
Lossy Correlation Intractability and
PPAD Hardness from Sub-exponential LWE

Ruta Jawale∗ Dakshita Khurana∗

Abstract

We introduce a new cryptographic primitive, a lossy correlation-intractable hash function, and
use it to soundly instantiate the Fiat-Shamir transform for the general interactive sumcheck
protocol, assuming sub-exponential hardness of the Learning with Errors (LWE) problem. By
combining this with the result of Choudhuri et al. (STOC 2019), we show that #SAT reduces to
end-of-line, which is a PPAD-complete problem, assuming sub-exponential hardness of LWE.

∗University of Illinois, Urbana-Champaign. This material is based upon work supported in part by DARPA under
Contract No. HR001120C0024. Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

1

1 Introduction

The hardness of computing a Nash equilibrium is an important open question in algorithmic game
theory. This problem is known to be complete for the complexity class PPAD [Pap94, DGP09,
CDT09]. The class PPAD consists of all total search problems that are polynomial-time reducible
to the end-of-line (EOL) problem: given a source in a directed graph, where every vertex has both
in-degree and out-degree at most one, find a sink or another source. This problem becomes easy
when given an explicit graph, but is not known to be solvable in polynomial time when only given
a description of the successor and predecessor functions for every vertex.

Naturally, there has been significant interest [AKV04, BPR15, HY17, GPS16, KS17, CHK+19a,
CHK+19b, EFKP20, Pie19, LV20] in reducing the hardness of PPAD to that of various crypto-
graphic assumptions. The most relevant to us is the recent work of Choudhuri et. al. [CHK+19a]
who showed a reduction from #SAT to EOL, assuming adaptive soundness of the Fiat-Shamir
transform applied to the sumcheck protocol. But despite these exciting works, establishing PPAD
hardness under standard, well-studied cryptographic assumptions has remained open.

The Sumcheck Protocol. The interactive sumcheck protocol is an important building block for
many seminal results in interactive proofs, including the IP=PSPACE theorem [LFKN92, Sha92]
and the bounded-depth delegation scheme of Goldwasser, Kalai and Rothblum [GKR15]. These
seminal results allow an inefficient prover to interactively convince a relatively efficient verifier
about the validity of a computational statement. These protocols are unconditionally sound,
meaning that no adaptive, unbounded cheating prover can convince a verifier to accept the proof
of a false statement.

An important question, which has received wide-spread attention in recent years, is whether
it is possible to obtain succinct non-interactive proof systems with comparable strong efficiency
guarantees. The importance of this problem has become evident in recent years due to the increas-
ing popularity of cloud computing. A client (or verifier), would like to offload the computation
of a function f to a server (or prover). The client may not trust the server and would therefore
want the server to send a non-interactive “proof” that the computation was performed correctly.
Clearly, the complexity of verifying such a proof should be significantly lower than the complex-
ity of running f and, at the same time, should not significantly blow up the running time of
the prover. The applicability of succinct proof systems goes beyond cloud computing; for ex-
ample, variants of these are now widely used in cryptocurrencies [SCG+14, BSBHR18]. Despite
a recent sequence of beautiful works [Kil92, Mic94, BGL+15, CHJV15, CH16, CCHR15, KLW15,
CCC+16, ACC+16, PR17, KRR17, CCRR18, HL18, CCH+18, KPY19], the problem of obtaining
publicly-verifiable succinct arguments for meaningful classes of computation based on standard
and well-studied cryptographic hardness assumptions has remained open so far1.

This Work. We show how to obtain a publicly-verifiable succinct non-interactive argument for
sumcheck. Like many prior approaches, we rely on the Fiat-Shamir paradigm [FS86], which sug-
gests a method for converting general public-coin interactive proofs to non-interactive arguments

1Most recently, the work of Canetti et. al. [CCH+18] obtained delegation for bounded depth assuming “optimally-
secure” fully homomorphic encryption and Kalai, Paneth and Yang [KPY19] obtained delegation for P based on a new
decisional assumption on groups with bilinear maps. We discuss additional related work in Section 1.3.

2

in the common reference string (CRS) model. Namely, the CRS contains a key for an appropri-
ately chosen hash function, and the prover non-interactively emulates the verifier’s messages by
hashing its transcript so far. In fact, recent fascinating works due to Canetti et. al., and Peikert
and Shiehian [CCH+19, PS19] designed a special type of hash function, a correlation-intractable
hash function [CGH04] (based on the hardness of learning with errors (LWE)), and used this to
obtain the first NIZK (non-interactive zero-knowledge) for NP from LWE. On the other hand,
correlation-intractable hash functions that support succinct non-interactive arguments are so far
known only under strong assumptions, such as the optimal hardness of fully homomorphic en-
cryption (FHE) [CCH+19].

Our work designs special hash functions that can be used to obtain a succinct argument for the
sumcheck protocol. Specifically, we develop lossy correlation intractable hash functions based on the
hardness of the learning with errors (LWE) assumption. We then show that the Fiat-Shamir trans-
form applied to the interactive sumcheck protocol is sound when using any (sub-exponentially
secure) lossy correlation intractable hash function. Combined with the results of Choudhuri et.
al. [CHK+19a], this implies the hardness of Nash based on a standard cryptographic assump-
tion: sub-exponential LWE. Prior to this work, establishing PPAD hardness required stronger and
non-standard cryptographic assumptions, which we discuss in detail in Section 1.3.

1.1 Our Results

We now provide an overview of our results. Our first main result is a construction, based on the
sub-exponential learning with errors (LWE) assumption, of lossy correlation intractable hash func-
tions. At a high level, a hash function family H is correlation intractable (CI) for a relationR(x, y)
if it is computationally hard, given a random key k, to find any input x such that (x,Hk(x)) ∈ R.

Very recent beautiful constructions of (somewhere-statistical) CI hash functions for restricted
classes of relations2 led to the first realization of non-interactive zero-knowledge (NIZK) from
LWE [CLW18, PS19]. The CI hash functions constructed in these works generate keys in two
modes: a Gen mode and a StatGen mode. The Gen mode samples a random key from a fixed
distribution, while the StatGen mode samples a key dependent on the relation against which
correlation-intractability is desired. Both modes are indistinguishable, and the StatGen mode with
key sampled according to any function f computable in a-priori bounded time b(λ), guarantees
that it is not possible to find any x such that H(k, x) = f(x), except with negligible probability. In
addition, the time required to compute the hash (in either mode) is proportional to b(λ).

Lossy (Somewhere-Statistical) Correlation Intractable Hash Functions. We define and con-
struct lossy (somewhere-statistical) correlation intractable hash functions that, in addition to sat-
isfying the properties above, have a third, lossy mode. Keys generated in lossy mode are indistin-
guishable from keys generated in both the other (Gen and StatGen) modes. In addition, for an
overwhelming fraction of keys generated in lossy mode, the output of the CI hash function lies
within a (subexponentially) small space of outcomes. We construct lossy hash functions by com-
bining (somewhere-statistical) CI hash functions with lossy trapdoor functions [PW08], which can
be obtained from LWE.

2Specifically, these works build CI hash functions for the class of efficiently searchable relations, and, for our purposes,
it suffices to consider functions computable in a-priori bounded time (instead of such relations).

3

Theorem 1.1. (Informal) Assuming sub-exponential hardness of learning with errors (LWE), there exist
lossy correlation intractable hash functions.

We believe that lossy correlation intractable hash functions may be of independent interest. In
this work, we use them to soundly instantiate Fiat-Shamir for the sumcheck protocol.

Fiat-Shamir for Sumcheck. We directly state an informal version of our theorem. The formal
theorem and proof can be found in Section 4.

Theorem 1.2. (Informal) There exists a constant c > 1 such that the Fiat-Shamir transform applied to any
sumcheck protocol with≤ κ variables, with a field F of size≥ 2κ

c , sub-fieldB ⊂ F of size≤ polylog(κ), and
individual degree d ≤ polylog(κ) has soundness error negl(κ) when instantiated with subexponentially-
secure lossy (somewhere-statistical) correlation intractable hash functions.

The Hardness of Finding a Nash Equilibrium. We build on the work of [CHK+19a] who argued
that soundness of the Fiat-Shamir transform for sumcheck, combined with the hardness of #SAT
implies PPAD hardness. Specifically, they showed that #SAT reduces to the CLS problem relaxed-
sink-of-verifiable-line (rSVL), assuming (adaptive) soundness of Fiat-Shamir for sumcheck. The
rSVL problem in turn reduces to the PPAD-complete problems EOL and Nash. We refer the reader
to [CHK+19a] for a fantastic overview of relevant problems in PPAD and CLS, and the relation-
ships between these problems.

While we cannot argue full-fledged adaptive soundness of our non-interactive sumcheck pro-
tocol, we show in Section 5 that it satisfies a weaker notion of soundness that suffices for the
reduction in [CHK+19a]. As such, we obtain the following corollary.

Corollary 1.1. (Informal) #SAT Reduces to EOL, assuming the sub-exponential hardness of LWE.

1.2 Independent and Concurrent Work [KZ20]

In a beautiful independent and concurrent result, Kalai and Zhang [KZ20] also instantiate Fiat-
Shamir for sumcheck from sub-exponential LWE, but via a different approach than ours. In their
case, the efficiency of the resulting non-interactive sumcheck degrades double-exponentially with
the number of rounds in the underlying interactive sumcheck protocol. They then use the result-
ing non-interactive sumcheck to compress a modification of the GKR protocol. As a result, they
achieve publicly verifiable succinct non-interactive arguments for log-space uniform circuits C of
size S, depth D, and input size λ, where the prover runs in time poly(S) and the verifier runs
in time (D + λ) · Sε, for slightly sub-constant ε. They also prove (average-case) PPAD hardness
assuming (average-case) hardness of #SAT over O(log λ log log λ) variables.

On the other hand, our techniques allow for polynomially many rounds (and hence, variables
in sumcheck), resulting in optimal parameters for sumcheck and PPAD hardness. We believe that
our techniques also directly enable optimal parameters for succinct non-interactive delegation for
bounded-depth, and are in touch with [KZ20] about the optimization.

1.3 Related Work

The complexity class PPAD [Pap94] consists of all total search problems that are polynomial-time
reducible to the End-of-Line problem. Papadimitriou showed that Nash is reducible to End-of-
Line and, thus, belongs to PPAD. As such, the question of establishing PPAD hardness based

4

on cryptographic assumptions has received significant attention in the last few years. A series
of recent works showed that the hardness of PPAD follows from strong cryptographic assump-
tions: specifically, indistinguishability obfuscation (iO) and related primitives such as functional
encryption [AKV04, BPR15, HY17, GPS16, KS17].

Subsequently, Choudhuri et al. [CHK+19a] showed a reduction from #SAT to rSVL, assuming
adaptive soundness of the Fiat-Shamir transform. Using the work of [CCH+19] which instantiated
Fiat-Shamir for sumcheck under optimally-secure FHE, [CHK+19a] demonstrated PPAD hardness
assuming hardness of #SAT for polylog(n) variables. More recently, [CHK+19b, EFKP20] estab-
lished PPAD hardness assuming #SAT hardness and soundness of Fiat-Shamir for an interactive
proof of repeated squaring due to Pietrzak [Pie19]. Very recently [LV20] established soundness
of Fiat-Shamir for this repeated squaring protocol, assuming 2−n

1−ε
-hardness of LWE and 2λ

ε
-

hardness of repeated squaring, and therefore also PPAD hardness under the same assumption
combined with #SAT hardness.

1.4 Technical Overview

We now outline our technical approach. We begin by recalling the sumcheck protocol, which was
first proposed by [LFKN92, Sha92].

Background: Sumcheck. The sumcheck protocol is an interactive proof of the following claim:∑
x1,...,xν∈B

p(x1, . . . , xν) = a,

where p is a multivariate polynomial with individual degree d in ν variables over field F, a ∈ F,
and field B ⊂ F. The protocol reduces this claim over ν variables to a related claim with only ν−1
variables. This is done by having the prover send the univariate polynomial

p1(·) :=
∑

x2,...,xν∈B
p(·, x2, . . . , xν).

On receiving the polynomial p1(·), the verifier checks that p1(·) is of degree at most d and that∑
x1∈B

p1(x1) = a.

If these checks pass, the verifier sends a random challenge r1 ← F. The prover upon receiving the
challenge fixes variable x1 = r1 and next proves the following claim:∑

x2,...,xν∈B
p(r1, x2, . . . , xν) = p1(r1).

This round also proceeds similarly to the previous round, i.e. the prover sends the univariate
polynomial

p2(·) :=
∑

x3,...,xν∈B
p(r1, ·, x3, . . . , xν).

5

and on receiving p2(·), the verifier checks that p2(·) is of degree at most d and checks that∑
x2∈B

p2(x2) = p1(r1).

If these checks pass, the verifier sends a random challenge r2 ← F. This recursive process contin-
ues for ν rounds until the verifier has verified that for pν(·) summed over inputs in B the result
will yield pν−1(rν−1). The verifier finally samples a random challenge rν ← F and checks that

p(r1, . . . , rν) = pν(rν).

Soundness. To see why this protocol is sound, consider a malicious prover that convinces the
verifier to accept an incorrect claim of the form∑

x1,...,xν∈B
p∗(x1, . . . , xν) = a∗,

where a∗ is not the correct value of
∑

x1,...,xν∈B p
∗(x1, . . . , xν). Let us say that this malicious prover

sends some polynomial p∗1(·) as its first message. For convenience, we will define the correct
evaluation of the prover’s first message q∗1(·) as

q∗1(·) :=
∑

x2,...,xν∈B
p∗(·, x2, . . . , xν).

Now since that p∗1(·) passes the verifier’s next check, this implies that p∗1(·) is of degree at most d
and that ∑

x1∈B
p∗1(x1) = a∗.

Next, the prover must prove that ∑
x2,...,xν∈B

p∗(r1, x2, . . . , xν) = p∗1(r1).

If this second claim is true, then it must be the case that p∗1(r1) = q∗1(r1), equivalently r1 is a root of
the polynomial p∗1(·)−q∗1(·). Since r1 is sampled uniformly at random in the field F, the probability
that this happens is d

|F| . Looking ahead, we will call such roots of p∗i (·) − q∗i (·) in any round i,
“bad” verifier challenges, where p∗i (·) is the claimed polynomial and q∗i (·) is the true polynomial.
Moreover, when we attempt to obtain a non-interactive version of the sumcheck protocol, we
will aim to ensure that “bad” challenges do not occur in the non-interactive proof generated by a
computationally bounded prover, except with negligible probability.

Background: Correlation Intractable Hash Functions [CGH04]. At a high level, a hash function
family H is correlation intractable (CI) for a relation R(x, y) if it is computationally hard, given
a random key k, to find any input x such that (x,Hk(x)) ∈ R. As observed in [HMR08], CI
hash functions for the broad class of sparse relations suffice to prove soundness of the Fiat-Shamir
transform, whenever the initial protocol is a statistically sound proof.

6

Very recent beautiful constructions of CI hash functions for restricted classes of relations, and
their applications to instantiating Fiat-Shamir for Sigma protocols, led to the first realization of
non-interactive zero-knowledge (NIZK) for NP from LWE [CLW18, PS19]. The CI hash functions
specifically constructed in these works generate keys in two modes: a Gen mode and a StatGen
mode. The Gen mode samples a random key from a fixed distribution, while the StatGen mode
samples a key dependent on the function f (computable in a-priori bounded time) against which
correlation-intractability is desired. Both modes are indistinguishable, and the StatGen mode with
key sampled according to f has the following additional informal guarantee:

Pr
k←StatGen(1λ,f)

[∃x : H(k, x) = f(x)] = negl(λ).

Since Gen and StatGen modes are indistinguishable, this implies that for polynomial-sized A,

Pr
k←Gen(1λ)

[A(k)→ x : H(k, x) = f(x)] = negl(λ).

Non-Interactive Sumcheck via Fiat-Shamir: First Attempt. We consider applying the Fiat-Shamir
transform [FS86] instantiated with CI hash functions to the sumcheck protocol, in order to get a
non-interactive argument in the common reference string (CRS) model. Specifically, the CRS con-
tains a hash function key, and the prover non-interactively computes verifier challenges as the
outcome of the hash function applied to the transcript (or part of the transcript) so far.

As discussed previously, we would need to ensure that the prover cannot non-interactively
produce transcripts that contain “bad” verifier challenges. The CI hash functions that we just dis-
cussed can be used to avoid exactly such challenges, as long as they are (relatively) efficiently com-
putable. First, we consider using an independent hash function key ki for each round i ∈ [ν(λ)]
of the interactive sumcheck protocol. For i ∈ [ν(λ)], the prover creates a partial transcript τi of
interactive sumcheck until round i and emulates the ith verifier message by computing H(ki, τi)

3.
In the ith round, we would like to argue that H(ki, τi) is not a “bad” challenge, which we recall is
any of the ≤ d roots of p∗i (·)− q∗i (·).

If roots of p∗i (·) − q∗i (·) were efficiently computable given the transcript, then we would al-
most be done. We say almost, because CI hash functions from LWE as defined and constructed
in [CLW18, PS19] rule out the possibility of finding inputs for which the output of the hash corre-
sponds to a single, efficiently computable “bad” challenge – and on the other hand, we have d pos-
sible “bad” challenges and we must rule them all out. Luckily, we observe (via a simple hybrid
argument) that any somewhere-statistical CI hash function with Gen and StatGen modes as described
above, readily extends to rule out d possible “bad” challenges, with a corresponding loss in secu-
rity, that is, for any set of d efficiently computable functions f1, . . . , fd and any polynomial sized
adversary A,

Pr
k←Gen(1λ)

[∃j ∈ [d] : (A(k)→ x) ∧ (H(k, x) = fj(x))] = d · negl(λ).

What turns out to be a more serious issue, is the fact that roots of p∗i (·)−q∗i (·) may not be efficiently
computable. Recall that

q∗i (·) :=
∑

xi+1,...,xν∈B
p∗(r∗1, . . . , r

∗
i−1, ·, xi+1, . . . , xν).

3In our actual construction of non-interactive sumcheck, we will not need to hash all of τi, only the most recent
prover message.

7

which, if done naively, takes time O(|B|ν) time to compute.
A solution to this problem could be to define functions fi for i ∈ [ν] that are somehow hard-

wired with correctly computed functions q∗i (·). But even restricting ourselves to a selective at-
tacker, while p∗ may be known prior to generating the CRS, the values r∗1, . . . , r

∗
i−1 will be con-

trolled by the prover and cannot possibly be known prior to generating the CRS. This means that
fi would be required to guess these values. Denoting these guesses by r′1, . . . , r

′
i, we could hope

to hardwire q′i(·) where

q′i(·) :=
∑

xi+1,...,xν∈B
p∗(r′1, . . . , r

′
i−1, ·, xi+1, . . . , xν).

Now on input p∗i (·), the function fi can efficiently compute the roots of the polynomial p∗i (·)− q′i(·)
by the Cantor-Zassenhaus algorithm [CZ81]. In the case that our guesses were correct, that is, if
r′j = r∗j for all j ∈ [i− 1], fi will have computed the correct evaluation q∗i (·) where

q∗i (·) :=
∑

xi+1,...,xν∈B
p∗(r∗1, . . . , r

∗
i−1, ·, xi+1, . . . , xν),

for transcript τi = (p∗1, r
∗
1, . . . , p

∗
i), and fi will correctly output the “bad” challenge for round i. In

this case, when using StatGen key ki associated with function fi, our CI property will guarantee
that the probability that the ith hash output equals the ith function output will be negligible.

Unfortunately, the function fi for i ∈ [ν] can only guess the correct hash function outputs, that
is r∗j = r′j for j ∈ [i−1], with probability 1/|F|i−1 ≥ 1/|F|ν . In order for our guesswork to be mean-
ingful, we must have a hash function with an impossibly stronger security guarantee, on the order
of |F|−ν (whereas the outputs of the hash function are of size log |F|). Clearly, such a hash function
cannot exist. One could alternatively try to increase the space of challenges in each round and
rely on complexity leveraging to argue that it is possible to guess previous challenges while still
meaningfully contradicting CI in the current step. However, this growth in parameters becomes
unsustainable quickly: it limits ν to being at most c log log λ for some constant c < 1 [PW10].

Resolution via Lossy Correlation Intractable Hashing. In order to overcome this problem, we
will make it possible to artificially decrease the output space of the hash function family. To this
end, we will develop and use lossy correlation-intractable hash functions, which in addition to
satisfying the CI properties discussed above, allow for an extra lossy mode. In this mode, the space
of outcomes (or image) of the hash function will be restricted to being much smaller than its co-
domain. It may at first appear that making a hash function lossy may interfere with correlation
intractability. But we show that using these three modes, one can perform a careful sequence of
hybrid experiments to argue soundness.

Constructing Lossy Correlation Intractable Hash Functions. Our construction of lossy correla-
tion intractable hash functions will combine sufficiently lossy trapdoor functions [PW08] with CI
hash functions [PS19], both of which can be obtained based on (sub-exponential) LWE.

A lossy trapdoor function (introduced in [PW08]) is, roughly, a keyed family of functions
where keys can be generated in two modes: an injective mode and a lossy mode. The injective
mode has a corresponding trapdoor which can be used to perform efficient inversions. The lossy
mode, in contrast, information theoretically loses information about its input. In other words,

8

this mode restricts the size of the function’s output space to a space bounded by 2λ
ε

for some
0 < ε < 14. Additionally, both modes are computationally indistinguishable.

We construct lossy CI hash functions by concatenating CI hash functions with lossy trapdoor
functions. The lossy CI hash key will consist of (k, ik) where k is a key for a (regular) CI hash
function and ik is a key for the lossy trapdoor function. In more detail, our lossy CI hash function
will have keys generated in three modes as follows:

• In Gen mode, the lossy CI hash outputs (k, ik) for k sampled according to the CI Gen algo-
rithm, and ik sampled as an injective key for the lossy trapdoor function.

• In StatGen mode corresponding to an efficiently computable function f , the lossy CI hash
outputs (k, ik) for k sampled according to the CI StatGen algorithm for function ftd = f(Inv(td), ·),
and (ik, td) sampled as an injective key and trapdoor pair for the lossy trapdoor function.
Here, Inv denotes the (trapdoor) inversion algorithm for the lossy trapdoor function.

• In LossyGen mode, the lossy CI hash outputs (k, ik) for k sampled according to the CI Gen
algorithm, and ik sampled as a lossy key for the lossy trapdoor function.

Evaluating the lossy CI hash function on input x simply involves first computing y as the output
of the lossy trapdoor function with key ik on input x, and then evaluating the CI hash function
with key k on input y. More formally, H′.Hash((k, ik), x) = H.Hash(k,Eval(ik, x)) where H and H′
denote the underlying CI hash function and resulting lossy CI hash function respectively, and Eval
denotes the evaluation algorithm for the lossy trapdoor function.

These modes are easily seen to be indistinguishable from each other by key indistinguishability
of the underlying CI hash function family and the lossy trapdoor function family. Moreover, the
StatGen mode continues to satisfy statistical correlation intractability, as before, due to the correct-
ness of trapdoor inversion. To see this, note that on input x, the evaluator computes H.Hash(k, y)
where y = Eval(ik, x). The function ftd(y) is therefore equal to f(Inv(td, y)), which is simply f(x).
Finally, in LossyGen mode, the underlying lossy function is first applied to the input x, which
restricts the space of possible outcomes to 2λ

ε
for some 0 < ε < 1.

Fiat-Shamir for Sumcheck via Lossy CI Hash Functions. Our proposed protocol is exactly the
same as discussed before, except we use lossy CI hash functions instead of (regular) CI hash func-
tions to perform Fiat-Shamir. Specifically, the CRS consists of a sequence of keys {ki}i∈[ν(λ)] for
the lossy CI hash function family, with hash output size log |F| = λ. The non-interactive prover
proceeds in ν(λ) steps, where it generates a partial sumcheck transcript τi (as before) and then
computes Hash(ki, xi) to obtain the next verifier challenge. We will assume that:

• In lossy mode, the output space of the lossy CI hash function is compressed to T ,

• All poly(T) size adversaries have negl(T) advantage in distinguishing keys generated in Gen
or StatGen modes or in breaking statistical correlation intractability, and

• All poly(T ′) size adversaries have negl(T ′) advantage in distinguishing keys generated in
LossyGen mode from those generated in any other mode,

4As described in [PW08], the output space is only compressed to 2cλ for 0 < c < 1, however, stronger compression
can be obtained by relying on sub-exponential hardness of LWE.

9

where T ′ << T , and for simplicity in the rest of this discussion, we set T = 2λ
ε

and T ′ = 2λ
ε2

for some constant 0 < ε < 1. These properties can be simultaneously achieved assuming sub-
exponential hardness of LWE (where the exact hardness parameter will determine ε).

Next, we rely on round-by-round soundness of the sumcheck protocol: very roughly, this prop-
erty states that there exists a deterministic, public State function that can be used to keep track of
the exact step at which a malicious prover switches from trying to prove false claims to proving
true claims. It is clear that, for any prover P∗ that breaks soundness of non-interactive sumcheck,
such a step would exist. For convenience, we denote this by step i in the discussion below, where
i ∈ [ν]. Our goal will be to show that any polynomial-size prover that switches from false to true
claims in step i contradicts correlation intractability of the ith hash function family. This will es-
tablish that such a prover cannot exist: which in turn (by the structure of sumcheck) implies that
our compressed sumcheck protocol is sound.

Recall that our main technical bottleneck was the following: to contradict statistical correlation
intractability, we need to have an efficiently computable function fi that computes “bad” challenges
given the transcript, and this turns out to be inefficient. Specifically, fi needs to output a root of
the polynomial p∗i (·)− q∗i (·), where

q∗i (·) :=
∑

xi+1,...,xν∈B
p∗(r∗1, . . . , r

∗
i−1, ·, xi+1, . . . , xν).

and this polynomial is not efficiently computable given r∗1, . . . , r
∗
i−1. To overcome this problem, we

previously suggested guessing r∗1, . . . , r
∗
i−1 and using them to hardwire q∗i into the function fi.

Unfortunately since r∗1, . . . , r
∗
i−1 are dynamically generated by the prover depending on the CRS,

a naive guess is only correct with probability 1
|F|i−1 . Guessing with such a small probability is

meaningless, as it gives us no advantage in contradicting correlation intractability of the ith hash
function.

However, we note that when contradicting correlation intractability of the ith hash function
family, we only need to guess the outcomes of the previous i − 1 hash functions. As such, we can
first (T ′-indistinguishably) switch to generating the first i−1 keys in lossy mode5. This makes it so
that each r∗j for j ∈ [i−1] takes at most T = 2λ

ε
values, and r∗1, . . . , r

∗
i−1 can collectively be guessed

with probability 2(i−1)·λε , which is upper-bounded by 2νλ
ε
. This means that we can correctly guess

and hardwire q∗i (·) with probability 2νλ
ε
. Given a correct guess, the Cantor-Zassenhaus algorithm

[CZ81] can now be applied to sample the d roots of p∗i (·)− q∗i (·).
Next, recall that it suffices to break statistical correlation intractability of the hash function with

advantage better than negl(T). Therefore, this argument goes through as long as poly(T) ≥ 2νλ
ε
.

(To better understand the type of parameters we achieve, the reader could imagine setting ν = λε

and recall that T = 2ε. We emphasize that these parameters remain consistent across all ν hash
functions and do not increase from one step to the next.) Additionally, for convenience, the output
space of the hash function, which is log |F|, will be restricted to be equal to λ. This leads to ν (the
number of variables) being restricted to sublinear in λ. We note that we can actually tolerate
ν = w(λ) for any polynomial w(·) by scaling parameters appropriately such that log |F| = w′(λ)
for a different (larger) polynomial w′(·).

5This involves a somewhat subtle argument: specifically, we must establish that the prover continues to go from a
false to a true claim in step iwith non-negligible probability, even when the first i−1 keys are generated in lossy mode.
This requires a reduction that efficiently checks if the prover went from a false to a true claim in any given step, which
takes time |B|ν . Therefore, we will need to set T ′ such that poly(T ′) ≥ |B|ν for some polynomial poly(·)

10

This completes our discussion on applying lossy CI hash functions to compress the sumcheck
protocol. We now show how this can be used to establish PPAD hardness.

PPAD Hardness. To establish the hardness of Nash under sub-exponential LWE, we rely on the
beautiful work of Choudhuri et. al. [CHK+19a]. Specifically, [CHK+19a] showed that adaptive
unambiguous soundness of Fiat-Shamir for sumcheck helps reduce #SAT instances to rSVL instances,
proving hardness of PPAD. Roughly, unambiguity requires that it be (computationally) hard to
find two accepting proofs, even for a true statement. While our non-interactive sumcheck protocol
does satisfy unambiguity due to the special structure of sumcheck, we unfortunately fall short of
proving full-fledged adaptive soundness. This is because the polynomial p∗ needs to be known in
advance in order to precompute true claims q∗i at each step i for i ∈ [ν].

However, we observe that the proof in [CHK+19a] does not require full adaptivity over the
choice of p∗. Specifically, they only require partial adaptive unambiguous soundness – where
they allow a prefix r∗1, . . . , r

∗
j to be chosen adaptively, and they require non-interactive sumchecks

proofs of the form ∑
xj+1,...,xν∈B

p∗(r∗1, . . . , r
∗
j , xj+1, . . . , xν)

to satisfy soundness and unambiguity. We also observe that in their construction, the prefix
r∗1, . . . , r

∗
j is generated as a result of a series of recursive computation steps, more specifically by

either evaluating the hash function on some input and appending the result, or selecting a value
in [d+ 1]. As such, the proof is only required to be sound for prefixes that take values in the union
of [d+ 1] and the support of outputs of the hash function.

The proof techniques we developed so far for sumcheck allow us to prove soundness for p∗

fixed selectively and any prefixes that take values in the union of [d+ 1] and the space of outputs
of the hash function. In more detail, we note that the space from which prefixes are chosen can
be indistinguishably restricted to be relatively small (by switching the relevant keys in the CRS to
lossy mode). This allows our reduction to guess these values, and use a prover that breaks partial
adaptive unambiguity or partial adaptive soundness to contradict CI with sufficient probability.
This completes an overview of our techniques establishing PPAD hardness.

2 Preliminaries

2.1 (Somewhere Statistical) Correlation Intractability

Definition 2.1 (T -Correlation Intractability). [CLW18] For a given function ensemble F = {Fλ :

{0, 1}n(λ) → {0, 1}m(λ)}λ∈N, a hash family H = {hλ : {0, 1}s(λ) × {0, 1}n(λ) → {0, 1}m(λ)}λ∈N is
said to be T -correlation intractable with respect to F if for every poly(T)-size A = {Aλ}λ∈N,

Pr
k←H.Gen(1λ)
x←A(k)

[H.Hash(k, x) = F (x)] = negl(T (λ)).

If F is a collection of function ensembles, thenH is said to be uniform correlation intractable with
respect to the collection F if for every poly(T)-size A = {Aλ}λ∈N, there exists a negligible function

11

ν(·) such that for every F ∈ F ,

Pr
k←H.Gen(1λ)
x←A(k)

[H.Hash(k, x) = F (x)] = ν(T (λ)).

Definition 2.2 (T -Somewhere Statistical Correlation Intractability (SSCI)). [CLW18] Given a col-
lection F of function ensembles, we say that a hash family H is somewhere statistically correlation
intractable with respect to F if there is an additional key generation algorithm StatGen with the
following properties:

• Syntax. StatGen(1λ, fλ) takes as input the security parameter λ as well as the function fλ ∈
F . It outputs a hash key k.

• Security. For any function ensemble F ∈ F , the following two properties hold:

– Key Indistinguishability (KI). For every poly(T)-size adversary D, there exists a negli-
gible function ν(·) such that

| Pr
k←H.StatGen(1λ,fλ)

[D(k) = 1]− Pr
k←H.Gen(1λ)

[D(k) = 1]| = ν(T (λ)).

– T-Statistical Correlation Intractability (SCI).

Pr
k←H.StatGen(1λ,fλ)

[
∃x ∈ {0, 1}n(λ) : H.Hash(k, x) = F (x)

]
= negl(T (λ)).

That is, with overwhelming probability over the choice of k ← StatGen(1λ, fλ), input-
output pairs satisfying F do not exist.

Theorem 2.1. [PS19] For every set of polynomials n(·),m(·) and ρ(·), assuming the sub-exponential
hardness of LWE, there exists a constant 0 < ε < 1 for which there exist T -secure SSCI hash functions,
where T = 2λ

ε , according to Definition 2.1 for all functions that are computable in time ρ(λ) and map
n(λ)-bit inputs to m(λ)-bit outputs.

2.2 Lossy Trapdoor Functions

Lossy trapdoor functions were first defined and constructed (based on LWE) in an influential work
of Pass and Waters [PW08]. We use a variant of lossy trapdoor functions where the output space
(in lossy mode) is 2λ

ε
for some constant 0 < ε < 1, with key size and security parameter λ, in-

put space {0, 1}λ, and output space {0, 1}poly(λ). We require sub-exponential indistinguishability
between lossy and injective modes. We also assume (for simplicity in our proofs) that function
outcomes are invertible for all keys generated in injective mode, and lossy for all keys generated
in lossy mode. Lossy trapdoor functions with these properties can be obtained based on rate-1 per-
fectly correct FHE [BDGM19], via rate-1 OT [DGI+19]. We believe that our techniques also work
with lossy trapdoor functions that are almost-always lossy and almost-always injective (over the ran-
domness of sampling lossy/injective keys, as is true for the LWE-based construction in [PW08]).

Definition 2.3 ((ε, T ′))-secure Lossy Trapdoor Function). Let η = η(·) and m = m(·) denote poly-
nomial functions. A function family G = {Gλ}λ∈N is a (ε, T ′)-lossy trapdoor function family if G
satisfies the following properties:

12

• Syntax. The following algorithms exist:

– InjGen(1λ) is a probabilistic polynomial time algorithm that on input security parameter
λ outputs an injective functions’ index key ik, and a corresponding trapdoor td.

– LossyGen(1λ) is a probabilistic polynomial time algorithms that takes input security pa-
rameter λ and outputs a lossy functions’ index key ik.

– Eval(ik, x) is a polynomial time algorithm which takes as input index key ik and function
input x ∈ {0, 1}η(λ) and outputs function output y ∈ {0, 1}m(λ).

– Inv(ik, y) is a polynomial time algorithm which takes as input an injective index key ik
and function output y ∈ {0, 1}m(λ), and outputs function input x ∈ {0, 1}η(λ).

• Security. The following properties hold:

– Key Indistinguishability (KI). For every poly(T ′(λ))-size adversary D, there exists a
negligible function negl(·) such that:

| Pr
ik←G.LossyGen(1λ)

[D(ik) = 1]− Pr
ik←G.InjGen(1λ)

[D(ik) = 1]| = negl(T ′(λ))

– Injectivity and Trapdoor Inversion. For every ik ∈ Supp(InjGen), gik ∈ Gλ : {0, 1}n(λ) →
{0, 1}η(λ) is injective. Furthermore, for every x ∈ {0, 1}n(λ), Inv(td,Eval(ik, x)) = x.

– Lossiness. For every s ∈ Supp(LossyGen), gik ∈ Gλ : {0, 1}n(λ) → {0, 1}η(λ) is lossy, so
its range is of size at most 2λ

ε
.

– Evaluation. For every ik ∈ Supp(InjGen) ∪ Supp(LossyGen) and every x ∈ {0, 1}n(λ),
Eval(ik, x) = gik(x).

Theorem 2.2. [PW08, BDGM19] Assuming sub-exponential hardness of LWE, there exists a constant

0 < ε < 1 for which there exist (ε, 2λ
ε2

) lossy trapdoor functions according to Definition 2.3.

2.3 Round-by-Round Soundness

In what follows, we define round-by-round soundness [CCH+18].

Definition 2.4 (Round-by-Round Soundness). [CCH+18] Let Π = (P,V) be a ν(λ)-message pub-
lic coin interactive proof system for language L. For any x ∈ {0, 1}∗, and any prefix τ of a protocol
transcript, let ΠV(x, τ) denote the next message function of V on input x when the partial tran-
script is τ . We say that Π is round-by-round sound if there exists a deterministic (not necessarily
efficiently computable) function State that takes as input an instance x and a transcript prefix τ
and outputs either accept or reject such that the following properties hold:

1. If x /∈ L, then State(x, ∅) = reject, where ∅ denotes the empty transcript.

2. There exists a polynomial d(·) such that if State(x, τ) = reject for a transcript prefix τ , then
for every potential prover message α it holds that6

Pr
β←ΠV (x,τ |α)

[State(x, τ |α|β) = accept] = d(λ) · 2−|β|.

6Here, we point out that we modify the definition in [CCH+18] to replace negl(λ) with d(λ) · 2−|β| on the right hand
side of the following equation.

13

3. For every transcript τ , if State(x, τ) = reject then ΠV(x, τ) = 0.

3 Lossy Somewhere-Statistical Corelation Intractable Hash Functions

Definition 3.1 ((ε, T, T ′)-Lossy Statistical Correlation Intractability (Lossy SSCI)). Given a collec-
tion F of function ensembles, we say that a hash familyH is lossy somewhere statistically correlation
intractable with respect toF if it is T -SSCI forF according to Definition 2.2 and there is an additional
key generation algorithm LossyGen with the following properties:

• Syntax. LossyGen(1λ) takes as input security parameter λ. It outputs hash key k.

• Security. For any function ensemble F ∈ F , the following two properties hold:

– Key Indistinguishability (KI). For every poly(T ′)-size adversary D, there exists a neg-
ligible function ν(·) such that

| Pr
k←H.LossyGen(1λ)

[D(k) = 1]− Pr
k←H.Gen(1λ)

[D(k) = 1]| = ν(T ′(λ)).

– Lossiness. There exists a constant 0 < ε < 1, such that for every k ∈ H.LossyGen(1λ),

|{H.Hash(k, x)}
x∈{0,1}n(λ) | ≤ 2λ

ε
.

Theorem 3.1. For every polynomial ρ(·), every T ′(·) < T (·), if there exists a polynomial ρ′(·) such that
there exists a T (λ)-secure SSCI hash function family H for the family of functions computable in time
(ρ + ρ′)(λ) according to Definition 2.2 and (ε, T ′(λ))-secure lossy trapdoor function family G accord-
ing to Definition 2.3 where trapdoor inversion takes time ρ′(λ) in the worst case, then there exists an
(ε, T (λ), T ′(λ))-secure lossy SSCI hash function family H′ for the family of functions computable in time
ρ(λ) according to Definition 3.1.

Proof. We describe a construction which we prove satisfies the properties in Definition 3.1.

Construction 3.1. Let G = {Gλ : {0, 1}s
′(λ) × {0, 1}n(λ) → {0, 1}η(λ)}λ∈N be a (ε, T ′(λ))-secure lossy

trapdoor function and H = {hλ : {0, 1}s(λ) × {0, 1}η(λ) → {0, 1}m(λ)}λ∈N be a T (λ)-secure SSCI hash
function family for function family Ftd family as defined in the theorem statement. We define our T (λ)-
secure lossy SSCI hash function family H′ = {h′λ : {0, 1}s(λ)+s′(λ) × {0, 1}n(λ) → {0, 1}m(λ)}λ∈N as
follows:

• H′.Gen(1λ):

– Computes k ← H.Gen(1λ).

– Computes (ik, td)← G.InjGen(1λ).

– Outputs k′ = (k, ik).

• H′.StatGen(1λ, fλ):

– Computes (ik, td)← G.InjGen(1λ).

– Sets ftd,λ(·) = fλ(G.Inv(td, ·)).

14

– Computes k ← H.StatGen(1λ, ftd,λ).

– Outputs k′ = (k, ik).

• H′.LossyGen(1λ):

– Computes k ← H.Gen(1λ).

– Computes ik← G.LossyGen(1λ).

– Outputs k′ = (k, ik).

• H′.Hash(k′ = (k, ik), x):

– OutputsH.Hash(k,G.Eval(ik, x)).

Key Indistinguishability. Informally, the outputs of StatGen can be shown to be indistinguishable
from the outputs of Gen by the key indistinguishability property of the underlying hash function
family H. Specifically, if there exists an adversary A that breaks T -indistinguishability of H′.Gen
andH′.StatGen, then there exists adversary B that obtains challenge key k from the challenger for
the key indistinguishability game ofH, samples index key s← G.InjGen(1λ), and outputsA(k, ik).
Adversary B would succeed in distinguishing the two experiments, where k ← H.Gen(1λ) and
k ← H.StatGen(1λ, fλ), with the same advantage as A.

Informally, the outputs of LossyGen can be shown to be indistinguishable from the outputs of
Gen (and StatGen) by the key indistinguishability property of the underlying hash function family
H. If there exists an adversary A that breaks T ′-indistinguishability of H′.Gen and H′.LossyGen,
then there exists adversary B that obtains challenge index key ik from the challenger for the G
lossy key indistinguishability game, samples key k ← H.Gen(1λ), and outputs A(k, ik). Ad-
versary B would succeed in distinguishing the two experiments, where ik ← G.InjGen(1λ) and
ik← G.LossyGen(1λ), with the same advantage as A.

Statistical Correlation Intractability. This property follows from the SCI property of the hash
function family H and the injectivity of the trapdoor function. Towards a contradiction, suppose
there exists a function f = fλ ∈ Fλ and polynomial w(·) such that for infinitely many λ ∈ N,

Pr
k′←H′.StatGen(1λ,fλ)

[∃x : H′.Hash(k′, x) = f(x)] ≥ 1

w(T (λ))
.

Fix any (x, k′) such that H′.Hash(k′, x) = f(x), where k′ ∈ Supp(H′.StatGen(1λ, f)) can be parsed
as k′ = (k, ik), and define

y = G.Eval(ik, x). (1)

By construction ofH’.Hash and substituting Equation (1), we have that

H.Hash(k, y) = H.Hash(k,H.Eval(ik, x)) = H′.Hash(k′, x). (2)

Let td denote the trapdoor corresponding to injective index key ik. By injectivity and everywhere-
inversion, we have

f(x) = f(G.Inv(td,G.Eval(ik, x))). (3)

15

Define function ftd ∈ Ftd as ftd(·) = f(G.Inv(td, ·)). Substituting Equation (1) in Equation (3),

f(x) = f(G.Inv(td,G.Eval(ik, x))) = f(G.Inv(td, y)) = ftd(y).

Combining this with Equation (2) implies

H.Hash(k, y) = H.Hash(k′, x) = f(x) = ftd(y). (4)

Therefore, for any (x, k′) where k′ = (k, ik), td corresponds to the trapdoor for ik, and ftd is as
defined above, we have that

H′.Hash(k′, x) = f(x) =⇒ H.Hash(k, y) = ftd(y). (5)

Then, ∃(ik′, td′) ∈ Supp(InjGen(1λ)) such that

Pr
k←H.StatGen(1λ,fλ)

[∃y : H.Hash(k, y) = ftd′(y)] ≥ Pr
k←H.StatGen(1λ,fλ),

(ik,td)←InjGen(1λ)

[∃y : H.Hash(k, y) = ftd(y)]

≥ Pr
k′←H′.StatGen(1λ,fλ)

[∃x : H′.Hash(k′, x) = f(x)]

≥ 1

w(T (λ))
(6)

This contradicts the statistical correlation intractability ofH, as desired.

Lossiness. The lossiness of the resulting hash function H′ follows by the lossiness of the un-
derlying lossy trapdoor function family G. Since |G.Eval(ik, x)| ≤ 2λ

ε
when index key ik ←

G.LossyGen(1λ), we have that |{H.Hash(k,G.Eval(ik, x))}x∈{0,1}n(λ) | ≤ 2λ
ε

when hash key (k, ik) ←
H′.LossyGen(1λ).

Corollary 3.1. Assuming sub-exponential hardness of LWE, there exists a constant 0 < ε < 1 for which

there exist (ε, 2λ
ε
, 2λ

ε2

) lossy SSCI hash functions according to Definition 3.1.

4 Non-Interactive Sumcheck

4.1 The Sumcheck Protocol

Construction 4.1 (Sumcheck). [LFKN92, Sha92] The sumcheck protocol Π = (P,V) is an interactive
proof for languageLB,F,ν,d = {(a, p) :

∑
x1,...,xν∈B p(x1, . . . , xν) = a} consisting of field F, subsetB ⊂ F,

field elements a ∈ F, and polynomials p(·) of individual degree d. Π involves the following ν rounds:

1. In Round 1,

• P computes and sends the polynomial p1(·) =
∑

x2,...,xν∈B p(·, x2, . . . , xν).

• V checks that p1(·) is of degree at most d and that a =
∑

x1∈B p1(x1). If the check passes, V
samples uniform r1 ← F, sets v2 = p1(r1), and sends r1.

2. In Round i for i ∈ [ν],

16

• P computes and sends the polynomial pi(·) =
∑

xi+1,...,xν∈B p(r1, . . . , ri−1, ·, xi+1, . . . , xν).

• V checks that pi(·) is of degree at most d and that vi =
∑

xi∈B pi(xi). If i = ν, it additionally
checks that vν = p(r1, . . . , rν). If the check passes, V samples uniform ri ← F, sets vi+1 =
pi(ri), and sends ri to the prover.

The verifier V accepts the proof for (a, p) if all checks in each round pass.

Theorem 4.1. [LFKN92, Sha92] Let Π = (P,V) be the interactive sumcheck protocol for language
LB,F,ν,d in field F from Construction 4.1 with security parameter λ. For all (a∗, p∗) /∈ L and for all
unbounded cheating provers P∗

Pr
V

[OutputV(P∗(a∗, p∗)↔ V(a∗, p∗)) = 1] ≤ ν · d
|F|

= negl(λ)

where d is the individual degree of each variable in polynomial p∗(·) and |F| = λω(1)/(ν · d).

4.2 Instantiating Fiat-Shamir for Sumcheck

Definition 4.1 (Selective Soundness). Let Π = (P,V) denote a non-interactive sumcheck protocol
in the CRS model for language LB,F,ν,d over field F with subset B, ν variables and individual
degree d. We say that Π is selectively sound if for all (a∗, p∗) 6∈ L, where p∗(·) is a ν-variate
polynomial of individual degree d in each variable, and for all PPT cheating prover P∗ we have

Pr
CRS←Setup(1λ)
τ∗←P(CRS,p∗,a∗)

[V(CRS, (a∗, p∗), τ∗) = 1] = negl(λ).

Theorem 4.2. Let B ⊂ F, and ν = ν(λ). Let Π = (P,V) be the interactive, statistically sound
sumcheck protocol for LB,F,ν,d from Construction 4.1. There exists a polynomial ρ(·), such that if there
exists an (ε, T (λ), T ′(λ))-secure lossy SSCI hash function family H : {0, 1}n(λ) → {0, 1}m(λ) where
n(λ) = d log(|F|) and m(λ) = log(|F|) for functions F computable in time ρ(d, λ) according to Defi-
nition 3.1, then the Fiat-Shamir paradigm will yield a non-interactive, computationally selectively sound
sumcheck protocol satisfying Definition 4.1, where the verifier runs in time ν · poly(|B|, d, log |F|) and
the prover runs in time poly(|B|ν , dν , log |F|), as long as: there exists a polynomial poly(·) such that
poly(T) ≥ max(2νλ

ε
, |B|ν , dν), and poly(T ′) ≥ max(|B|ν , dν).

Proof. We describe a construction that we prove achieves the desired completeness and soundness.

Construction 4.2. Let Π = (P,V) be the interactive sumcheck proof for language LB,F,ν,d = {(a, p) :∑
x1,...,xν∈B p(x1, . . . , xν) = a} for B ⊂ F and H be the T (λ)-secure lossy SSCI hash function family for

function family F = {Fλ}λ∈N. We define the non-interactive protocol Π′ = (P ′,V ′) for language LB,F,ν,d.
The common reference string CRS consists of ν keys:

• {ki ← H.Gen(1λ)}i∈[ν].

The prover P ′ obtains input (CRS, (a, p)). It then performs the following steps:

1. In Step 1, P ′

• Computes the polynomial p1(·) =
∑

x2,...,xν∈B p(·, x2, . . . , xν) by invoking P .

17

• Computes r1 = H.Hash(k1, p1).

• Sets τ1 = (p1, r1)

2. In Step i for i ∈ [ν], P ′

• Computes pi(·) =
∑

xi+1,...,xν∈B p(r1, . . . , ri−1, ·, xi+1, . . . , xν) by invoking P on τi−1.

• Computes ri = H.Hash(ki, pi).

• Sets τi = (p1, r1, . . . , pi, ri).

3. At the end of this process, P ′ sends proof τ = (p1, r1, . . . , pν , rν).

The verifier V ′ obtains input (CRS, (a, p), τ) and it performs the following steps:

1. V ′ parses τ = (p1, r1, . . . , pν , rν).

2. In Step 1, V ′

• Checks that p1(·) is of degree at most d and that a =
∑

x1∈B p1(x1) by invoking V .

• Verifies that r1 = H.Hash(k1, p1).

• Sets v2 = p1(r1).

3. In Step i for i ∈ [ν], V ′

• Checks that pi(·) is of degree at most d and that vi =
∑

xi∈B pi(xi) by invoking V .

• Verifies that ri = H.Hash(ki, pi).

• Sets vi+1 = pi(ri).

4. If all checks pass, V ′ accepts if vν = p(r1, . . . , rν). Otherwise, V ′ rejects.

Completeness. The completeness of the non-interactive protocol Π′ follows from the complete-
ness of the interactive protocol Π.

Soundness. We will prove that selective soundness of our non-interactive protocol Π′ follows
from the round-by-round soundness of the interactive protocol Π and the lossy SSCI ofH.

Assume for the sake of contradiction that there exists (a∗, p∗) /∈ L, PPT prover P∗, and polyno-
mial w′(·) such that P∗ breaks selective soundness of our non-interactive protocol Π′, that is, for
large enough λ ∈ N,

Pr
CRS←Setup(1λ)
τ∗←P∗(CRS,p∗)

[V ′(CRS, (a∗, p∗), τ∗) = 1] ≥ 1

w′(λ)
.

We parse the proof which P∗ outputs as τ∗ = (p∗1, r
∗
1, . . . , p

∗
ν , r
∗
ν). By the round-by-round sound-

ness property (Definition 2.4) of the underlying interactive protocol Π, there exists a deterministic
public State function such that

State((a∗, p∗), ∅) = reject and

Pr
CRS←Setup(1λ)

τ∗←P∗(CRS,(a∗,p∗))

[State((a∗, p∗), τ∗) = accept] ≥ 1

w′(λ)
.

18

By definition of the state function State, this means that for P∗, ∃i = i(λ) ∈ [ν(λ)] such that

Pr
CRS←Setup(1λ)

τ∗←P∗(CRS,(a∗,p∗))

[State((a∗, p∗), τ∗i−1) = reject ∧ State((a∗, p∗), τ∗i) = accept] ≥ 1

w(λ)
,

where w(λ) = ν(λ)w′(λ) and we define partial transcript τj = (p∗1, r
∗
1, . . . , p

∗
j , r
∗
j) for j ∈ [ν(λ)].

We also note that the State function for the sumcheck protocol at round i, simply performs the
verifier’s checks and also checks if the latest claim is true, that is, it checks if∑

xi+1,...,xν∈B
p∗(r∗1, . . . , r

∗
i−1, r

∗
i , xi+1, . . . , xν) = p∗i (r

∗
i).

If these checks pass, it accepts, and otherwise rejects. We denote by Ei(a∗, p∗, τ∗) the event that

State((a∗, p∗), τ∗i−1) = reject ∧ State((a∗, p∗), τ∗i) = accept.

We fix P∗ and i = i(λ). Then we construct the following hybrids in which we change the CRS,
but leave the rest of the protocol the same. The first hybrid corresponds to the way the CRS is
generated in the actual protocol. Both the other hybrids, and our reductions, obtain (non-uniform)
input i = i(λ).

Hybrid0 : kj ← H.Gen(1λ) for 0 < j ≤ i− 1

ki ← H.Gen(1λ)

kj ← H.Gen(1λ) for i < j ≤ ν
Hybrid1 : kj ← H.LossyGen(1λ) for 0 < j ≤ i− 1

ki ← H.Gen(1λ)

kj ← H.Gen(1λ) for i < j ≤ ν
Hybrid2 : kj ← H.LossyGen(1λ) for 0 < j ≤ i− 1

ki ← H.StatGen(1λ, fλ)

kj ← H.Gen(1λ) for i < j ≤ ν

where for Hybrid2, fλ ∈ Fλ will be defined later in Figure 2.

Next, we complete the proof of soundness by analyzing the probability that the verifier accepts a
proof in each of these hybrids.

Claim 4.1. There exists polynomial w(·) such that for large enough λ ∈ N,

Pr
CRS←Hybrid1

τ∗←P∗(CRS,(a∗,p∗))

[Ei(a∗, p∗, τ∗)] ≥
1

w(λ)
.

Proof. We will prove that the claim follows from the KI property of H. We can consider sub-
hybrids Hybrid0,j for j ∈ [i]. Let Hybrid0,0 = Hybrid0 and Hybrid0,i = Hybrid1 where we move from
Hybrid0,j−1 to Hybrid0,j by switching the jth key from Gen to LossyGen for j ∈ [i].

19

If the claim is not true, then there exists polynomial w′(λ) = 2ν(λ)w(λ) and some j ∈ [i − 1],
such that ∣∣∣∣∣ Pr

CRS←Hybrid0,j−1

τ∗←P∗(CRS,(a∗,p∗))

[Ei(a∗, p∗, τ∗)]− Pr
CRS←Hybrid0,j

τ∗←P∗(CRS,(a∗,p∗))

[Ei(a∗, p∗, τ∗)]

∣∣∣∣∣ ≥ 1

w′(λ)
,

We define adversary B in Figure 1 against the lossy key indistinguishability property ofH.

B interacts with a challenger Ch and with oracle access to P∗, does the following:

• Obtain challenge key k from Ch.

• Sample k` ← H.LossyGen(1λ) for ` ∈ [j − 1].

• Sample k` ← H.Gen(1λ) for ` ∈ [j + 1, ν].

• Set CRS = (k1, . . . , kj−1, k, kj+1, . . . , kν).

• Forward (CRS, (p∗, a∗)) to P∗, and obtain τ∗ from P∗.

• Compute b = (Ei(a∗, p∗, τ∗)).

• Forward b to Ch.

Figure 1: Reduction B that interacts with challenger Ch and breaks (lossy) KI of jthH

Next, note that B runs in time max(poly(λ), T̃) where T̃ denotes the time required to check
event Ei(a∗, p∗, τ∗), which is dominated by the time required to compute the polynomials q∗i (·) =
Σxi+1,...xνp

∗(r∗1, . . . , r
∗
i , xi+1, . . . xν) and q∗i−1(·) = Σxi,...xνp

∗(r∗1, . . . , r
∗
i−1, xi, . . . xν), which is at most

poly(|B|ν , dν), which (by assumption in the theorem) is at most poly(T ′). B will succeed in distin-
guishing k ← LossyGen(1λ) from k ← Gen(1λ) with the same advantage as P∗. Formally,∣∣∣∣∣ Pr

k←Gen(1λ)
[B(k) = 1]− Pr

k←LossyGen(1λ)
[B(k) = 1]

∣∣∣∣∣
≥

∣∣∣∣∣ Pr
CRS←Hybrid0,j−1

τ∗←P∗(CRS,(a∗,p∗))

[Ei(a∗, p∗, τ∗)]− Pr
CRS←Hybrid0,j

τ∗←P∗(CRS,(a∗,p∗))

[Ei(a∗, p∗, τ∗)]

∣∣∣∣∣ ≥ 1

w′(λ)
.

We have reached a contradiction, as desired.

Claim 4.2. There exists a polynomial w(·) such that for large enough λ ∈ N,

Pr
CRS←Hybrid1

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(Ei(a∗, p∗, τ∗)) ∧ (∀j ∈ [i− 1], r∗j = r′j)] ≥
1

2νλε
· 1

w(λ)
,

where we parse τ∗ as τ∗ = (p∗1, r
∗
1, . . . , p

∗
ν , r
∗
ν), and Sj := {H.Hash(kj , x)}

x∈{0,1}n(λ) for j ∈ [i− 1].

20

Proof. This claim will follow from the previous claim, and the lossiness of H. Since the guesses r′j
for j ∈ [i− 1] do not interact with the prover P∗ or V ′,

Pr
CRS←Hybrid1

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(Ei(a∗, p∗, τ∗)) ∧ (∀j ∈ [i− 1], r∗j = r′j)]

= Pr
CRS←Hybrid1

τ∗←P∗(CRS,(a∗,p∗))

[(Ei(a∗, p∗, τ∗))]× Pr
CRS←Hybrid1

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(∀j ∈ [i− 1], r∗j = r′j)].

By the previous claim, there exists a polynomial w(·) such that for large enough λ ∈ N,

Pr
CRS←Hybrid1

τ∗←P∗(CRS,(a∗,p∗))

[(Ei(a∗, p∗, τ∗))] ≥
1

w(λ)

Since {r′j}j∈[i−1] are sampled uniformly at random over the space of lossy outcomes of H, and
since this space has size |Sj | ≤ 2λ

ε
, we have

Pr
CRS←Hybrid1

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(∀j ∈ [i− 1], r∗j = r′j)] ≥
(

1

|Sj |

)(i−1)

≥ 1

2(i−1)λε
≥ 1

2νλε
.

which completes the proof of the claim.

Claim 4.3. For Hybrid2 defined with respect to fλ in Figure 2, there exists a polynomial w(·) such that for
large enough λ ∈ N,

Pr
CRS←Hybrid2

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(Ei(a∗, p∗, τ∗)) ∧ (∀j ∈ [i− 1], r∗j = r′j)] ≥
1

2νλε
· 1

w(λ)
,

where we parse τ∗ as τ∗ = (p∗1, r
∗
1, . . . , p

∗
ν , r
∗
ν) and Sj := {H.Hash(kj , x)}

x∈{0,1}n(λ) for j ∈ [i− 1].

Proof. This claim follows from the T (λ) key indistinguishability of H and the previous claim.
Assume that the statement of the claim is not true, then there exists polynomial w′(·) such that∣∣∣∣∣ Pr

CRS←Hybrid1
τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(Ei(a∗, p∗, τ∗)) ∧ (∀j ∈ [i− 1], r∗j = r′j)]

− Pr
CRS←Hybrid2

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(Ei(a∗, p∗, τ∗)) ∧ (∀j ∈ [i− 1], r∗j = r′j)]

∣∣∣∣∣
≥ 1

2νλε
· 1

w(λ)
≥ 1

w′(T (λ))

21

The function fλ has hardwired:

• i, p∗, (r′1, . . . r
′
i−1) such that r′j is sampled uniformly in Sj for j ∈ [i− 1], and

• q′i(·) =
∑

xi+1,...,xν∈B p
∗(r′1, . . . , r

′
i−1, ·, xi+1, . . . , xν).

On input p∗i , fλ computes output as follows:

• Sample r′i uniformly from the d roots of p∗i (·)− q′i(·)a.

• Output r′i.

aThis can be done with overwhelming probability via the Cantor-Zassenhaus [CZ81] algorithm, which can be
used to generate a specific root in any arbitrary ordering of the roots.

Figure 2: Function fλ ← Fλ

B interacts with a challenger Ch and with oracle access to P∗, does the following:

• Sample {r′j ← Sj}j∈[i−1], use them to define fλ as in Figure 2, and send fλ to Ch.

• Obtain challenge key k from Ch.

• Samples kj ← H.LossyGen(1λ) for j ∈ [i− 1].

• Samples kj ← H.Gen(1λ) for i+ 1 ≤ j ≤ ν.

• Sets CRS = (k1, . . . , ki−1, k, ki+1, . . . , kν).

• Forwards (CRS, (a∗, p∗)) to P∗, and obtains proof τ∗ from P∗.

• Compute b = (Ei(a∗, p∗, τ∗)) ∧ (∀j ∈ [i− 1], r∗j = r′j).

• Forward b to Ch.

Figure 3: Reduction B that interacts with challenger Ch and breaks (statgen) KI of ith hashH

where the last inequality follows by our setting of poly(T (λ)) ≥ 2νλ
ε
. Then we define adversary B

in Figure 3 against the T (λ) key indistinguishability ofH. As defined poly(T)-sized B will succeed
in distinguishing k ← Gen(1λ) from k ← StatGen(1λ, fλ) with the same advantage as P∗. Formally,∣∣∣∣∣ Pr

k←Gen(1λ)
[B(k) = 1]− Pr

k←StatGen(1λ)
[B(k) = 1]

∣∣∣∣∣
=

∣∣∣∣∣ Pr
CRS←Hybrid1

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(Ei(a∗, p∗, τ∗)) ∧ (∀j ∈ [i− 1], r∗j = r′j)]

22

− Pr
CRS←Hybrid2

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(Ei(a∗, p∗, τ∗)) ∧ (∀j ∈ [i− 1], r∗j = r′j)]

∣∣∣∣∣
≥ 1

w′(T (λ))
.

We have reached a contradiction, proving our claim.

Claim 4.4. For Hybrid2 defined with respect to fλ in Figure 2, there exists a negligible function µ(·) such
that for large enough λ ∈ N,

Pr
CRS←Hybrid2

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(Ei(a∗, p∗, τ∗)) ∧ (∀j ∈ [i− 1], r∗j = r′j)] ≤ d · µ(T (λ)),

where we parse τ∗ as τ∗ = (p∗1, r
∗
1, . . . , p

∗
ν , r
∗
ν) and Sj := {H.Hash(kj , x)}

x∈{0,1}n(λ) for j ∈ [i− 1].

Proof. This claim follows by the statistical correlation intractability ofH. For sake of contradiction
assume there exists polynomial w(·) such that for large enough λ ∈ N,

Pr
CRS←Hybrid2

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(Ei(a∗, p∗, τ∗)) ∧ (∀j ∈ [i− 1], r∗j = r′j)] ≥
d

w(T (λ))
. (7)

Fix (CRS, τ∗, {r′j}j∈[i−1]) such that Ei(a∗, p∗, τ∗) and r∗j = r′j for j ∈ [i − 1] where {r′j ∈ Sj}j∈[i−1],
CRS ∈ Support(Hybrid2), and τ∗ ∈ Support(P∗(CRS, (a∗, p∗))).

Let us define correctly evaluated polynomials for j ∈ [ν] as

q∗j (·) :=
∑

xj+1,...,xν∈B
p∗(r∗1, . . . , r

∗
j−1, ·, xj+1, . . . , xν).

From event Ei(a∗, p∗, τ∗) we have that State((a∗, p∗), τ∗i−1) = reject and State((a∗, p∗), τ∗i) = accept.
The sumcheck protocol’s State function on input ((a∗, p∗), τ∗k) for any k ∈ [ν] runs all of the follow-
ing checks:

1. In Step 1, State

• Checks that p∗1(·) is of degree at most d and that a =
∑

x1∈B p
∗
1(x1) by invoking V .

• Sets v∗2 = p∗1(r∗1).

2. In Step j for j ∈ [k], State

• Checks that p∗j (·) is of degree at most d and that v∗j =
∑

xj∈B p
∗
j (xj) by invoking V .

• Sets v∗j+1 = p∗j (r
∗
j).

3. State checks that the last claim is correct, that is

v∗k =
∑

xk+1,...,xν∈B
p∗(r∗1, . . . , r

∗
k, xk+1, . . . , xν).

If all checks pass, State outputs accept. Otherwise, outputs reject.

23

Therefore, if State((a∗, p∗), τ∗i−1) = reject, and State((a∗, p∗), τ∗i) = accept, this means that
v∗i =

∑
xi+1,...,xν∈B p

∗(r∗1, . . . , r
∗
i , xi+1, . . . , xν), but v∗i−1 6=

∑
xi,...,xν∈B p

∗(r∗1, . . . , r
∗
i−1, xi, . . . , xν).

This implies that r∗i is such that p∗i (r
∗
i) = q∗i (r

∗
i). In other words, r∗i is a root of the polynomial

p∗i (·)− q∗i (·). This implies that

Pr
CRS←Hybrid2

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(r∗i is a root of p∗i (·)− q∗i (·)) ∧ (∀j ∈ [i− 1], r∗j = r′j)] ≥
d

w(T (λ))
(8)

We now turn to the function fλ which, conditioned on r∗j = r′j for j ∈ [i− 1], has hardwired

q′i(·) =
∑

xi+1,...,xν∈B
p∗(r′1, . . . , r

′
i−1, ·, xi+1, . . . , xν) = q∗i (·).

This means that fλ(p∗i), by definition, also outputs a root of the polynomial p∗i (·) − q∗i (·). Let us
denote this root by s∗. By the statistical CI property ofH, we have that

Pr
CRS←Hybrid2

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[r∗i = s∗ ∧ (∀j ∈ [i− 1], r∗j = r′j)] = negl(T (λ)) (9)

By Equations (8) and (9), we have that

Pr
CRS←Hybrid2

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[(r∗i is a root of p∗i (·)−q∗i (·), r∗i 6= s∗)∧(∀j ∈ [i−1], r∗j = r′j)] ≥
d

w(T (λ))
−negl(T (λ))

(10)
Roughly, the previous equation implies that P∗ is “guessing” where the function’s chosen root

s∗ is and avoiding it, with better probability than it should be able to (due to key indistinguisha-
bility ofH). Therefore, we now build a reduction B in Figure 4 that contradicts key indistinguisha-
bility ofH. Then, we have that B runs in time |B|ν ≤ poly(T) and is such that by Equation (10),

Pr
CRS←Hybrid2

τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[B outputs 0 ∧ (∀j ∈ [i− 1], r∗j = r′j)|Ch used s∗1] ≥ 1

w(T (λ))
− negl(T (λ)) (11)

and
Pr

CRS←Hybrid2
τ∗←P∗(CRS,(a∗,p∗))
{r′j←Sj}j∈[i−1]

[B outputs 0 ∧ (∀j ∈ [i− 1], r∗j = r′j)|Ch used s∗0] = negl(T (λ)) (12)

which contradicts T (λ)-key-indistinguishability ofH.

Finally, we note that the last two claims yield a contradiction, therefore Theorem 4.1 must be
sound, as desired.

Runtimes. We first calculate the online computation needed to compute a function in fλ ∈ Fλ,
defined in Figure 2. In particular we need to calculate the runtime for function fλ to sample roots

24

B interacts with a challenger Ch and with oracle access to P∗, does the following:

• Sample {r′j ← Sj}j∈[i−1] and define f0,λ with root s∗0 and f1,λ with root s∗1 as in Figure 2,
where s∗0 and s∗1 are two independent, uniformly sampled roots of p∗i (·)− q′i(·).

• Forward (f0,λ, f1,λ) to Ch, and obtain challenge key k from Ch.

• Sample kj ← H.LossyGen(1λ) for j ∈ [i− 1].

• Sample kj ← H.Gen(1λ) for i < j ≤ ν.

• Set CRS = (k1, . . . , ki−1, k, ki+1, kν).

• Forward (CRS, (a∗, p∗)) to P∗, and obtain proof τ∗ from P∗.

• Parse τ∗ as τ∗ = (p∗1, r
∗
1, . . . , p

∗
ν , r
∗
ν).

• If ∃j ∈ [i− 1] such that r∗j 6= r′j , output 0. If r∗i 6∈ {s∗0, s∗0}, output 0.

• If r∗i = s∗0, output 0. Else, output 1.

Figure 4: Reduction B that interacts with challenger Ch and breaks (statgen) KI of ith hashH

of p∗i (·)− q′i(·) for some i ∈ [ν]. For F and polynomial p(·) of individual degree d, the root-finding
algorithm will take time poly(d, log |F|) [CZ81]. Therefore, the time needed to run the H.Hash
algorithm will be poly(d, log |F|). The overall verifier runtime equals the time needed to compute
H.Hash, ν times, in addition to the time required to run verification for the underlying sumcheck
protocol, which is ν · poly(|B|, d, log |F|). The prover’s runtime is poly(|B|ν , dν , log |F|).

For simplicity, in all our reductions, we assumed that the polynomial (p∗, a∗) was chosen selec-
tively by the prover, and therefore is known to the challenger before generating the CRS. Since we
assume at least T ′(λ) hardness of the underlying primitives, we observe that all the same proofs go
through as long for a fully adaptive choice of a∗ (since bad challenges do not depend on a∗), and
as long as the challenger can guess p∗ with probability 1

w(T ′(λ)) for some polynomial w(·), giving
us the following (strengthened) theorem.

Definition 4.2 (U -Somewhat Adaptive Soundness). Let Π = (P,V) denote a non-interactive sum-
check protocol in the CRS model for language LB,F,ν,d over field F with subset B, ν variables and
individual degree d. We say that Π is U -somewhat adaptively sound if for every set U of size at
most U , and all poly(λ)-sized cheating provers P∗ we have

Pr
CRS←Setup(1λ)

(τ∗,p∗,a∗)←P(CRS)

[V(CRS, (a∗, p∗), τ∗) = 1| p∗ ∈ U] = negl(λ),

where p∗(·) denotes a ν-variate polynomial of individual degree d in each variable.

Theorem 4.3. Let B ⊂ F, and ν = ν(λ). Let Π = (P,V) be the interactive, statistically sound sum-
check protocol for LB,F,ν,d from Construction 4.1. There exists a polynomial ρ(·), such that if there exists

25

an (ε, T (λ), T ′(λ))-secure lossy SSCI hash function family H : {0, 1}n(λ) → {0, 1}m(λ) where n(λ) =
d log(|F|) and m(λ) = log(|F|) for functions F computable in time ρ(d, λ) according to Definition 3.1,
then the Fiat-Shamir paradigm will yield a non-interactive, computationally U -somewhat adaptively sound
sound sumcheck protocol satisfying Definition 4.2, where the verifier runs in time ν · poly(|B|, d, log |F|)
and the prover runs in time poly(|B|ν , dν , log |F|), as long as: there exists a polynomial poly(·) such that
poly(T) ≥ max(2νλ

ε
, |B|ν , dν , U), and poly(T ′) ≥ (|B|ν , dν , U).

5 #SAT Reduces to EOL under Sub-exponential LWE

In this section, we establish the hardness of finding a Nash equilibrium by proving (in Theorem
5.1) that our non-interactive sumcheck protocol satisfies certain additional (stronger) soundness
properties, that we denote by partial adaptive soundness and partial adaptive unambiguity. We
then combine this with the work of Choudhuri et. al. [CHK+19a], who show that non-interactive
sumcheck with these properties suffices to establish a reduction between instances of #SAT and
rSVL, which reduces to the PPAD complete end-of-line problem (EOL). We note that while the for-
mal theorem in [CHK+19a] required full adaptive soundness of non-interactive sumcheck, the
proof of this theorem goes through even when the underlying sumcheck satisfies the weaker
soundness properties that we discuss below.

Definition 5.1 (Partial Adaptive Unambiguous Soundness). Let p : Fν → F be a ν-variate polyno-
mial of degree at most d in each variable and r = (r1, . . . , rj) ∈ Fj be any prefix with j ≤ ν. Let
ΠFS = (P(CRS, p),V(CRS, a, p, r)) denote the non-interactive sumcheck protocol with security
parameter λ obtained by instantiating Fiat-Shamir for sumcheck according to Construction 4.2,
where the verifier on input a value a∗, polynomial p∗, prefix r∗ and proof τ∗ outputs 1 if all claims
after the prefix r∗ accept. We say that ΠFS satisfies partial adaptive unambiguous soundness if in
addition to completeness, it satisfies the following properties.

• Partial Adaptive Soundness. For every PPT cheating prover P∗, and every j ∈ [ν], denoting
prefix r∗1, . . . , r

∗
j for j ≤ ν by r∗, we have

Pr

[
V(CRS[j+1,m], (a

∗, p∗, r∗), τ∗) = 1

∣∣∣∣∣((a
∗,r∗),τ∗)←P∗(CRS,p∗),
∀k∈[j] r∗k∈(Sk∪[d+1]),∑

z∈Bn−j p
∗(r∗,z)6=a∗

]
= negl(λ),

where for j ∈ [ν], Sj := {H.Hash(kj , x)}x∈{0,1}∗ denotes the space of all outcomes of the jth

hash function, and CRS[j+1,m] denotes hash keys kj+1, . . . km.

• Partial Adaptive Unambiguity. For every PPT cheating prover P∗, and every j ∈ [ν], denot-
ing prefix r∗1, . . . , r

∗
j for j ≤ ν by r∗, we have

Pr

[
(V(CRS[j+1,m],(a

∗,p∗,r∗),τ∗)=1)
∧

(V(CRS[j+1,m],(a
∗,p∗,r∗),τ)=1)

∣∣∣∣∣((a
∗,r∗),τ∗,τ)←P∗(CRS,p∗),
∀k∈[j] r∗k∈(Sk∪[d+1]),

τ∗ 6=τ,
∑

z∈Bn−j p
∗(r∗,z)=a∗

]
= negl(λ)

where for j ∈ [ν], Sj := {H.Hash(kj , x)}x∈{0,1}∗ denotes the space of all outcomes of the jth

hash function, and CRS[j+1,m] denotes hash keys kj+1, . . . km.

26

Intuitively, the partial adaptive soundness requirement states that for selective choice of p∗, the
prover on input the CRS cannot adaptively generate a∗, prefix r∗ = r∗1, . . . , r

∗
j where j ∈ [ν], and

steps (j + 1, . . . , ν) of the transcript of a non-interactive proof with prefix r∗ that is accepted by
the verifier, unless

∑
{xi∈B}i∈[j+1,ν]

p∗(r∗1, . . . , r
∗
j , xj+1, . . . xν) = a∗. Importantly, we note that the

verifier only checks steps (j + 1, . . . , ν) of the proof.
Meanwhile, the partial adaptive unambiguity requirement considers selective choice of p∗ and

allows the prover to adaptively generate a∗, prefix r∗ = r∗1, . . . , r
∗
j where j ∈ [ν], and steps (j+1, . . . , ν)

of two different transcripts of a non-interactive proof with prefix r∗. Then, the property requires that
a verifier that only checks steps (j + 1, . . . , ν) rejects at least one of the two transcripts.

Theorem 5.1. Let B ⊂ F, and ν. Let Π = (P,V) be the interactive, statistically sound sumcheck pro-
tocol for LB,F,ν from Construction 4.1. If there exists an (ε, T (λ), T ′(λ))-secure lossy SSCI hash function
family H : {0, 1}n(λ) → {0, 1}m(λ) where n(λ) = d log(|F|) and m(λ) = log(|F|) for function fam-
ily F according to Definition 3.1, then the Fiat-Shamir paradigm will yield a non-interactive, partially
adaptively unambiguously sound sumcheck protocol according to Definition 5.1, where the verifier runs in
time ν · poly(|B|, d, log |F|) and the prover runs in time poly(|B|ν , d, log |F|), as long as: there exists a
polynomial poly(·) such that poly(T) ≥ max(2νλ

ε
, |B|ν) and poly(T ′) ≥ |B|ν .

Proof. (Sketch). We now sketch the proofs of partial adaptive soundness and partial adaptive un-
ambiguity of our non-interactive sumcheck protocol. These follow along the lines of our main
proof of (selective) soundness (Theorem 4.2), except by noting that when hash keys {kj}j∈[i] are
generated in lossy mode, the reduction can guess them with probability 2−νλ

ε
, which suffices to

obtain a contradiction to correlation intractability. We outline the proofs in more detail below.

Partial Adaptive Soundness. This property follows from the round-by-round soundness of the
underlying interactive sumcheck protocol and the lossy SSCI ofH, the proof of which follows the
proof of soundness for Π. Consider a malicious prover P∗ that on input (CRS, p∗), where CRS =
(k1, . . . , kν) and p∗(·) is a ν-variate polynomial with individual degree d, outputs ((a∗, r∗), τ∗),
where prefix r∗ = (r∗1, . . . , r

∗
j) for j ∈ [ν] and proof τ∗ = (r∗, p∗j+1, r

∗
j+1, . . . , p

∗
ν , r
∗
ν). Towards a

contradiction, suppose these are such that∑
xj+1,...,xν∈B

p∗(r∗, xj+1, . . . , xν) 6= a∗.

We can think of P∗ as providing a non-interactive sumcheck proof for false instance (a∗, g∗) where
the polynomial g∗(·) is a (ν − j)-variate polynomial with individual degree d defined as follows

g∗(xj+1, . . . , xν) := p∗(r∗1, . . . , r
∗
j , xj+1, . . . , xν).

We can use the same hybrids in our previous proof to switch into lossy mode with a slightly mod-
ified CI function description. In this setting, the CI functions fλ from Figure 2 will be hardwired
with p∗ and be additionally required to guess the prefix r∗, which can be thought of as guess-
ing the polynomial g∗ to be proven. This prefix has the property that r∗i ∈ Si ∪ [d + 1] where
Si = {H.Hash(kj , x)}

x∈{0,1}n(λ) for all i ∈ [j]. As such, our CI function fλ will be altered to sample

the challenges within the prefix uniformly at random from this space. Since d � 2λ
ε
, our guess-

ing probability will still bounded by 2−νλ
ε

for some 0 < ε < 1. With these modifications, partial

27

adaptive soundness follows from our previous soundness proof.

Partial Adaptive Unambiguity. This property follows from the soundness and unambiguity of
the underlying sumcheck protocol. Consider a malicious prover P∗ that on input (CRS, p∗), where
CRS is the common reference string and p∗(·) is a ν-variate polynomial with individual degree d,
outputs ((a∗, r∗), τ∗, τ), where prefix r∗ = (r∗1, . . . , r

∗
j) for j ∈ [ν] and proofs τ∗ 6= τ . In this case,

we know that ∑
xj+1,...,xν∈B

p∗(r∗, xj+1, . . . , xν) = a∗.

We first note that the protocol, for any step i where i ∈ [ν], specifies deterministic calculations
to compute the next univariate polynomial pi and the challenge ri. This necessarily means that
there is one, unique, way to take a true claim in the i − 1th step to another true claim in the ith

step. Thus, the only way for P∗ to produce two proofs τ∗ 6= τ , is for P∗ to deviate from the
protocol and produce a false claim at some step j < k ≤ ν in at least one of the proofs. Without
loss of generality, assume that τ∗ is the proof with the false claim at the kth step. Given that
τ∗ = (r∗, p∗j+1, r

∗
j+1, . . . , p

∗
k, r
∗
k, . . . , p

∗
ν , r
∗
ν), this reduces to the case where∑

xj+1,...,xν∈B
p∗(r∗k, xj+1, . . . , xν) 6= a∗

with new prefix r∗k = (r∗, r∗j+1, . . . , r
∗
k) and new proof τ∗k = (r∗k, p

∗
k, r
∗
k, . . . , p

∗
ν , r
∗
ν). This case is

exactly the premise of the partial adaptive soundness property with prefix length k. As such,
partial adaptive unambiguity also follows.

We have the following theorem from [CHK+19a], modified to use our non-interactive sum-
check protocol.

Theorem 5.2. For a parameter ν, fix a finite field F of sufficiently large size p (say O(2(ν1/ε
2
)), where

ε comes from the assumed sub-exponential security of LWE). Let f be a ν-variate polynomial over F of
individual degree at most d. Obtain instances of the rSVL family in [CHK+19a] using the non-interactive
sumcheck protocol in Construction 4.2. Then given an adversaryA that solves these instances in polynomial
time and with non-negligible probability ε = ε(ν), it is possible to either

• count the number of satisfying assignments to f in polynomial time with probability ε, or

• break partial adaptive unambiguous soundness of the non-interactive sumcheck protocol as described
in Definition 5.1 with probability at least ε/(d+ 1) · ν.

Proof. (Sketch). This proof follows along the lines of Theorem 21 in [CHK+19a]. The only differ-
ence is that [CHK+19a] build a reduction that breaks adaptive unambiguous soundness of the non-
interactive sumcheck protocol, whereas in our case, we need to work with the weaker notion of
partial adaptive unambiguous soundness, since our non-interactive sumcheck may not be fully
adaptively sound. In more detail, given an adversary that solves an rSVL instance corresponding
to ∑

x1,...xν

p(x1, . . . , xν)

28

[CHK+19a] show that one can either solve #SAT, or break adaptive unambiguous soundness of the
underlying non-interactive sumcheck protocol. The rSVL instance itself, roughly, consists of a pair (v, i)
which is of the form (t, {(ỹ1, π̃1), . . . (ỹ`, π̃`)}). Here t ∈ [d+1]≤ν is an index, and (ỹ1, π̃1), . . . (ỹ`, π̃`)
are (separate) partial sums and proofs that will each be verified with respect to certain specific
prefixes. These prefixes can be represented as r1, . . . r`, where for k ∈ [`] each rk, by design
in [CHK+19a], will be of the form rk1 , . . . r

k
j . Moreover, by design, every k ∈ [`], ι ∈ [j], rkj will

either be chosen in [d + 1] or computed as the output of the hash function on some transcript.
In addition, the polynomial p(·) will be chosen selectively. As a result, it is sufficient to rely on
partial adaptive unambiguous soundness based on selective choice of p(·) and partial adaptive
choice of each rjk as either in Sj , or chosen from a relatively small space ([d + 1]). Specifically,
we observe that the reduction in the proof of Theorem 21 [CHK+19a] as is, contradicts partial
adaptive unambiguous soundness of the underlying non-interactive sumcheck protocol.

Combining the two theorems, setting B = O(1), d = O(1), |F| = 2λ, T = 2λ
ε
, T ′ = 2λ

ε2

, and
ν = λε

2
, we see that for any ν = κ number of variables, there exists an efficient instantiation of the

hash function family with log |F| = poly(κ), under sub-exponential LWE. As a result of this and
the work of [CHK+19a], we have the following corollary.

Corollary 5.1. Assuming sub-exponential LWE, #SAT reduces to EOL.

Acknowledgements

We thank Alex Lombardi for delightful discussions about bottlenecks in correlation-intractability,
Giulio Malavolta for pointing us to new constructions of lossy trapdoor functions, and Pavel
Hubáĉek for pointing out a typographical error about end-of-line in an earlier draft of this work.

References

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin. Del-
egating RAM computations with adaptive soundness and privacy. In Martin Hirt
and Adam D. Smith, editors, Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, volume
9986 of Lecture Notes in Computer Science, pages 3–30, 2016.

[AKV04] Tim Abbot, Daniel Kane, and Paul Valiant. On algorithms for nash equilibria. Unpub-
lished manuscript, 2004. https://web.mit.edu/tabbott/Public/final.pdf.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging lin-
ear decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In The-
ory of Cryptography - 17th International Conference, TCC 2019, Nuremberg, Germany, De-
cember 1-5, 2019, Proceedings, Part II, pages 407–437, 2019.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct ran-
domized encodings and their applications. IACR Cryptology ePrint Archive, 2015:356,
2015.

29

https://web.mit.edu/tabbott/Public/final.pdf

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of find-
ing a nash equilibrium. In Venkatesan Guruswami, editor, IEEE 56th Annual Sympo-
sium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 1480–1498. IEEE Computer Society, 2015.

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. IACR Cryptol. ePrint Arch.,
2018:46, 2018.

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai Lin,
and Hong-Sheng Zhou. Cryptography for parallel RAM from indistinguishability
obfuscation. In ITCS, pages 179–190. ACM, 2016.

[CCH+18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and
Ron D. Rothblum. Fiat-shamir from simpler assumptions. IACR Cryptol. ePrint Arch.,
2018:1004, 2018.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1082–1090.
ACM, 2019.

[CCHR15] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Succinct adaptive
garbled RAM. IACR Cryptology ePrint Archive, 2015:1074, 2015.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and cor-
relation intractability from strong kdm-secure encryption. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018, volume 10820 of
Lecture Notes in Computer Science, pages 91–122. Springer, 2018.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
two-player nash equilibria. J. ACM, 56(3):14:1–14:57, 2009.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In ITCS, pages 169–
178. ACM, 2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In STOC, pages
429–437. ACM, 2015.

[CHK+19a] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. Finding a nash equilibrium is no easier than breaking
fiat-shamir. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st An-
nual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 1103–1114. ACM, 2019.

30

[CHK+19b] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. Ppad-hardness via iterated squaring modulo a com-
posite. IACR Cryptol. ePrint Arch., 2019:667, 2019.

[CLW18] Ran Canetti, Alex Lombardi, and Daniel Wichs. Non-interactive zero knowledge
and correlation intractability from circular-secure FHE. IACR Cryptol. ePrint Arch.,
2018:1248, 2018.

[CZ81] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials
over finite fields. Mathematics of Computation, pages 587–592, 1981.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Advances in Cryptology
- CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2019, Proceedings, Part III, pages 3–32, 2019.

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The
complexity of computing a nash equilibrium. Commun. ACM, 52(2):89–97, 2009.

[EFKP20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous ver-
ifiable delay functions. In Advances in Cryptology - EUROCRYPT 2020 - 39th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part III, pages 125–154, 2020.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology
- CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture
Notes in Computer Science, pages 186–194. Springer, 1986.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: Interactive proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, vol-
ume 9815 of Lecture Notes in Computer Science, pages 579–604. Springer, 2016.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way
functions (or: One-way product functions and their applications). In Mikkel Thorup,
editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 850–858. IEEE Computer Society, 2018.

[HY17] Pavel Hubácek and Eylon Yogev. Hardness of continuous local search: Query com-
plexity and cryptographic lower bounds. In Philip N. Klein, editor, Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1352–1371. SIAM, 2017.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732. ACM, 1992.

31

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In STOC, pages 419–428.
ACM, 2015.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1115–1124, 2019.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of fiat-shamir for proofs. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, volume 10402 of
Lecture Notes in Computer Science, pages 224–251. Springer, 2017.

[KS17] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key func-
tional encryption. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Pro-
ceedings, Part I, volume 10210 of Lecture Notes in Computer Science, pages 122–151,
2017.

[KZ20] Yael Tauman Kalai and Rachel Zhang. Snargs for bounded depth computations from
sub-exponential lwe. Cryptology ePrint Archive, Report 2020/860, 2020. https:
//eprint.iacr.org/2020/860.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic meth-
ods for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[LV20] Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated squaring
with applications to ppad-hardness and vdfs. Cryptology ePrint Archive, Report
2020/772, 2020. https://eprint.iacr.org/2020/772.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium on Foun-
dations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages
436–453, 1994. Full version in [Mic00].

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA,
pages 60:1–60:15, 2019.

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and
publicly verifiable non-interactive arguments. Cryptology ePrint Archive, Report
2017/903, 2017. http://eprint.iacr.org/2017/903.

32

https://eprint.iacr.org/2020/860
https://eprint.iacr.org/2020/860
https://eprint.iacr.org/2020/772
http://eprint.iacr.org/2017/903

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Ad-
vances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume 11692 of Lec-
ture Notes in Computer Science, pages 89–114. Springer, 2019.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 187–196. ACM,
2008.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from
sub-exponential one-way functions. In Advances in Cryptology - EUROCRYPT 2010,
29th Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings, pages 638–655, 2010.

[SCG+14] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium
on Security and Privacy, pages 459–474, 2014.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

33

	Introduction
	Our Results
	Independent and Concurrent Work KZ20
	Related Work
	Technical Overview

	Preliminaries
	(Somewhere Statistical) Correlation Intractability
	Lossy Trapdoor Functions
	Round-by-Round Soundness

	Lossy Somewhere-Statistical Corelation Intractable Hash Functions
	Non-Interactive Sumcheck
	The Sumcheck Protocol
	Instantiating Fiat-Shamir for Sumcheck

	#SAT Reduces to EOL under Sub-exponential LWE

