F (αi, αj) . . . F (α2t+1, αj) ⇐ [F (0, αj)]
Cj
t

...
...

...
...

...
...

...
...

P2t+1 ⇒ F (0, α2t+1) F (α1, α2t+1) . . . F (αi, α2t+1) . . . F (α2t+1, α2t+1) ⇐ [F (0, α2t+1)]C2t+1
t

276

The above stated goals are achieved in four stages, each of which is implemented by277

executing the steps in one of the highlighted boxes in Fig 2 (the purpose of the steps in278

each box appears as a comment outside the box). To begin with, D distributes the column279

polynomials to respective parties (the row polynomials are currently retained) and tries280

to get all the row polynomials signed by a common set M of n − t column holders, by281

asking each of them to sign the common values between their column polynomials and row282

polynomials. That is, each Pi is given its column polynomial gi(y) = F (αi, y) and is asked283

to sign the values fji for j = 1, . . . , n, where fji = fj(αi) and fj(x) = F (x, αj) is the jth row284

polynomial. Party Pi signs the values f1i, . . . , fni for D after verifying that all of them lie on285

its column polynomial gi(y) and then publicly announces the issuance of signatures to D by286

broadcasting a MC message (standing for “matched column"). Once a setM of n− t parties287

broadcasts MC message, it confirms that the row polynomials held by D and the column288

polynomials of the parties inM together lie on a single degree-(t, t) bivariate polynomial289
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(due to the pair-wise consistency Lemma 1). This also confirms that D is committed to a290

single (yet unknown) degree-(t, t) bivariate polynomial. The next stage is to let D distribute291

the row polynomials of this committed bivariate polynomial to individual parties.292

To prevent a potentially corrupt D from distributing arbitrary polynomials to the parties293

as row polynomials, D actually sends the signed row polynomials to the individual parties,294

where the values on the row polynomials are signed by the parties inM. Namely, to distribute295

the row polynomial fj(x) to Pj , D reveals the fj(αi) values to Pj , signed by the parties296

Pi ∈M. The presence of the signatures ensure that D reveals the correct fj(x) polynomial297

to Pj , as there are at least t+ 1 honest parties inM, whose signed values uniquely define298

fj(x). Upon the receipt of correctly signed row polynomial, Pj publicly announces it by299

broadcasting a MR message (standing for “matched row"). The next stage is to let such300

parties Pj obtain “fresh" signatures on n− t values of fj(x) by at least n− t parties Cj . We301

stress that the signatures of the parties inM on the values of fj(x), which are revealed by302

D cannot be “re-used" and henceM cannot be considered as Cj , as IC-signatures are not303

“transferable" and those signatures were issued to D and not to Pj . We also stress that the304

parties inM cannot be now asked to re-issue fresh signatures on Pj ’s row polynomial, as305

corrupt parties inM may now not participate honestly during this process. Hence, Pj has306

to ask for the fresh signatures on fj(x) from every potential party.307

The process of Pj getting fj(x) freshly signed can be viewed as Pj recommitting its308

received row polynomial to a set of n− t column-polynomial holders. However, extra care309

has to be taken to prevent a potentially corrupt Pj from getting fresh signatures on arbitrary310

values, which do not lie in fj(x). This is done as follows. Party Pi on receiving a “signature311

request" for fji from Pj signs it, only if it lies on Pi’s column polynomial; that is fji = gi(αj)312

holds. Then after receiving the signature from Pi, party Pj publicly announces the same.313

Now the condition for including Pi to Cj is that apart from Pj , there should exist at least 2t314

other parties Pk who has broadcasted MR messages and who also got their respective row315

polynomials signed by Pi. This ensures that there are total 2t+ 1 parties who broadcasted316

MR messages and whose row polynomials are signed by Pi. Now among these 2t+ 1 parties, at317

least t+ 1 parties Pk are honest, whose row polynomials fk(x) lie on D’s committed bivariate318

polynomial. Since these t + 1 parties got signature on fk(αi) values from Pi, this further319

implies that fk(αi) = gi(αk) holds for these t+ 1 honest parties Pk, further implying that320

Pi’s column polynomial gi(y) also lies on D’s committed bivariate polynomial. Now since321

fji = gi(αj) holds for Pj as well, it implies that the value which Pj got signed by Pi is gi(αj),322

which is the same as fj(αi). Finally, If D finds that the set Cj has n − t parties, then it323

includes Pj in the C set, indicating that Pj has recommitted the correct fj(x) polynomial.324

The last stage of Sh is the announcement of the C set and its public verification. We stress325

that this stage of the protocol Sh will be triggered in our ACSS scheme, where Sh will be326

used as a sub-protocol. Looking ahead, in our ACSS protocol, D will invoke several instances327

of Sh and a potential C set is built independently for each of these instances. Once all328

these individual C sets achieve the cardinality of at least n− t and satisfy certain additional329

properties in the ACSS protocol, D will broadcast these individual C sets and parties will330

have to verify each C set individually. The verification of a publicly announced C set as part331

of an Sh instance is done by this last stage of the Sh protocol. To verify the C set, the parties332

check if its cardinality is at least n− t, each party Pj in C has broadcasted MR message and333

recommitted its row polynomial correctly to the parties in Cj .334

We stress that there is no termination condition in Sh. The protocol will be used as a335

sub-protocol in our ACSS and terminating conditions of ACSS will ensure that all underlying336

instances of Sh terminate, if ACSS terminates. Protocol Sh is presented in Fig 2.337
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Figure 2 Two-level secret-sharing with IC signatures of a single secret.

Sharing Phase: Protocol Sh(D, s)

%Distribution of values and identification of signed column polynomials.

– Distribution of Column Polynomials and Common Values on Row Polynomials by D:
The following code is executed only by D.
• Select a random degree-(t, t) bivariate polynomial F (x, y) over F, such that F (0, 0) = s.
• Send gj(y) = F (αj , y) to each Pj ∈ P. And send fj(αi) to each Pi ∈ P, where fj(x) = F (x, αj).

– Signing Common Values on Row Polynomials for D: Each Pi ∈ P (including D) executes
the following code.
• Wait to receive a degree-t column polynomial gi(y) and for j = 1, . . . , n the values fji from D.
• On receiving the values from D, give ICSig(Pi → D, fji) to D for j = 1, . . . , n and broadcast the

message MCi, provided fji = gi(αj) holds for each j = 1, . . . , n.
– Identifying Signed Column Polynomials: The following code is executed only by D:
• Include Pi to an accumulative setM (initialized to ∅), if MCi is received from the broadcast of

Pi and D received ICSig(Pi → D, fji) from Pi, for each j = 1, . . . , n.
• Wait till |M| = 2t+ 1. Once |M| = 2t+ 1, then broadcastM.

% Distribution of signed row polynomials by D and verification by the parties.

– Revealing Row Polynomials to Respective Parties: for j = 1, . . . , n, D reveals ICSig(Pi →
D, fji) to Pj , for each Pi ∈M.

– Verifying the Consistency of Row Polynomials Received from D: Each Pj ∈ P (including
D) broadcasts MRj , if the following holds.
• Pj received anM with |M| = 2t+ 1 from D and MCi from each Pi ∈M.
• Pj accepted {ICSig(Pi → D, fji)}Pi∈M and {(αi, fji)}Pi∈M lie on a degree-t polynomial fj(x).

%Recommitment of row polynomials.

– Getting Signatures on Row Polynomial: Each Pj ∈ P (including D) executes the following.
• If Pj has broadcast MRj , then for i = 1, . . . , n, send fj(αi) to Pi for getting Pi’s signature. Upon

receiving ICSig(Pi → Pj , fji) from Pi, broadcast (SRj , Pi), if fji = fj(αi) holds.
• If Pi sent fij and has broadcast MRi, give ICSig(Pj → Pi, fij) to Pi, provided fij = gj(αi) holds.

– Preparing the Cj Sets and C Set: the following code is executed only by D.
• Include Pi in Cj (initialized to ∅), if (SRk, Pi) is received from the broadcast of at least 2t+ 1

parties Pk (including Pj) who have broadcasted the message MRk.
• Include Pj ∈ C (initialized to ∅), if |Cj | ≥ n− t. Keep on including new parties Pi in Cj even

after including Pj to C, if the above conditions for Pi’s inclusion to Cj are satisfied.

%Public announcement of C and verification. This code will be triggered by our ACSS protocol..

– Publicly Announcing the C Set: D broadcasts C and Cj for each Pj ∈ C.
– Verification of the C Set by the Parties: Upon receiving C and Cj sets from the broadcast of

D, each party Pm ∈ P checks if C is valid by checking if all the following conditions hold for C.
• |C| ≥ n− t and each party Pj ∈ C has broadcast MRj .
• For each Pj ∈ C, |Cj | ≥ n − t. Moreover, for each Pi ∈ Cj , the message (SRk, Pi) is received

from the broadcast of at least 2t+ 1 parties Pk (including Pj) who broadcasted MRk.
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We next proceed to prove the properties of protocol Sh protocol. In the proofs, we use the338

fact that the error probability of a single instance of AICP in Sh is εAICP, where εAICP ≤ nκ
2κ−2 ,339

which is obtained by substituting L = 1 in the AICP of [18].340

I Lemma 7. In protocol Sh, if D is honest, then except with probability n2 · εAICP, all honest341

parties are included in the C set. This further implies that D eventually finds a valid C set.342

Proof. Since D is honest, each honest Pi eventually receives the degree-t column polynomial343

gi(y) from D. Moreover, Pi also receives the values fji from D for signing, such that344

fji = gi(αj) holds. Furthermore, Pi eventually gives the signatures on these values to D and345

broadcasts MCi. As there are at least 2t+ 1 honest parties who broadcast MCi, it implies that346

D eventually finds a setM of size 2t+ 1 and broadcasts the same.347

Next consider an arbitrary honest party Pj . Since D is honest, it follows that corresponding348

to any Pi ∈ M, the signature ICSig(Pi → D, fji) revealed by D to Pj will be accepted by349

Pj : while this is always true for an honest Pi (follows the correctness property of AICP), for350

a corrupt Pi ∈M it holds except with probability εAICP (follows from the non-repudiation351

property of AICP). Moreover, the revealed values {(αi, fji)}Pi∈M interpolate to a degree-t352

row polynomial. As there can be at most t ≤ n corrupt parties Pi in M, it follows that353

except with probability n · εAICP, the conditions for Pj to broadcast MRj are satisfied and354

hence Pj eventually broadcasts MRj . As there are at most n honest parties, it follows that355

except with probability n2 · εAICP, all honest parties eventually broadcast MR.356

Finally, consider an arbitrary pair of honest parties Pi, Pj . Since D is honest, the condition357

fj(αi) = gi(αj) holds. Now Pi eventually receives fji = fj(αi) from Pj for signing and358

finds that fji = gi(αj) holds and hence gives the signature ICSig(Pi → Pj , fji) to Pj .359

Consequently, Pj eventually broadcasts (SRj , Pi). As there are at least 2t+ 1 honest parties360

Pk, who eventually broadcast (SRk, Pi), it follows that Pi is eventually included in the set Cj .361

As there are at least 2t+ 1 honest parties, the set Cj eventually becomes of size 2t+ 1 and362

hence Pj is eventually included in C. J363

I Lemma 8. In protocol Sh, if some honest party receives a valid C set from D, then every364

other honest party eventually receives the same valid C set from D.365

Proof. Since the C set is broadcasted, it follows from the properties of broadcast that all366

honest parties will receive the same C set, if at all D broadcasts any C set. Now it is easy to367

see that if a broadcasted C set is found to be valid by some honest party Pm, then it will be368

considered as valid by every other honest party. This is because in Sh the validity conditions369

for C which hold for Pm will eventually hold for every other honest party. J370

I Lemma 9. Let R be the set of parties Pj , who broadcast MRj messages during Sh. If |R| ≥371

2t+ 1, then except with probability n2 · εAICP, there exists a degree-(t, t) bivariate polynomial,372

say F (x, y), where F (x, y) = F (x, y) for an honest D, such that the row polynomial fj(x)373

held by each honest Pj ∈ R satisfies fj(x) = F (x, αj) and the column polynomial gi(y) held374

by each honest Pi ∈M satisfies gi(y) = F (αi, y).375

Proof. Let l and m be the number of honest parties in the set R andM respectively. Since376

|R| ≥ 2t+ 1 and |M| = 2t+ 1, it follows that l,m ≥ t+ 1. For simplicity and without loss of377

generality, let {P1, . . . , Pl} and {P1, . . . , Pm} be the honest parties in R andM respectively.378

We claim that except with probability εAICP, the condition fj(αi) = gi(αj) holds for each379

j ∈ [l] and i ∈ [m], where fj(x) and gi(y) are the degree-t row and column polynomials380

held by Pj and Pi respectively. The lemma then follows from the properties of degree-(t, t)381
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bivariate polynomials (Lemma 1) and the fact that there can be at most n2 pairs of honest382

parties (Pi, Pj). We next proceed to prove our claim.383

The claim is trivially true with probability 1, if D is honest, as in this case, the row384

and column polynomials of each pair of honest parties Pi, Pj will be pair-wise consistent.385

So we consider the case when D is corrupt. Let Pj and Pi be arbitrary parties in the386

set {P1, . . . , Pl} and {P1, . . . , Pm} respectively. Since Pj broadcasts MRj , it implies that387

Pj accepted the signature ICSig(Pi → D, fji), revealed by D to Pj . Moreover, the values388

(α1, fj1), . . . , (αm, fjm) interpolated to a degree-t polynomial fj(x). Furthermore, Pj also389

receives MCi from the broadcast of Pi. From the unforgeability property of AICP, it follows390

that except with probability εAICP, the signature ICSig(Pi → D, fji) is indeed given by Pi to391

D. Now Pi gives the signature on fji to D, only after verifying that the condition fji = gi(αj)392

holds, which further implies that fj(αi) = gi(αj) holds, thus proving our claim.393

Finally, it is easy to see that F (x, y) = F (x, y) for an honest D, as in this case, the row394

and column polynomials of each honest party lie on F (x, y). J395

I Lemma 10. In the protocol Sh, if D broadcasts a valid C, then except with probability396

n2 · εAICP, there exists some s ∈ F, where s = s for an honest D, such that s is eventually397

two-level t-shared with IC signature.398

Proof. Since the C set is valid, it implies that the honest parties receive C and Cj for each399

Pj ∈ C from the broadcast of D, where |C| ≥ n − t = 2t + 1 and |Cj | ≥ n − t = 2t + 1.400

Moreover, the parties receive MRj from the broadcast of each Pj ∈ C. Since |C| ≥ 2t+ 1, it401

follows from Lemma 9, that except with probability n2 · εAICP, there exists a degree-(t, t)402

bivariate polynomial, say F (x, y), where F (x, y) = F (x, y) for an honest D, such that the403

row polynomial fj(x) held by each honest Pj ∈ C satisfies fj(x) = F (x, αj) and the column404

polynomial gi(y) held by each honest Pi ∈M satisfies gi(y) = F (αi, y). We define s = F (0, 0)405

and show that s is two-level t-shared with IC signatures.406

We first show the primary and secondary-shares corresponding to s. Consider the degree-t407

polynomial g0(y) def= F (0, y). Since s = g0(0), the value s is t-shared among C through408

g0(y), with each Pj ∈ C holding its primary-share sj
def= g0(αj) = fj(0). Moreover, each409

primary-share sj is further t-shared among Cj through the degree-t row polynomial fj(x),410

with each Pi ∈ Cj holding its secondary-share fj(αi) in the form of gi(αj). If D is honest,411

then s = s as F (x, y) = F (x, y) for an honest D. We next show that each Pj ∈ C holds the412

IC-signatures of the honest parties from the Cj set on the secondary-shares.413

Consider an arbitrary Pj ∈ C. We claim that corresponding to each honest Pi ∈ Cj , party414

Pj holds the signature ICSig(Pi → Pj , fji), where fji = F (αi, αj). The claim is trivially true415

for an honest Pj . This is because fj(αi) = F (αi, αj) and Pj includes Pi in the set Cj only416

after receiving the signature ICSig(Pi → Pj , fji) from Pi, such that the condition fji = fj(αi)417

holds. We next show that the claim is true, even for a corrupt Pj ∈ C. For this, we show418

that for each honest Pi ∈ Cj , the column polynomial gi(y) held by Pi satisfies the condition419

that gi(y) = F (αi, y). The claim then follows from the fact that Pi gives the signature420

ICSig(Pi → Pj , fji) to Pj , only after verifying that the condition fji = gi(αj) holds.421

So consider a corrupt Pj ∈ C and an honest Pi ∈ Cj . We note that Pj is allowed to422

include Pi to Cj , only if at least 2t+ 1 parties Pk (including Pj) who have broadcasted MRk,423

has broadcast (SRk, Pi). Let H be the set of such honest parties Pk. For each Pk ∈ H, the424

row polynomial fk(x) held by Pk satisfies the condition fk(x) = F (x, αk) (follows from the425

proof of Lemma 9). Furthermore, for each Pk ∈ H, the condition fk(αi) = gi(αk) holds,426

where gi(y) is the degree-t column polynomial held by the honest Pi. This is because Pk427

broadcasts (SRk, Pi), only after receiving the signature ICSig(Pi → Pk, fki) from Pi, such428
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that fki = fk(αi) holds for Pk and Pi gives the signature to Pk only after verifying that429

fki = gi(αk) holds for Pi. Now since |H| ≥ t+ 1 and gi(αk) = fk(αi) = F (αi, αk) holds for430

each Pk ∈ H, it follows that the column polynomial gi(y) held by Pi satisfies the condition431

gi(y) = F (αi, y). This is because both gi(y) and F (αi, y) are degree-t polynomials and two432

different degree-t polynomials can have at most t common values. J433

I Lemma 11. If D is honest then in protocol Sh, the view of Adv is independent of s.434

Proof. Without loss of generality, let P1, . . . , Pt be under the control of Adv. We claim that435

throughout the protocol Sh, the adversary learns only t row polynomials f1(x), . . . , ft(x) and436

t column polynomials g1(y), . . . , gt(y). The lemma then follows from the standard property437

of degree-(t, t) bivariate polynomials [12, 18, 2]. We next proceed to prove the claim.438

During the protocol Sh, the adversary gets f1(x), . . . , ft(x) and g1(y), . . . , gt(y) from D.439

Consider an arbitrary party Pi ∈ {P1, . . . , Pt}. Now corresponding to each honest party440

Pj , party Pi receives fji = fj(αi) for signature, both from D, as well as from Pj . However441

the value fji is already known to Pi, since fji = gi(αj) holds. Next consider an arbitrary442

pair of honest parties Pi, Pj . These parties exchange fji and fij with each other over the443

pair-wise secure channel and hence nothing about these values are learnt by the adversary.444

Party Pi gives the signature ICSig(Pi → D, fji) to D and ICSig(Pi → Pj , fji) to Pj and from445

the privacy property of AICP, the view of the adversary remains independent of the signed446

values. Moreover, even after D reveals ICSig(Pi → D, fji) to Pj , the view of the adversary447

remains independent of fji, which again follows from the privacy property of AICP. J448

I Lemma 12. The communication complexity of Sh is O(n3κ2) + BC(n2) bits.449

Proof. In the protocol D distributes n row and column polynomials. There are Θ(n2)450

instances of AICP, each dealing with L = 1 value. In addition, D broadcasts a C set and Cj451

sets, each of which can be represented by a n-bit vector. J452

We finally observe that D’s computation in the protocol Sh can be recast as if D wants453

to share the degree-t polynomial F̄ (0, y) among a set of parties C of size at least n− t by454

giving each Pj ∈ C the share F̄ (0, αj). Here F̄ (x, y) is the degree-(t, t) bivariate polynomial455

committed by D, which is the same as F (x, y) for an honest D (see the pictorial representation456

in Fig 1 and the proof of Lemma 10). If D is honest, then adversary learns at most t shares457

of the polynomial F (0, y), corresponding to the corrupt parties in C (see the proof of Lemma458

11). In the protocol, apart from Pj ∈ C, every other party Pj who broadcasts the message459

MRj also receives its share F̄ (0, αj), lying on F̄ (0, y), as the row polynomial received by every460

such Pj also lies on F̄ (x, y). Based on these observations, we propose the following alternate461

notation for invoking the protocol Sh, where the input for D is a degree-t polynomial, instead462

of a value. This notation will later simplify the presentation of our ACSS protocol.463

INotation 13 (Sharing Polynomial Using Protocol Sh). We use the notation Sh(D, r(·)),464

where r(·) is some degree-t polynomial possessed by D, to denote that D invokes the proto-465

col Sh by picking a degree-(t, t) bivariate polynomial F (x, y), which is otherwise a random466

polynomial, except that F (0, y) = r(·). If D broadcasts a valid C, then it implies that there467

exists some degree-t polynomial, say r̄(·), where r̄(·) = r(·) for an honest D, such that each468

Pj ∈ C holds a primary-share r̄(αj). We also say that Pj (who need not be a member of C469

set) receives a share rj during Sh(D, r(·)) from D to denote that Pj receives a degree-t signed470

row polynomial from D with rj as its constant term and has broadcast MRj message.471
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3.1 Designated Reconstruction of Two-level t-shared Values472

Let s be a value which has been two-level t-shared with IC signatures by protocol Sh, with473

parties knowing a valid C set and respective Cj sets for each Pj ∈ C. Then protocol RecPriv474

(see Fig 3) allows the reconstruction of s by a designated party R. Protocol RecPriv will be475

used as a sub-protocol in our ACSS protocol. In the protocol, each party Pj ∈ C reveals its476

primary-share to R. Once R receives t+ 1 “valid" primary-shares, it uses them to reconstruct477

s. For the validation of primary-shares, each party Pj actually reveals the secondary-shares,478

signed by the parties in Cj . The presence of at least t+ 1 honest parties in Cj ensures that a479

potentially corrupt Pj fails to reveal incorrect primary-share. The properties of RecPriv are

Figure 3 Reconstruction of a two-level t-shared value by a designated party.

Protocol RecPriv(D, s,R)

– Revealing the signed secondary-shares: Each Pj ∈ C executes the following code.
• Corresponding to each Pi ∈ Cj , reveal ICSig(Pi → Pj , fji) to R.

– Verifying the signatures and reconstruction: The following code is executed only by R.
• Include party Pj ∈ C to a set K (initialized to ∅), if all the following holds:
• R accepted ICSig(Pi → Pj , fji), corresponding to each Pi ∈ Cj .
• The values {(αi, fji)}Pi∈Cj lie on a degree-t polynomial, say fj(x).

• Wait till |K| = t + 1. Then interpolate a degree-t polynomial, say g0(y), using the values
{αj , fj(0)}Pj∈K. Output s and terminate, where s = g0(0).

480

stated in Lemma 14, which simply follows from its informal discussion and formal steps and481

the fact that there are Θ(n2) instances of RevPriv, each dealing with L = 1 value.482

I Lemma 14. Let s be two-level shared with IC-signatures. Then in protocol RecPriv, the483

following hold for every possible Adv, if all honest parties participate, where εAICP ≤ nκ
2κ−2 .484

• Termination: An honest R terminates, except with probability n2 · εAICP.485

• Correctness: Except with probability n2 · εAICP, an honest R outputs s.486

• Communication Complexity: The communication complexity is O(n3κ2) bits.487

The computations done by the parties in RecPriv can be recast as if parties enable a designated488

R to reconstruct a degree-t polynomial r(·), which has been shared by D by executing an489

instance Sh(D, r(·)) of Sh (see Notation 13). This is because in RecPriv, party R recovers the490

entire column polynomial g0(y), which is the same as F (0, y) and as discussed in Notation491

13, to share r(·), the dealer D executes Sh by setting F (0, y) to r(·). Based on this discussion,492

we propose the following alternate notation for reconstructing a shared polynomial by R493

using RecPriv, which will later simplify the presentation of our ACSS protocol.494

I Notation 15 (Reconstructing a Shared Polynomial Using RecPriv). Let r(·) be a495

degree-t polynomial which has been shared by D by executing an instance Sh(D, r(·)) of Sh.496

Then RecPriv(D, r(·),R) denotes that the parties execute the steps of the protocol RecPriv to497

enable R reconstruct r(0), which implicitly allows R to reconstruct the entire polynomial r(·).498

3.2 Protocols CSh and RecPriv for L Polynomials499

To share L number of degree-t polynomials r(1)(·), . . . , r(L)(·), D can execute L independent500

instances of Sh (as per Notation 13). This will cost a communication of O(L·n3κ2)+BC(L·n2)501

bits. Instead, by making slight modifications, we achieve a communication complexity of502
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O(L · n2κ+ n3κ2) + BC(n2) bits. In the modified protocol, each Pi while issuing signatures503

to any party, issues a single signature on all the required values, on the behalf of all the L504

instances. For instance, as part of recommitment of row polynomials, party Pj will have505

L row polynomials (one from each Sh instance) and there will be L common values on506

these polynomials between Pi and Pj , so Pi needs to sign L values for Pj . Party Pi issues507

signature on the common values on all these L polynomials simultaneously and for this508

only one instance of AICP is executed, instead of L instances. Thus all instances of AICP509

now deal with L values and the error probability of single such instance will be εAICP where510

εAICP ≤ nκ
2κ−(L+1) . To make the broadcast complexity independent of L, each Pj broadcasts511

a single MRj , MCj and (SRj , Pi) message, if the conditions for broadcasting these messages512

are satisfied with respect to each Sh instance. Finally, each Pj recommits all its L row513

polynomials to a common set Cj and similarly D constructs a single C set with respect to514

each value in S. We call the resultant protocol as MSh(D, (r(1)(·), . . . , r(L)(·))).515

To enable R reconstruct the polynomials r(1)(·), . . . , r(L)(·) shared using MSh, the parties516

execute RecPriv L times. But each instance of signature revelation now deals with L values.517

The communication complexity will be O(L · n2κ+ n3κ2) bits.518

4 Asynchronous Complete Secret Sharing519

We now design our ACSS protocol CSh by using protocols Sh and RecPriv as sub-protocols,520

following the blueprint of [18]. We first explain the protocol assuming D has a single secret521

for sharing. The modifications for sharing L values are straight forward.522

To share a value s ∈ F, D hides s in the constant term of a random degree-(t, t) bivariate523

polynomial F (x, y) where s = F (0, 0) and distributes the column polynomial gi(y) = F (αi, y)524

to every Pi. D also invokes n instances of our protocol Sh, where the jth instance Shj is used525

to share the row polynomial fj(x) = F (x, αj) (this is where we use our interpretation of526

sharing degree-t univariate polynomial using Sh as discussed in Notation 13). Party Pi upon527

receiving a share fji from D during the instance Shj checks if it lies on its column polynomial528

(that is if fji = gi(αj) holds) and if this holds for all the n instances of Sh, Pi broadcasts a529

MC message. This indicates that all the row polynomials of D are pair-wise consistent with530

the column polynomial gi(y). The goal is then to let D publicly identify a set of 2t+ 1 parties,531

say W, such that W constitutes a common C set in all the n Sh instances and such that532

each party in W has broadcast MC message. If D is honest, then such a common W set is533

eventually obtained, as there are at least 2t+ 1 honest parties, who constitute a potential534

common W set. This is because if D keeps on running the Sh instances, then eventually535

every honest party is included in the C sets of individual Sh instances. The idea here is that536

if such a common W is obtained, then it guarantees that the row polynomials held by D537

are pair-wise consistent with the column polynomials of the parties in W, implying that538

the row polynomials of D lie on a single degree-(t, t) bivariate polynomial. Moreover, each539

of these row polynomials is shared among the common set of parties W. The next goal is540

then to let each party Pj obtain the jth row polynomial held by D, for which the parties541

execute an instance of the protocol RecPriv (here we use our interpretation of using RecPriv542

to enable designated reconstruction of a shared degree-t polynomial). We stress that once the543

common set W is publicly identified, each Pj obtains the desired row polynomial, even if D is544

corrupt, as the corresponding RecPriv instance terminates for Pj even for a corrupt D. Once545

the parties obtain their respective row polynomials, the constant term of these polynomials546

constitute a complete t-sharing of D’s value. For the formal details of CSh, see Fig 4.547

To generate a complete t-sharing of S = (s(1), . . . , s(L)), the parties execute the steps of548
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Figure 4 Complete sharing of a single secret.

CSh(D, s)

– Distribution of Column Polynomials and Sharing of Row Polynomials by D:
• D selects a random degree-(t, t) bivariate polynomial F (x, y) over F, such that F (0, 0) = s.
• For i = 1, . . . , n, D sends the column polynomial gi(y) = F (αi, y) to Pi.
• For j = 1, . . . , n, D executes an instance Shj = Sh(D, fj(x)), where fj(x) = F (x, αj).

– Pair-wise Consistency Check: Each Pi ∈ P (including D) executes the following code.
• Wait to receive a degree-t column polynomial gi(y) from D.
• Participate in the instances Sh1, . . . , Shn.
• If a share fji is received from D during the instance Shj , then broadcast the message MCj , if

the condition fji = gi(αj) holds for each j = 1, . . . , n.
– Construction of W and Announcement: The following code is executed only by D.
• Let C(j) denote the instance of C set constructed during the instance Shj . Keep updating the
C(j) sets till a set W = C(1) ∩ . . . ∩ C(n) is obtained, where |W| = n − t and MCi message is
received from the broadcast of each party Pi ∈ W.

• Once a set W satisfying the above conditions are obtained, broadcast W.
– Verification of W: Each party Pj ∈ P (including D) executes the following code.
• Upon receiving W from the broadcast of D, check if W is a valid C set for each of the instances

Sh1, . . . , Shn and if MCi message is received from the broadcast of each Pi ∈ W.
• If the setW satisfies the above conditions, then invoke an instance RecPrivj = RecPriv(D, fj(x))

to reconstruct the row polynomial fj(x). Participate in the instances RecPrivk, for k = 1, . . . , n.
– Share Computation and Termination: Each party Pj ∈ P (including D) does the following.
• Wait to terminate the instance RecPrivj and obtain the row polynomial fj(x).
• Upon terminating RecPrivj , output the share sj = fj(0) and terminate the protocol CSh.

the protocol CSh independently L times with the following modifications: corresponding to549

each party Pj , D will now have L number of degree-t row polynomials to share. Instead of550

executing L instances of Sh to share them, D shares all of them simultaneoulsy by executing551

an instance MShj of MSh. Similarly, each party Pi broadcasts a single MCi message, if the552

conditions for broadcasting the MCi message is satisfied for Pi in all the L instances. The553

proof of the following theorem follows from [18] and the fact that there are n instances of554

MSh and RecPriv, each dealing with L polynomials. For details, see Appendix B.555

I Theorem 16. Let εAICP ≤ nκ
2κ−(L+1) . Then CSh constitutes a (1− εACSS) ACSS protocol,556

with communication complexity O(L · n3κ+ n4κ2) + BC(n3) bits where εACSS ≤ n3 · εAICP.557

5 The AMPC Protocol558

Our AMPC protocol is obtained by directly plugging in our protocol CSh in the generic559

framework of [11]. The protocol has a circuit-independent pre-processing phase and a circuit-560

dependent computation phase. During the pre-processing phase, the parties generate cM561

number of completely t-shared, random and private multiplication triples (a, b, c), where562

c = a · b. For this, each party first verifiably shares cM number of random multiplication563

triples by executing CSh with L = 3cM . As the triples shared by corrupt parties may not be564

random, the parties next apply a “secure triple-extraction" procedure to output cM number565

of completely t-shared multiplication triples, which are truly random and private. The error566

probability εAMPC of the pre-processing phase will be n5κ
2κ−(3cM+1) and its communication567

complexity will be O(cMn4κ+ n4κ2) + BC(n4) bits (as there are n instances of CSh).568
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During the computation phase, each party Pi generates a complete t-sharing of its input569

x(i) by executing an instance of CSh. As the corrupt parties may not invoke their instances of570

CSh, to avoid endless wait, the parties agree on a common subset of n− t CSh instances which571

eventually terminate for every one. For this, the parties execute an instance of agreement572

on common-subset (ACS) primitive [10, 8]. The parties then securely evaluate each gate in573

ckt, as discussed in Section 1. As the AMPC protocol is standard and obtained using the574

framework of [11], we refer to [11] for the proof of the following theorem.575

I Theorem 17. Let F = GF(2κ) and f : Fn → F be a function, expressed as a circuit over F576

consisting of cM multiplication gates. Then there exists a (1− εAMPC) unconditionally-secure577

AMPC protocol, tolerating Adv, where εAMPC ≤ n5κ
2κ−(3cM+1) . The communication complexity578

for evaluating the multiplication gates is O(cMn4κ+ n4κ2) + BC(n4) bits.579
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A The Asynchronous Information Checking Protocol (AICP) of [18]627

The AICP of [18] is an adaptation of the synchronous ICP of [4] to the asynchronous setting.628

Let S = (s(1), . . . , s(L)) ∈ FL be the private input of S. The high level idea of the protocol629

is as follows: during the distribution phase, S gives S along with some authentication tag630

to I and a corresponding information-theoretic verification tag to each individual verifier.631

The tags with respect to a verifier Pi are computed by picking a random y ∈ F and fitting a632

degree-L polynomial f(x) passing through L+ 1 distinct points (0, y), (1, s(1)), . . . , (L, s(L)).633

The authentication tag is set to y, while the verification tag is set to (u, v), where u is634

randomly chosen from F \ {0, . . . , L} and v = f(u). Later, during the revelation phase, I635

provides S and the verification tags to R and the verifiers provide the authentication tags to636

R and if the revealed S and verification tags are found to be consistent with “sufficiently637

large" authentication tags, then S is accepted, else it is rejected.638

A problem with the above approach is that if S is corrupt, then it can distribute inconsistent639

data to I and the verifiers, which will later lead to the rejection of revealed S. To get around640

this problem, a cut-and-choose technique is deployed, where instead of providing a single641

verification and authentication tag with respect to each verifier, S provides 2κ number of642

authentication tags to I and corresponding 2κ verification tags are given to each verifier Pi.643

Then during the authentication phase, Pi randomly reveals κ number of verification tags644

to I and if these verification tags are found to be consistent with S and the corresponding645

authentication tags (which is considered as cut-and-choose being successful for Pi), then with646

a high probability, it is ensured that at least one of the remaining undisclosed κ verification647

tags held by Pi is consistent with S and the corresponding authentication tag held by I.648

In the protocol, the cut-and-choose step is executed independently between I and each649

individual verifier Pi. Party I sets VS,I to 1 as soon as it finds that the cut-and-choose test is650

successful for a set R of n− t = 2t+ 1 verifiers. Later, during the revelation phase, R accepts651

the S revealed by I, if there are at least |R| − t = t+ 1 verifiers from the set R, such that652

each of these t+ 1 verifiers produce at least one consistent verification tag from their list of653

undisclosed verification tags. The protocol is formally presented in Fig 5.654

We refer to [18] for the proof of the following theorem.655

I Theorem 18 ([18]). Protocols (Gen,Ver,RevPriv) constitute a (1 − εAICP)-secure AICP,656

where εAICP = nκ
2κ−(L+1) . The communication complexity of Gen,Ver and RevPriv is O(Lκ+657

nκ2), O(nκ2) and O(Lκ+ nκ2) bits respectively.658
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Figure 5 The AICP of [18].

Generation Phase: Protocol Gen(S, I,S): S = (s(1), . . . , s(L))

– Distribution by S: The following code is executed only by S.
• Corresponding to each verifier Pi ∈ P, pick 2κ random elements y(i)

1 , . . . , y
(i)
2κ and 2κ random

evaluation points u(i)
1 , . . . , u

(i)
2κ from F − \{0, . . . , L}. Compute v(i)

1 , . . . , v
(i)
2κ , such that for

each j = 1, . . . , 2κ, the L+ 2 points (0, y(i)
j ), (1, s(1)), . . . , (L, s(L)), (u(i)

j , v
(i)
j ) lie on a degree-L

polynomial.
• Corresponding to each verifier Pi ∈ P, set y(i)

1 , . . . , y
(i)
2κ as the authentication tags and set

z
(i)
1 = (u(i)

1 , v
(i)
1 ), . . . , z(i)

2κ = (u(i)
2κ , v

(i)
2κ ) as the verification tags.

• Send S along with the authentication tags y(i)
1 , . . . , y

(i)
2κ corresponding to each verifier Pi ∈ P

to I.
• For i = 1, . . . , n, send the verification tags z(i)

1 , . . . , z
(i)
2κ to Pi.

Authentication Phase: Protocol Ver(S, I,S)

– Each Pi ∈ P (including S, I) on receiving the verification tags z(i)
1 , . . . , z

(i)
2κ from S randomly

partitions the index set {1, . . . , 2κ} into two equal halves Ii and Īi of size κ. Party Pi then sends
the index sets Ii, Īi and the verification tags z(i)

j for each j ∈ Ii to I.
– Party I upon receiving the index sets Ii, Īi and the verification tags z(i)

j for each j ∈ Ii from Pi

verifies if for every j ∈ Ii, the L+ 2 points (0, y(i)
j ), (1, s(1)), . . . , (L, s(L)), z(i)

j lie on a degree-L
polynomial. If the verification is successful, then I includes verifier Pi to a set R, which is
initialized to ∅.

– If |R| = 2t+ 1, then I sets VS,I = 1 and ICSig(S→ I,S) = (S, {Īi}Pi∈R, {y(i)
j }Pi∈R,j∈Īi).

Reveal Phase: Protocol RevPriv(S, I,R,S))

– Revealing of the signature by I: I sends R and ICSig(S→ I,S) to R, provided VS,I,I = 1.
– Revealing of the verification tags by verifiers: Each verifier Pi ∈ P (including S and I) sends

the index set Īi and the verification tags z(i)
j for each j ∈ Īi to R.

– Verifying the Signature and Verification Tags: R waits for R and ICSig(S → I,S) from
I. Upon receiving, R obtains S = (s(1), . . . , s(L)), the set R, the index sets {Īi}Pi∈R and the
authentication tags {y(i)

j }Pi∈R,j∈Īi from ICSig. The signature is then verified by R as follows:

– Upon receiving an index set Īi and verification tags {z(i)
j }j∈Īi from verifier Pi, check if Pi ∈ R.

If Pi ∈ R, then mark Pi as consistent, if the index set Īi received from Pi is the same as the
index set corresponding to Pi as received from I as part of ICSig and if for any j ∈ Īi, the
L+ 2 points (0, y(i)

j ), (1, s(1)), . . . , (L, s(L)), z(i)
j lie on a degree-L polynomial.

– If t+ 1 verifiers are marked as consistent, then output S.

B Properties of Our ACSS Protocol659

We first prove the properties of the protocol CSh, assuming that L = 1 (see Fig 4). In the660

following proofs, εAICP = nκ
2κ−2 , which is obtained by substituting L = 1 in the AICP.661

I Lemma 19 (Termination for an Honest D). In protocol CSh, if D is honest, then662

except with probability n3 · εAICP, all honest parties eventually terminate the protocol.663

Proof. From Lemma 7, it follows that all honest parties are eventually included in the C664

set C(j) constructed by D during the instance Shj , except with probability n2 · εAICP. This665

implies that all honest parties are eventually included in the sets C(1), . . . , C(n), except with666
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probability n3 · εAICP. Moreover, since D is honest, for every pair of honest parties Pi, Pj , the667

condition fi(αj) = gj(αi) and fj(αi) = gi(αj) hold. As there are at least 2t+1 honest parties,668

this implies that eventually D finds a common set W of size 2t+ 1, such that W constitutes669

a valid C set for all the instances Sh1, . . . ,Shn and each party Pi has broadcast MCi message.670

Upon the broadcast of W , each honest party eventually validates it and invokes the instances671

RecPriv1, . . . ,RecPrivn. From Lemma 14, the instance RecPrivj eventually terminates for672

an honest Pj , except with probability n2 · εAICP. As there are at most n honest parties, it673

follows that except with probability n3 · εAICP, all honest parties eventually terminate their674

designated RecPriv instance and hence terminate CSh. J675

I Lemma 20 (Termination for a Corrupt D). In protocol CSh, if an honest party676

terminates CSh, then except with probability n3 · εAICP, all honest parties eventually terminate677

the protocol.678

Proof. Let Pj be an honest party who terminates CSh. This implies that Pj receives a set679

W of size 2t + 1, such that W constitutes a valid C set for all the instances Sh1, . . . ,Shn.680

Since W is broadcast by D, every other honest party eventually receives the same valid W681

set from D. Party Pj also terminates its designated RecPrivj instance. This implies that for682

any other honest Pk, the corresponding designated RecPrivk instance eventually terminates683

for Pk, except with probability n2 · εAICP (follows from Lemma 14). As there are at most n684

honest parties, it follows that all honest parties eventually terminate their designated RecPriv685

instance and hence terminate CSh. J686

I Lemma 21 (Correctness). In protocol CSh, if the honest parties terminate, then except687

with probability n3 · εAICP, there exists some s ∈ F, where s = s for an honest D, such that s688

is completely t-shared.689

Proof. Since the honest parties terminate CSh, it implies that they receive a set W from690

the broadcast of D, which constitutes a valid C set for the instances Sh1, . . . ,Shn. Moreover,691

each honest Pj terminates its designated RecPrivj instance with a degree-t polynomial. From692

Lemma 14, it follows that the degree-t polynomial reconstructed by Pj during RecPrivj is693

the same degree-t polynomial, shared by D during the instance Shj , except with probability694

n2·εAICP. As there are at most n honest parties, it follows that except with probability n3·εAICP,695

the degree-t polynomials reconstructed by the honest parties in their designated RecPriv696

instance are the same, as shared by D during the corresponding Sh instance. To complete697

the proof, we claim that the polynomials shared by D during the instances Sh1, . . . ,Shn lie698

on a single degree-(t, t) bivariate polynomial, except with probability n3 · εAICP.699

The claim is true with probability 1 for an honest D, as it shares the row polynomial700

fj(x) = F (x, αj) during the instance Shj , for all j = 1, . . . , n. So we next prove the claim701

for the case of a corrupt D. Consider an arbitrary instance Shj . Since W is a valid C set for702

the instance Shj , it follows from Lemma 10 that except with probability n2 · εAICP, D shared703

some degree-t polynomial, say f̄j(x) among the parties in W during the instance Shj . This704

implies that except with probability n3 · εAICP, the polynomials shared by D among W during705

the instances Sh1, . . . ,Shn are all degree-t polynomials, say f̄1(x), . . . , f̄n(x). Since every706

party Pi in W has broadcast MCi message, it follows that if Pi is honest, then f̄j(αi) = ḡi(αj)707

holds for all j = 1, . . . , n; here ḡi(y) is the degree-t column polynomial received by Pi. As708

there are at least t+ 1 honest parties Pi in W, it implies that the degree-t row polynomials709

f̄1(x), . . . , f̄n(x) are pair-wise consistent with t+ 1 degree-t column polynomials, implying710

that the polynomials f̄1(x), . . . , f̄n(x) lie on a single degree-(t, t) bivariate polynomial, say711

F̄ (x, y) (follows from Lemma 1). J712
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I Lemma 22 (Privacy). In protocol CSh, if D is honest, then the view of the adversary713

Adv is independent of s.714

Proof. Without loss of generality, let P1, . . . , Pt be under the control of Adv. We claim that715

throughout the protocol, Adv only learns the degree-t row polynomials f1(x), . . . , ft(x) and716

degree-t column polynomials g1(y), . . . , gt(y). The lemma then follows from the standard717

properties of degree-(t, t) bivariate polynomial [1] and the fact that the polynomial F (x, y)718

is randomly chosen by D.719

The column polynomials g1(y), . . . , gt(y) are given by Adv, while the row polynomials720

f1(x), . . . , ft(x) are obtained during the instances RecPriv1, . . . ,RecPrivt. For any Pj ∈721

{Pt+2, . . . , Pn}, the adversary learns the values fj(α1), . . . , fj(αt) during the instance Shj722

and these values are independent of the share sj
def= fj(0) held by Pj (follows from Lemma723

11). Moreover, the values fj(α1), . . . , fj(αt) are already known to Adv, as they lie on the724

column polynomials held by Adv. J725

I Lemma 23 (Communication Complexity). The communication complexity of CSh is726

O(n4κ2) + BC(n3) bits.727

Proof. The lemma follows from Lemma 12, Lemma 14 and the fact that there are n instances728

of Sh and RecPriv in the protocol. J729

The following theorem finally follows from Lemma 19-23.730

I Theorem 24. Let εAICP ≤ nκ
2κ−2 . Then CSh constitutes a (1− εACSS) ACSS protocol, with731

communication complexity O(n4κ2) + BC(n3) bits where εACSS ≤ n3 · εAICP.732

B.1 Properties of Protocol CSh for Sharing L Values733

The procedure for sharing L values using CSh is outlined in Section 4. The resultant protocol734

involves n instances of MSh, each sharing L number of degree-t polynomials. Also n instances735

of RecPriv, each reconstructing L number of degree-t polynomials are involved. Moreover,736

each instance of underlying AICP deals with L values and error probability εAICP of a single737

instance is εAICP = nκ
2κ−(L+1) . The proof of the following theorem now follows similar to the738

proof of Lemma 24.739

Theorem 16. Let εAICP ≤ nκ
2κ−(L+1) . Then CSh constitutes a (1 − εACSS) ACSS protocol,740

with communication complexity O(L · n3κ+ n4κ2) + BC(n3) bits where εACSS ≤ n3 · εAICP.741
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