
Magnifying Side-Channel Leakage of
Lattice-Based Cryptosystems with Chosen
Ciphertexts: The Case Study of Kyber

Zhuang Xu1,2,3, Owen Pemberton3, Sujoy Sinha Roy3, David Oswald3

1 School of Mathematical Sciences, Shenyuan Honors College and BDBC, Beihang University,
and LMIB, Ministry of Education, Beijing 100191, China

2 Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China
xu_zhuang@buaa.edu.cn

3 School of Computer Science, University of Birmingham, United Kingdom
o.m.pemberton@pgr.bham.ac.uk, s.sinharoy@cs.bham.ac.uk, d.f.oswald@bham.ac.uk

Abstract. In this paper, we propose EM side-channel attacks with carefully con-
structed ciphertext on Kyber, a lattice-based key encapsulation mechanism, which
is a candidate of NIST Post-Quantum Cryptography standardization project. We
demonstrate that specially chosen ciphertexts allow an adversary to modulate the
leakage of a target device and enable full key extraction with a small number of traces
through simple power analysis. Compared to prior research, our techniques require
a lower number of traces and avoid the need for template attacks. We practically
evaluate our methods using both a clean reference implementation of Kyber and
the ARM-optimized pqm4 library. For the reference implementation, we target the
leakage of the output of the inverse NTT computation and recover the full key with
only four traces. For the pqm4 implementation, we develop a message-recovery attack
that leads to extraction of the full secret-key with between eight and 960 traces (or 184
traces for recovering 98% of the secret-key), depending on the compiler optimization
level. We discuss the relevance of our findings to other lattice-based schemes and
explore potential countermeasures.
Keywords: Lattice-based cryptography · Kyber · Side-channel analysis · Chosen-
ciphertext attack

1 Introduction
Invented in 1970s, public-key cryptography made it possible to establish a shared secret-key
between two parties communicating over a public channel without using a prior shared
secret. Since then, public-key cryptography research has resulted in public-key encryption,
key agreement and digital signature schemes. Internet standards such as TLS, S/MIME
and PGP use public-key cryptography at their core. Even today’s state of the art privacy
preserving computation techniques such as homomorphic and functional encryption are
augmentations of public-key encryption.

The most widely used public-key cryptographic algorithms are the RSA [RSA78] and
Elliptic Curve cryptosystems [Mil85]. The security of these two cryptosystems relies
on the hardness of the integer factorization and discrete logarithm problems. These
two problems are presumed to be computationally infeasible to solve using traditional
computers. However, Shor’s algorithm [Sho97], a quantum algorithm, can solve both
integer factorization and discrete logarithm in polynomial-time and thus break the RSA
and Elliptic Curve cryptosystems efficiently using a large-scale quantum computer. Rapid

mailto:xu_zhuang@buaa.edu.cn
mailto:o.m.pemberton@pgr.bham.ac.uk
mailto: s.sinharoy@cs.bham.ac.uk
mailto:d.f.oswald@bham.ac.uk

2

advancement in quantum computing in the recent years have made the development of
small-scale quantum computers possible [AAB+19]. Many quantum computing scientists
and cryptographers anticipate that large-scale quantum computers able to break RSA and
Elliptic Curve cryptosystems will be feasible within the next 20 years [Nat20]. If such
quantum computers are ever built, they will completely destroy the present-day public-key
infrastructure. Hence, we need next-generation public-key cryptographic algorithms that
cannot be broken by quantum computers.

Post Quantum Cryptography (PQC) refers to the design and analysis of cryptographic
algorithms based on computational problems that are presumed to be unsolvable using
both traditional and quantum computers. Early post-quantum algorithms, such as the
code-based McEliece public-key encryption and hash-based Merkle signature, date back
to 1970s. The development of new-generation post-quantum public-key algorithms has
gained significant attention since around 2010 and as a consequence several efficient post-
quantum public-key encryption, key agreement and digital signature schemes have been
proposed. To standardize post-quantum public-key algorithms, NIST initiated the PQC
standardization project in 2017 and called for proposals. Depending on the underlying
mathematical problem, PQC schemes can be classified into five categories: code-based,
hash-based, lattice-based, multivariate-based and super-singular isogeny-based. Since the
beginning of the PQC standardization project, the candidates have been analyzed for their
resistance against mathematical cryptanalysis. On completion of the first round of the
standardization project in January 2019, a total of 26 candidates have moved to the second
round. It is anticipated that the third round of the standardization project is likely to
start in the second half of 2020.

Ongoing mathematical cryptanalysis efforts by the cryptography research community
have strengthened confidence in the security of existing PQC candidates and such efforts
are likely to continue for the next several years. As post-quantum cryptography will be
deployed on a wide range of computing platforms, it is extremely important that the
candidate algorithms are also scrutinized for their resistance against physical cryptanalysis.
In this paper we analyze a lattice-based Key Encapsulation Mechanism (KEM) algorithm
Kyber [BDK+18] and propose practical and efficient side-channel attacks to recover the
long-term secret-key.

Related Work There have been several Chosen-Ciphertext Attacks (CCA) [Flu16, DCQ19,
QCD19, BDHD+19, BGRR19] on lattice-based public-key encryption schemes that are
considered secure in the Chosen-Plaintext Attack model, i.e., IND-CPA. These attacks aim
to recover a long-term secret-key by exploiting the presence of a plaintext checking oracle.
The CCA attacker sends malformed ciphertexts to a decryption algorithm and queries the
plaintext checking oracle to learn if the guesses about the decrypted messages are correct.
In this attack, the ciphertexts are crafted in such a way that the responses generated
by the plaintext checking oracle can help the attacker discern the long-term secret-key.
Note that the attacker can only discover the secret-key if it is reused or long-term as it
is necessary to have multiple interactions with the decryption algorithm and plaintext
checking oracle.

Lattice-based public-key schemes can be made secure against CCA by being transformed
into IND-CCA schemes with the help of a post-quantum variant of the Fujisaki-Okamoto
(FO) transformation [FO99]. The FO transformation performs a re-encryption of the
decrypted message and compares the computed ciphertext with the received ciphertext.
Due to this ciphertext matching, any malformed ciphertext gets detected by the decryption
algorithm and thereafter the decrypted message is not outputted, thus disabling the
existence of a theoretical plaintext checking oracle. All lattice-based public-key schemes
that have proceeded to the second round of NIST’s PQC standardization project apply
FO transformation (thus IND-CCA) and hence they are not vulnerable to mathematical

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 3

long-term secret-key recovery attacks of the above type.
Although the existing lattice-based public-key schemes are resistant against known

mathematical cryptanalytic attacks, their security against potential physical cryptanalytic
attacks is yet to be studied in depth. Realistically, post-quantum schemes will be used
in many applications where the biggest threats will appear from invasive or noninvasive
side-channel and fault attackers. For example, D’Anvers et al. [DTVV19] demonstrated
a long-term key-recovery attack on the IND-CCA LAC [LLZ+18] public-key encryption
scheme by exploiting timing leakage from its nonconstant-time decapsulation algorithm.
In their attack, carefully constructed ciphertexts are sent to the decryption block of
LAC such that, depending on the value of a targeted secret-coefficient, a nonconstant-
time error correction code is called conditionally to rectify any error in the decrypted
message. Although LAC is resistant against mathematical chosen-ciphertext attacks,
the timing leakage from the decryption opens a plaintext-checking oracle to an attacker.
Ravi et al. [RRCB20] demonstrated a more powerful generic Electro-Magnetic (EM) side-
channel assisted long-term key recovery attack technique on several lattice-based public-key
encryption and KEMs (constant-time) that have proceeded to the second round of the
standardization project. However, a large number of traces are still needed for some KEMs,
e.g., full key recovery from Kyber512 needs around 7,680 traces. This motivated us to
investigate more efficient and practical side-channel assisted key-recovery attacks targeting
harder-to-break lattice-based schemes, such as Kyber.

Other side-channel attacks on lattice-based public-key cryptosystems include template
attack by Primas et al. [PPM17] and horizontal differential power analysis (DPA) attack
by Aysu et al. [ATT+18]. Recently Huang et al. [HCY20] applied several power analysis
methods to recover the private key from NTRU-Prime [BCLvV17]. Most of these attacks
target primitive computations, such as polynomial multiplications, where the long-term
secret-key is used as an operand.

Another set of side-channel assisted attacks target message recovery from lattice-
based public-key encryption or key encapsulation schemes. Such message-recovery attacks
could potentially be used to perform session-key recovery in TLS. Amiet et al. [ACLZ20]
demonstrated a message recovery attack based on leakage from the encoding function of a
reference implementation of NewHope [ADPS16]. Ravi et al. [RBRC20] proposed methods
to perform message recovery from vulnerabilities in the message decoding procedure of
several lattice-based schemes. Their attack can be turned into a single-trace message
recovery attack if a large number of traces are available to build a template base. All
these physical attacks show that there are many vulnerabilities in these next-generation
lattice-based public-key schemes, and furthermore they give a strong indication that many
more potential vulnerabilities are yet to be discovered. Hence, we believe that further study
is essential in this area to discover more vulnerabilities such that necessary countermeasures
can be developed to make lattice-based post-quantum public-key cryptography secure for
real-world deployment.

Despite many potential targets within lattice-based KEM shown in previous sudies,
how to reveal the secret-dependent informatin efficiently is less studied. Possible problems
based on the unique structure of Kyber, one of the candidates in Round 2, remain to
be investigated comprehensively and thoroughly from more perspectives although there
have been some Side-Channel Analysis (SCA) works about its analysis [RRCB20, ACLZ20,
RBRC20].

Contributions In this paper we present a practical side-channel assisted Chosen-Ciphertext
Attack on IND-CCA Kyber KEM and show how to recover the long-term secret-key using
a small number of traces (between four and 960, depending on the target implementation
and specific technique). We focus on Simple Power Analysis (SPA) [KJJ99]-like methods
that avoid the need for constructing templates, thus preventing the associated portability

4

issues [EG12]. In particular, we propose the following new attack techniques:

1. We show how to construct special ciphertexts such that we can modulate side-channel
leakage from the device under test and efficiently classify a targeted secret coefficient
using a minimum number of traces.

2. To experimentally validate the attack techniques, first we target the pqm4 reference
C implementation of Kyber. We observe that several functions leak secret-dependent
information through EM emanation. Using only four specially crafted ciphertexts,
we can recover the entire secret-key through SPA.

3. We then target the ARM-optimized implementation of Kyber from the pqm4 library,
which does not expose the same strong leakage as the reference implementation.
However, we find that the decrypted message can be recovered from a small number
of traces with SPA. We show how message recovery, together with specifically chosen
ciphertexts, can be used to fully recover the secret-key. Depending on the compiler
optimization level, this attack can recover the full key with between 8 (-O0) and 960
traces (-O3).

Finally, we also discuss countermeasures, including those based on discarding ciphertexts
with a special structure possibly indicating an attack.

All the experiments for the reference implementation of Kyber used the pqm4 library
commit c32bcd0. All experiments for the ARM-optimized library used commit 84c5f91.
We provide our data sets and code under the following link:
https://mega.nz/folder/YBcRyAhQ#FDC9wpc6siYQg-eMxHLJhA

Organization of the Paper The remainder of this paper is organized as follows. In
Section 2, we introduce our notation and the mathematical background. In Section 3, we
present our chosen-ciphertext SPA attack on a “clean” implementation of Kyber, while in
Section 4 we focus on attacks on highly optimized ARM implementations. We conclude in
Section 5, discussing potential countermeasures.

2 Preliminaries
In this section we briefly describe the mathematical background and define notations
necessary to understand this paper.

2.1 Notations
Let q be a prime and Zq be the ring of integers modulo q. Centered modular reduction
is represented as r′ = r mod ±q where r′ ∈

[
− q−1

2 , q−1
2
]
. Whereas, the other modular

reduction r′ = r mod +q means r′ ∈ [0, q − 1].
We define the ring of polynomials Rq = Zq[x]/〈xN + 1〉, for some integer N , typically

a power of two. Thus the polynomials have N coefficients where each coefficient is modulo
q. Similarly, Rl×kq denotes the ring of l × k-matrices over any ring Rq. One-dimensional
matrix is essentially called a vector. The transpose of a vector or a matrix is represented
using the superscript T . A single polynomial is represented using a normal-font lowercase
letter (such as a), a vector of polynomials is represented using a bold-font lowercase letter
(such as a), and a matrix of polynomials is represented using a bold-font capital letter
(such as A). Multiplication in any ring is denoted using · operator whereas point-wise
multiplication is denoted using ◦ operator. For a polynomial a, the ith coefficient is
represented as a [i], and the ith component of a vector is denoted as ai. The Number
Theoretic Transform (NTT) of any element a is represented as â. For an element x ∈ Q,
we use dxc to present the closest integer to x; the fractional part of x is rounded up. The
uniform distribution is denoted as U , and a centered binomial distribution with parameter

https://mega.nz/folder/YBcRyAhQ#FDC9wpc6siYQg-eMxHLJhA

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 5

µ is denoted as βµ. We use the notations a← U and a← βµ to denote that a is randomly
sampled from U or βµ respectively. For side-channel measurements (“traces”), we refer to
a single trace i as pi (t), where t is discretized time in sample points.

2.2 Module Learning with Errors Problem
The Learning with Errors (LWE) problem, introduced by Regev [Reg05] in 2005, is a
mathematical problem that has been used as a foundation for a large number of lattice-
based cryptosystems. The LWE problem is presumed to be computationally infeasible to
solve for both classical and quantum computers. An LWE distribution consists of tuples
of the form (

a, b = aT s + e
)
∈ Zl×1

q × Zq , (1)

where the secret vector s ← βµ(Zl×1
q) is fixed for all samples, uniformly random a ←

U(Zl×1
q) is fresh, and error e← βµ(Zq) is also fresh.
The decisional LWE problem states that it is computationally infeasible to distinguish

uniformly random samples (a, u)← U(Zl×1
q × Zq) from the LWE samples in Equation (1).

The search LWE problem asks to compute the secret s given several LWE samples.
A module version of the LWE problem, known as the Module Learning with Errors

(MLWE), uses the polynomial ring Rq instead of the integer ring Zq. Thus, an MLWE
distribution consists of tuples of the form(

a, b = aT s + e
)
∈ Rl×1

q ×Rq , (2)

where a is a vector of randomly generated polynomials in Rq, s is a secret vector of
polynomials in Rq of which the coefficients are sampled from βµ, and e is an error
polynomial whose coefficients are sampled from βµ. The decision and search LWE problem
over standard lattices can be extended to the decision and search MLWE problem over
module lattices. Module lattices have been used to construct flexible and secure public-key
encryption and KEMs such as Kyber [SAB+19], Saber [DKSRV18] and a signature scheme
Dilithium [DLL+18]. Since we propose side-channel attacks on Kyber, in the following
subsection, we briefly describe the Kyber KEM algorithm.

2.3 Kyber
Kyber [BDK+18] is an MLWE-based IND-CCA KEM that has proceeded to the second
round of the NIST’s post-quantum cryptography standardization project. It comes with
three variants namely Kyber512, Kyber768 and Kyber1024 targeting security levels similar
to AES-128, AES-192 and AES-256 respectively. The variants perform arithmetic opera-
tions in a fixed polynomial ring Rq = Zq/(x256 + 1) where q = 3329 is a prime; they use
the module dimensions 2, 3, and 4 to achieve the three security levels. Additionally, the
variants use the same binomial distributions with parameter µ = 2. In this section we
briefly describe the algorithms that are at the core of Kyber. For full description of Kyber,
readers are referred to the original specification of Kyber [SAB+19].

The IND-CCA Kyber KEM is based on the IND-CPA Kyber Public Key Encryption
(PKE) with the application of a post-quantum variant of the FO transformation [FO99].
Simplified versions of the IND-CPA encryption and decryption algorithms are presented in
Algorithm 1 and Algorithm 2 respectively. The encryption operation takes a public-key pk,
a binary message m, and a random coin r as inputs. The public-key is concatenation of a
random seed seedA, and a vector t̂ of polynomials. In line 1 of Algorithm 1, the random
seed is expanded using an Extendable Output Function (XOF) to generate the matrix
Â directly in the NTT domain. Next, two vectors of polynomials r and e1 are sampled
from a centered binomial distribution βµ, and in line 5 the NTT of r is computed. Since

6

both ÂT and r are in the NTT domain, the matrix-vector multiplication in line 6 is a
coefficient-wise operation. Thereafter, an inverse-NTT is required before adding the error
vector e1 to the result of matrix-vector multiplication. In line 7, the binary message string
is encoded into a message polynomial and then added to the result of polynomial-vector
multiplication t · r (efficiently computed using NTT) along with an error polynomial e2.
Finally, the ciphertext consists of two components c1 and c2 that are derived from u and v.

The IND-CPA decryption in Algorithm 2 receives a ciphertext c = (c1 ‖ c2) and
the secret-key. In line 1 and 2, u and v are computed c1 and c2. In line 4, the secret
polynomial-vector is multiplied by the ciphertext polynomial-vector u and the result is
eventually brought back to the time-domain by performing inverse-NTT. Finally, the
message, which is a binary string, is recovered by performing coefficient-wise compression
and encoding. The IND-CPA encryption and decryption algorithms are developed into IND-
CCA encapsulation and decapsulation with the application of a post-quantum variant of the
FO transformation in Algorithm 3 and Algorithm 4 respectively. The FO transformation
steps use two hash functions G and H and a Key Derivation Function (KDF). The
encapsulation returns an IND-CCA ciphertext c and a session key K.

Algorithm 1 Simplified Kyber.CPAPKE.Enc
(
pk = (seedA ‖ t̂),m, r

)
[SAB+19]

1: ÂT := XOF(seedA) ∈ Rk×kq /* Here k is the module-dimension */
2: r := βµ(Rk×1

q ; r)
3: e1 := βµ(Rk×1

q ; r)
4: e2 := βµ(Rq; r)
5: r̂ := NTT (r) ∈ Rk×1

q

6: u := NTT−1
(

ÂT ◦ r̂
)

+ e1 ∈ Rk×1
q

7: v := NTT−1 (t̂T ◦ r̂
)

+ e2 + Decompressq (Decode1 (m) , 1) ∈ Rq
8: c1 := Encodedu

(
Compressq (u, du)

)
9: c2 := Encodedv

(
Compressq (v, dv)

)
10: return c = (c1 ‖ c2)

Algorithm 2 Simplified Kyber.CPAPKE.Dec (sk, c = (c1 ‖ c2)) [SAB+19]
1: u := Decompressq (Decodedu

(c1))
2: v := Decompressq (Decodedv (c2))
3: ŝ := Decode (sk)
4: m := Encode1

(
Compressq

(
v −NTT−1 (ŝT ◦NTT (u)

)
, 1
))

.m := Compressq
(
v − sT · u, 1

)
5: return m

The decapsulation Algorithm 4 takes a ciphertext c and the KEM secret-key skKEM
(skKEM := (sk ‖ pk ‖ H(pk) ‖ z)) as inputs. The IND-CPA decryption is used to obtain the
decrypted message m′. Next, the decrypted message is re-encrypted using the public-key
pk and the re-encrypted ciphertext is c′. Now, the received ciphertext c and re-encrypted
ciphertext c′ are compared to detect Chosen-Ciphertext Attack (CCA). If the received
ciphertext is genuine, then a session key K is returned from the KDF. Otherwise, a
pseudorandom string is returned.

Our attack target is the core long-term secret-key s in the decryption phase (Alg. 2)
during decapsulation (Alg. 4). Note that the coefficients of polynomials in s are sampled
from a binomial distribution and their values range from −2 to 2 only.

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 7

Algorithm 3 Simplified Kyber.CCAKEM.Enc (pk)
1: m← U({0, 1}256)
2: m← H (m)
3:
(
K̄, r

)
:= G (m ‖ H (pk))

4: c := Kyber.CPAPKE.Enc (pk,m, r)
5: K := KDF

(
K̄ ‖ H (c)

)
6: return (c,K)

Algorithm 4 Simplified Kyber.CCAKEM.Dec (c, skKEM))
1: m′ := Kyber.CPAPKE.Dec (sk, c)
2:
(
K̄ ′, r′

)
:= G (m′ ‖ H(pk))

3: c′ := Kyber.CPAPKE.Enc (pk,m′, r′)
4: if c = c′ then
5: return K := KDF

(
K̄ ′ ‖ H (c)

)
6: else
7: return K := KDF (z ‖ H (c)) /* Here z is a pseudorandom string */
8: end if

2.4 Experimental Setup

For all subsequent experiments, we compiled and ran the pqm4 target implementations
on an STM32F407G discovery development board [STM16]. We use a PicoScope 6404C
digital oscilloscope with a Langer RF-U 5-2 H-field probe to record EM traces at a fixed
position over the Microcontroller (µC). A ZFL-1000LN+ low-noise amplifier between
the probe and oscilloscope amplifies the signal by 20 dB. Our power traces are originally
sampled at 2.5GHz, then digitally downsampled to 500MHz before analysis. We used
the original implementations of pqm4 [KRSS], with the only addition being a trigger to
simplify the recording of traces. The STM32 chip runs at a clock frequency of 168MHz.

Adversary Model For all the attacks, we assume an adversary who can collect a number
of side-channel traces during the KEM decapsulation (Algorithm 2). We assume a chosen-
ciphertext scenario, where the adversary can repeatedly request decapsulation of arbitrary
ciphertext c.

3 Simple Power Analysis of pqm4 Kyber Reference Imple-
mentation

In this section, we analyze the pqm4 “clean” implementation [KRSS] of Kyber from a
side-channel perspective. More precisely, recent versions of pqm4 include the PQClean
library as a submodule that provides independent and portable C implementations of
the supported algorithms. We show that we can mount an SPA attack using few traces
for successfully recovery of the long-term secret-key. For our initial analysis, we run the
Kyber512 KEM on the STM32F407G and collect EM traces when the decryption is called.
We set the coefficients of the first half of the secret-key s0 (where s = (s0, s1) for Kyber512)
as follows:

8

s0[i] =

−2, for i = 0, 1, ..., 49;
−1, for i = 50, 51, ..., 99;

0, for i = 100, 101, ..., 155;
1, for i = 156, 157, ..., 205;
2, for i = 206, 207, ..., 255.

Figure 1: EM traces of Kyber-CPAPKE decryption on the STM32F407G. Top, blue:
uT = (u0, u1) = (0, 0), v = 0; middle, red: uT = (u0, u1) = (55, 0), v = 0; bottom, purple:
difference between top and middle trace.

Figure 1 shows traces of the final part of decryption, beginning with the final step of
the inverse NTT, for two choices of u and v. This initial test shows that several functions
in the decryption leak the secret-key coefficients: in the middle trace in Figure 1, one can
easily visually distinguish classes of the coefficient values ({−2, −1}, 0 and {1, 2}). In the
following, we analyze the relevant functions in detail and show how a chosen-ciphertext
SPA attack can be constructed to exploit this leakage and recover the full secret-key.

3.1 Simple Power Analysis of Modular Reduction in Inverse NTT
In this section, we focus on the output of the inverse NTT in Kyber, i.e., Line 4 in
Algorithm 2:

NTT−1 (NTT
(
sT
)
◦NTT (u)

)
where sT = (s0, s1) and uT = (u0, u1) for Kyber512 (i.e., module dimension 2). The final
step of inverse NTT performs coefficient-wise modular multiplications with a constant
(CLEAN_KYBER512_CLEAN_zetas_inv[127] = 1441). For example, the clean C implemen-
tation of Kyber performs integer multiplication1 followed by Montgomery reduction2 (mod
±q) using the fqmul() function as shown in Listing 1.

1 void PQCLEAN_KYBER512_CLEAN_invntt (int16_t poly [256]) {
2 ...
3 for (j = 0; j < 256; ++j) {
4 poly[j] = fqmul (poly[j], PQCLEAN_KYBER512_CLEAN_zetas_inv [127]) ;
5 }
6 }

Listing 1: Final step of NTT in clean C implementation

1https://github.com/PQClean/PQClean/blob/8db3/crypto_kem/kyber512/clean/ntt.c#L116
2https://github.com/PQClean/PQClean/blob/8db3/crypto_kem/kyber512/clean/reduce.c#L17

https://github.com/PQClean/PQClean/blob/8db3/crypto_kem/kyber512/clean/ntt.c#L116
https://github.com/PQClean/PQClean/blob/8db3/crypto_kem/kyber512/clean/reduce.c#L17

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 9

Next, we consider the part of the trace belonging to the execution of inverse NTT, i.e.,
the first region in Figure 1. First, we determine the Points of Interest (PoI) for further
analysis. Based on our profiling, we select downward peaks (cf. Figure 2) in the trace as PoI
as we observe significant variance for different secret coefficient values for this particular
choice. As fqmul() is invoked coefficient-by-coefficient, each of such peaks corresponds to
one coefficient of the secret-key.

Figure 2: Leakage for different output Hamming Weights (HWs) of fqmul() at PoI

Leakage Model We find that the trace at PoIi is approximately proportional to the HW
of the output of the ith invocation of fqmul(), as shown in the following standard HW
leakage model:

|p (PoIi)| ≈ a×HW
((

sT · u mod ±q
)

[i]
)

+N

Where a is a scaling factor and N is a Gaussian noise term.

A Preliminary Idea Whilst fqmul() employs a constant-time Montgomery reduction,
the EM trace allows an adversary to exploit the data dependency. However, as evident
from Figure 1, the leakage is only visible upon certain choices of u and v. Hence, the
adversary has to craft appropriate such values to make the secret-key “visible” to SPA. In
the following, we explore in detail how such values can be constructed.

From Figure 1 with uT = (u0, u1) = (55, 0), we can distinguish between the classes
{−2, −1}, 0 and {1, 2}. However, that does not reveal the whole key, e.g., coefficients of
−2 and −1 cannot be distinguished. A first intuition is to choose uT = (u0, u1) = (1, 0).
Because fqmul() computes sT ◦u mod ±q = (s0 · u0 + s1 · u1) mod ±q, the output is in
this case equal to s0. This would directly reveal half of the secret-key through side-channel
leakage. However, this intuition of setting the polynomials of u to any chosen constant is
not valid in practice as the derivation of u from a ciphertext follows a special structure
that allows the coefficients to have values in a certain range (explained in the following
section). Hence, we need a better strategy for crafting the chosen ciphertexts.

Constructing Chosen Ciphertext First, note that u and v are never exchanged directly;
during encryption they are compressed and then encoded (Algorithm 1) as ciphertext
c = (c1 ‖ c2). During decryption (Algorithm 2), u and v are computed by decompressing
the received ciphertext c = (c1 ‖ c2). Since the compression causes data loss, the

10

decompression of ciphertext produces approximate of u and v only. In detail, the coefficient-
wise compression and decompression functions in Kyber work as follows.

ucompressed = Compressq (u, du) =
⌈

2du

q
u
⌋

mod +2du =
⌈

210

3329u
⌋

mod +210

u′ = Decompressq (ucompressed, du) =
⌈ q

2du
ucompressed

⌋
=
⌈

3329
210 ucompressed

⌋

Due to data loss, the u from encryption (Algorithm 1) might produce a differ-
ent u′ in decryption (Algorithm 2). Furthermore, one can see that the coefficients
of the decompressed polynomials in u′ cannot have a value 1. Only for a subset
U =

{⌈ 3329
210 · i

⌋
: i = 0, 1, . . . , 1023

}
of Zq, we can have a bijection between u and u′.

Similarly, for v in Algorithm 1 and v′ in Algorithm 2, bijection works in the subset
V =

{⌈ 3329
23 · i

⌋
: i = 0, 1, . . . , 7

}
only. Hence, we create the malicious ciphertexts with

coefficients from U and V only.

Selecting Appropriate Chosen Ciphertexts After ensuring that the chosen u and v
properly “propagate” through compression and decompression, we need to select special
values for u0 and u1 (where uT = (u0, u1) in Kyber512) with coefficients from U to
distinguish different coefficients in the secret-key. In the following we discuss recovering
the first secret-key polynomial s0 from s only as the recovery of the second polynomial
s1 will be a straightforward repetition of the attack steps. We set u1 to 0 to remove the
influence of s1 on the output of fqmul(). In addition, we only keep the constant term of
u0 so that the output value is only determined by the corresponding key coefficient value.

Let us denote the constant-coefficient of u0 by u0[0]. We first observe that for some
choices, e.g., u0[0] = 2324, we obtain a different HW for each value of a secret coeffi-
cient: HW (−2 · u0[0]) = 11, HW (−1 · u0[0]) = 8, HW (1 · u0[0]) = 9, HW (2 · u0[0]) = 6,
HW (0) = 0. However, in practice, we analyze noisy leakage and aim for mounting an SPA
attack with few traces. Therefore, it is hard to distinguish similar HWs. We experimentally
found that for the value u0[0] = 2324, we could only distinguish between zero and nonzero
secret values. Hence, instead we opted for selecting a few chosen u0[0] to build a classifier
for recovery of the full secret-key step by step. This approach can either make use of
several binary or ternary classifiers, or a combination of the two. To find the optimal
constants, we first computed HW (scoeff · u0[0] mod ±q) for all possible secret coefficient
values scoeff = −2, . . . , 2 and for all possible u0[0] ∈ U . Figure 3 shows the relation
between u0[0] and HW (scoeff · u0[0] mod ±q) under different scoeff values. In this figure,
red points denote −2 or −1, blue ones 1 or 2, and black ones 0. It can be seen that there
are several candidates for u0[0] that can distinguish these different coefficients classes.

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 11

Figure 3: HWs for all possible choices of u0[0] ∈ U and scoeff either {−2,−1} (blue), 0
(black), or {1, 2} (red)

As shown in Figure 3, for small or large u0[0], one can divide the HWs into two classes:
“High” {−2,−1} and “Low” {0, 1, 2}, i.e., admit use of a binary classifier. As u0[0] grows,
we see that there are cases that can divide the HWs into three classes, i.e., admit use of a
ternary classifier (with three classes “High”, “Medium”, “Low”). More precisely:

1. There are 15 possible binary classifiers, i.e., 15 ways to partition a set of 5 values
into 2 sets. We only consider classifiers with the following two properties: i) the
maximum difference between HWs within a class is ≤ 3; ii). the HW difference
between two classes is ≥ 6.

2. There are 40 possible ternary classifiers. We consider those for which: i) the maximum
difference between HWs within a class is ≤ 3; ii). the HW difference between two
classes is ≥ 4.

In addition, we should keep the HW difference within one class as small as possible and
let the HW difference among classes as big as possible to distinguish them. By going over
all possible classifiers, we find binary classifiers including the following ones (we use H for
“High”, L for “Low”, and M for “Medium” in the following): [H : {−2,−1},L : {0, 1, 2}] with
u0[0] = 3 and [H : {2, 1},L : {0,−1,−2}] with u0[0] = 3326. Possible ternary classifiers
include [H : {−2,−1},M : {1, 2},L : 0] with u0[0] = 55 and [H : {1, 2},M : {−1,−2},L : 0]
with u0[0] = 3274. Using either of those, we can already distinguish {−2,−1}, 0 and {1,
2}. It remains to be found a classifier to distinguish −2 from −1 and 1 from 2.

We separately study those cases (−2/−1 and 1/2) as shown in Figure 4. When u0[0] is
< 836 or > 2493, |HW (−2 · u0[0])−HW (−1 · u0[0])| ≤ 1 and |HW (2 · u)−HW (1 · u)| ≤
1. This difference changes when u0[0] is between 836 and 2493. It is possible to find ternary
classifiers in this region, more precisely: [H : {2,−1},M : {−1, 2},L : 0] with u0[0] = 1070
(HWs 5, 11, 0, 5, 12) and [H : {−2, 1},M : {1,−2},L : 0] with u0[0] = 2259. (HWs 12, 5,
0, 11, 5).

12

Figure 4: HW difference for −2/−1 and 1/2

Attack Methodology Based on the above classifiers, an SPA attack can be constructed
that recovers the secret-key with few traces and without requiring sensitive and detailed
profiling as e.g., necessary for template attacks. Concretely, the attack proceeds as follows,
using four traces in total:

1. Choose a first u0[0] = const1 ∈ U , for a ternary classifier to distinguish {−2,−1}, 0
and {1, 2} and generate the respective ciphertext c. Record the respective EM trace
for fqmul() on the target device and, looking at the relevant PoI, determine into
which class the respective coefficient falls.

2. Choose a second u0[0] = const2 ∈ U for a ternary classifier to differentiate −2/−1
and 1/2 and record and evaluate the respective trace.

3. Combining the results from the previous two steps, we recover the coefficients of s0.

Practical Results We applied our chosen-ciphertext SPA to the C clean implementation of
Kyber512 on the STM32F407 (cf. Section 2.4 for details of our setup). We used const1 = 55
and const2 = 1070 for the two required ternary classifiers. Figure 5 shows the EM trace for
u0[0] = 55 with the PoI classified into the three classes H (−1 or −2), M (1 or 2) and L (0).
Similarly, Figure 6 depicts the EM trace for u0[0] = 1070 ([H : {−1, 2},M : {1,−2},L : 0]).

Figure 5: EM trace with classification into three classes for u0[0] = 55

To show the separation between classes, we also project the amplitude at the PoI on

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 13

the right. In Figure 5 and Figure 6, the classes are clearly distinguishable, however, we
observed other traces with some overlap between the classes. Therefore, in these cases,
we used averaging of multiple traces for the same u0[0]. Note that in the ideal case (i.e.,
success with a single trace without averaging), the full attack requires 4 traces in total (for
u0[0] = 55 and = 1070 and for u1[0] = 55 and = 1070).

Figure 6: EM trace with classification into three classes for u0[0] = 1070

We executed our attack for 16 randomly chosen secret-keys. Using four traces, we
recovered the full key (i.e., all 512 coefficients) in 12 cases, while in three cases 511 of 512
coefficients (i.e., 99.8%) were correctly found. In one case, only 510 of 512 coefficients (i.e.,
99.6%) were successfully recovered. However, these remaining one or two coefficients can
be found through a trivial exhaustive search over the 5 or 52 possible values.

To summarize, the SPA succeeds with four traces in total. In contrast to prior work,
due to the careful choice of u, we do not require creating templates, thus avoiding the
associated problem of portability between individual devices [EG12].

3.2 Targeting other Functions after the Inverse NTT
As initially shown in Figure 1, subsequent operations after fqmul() also exhibit strong
leakage that can be “amplified” using chosen ciphertext. While we do not analyze those
functions in detail, we note that they can similarly be targeted for key recovery. For
example, in the subtraction following the NTT, we have the following leakage model:

|p (PoIi)| ∝ HW
((
v − sT ◦ u mod ±q

)
[i]
)

Evidently, in contrast to the attack on fqmul(), the other part of the ciphertext (v) also
influences the leakage. Hence, an appropriate value for v can be set as:

v =
255∑
j=0

const · xj , const ∈ V

Because there are eight possible values for a coefficient of v that maintains the bijection
during compression and decompression, we have a larger space of possible chosen ciphertext
for v than u0. Note that as 0 ≤ HW (v) ≤ 6, a zero coefficient of the secret-key s no longer
automatically falls in the “Low” class. The larger set of possible chosen ciphertext means
that there are more possible binary and ternary classifiers, which possibly further facilitates
key recovery. Finally, we would like to point out that the technique demonstrated in this
section for Kyber in principle can apply to other lattice-based schemes that follow a similar
structure. We leave these aspects for future work.

14

4 Simple Power Analysis of ARM-specific Kyber Imple-
mentation in pqm4

In the previous Section 3, we showed that a generic, “clean” implementation of Kyber is
vulnerable to SPA. In this section, we extend our analysis to the pqm4 implementations
specifically optimized for ARM Cortex M4 µCs. In this optimized version, many functions
are manually written in assembly to obtain a memory-efficient, high-speed implemen-
tation [BKS19]. As word-parallel additions and subtractions are used and the inverse
NTT is re-organized, the attack from Section 3 no longer applies in a straightforward
way. We make use of a recent idea to focus on the side-channel leakage of the message m
in lattice-based PKE and KEM schemes [ACLZ20, RBRC20]. However, while these two
earlier works only considered leaking the message to e.g., obtain the ephemeral shared
secret in a KEM, we show that message recovery also allows an adversary to recover the
long-term secret-key by carefully choosing the ciphertext components u and v.

To this end, we first focus on the encoding/decoding functions that deal with the
messages and discuss their susceptibility to SCA. We then present our side-channel based
message recovery for two different optimization levels (-O0 and -O3), and finally show how
the long-term secret-key can be recovered from the messages.

4.1 Encoding and Decoding Functions in Decapsulation

We found that there are two operations that are performed coefficient-wise in the ARM-
specific implementation, i.e., the encoding and decoding functions named poly_tomsg()3

and poly_frommsg()4 respectively, used in the KEM decapsulation. Algorithm 5 and
Algorithm 6 show the pseudocode for encoding and decoding, respectively.

Algorithm 5 Pseudocode of pqm4 poly_tomsg() encoding.
Input: Input polynomial in coeffs [256]

1: for i = 0 . . . 31 do
2: msg [i] = 0;
3: for j = 0 . . . 7 do
4: t = (((coeffs [8 · i+ j]� 1) + q/2) / q) & 1;
5: msg [i] | = t� j;
6: end for
7: end for
8: return msg;

The encoding (Algorithm 5) includes Compress(), which compresses a value from Zq
into Z2 (Line 4) and packs 8 bits into one byte in bit-reversed order. Note that in the
Kyber KEM, the output of poly_tomsg() in the decryption step (Algorithm 2) is the
input of decoding in the subsequent re-encryption step (Algorithm 1).

3https://github.com/mupq/pqm4/blob/c32b/crypto_kem/kyber768/m4/poly.c#L530
4https://github.com/mupq/pqm4/blob/c32b/crypto_kem/kyber768/m4/poly.c#L518

https://github.com/mupq/pqm4/blob/c32b/crypto_kem/kyber768/m4/poly.c#L530
https://github.com/mupq/pqm4/blob/c32b/crypto_kem/kyber768/m4/poly.c#L518

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 15

Algorithm 6 Pseudocode of pqm4 poly_frommsg() decoding.
Input: Input message in msg [32]

1: for i = 0 . . . 31 do
2: for j = 0 . . . 7 do
3: mask = − ((msg[i]� j) & 1);
4: coeffs [8 · i+ j] = mask& ((q + 1) / 2);
5: end for
6: end for
7: return coeffs [];

Conversely, the decoding function (Algorithm 6) consists of the unpacking of bytes to
bits and subsequent decompression, mapping each bit to 0 or (q + 1) / 2 (Line 4).

Leakage of Encoding and Decoding Functions From Algorithm 5, we see that t = 1 if
(q − 1) /4 < coeff [8 · i+ j] < (3q + 1) /4, and otherwise, t = 0. The authors of [RBRC20]
use the t-test to detect the respective difference in the trace, and then use a template
attack to recover m. For Algorithm 6, it is clear that the mask and the output coefficients
are different depending on the respective message bit (mask = 0xffff and coeffs [8 · i+ j] =
(q + 1) /2 if message bit i is one). The authors of [ACLZ20] targeted a similar function in
NewHope, and found that this difference can be observed with one EM trace in a reference
implementation without optimization (-O0).

In the Kyber KEM, one can choose which function (encode or decode) to target
for message recovery. This is because decapsulation invokes decryption (which finally
encodes the message), directly followed by encryption, which decodes the same message,
cf. Algorithm 4. We found in our experiments that the leakage of the decoding function
(Algorithm 6) was more suitable for SPA, as the mask takes values with strongly differing
HW. Thus, in the following we show how this leakage can be used to recover the message
and subsequently the long-term secret-key.

4.2 Chosen-Ciphertext SPA of Decoding Function
Inspired by the method of choosing ciphertext presented in [RRCB20], we found that the
message recovery attacks go beyond recovery of the shared key - they can also be used for
recovering the secret-key under a chosen-ciphertext attack. Our strategy is as follows:

1. Choose ciphertext to reveal a “strong relationship” between the secret-key and the
message (i.e., the relation between five different coefficient choices and the respective
message values);

2. recover message from the side-channel leakage during KEM decapsulation; and
3. use the “strong relationship” to recover the secret-key based on few recovered

messages.
The authors of [RRCB20] use a similar strategy, but focus on the error correcting codes

or FO transformation and recover the secret polynomial one coefficient at a time via the
distinguishability of one message bit. Their method requires 7,680 traces. We propose
a more efficient method that requires only eight traces to recover the full secret-key in
Kyber512 KEM for the pqm4 ARM-specific implementation at -O0. Further, we show that
with only moderate increase in the number of traces, this approach can also be applied to
the implementation compiled with maximal optimization at -O3.

The reduced traces requirement of our approach stems from the fact that we focus
on the leakage of simple, low-level arithmetic to recover the message one bit at a time.
We then use specifically crafted ciphertexts to recover the long-term secret-key from
that. In contrast, [RRCB20] targets the leakage of a non-linear hash or error-correcting

16

code, resulting in the leakage being influenced by multiple coefficients and thus harder to
distinguish with a small number of traces.

4.2.1 Constructing Chosen Ciphertext

Unlike the ciphertext construction method in Section 3, here we choose special u and v
so that each message bit acts as a binary classifier that can distinguish the five possible
values for the respective coefficient of the secret-key s. The authors of [RRCB20] used an
iterative randomized search algorithm to find ciphertexts meeting their criteria. Here, we
refine this principle in order to determine the range ciphertext.

Recall that even if we recover the message m based on the decoding function, we still
know the values used in the preceding encoding, because the latter produces the message
m. From Algorithm 5 we know that

t8i+j =
{

1 if (q − 1) /4 < coeffs [8 · i+ j] < (3q + 1) /4
0 otherwise (3)

where t8i+j is the (8i+ j)’th bit of m. Also, note that coeffs [] is the output of:

coeffs = v −NTT−1 (ŝT ◦NTT (u)
)

= v − s0 · u0 − s1 · u1 = v − s0 · u0(let u1 = 0) (4)

From this and because we control u0 and v, we know that the value of t8i+j (i.e., one
bit of the message) entirely depends on the value of one single coefficient of the secret-key.
Again, note that as explained in Section 3, we have to choose possible values of u0 and v
out of the respective sets of fixed points U and V .

For example, if we choose uT = (211, 0) and v =
∑255
k=0 416 · xk, then t8i+j = 1 iff

s0 [8i+ j] = −2 (because all other possible values for the secret coefficient lead to the
result being outside the interval [833, 2496]).

Similarly, we can find u0, v such that t8i+j = 1 iff s0 [8i+ j] = −2 or −1, s0 [8i+ j] = 2,
and s0 [8i+ j] = 2 or 1. Going through all possible values of u0 and v, we find that there
are 29 different m-distributions on the 5 possible coefficient values. We regard each
distribution (except the cases where the m value is always zero or always one for all
possible coefficient values) as a binary classifier which can divide the 5 possible coefficient
values into two categories based on one bit value of m. Figure 7 illustrates this for fixed
v =

∑255
k=0 416 · xk and different values of u0.

1 0

q/4

0

3q/4

q/2

c(0)
c(-1)

c(-2)

c(1)

c(2)

1 0

q/4

0

3q/4

q/2

c(0)

c(-1)
c(-2)

c(1)

c(2)
... ... 1 0

q/4

0

3q/4

q/2

c(0)

c(-1)

c(2)

c(1)

c(-2)

1 0

q/4

0

3q/4

q/2

c(0)

c(-1)

c(2)

c(1)

c(-2)

...... 1 0

q/4

0

3q/4

q/2

c(0)

c(-1)

c(2)

c(1)

c(-2)

... ...

Figure 7: Some examples of changes of m-distribution over the variation of u0 with a fixed
v =

∑255
k=0 416 · xk (We use c as abbreviation for coeff)

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 17

Similarly, Table 1 in Appendix A gives the resulting classifiers for a fixed v =
∑255
k=0 416 ·

xk and u0 being a constant within the indicated intervals (only using values ∈ U). We
can utilise this in a One-versus-the-Rest (OvR) classifier, a basic method from multi-class
classification [Bis07]. Even though there are not many OvR classifiers in our case, we can
build equivalent classifiers. For example, in Table 1, when u0 ∈ [211, 416], the distribution
is a OvR classifier. If we combine this with [419, 624], we have an equivalent OvR classifier
for (0, 1, 0, 0, 0). Similarly, we can construct (0, 0, 0, 0, 1) and (0, 0, 0, 1, 0). With these
four different distributions (the final four cases in Figure 7, i.e., u0 = 211, 419, 2705, 2913),
we can recover all the five different coefficients.

Note that other combinations of the 27 non-trivial distributions can also achieve the
goal of distinguishing five possible values of coefficients. For brevity, in the following we
only use the above four ciphertexts as chosen-ciphertexts without losing universality.

If we can recover the message (in other words: distinguish t = 1 from t = 0), we can
thus recover half of the secret-key (s0) with only 4 different chosen ciphertexts. More
precisely, let mu0 denote the vector of recovered message bits for a given ciphertext u0
(and v =

∑255
k=0 416 · xk). Then we have the following relation between k-th bit mu0

k and
the k-th coefficient s0[k] of the secret polynomial s0:

m211
k = 1 iff s0[k] = −2

m419
k −m211

k = 1 iff s0[k] = −1
m2705
k −m2913

k = 1 iff s0[k] = 1
m2913
k = 1 iff s0[k] = 2

else iff s0[k] = 0

Hence, we get the coefficient vector s0 of the polynomial s0 as

s0 = (−2) ·m211 + (−1) · (m419 −m211) + 1 · (m2705 −m2913) + 2 ·m2913

The second half s1 can be recovered with four more traces, using the same values but for
u1, setting u0 = 0. Next, we practically demonstrate how the message can be recovered
for different optimization levels (-O0 and -O3).

4.2.2 Message Recovery for -O0

From Algorithm 6, it is clear that the value of mask and the output polynomial coefficients
differ depending on the respective message bit (mask = 0xffff and r [8 · i+ j] = (q+1)/2 iff
((msg[i]� j) & 1) = 1). As evident in Figure 8, the difference between a message bit being
0 or 1 is immediately visible in the respective trace when poly_frommsg() is compiled
at -O0. Our algorithm for automated message recovery proceeds in two steps: First, we
determine the set of PoI using local extreme value search based on two reference traces
(where all message bits are 0 and 1, respectively), as shown in Algorithm 7. This step also
computes a threshold T to distinguish message bit values.

18

Figure 8: Example trace at -O0 (blue) showing the differences between message bit = 0
and 1. Reference trace r1 (with all bits set) in gray.

Algorithm 7 PoI detection and threshold computation for compiler optimization -O0.
Input: Reference trace where all message bits are 0:r0 (t), reference trace where all message

bits are 1:r1 (t)
1: Find PoI: Perform local extrema search on r1 to find 256 local maxima and minima:
2: PoImax = {PoImax(0), PoImax(1), . . . , PoImax(255)}
3: PoImin = {PoImin(0), PoImin(1), . . . , PoImin(255)}
4: Find average difference between maxima and minima:
5: for i = 0 . . . 255 do
6: a0 (i) = r0 (PoImax(i))− r0 (PoImin (i))
7: a1 (i) = r1 (PoImax(i))− r1 (PoImin (i))
8: end for
9: Compute threshold T = 0.5 ·

(∑255
j=0 a0(i)/256 +

∑255
j=0 a1(i)/256

)
10: return PoImin, PoImax, T

In the actual attack phase, given a target trace p (t), Algorithm 8 reconstructs the
message by comparing the difference at the previously determined PoI to the threshold T .
We found that our message recovery process can correctly recover 100% of the message
bits from a single trace. Using the methods from Section 4.2.1, we can hence recover the
full secret-key with eight traces in total.

Algorithm 8 Message recovery for compiler optimization -O0.
Input: PoI PoImin, PoImax, threshold T , trace to be analyzed p (t)

1: msg = (0, 0, . . . , 0)
2: for i = 0 . . . 255 do
3: δ (i) = p (PoImax(i))− p (PoImin(i))
4: if δ (i) > T then
5: msg [i]← 1
6: else
7: msg [i]← 0
8: end if
9: end for

10: return msg

Note that our algorithm requires a one-time profiling step (Algorithm 7) , typically

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 19

carried out using a profiling device. As the PoI are points in time, they are unlikely to
differ between different profiling and target device. On the other hand, the threshold T is
an amplitude quantity and hence might vary depending on device, measurement setup and
so on. However, Algorithm 8 can be easily modified to compute the threshold in real-time
using only the target trace. This can be achieved by clustering the observed δ at the PoI
into two groups, and finding the best threshold to distinguish these clusters (similar to the
approach in Section 3).

Alternatively, the profiling can also be carried out with the actual target device,
avoiding any potential issues due to portability of the PoI and T . For this, the adversary
crafts special ciphertexts as inputs to poly_frommsg() in the initial decoding step (Line 2
in Algorithm 2) within the decryption in KEM decapsulation. For instance, setting
v =

∑255
k=0 1665 · xk and u0 = u1 = 0 leads to an all-one message in this step (details in

Table 2 in Appendix A). Hence, our algorithm is robust towards portability issues that
typically affect template attacks, which heavily rely on precise amplitude profiling.

4.2.3 Message Recovery for -O3

When compiled at -O3, the leakage of the coefficient-wise processing of the message
is less pronounced compared to -O0. To be able to employ a similar approach as in
Section 4.2.2, we rely on averaging of N traces for the same chosen ciphertext (i.e., u and
v). Again, we use an initial profiling step to determine PoI and threshold. As explained in
Section 4.2.2, this can be done using a dedicated profiling device or on the target device
through appropriately chosen ciphertext. In contrast to -O0, we use mean reference traces
averaged over R = 400 traces with all-zero/all-one message each. Precisely, the profiling is
shown in Algorithm 9.

Algorithm 9 PoI detection and threshold computation for -O3.
Input: R reference traces where all message bits are 0: r0,i (t), R reference traces where

all message bits are 1: r1,i (t)
1: r0 (t) =

(∑R
i=1 r0,i (t)

)
/R

2: r1 (t) =
(∑R

i=1 r1,i (t)
)
/R

3: ∆r (t) = r1 (t)− r0 (t)
4: Find PoI: Perform downward peak detection on ∆r (t) to find 256 local minima:
5: PoImin = {PoImin(0), PoImin(1), . . . , PoImin(255)}
6: Compute threshold T = 0.5 ·

(∑255
j=0 ∆r (PoI(j))

)
/256

7: return PoImin, T

The actual message recovery continues in a similar way to Algorithm 8, however, it
operates on an average over N traces pi (t) as follows. We first compute the average
trace as: p (t) =

(∑N
i=1 pi (t)

)
/N . Then, rather than focusing on the difference between

minimum and maximum (cf. Line 3 in Algorithm 8), we compute the δ (i) at each PoI as
the difference between p (t) and the average reference trace for the “all-zero” case r0 (t), i.e.,
δ (i) = p (PoI(i))− r0 (PoI(i)). Also, because T is negative, a 1 is recovered if δ (i) < T ,
and a 0 otherwise.

The success rate (i.e., the percentage of correctly recovered secret coefficients based on
the message bits) of our method over the total number of traces, i.e., 8 ·N , is shown in
Figure 10. In all cases, the reference traces were computed for R = 400, and the experiment
was carried out for 16 randomly chosen secret-keys. As evident in Figure 10, the success
rate stabilizes at 100% after approximately 960 traces in total (i.e., 120 averages per trace).
Furthermore, there is also a trade-off with partial exhaustive search, e.g., the success rate

20

Figure 9: Example average difference trace δ at -O3 (blue) showing the differences between
0 and 1 bits. Difference-of-means reference trace ∆r in gray.

reaches 98% (i.e., recovering 502 of 512 coefficients) after 184 traces (i.e., 23 averages per
trace). This translates to a remaining brute-force effort of 510, i.e., approximately 223.22.
Compared to the previous research of [RRCB20], which requires 7,680 traces for full-key
recovery for Kyber512, our method succeeds with substantially less traces. In contrast
to [ACLZ20], our approach avoids the need for templates in the message recovery phase.

Figure 10: Average (red) and min/max (gray) percentage of correctly recovered secret-key
coefficients (success rate) vs. total number of traces. Average computed over 16 random
secret-keys. Success rate reaches 98% after 184 traces and stable at 100% after 960 traces.

5 Conclusion and Countermeasures
Our work presented an efficient EM side-channel-assisted CCA against IND-CCA Kyber
KEM. We identified several fundamental building blocks in Kyber that leak sensitive
information via side-channels. Thereafter, we showed how a side-channel attacker could
construct malicious ciphertexts to amplify such leakage and then extract the long-term
secret-key using a very small number of traces.

Summary We experimentally validated our attack strategies on both reference and
optimized implementations of Kyber (specifically Kyber512) from the popular pqm4 library.
For the reference implementation, a direct key recovery is possible using only four traces with
100% success rate. For the assembly-optimized implementation of Kyber, we observed that
using a small number of traces we could not perform key recovery directly but could perform

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 21

message recovery with high accuracy. Finally, we showed that the recovered message has a
strong relationship with the long-term key and by exploiting this relationship, an attacker
could easily compute the long-term secret-key. Our experimental results show that our
attack needs only 8 and 960 traces at -O0 and -O3 compiler-optimization levels respectively
to recover the long-term secret-key from the assembly-optimized implementation of Kyber.

Extension to other PQC Schemes Because the fundamental building blocks are similar in
all lattice-based public-key encryption or encapsulation schemes (although their algorithms
and implementations may vary), it might be possible to extend our attack techniques to
the other PQC candidate schemes with some adaptations. The complexity level of an
extended attack may vary scheme to scheme—for example, in NewHope, our message-
recovery attacks to extract the long-term secret-key (Section 4.2.1) cannot be applied
straightforwardly, as one bit of the message is influenced by two secret coefficients. Hence,
constructing similar efficient CCA side-channel techniques is an interesting aspect for
future work.

Countermeasures Our EM-based CCA accumulates side-channel leakage from compu-
tations that involve a long-term secret-key. Hence, mounting such an attack becomes
impractical on applications where the secret-key is not reused. When the secret-key needs
to be reused many times, masking-based countermeasures can be applied to protect the
secret-key. Such countermeasures work by splitting the secret in random shares and
thereafter randomizing the entire decryption or decapsulation. Several generic masking
countermeasures [RRVV15, RdCR+16, RRdC+16, OSPG18] for lattice-based public-key
encryption have been proposed against differential power attacks. However, the application
of masking typically increases the execution time of decryption or decapsulation by some
factor. Recently Beirendonck et al. [BDK+20] showed that it is possible to reduce this
overhead if the masking countermeasure is customized targeting a specific public-key
scheme. They showed that an optimized, masked decapsulation becomes only 2.5 times
slower with respect to unmasked decapsulation for Saber [DKRV19]. We believe that
further study in this direction will produce more optimized masking schemes in the future.

A less computationally-expensive countermeasure could be to detect and then discard
malicious ciphertexts before starting any computation involving the long-term secret-key.
In our attack, the coefficients of the chosen-ciphertext polynomials are fabricated to
satisfy a specific structure such that the EM leakage reveals information about the secret.
Genuine ciphertexts are essentially LWE samples, and hence they are indistinguishable
from uniformly random samples. By measuring the entropy of the received ciphertext, we
could detect and then discard specially structured (i.e., low-entropy) malicious ciphertexts
before starting a real decapsulation. However, such a countermeasure needs further analysis
and would additionally cause false-positive cases.

6 Acknowledgements
The research is partially funded by the Engineering and Physical Sciences Research Council
(EPSRC) under grant EP/R012598/1 and by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 779391 (FutureTPM). The work
was done during the visit of the first author to the University of Birmingham. The visit
was funded by the China Scholarship Council (CSC) under Grant No. 201906020096.

22

References
[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Rami

Barends, Rupak Biswas, Sergio Boixo, Fernando Brandao, David Buell, Brian
Burkett, Yu Chen, Jimmy Chen, Ben Chiaro, Roberto Collins, William
Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler,
Craig Michael Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve
Habegger, Matthew Harrigan, Michael Hartmann, Alan Ho, Markus Rudolf
Hoffmann, Trent Huang, Travis Humble, Sergei Isakov, Evan Jeffrey, Zhang
Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul Klimov, Sergey
Knysh, Alexander Korotkov, Fedor Kostritsa, Dave Landhuis, Mike Lind-
mark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod Ryan McClean,
Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud
Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Mur-
phy Yuezhen Niu, Eric Ostby, Andre Petukhov, John Platt, Chris Quintana,
Eleanor G. Rieffel, Pedram Roushan, Nicholas Rubin, Daniel Sank, Kevin J.
Satzinger, Vadim Smelyanskiy, Kevin Jeffery Sung, Matt Trevithick, Amit
Vainsencher, Benjamin Villalonga, Ted White, Z. Jamie Yao, Ping Yeh, Adam
Zalcman, Hartmut Neven, and John Martinis. Quantum Supremacy using a
Programmable Superconducting Processor. Nature, 574:505–510, 2019.

[ACLZ20] Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden.
Defeating NewHope with a Single Trace. In Jintai Ding and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020, Paris, France, April 15-17, 2020, Proceedings, volume 12100
of Lecture Notes in Computer Science, pages 189–205. Springer, 2020.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum Key Exchange - A New Hope. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016, pages 327–343. USENIX Association, 2016.

[ATT+18] Aydin Aysu, Youssef Tobah, Mohit Tiwari, Andreas Gerstlauer, and Michael
Orshansky. Horizontal Side-channel Vulnerabilities of Post-quantum Key
Exchange Protocols. In 2018 IEEE International Symposium on Hardware
Oriented Security and Trust, HOST 2018, Washington, DC, USA, April 30 -
May 4, 2018, pages 81–88. IEEE Computer Society, 2018.

[BCLvV17] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. NTRU Prime: Reducing Attack Surface at Low Cost. In
Carlisle Adams and Jan Camenisch, editors, Selected Areas in Cryptography -
SAC 2017 - 24th International Conference, Ottawa, ON, Canada, August 16-
18, 2017, Revised Selected Papers, volume 10719 of Lecture Notes in Computer
Science, pages 235–260. Springer, 2017.

[BDHD+19] Ciprian Băetu, F Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan,
and Serge Vaudenay. Misuse Attacks on Post-quantum Cryptosystems. In
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 747–776. Springer, 2019.

[BDK+18] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle. CRYSTALS - Kyber: A CCA-Secure
Module-Lattice-Based KEM. In 2018 IEEE European Symposium on Security
and Privacy (EuroS P), pages 353–367, 2018.

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 23

[BDK+20] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A Side-Channel Resistant Implementation
of SABER. IACR Cryptol. ePrint Arch., 2020:733, 2020.

[BGRR19] Aurélie Bauer, Henri Gilbert, Guénaël Renault, and Mélissa Rossi. Assessment
of the key-reuse resilience of NewHope. In Cryptographers’ Track at the RSA
Conference, pages 272–292. Springer, 2019.

[Bis07] Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition.
Information science and statistics. Springer, 2007.

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-Efficient
High-Speed Implementation of Kyber on Cortex-M4. In Johannes Buchmann,
Abderrahmane Nitaj, and Tajje-eddine Rachidi, editors, Progress in Cryptol-
ogy - AFRICACRYPT 2019 - 11th International Conference on Cryptology
in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings, volume 11627 of
Lecture Notes in Computer Science, pages 209–228. Springer, 2019.

[DCQ19] Jintai Ding, Chi Cheng, and Yue Qin. A Simple Key Reuse Attack on
LWE and Ring LWE Encryption Schemes as Key Encapsulation Mechanisms
(KEMs). IACR Cryptology ePrint Archive, 2019:271, 2019.

[DKRV19] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. SABER. Proposal to NIST PQC Standardization, Round2,
2019. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
round-2-submissions.

[DKSRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. Saber: Module-LWR Based Key Exchange, CPA-Secure
Encryption and CCA-Secure KEM, volume 10831, page 282–305. Springer
International Publishing, 2018.

[DLL+18] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehle. CRYSTALS-Dilithium: A Lattice-Based Digital
Signature Scheme. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018(1):238–268, Feb. 2018.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Timing attacks on error correcting codes in post-quantum schemes.
In Begül Bilgin, Svetla Petkova-Nikova, and Vincent Rijmen, editors, Pro-
ceedings of ACM Workshop on Theory of Implementation Security Workshop,
TIS@CCS 2019, London, UK, November 11, 2019, pages 2–9. ACM, 2019.

[EG12] M. Abdelaziz Elaabid and Sylvain Guilley. Portability of templates. Journal
of Cryptographic Engineering, 2:63–74, 2012.

[Flu16] Scott R Fluhrer. Cryptanalysis of ring-LWE based key exchange with key
share reuse. IACR Cryptology ePrint Archive, 2016:85, 2016.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric
and Symmetric Encryption Schemes. In Michael Wiener, editor, Advances
in Cryptology — CRYPTO’ 99, pages 537–554, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

[HCY20] Wei-Lun Huang, Jiun-Peng Chen, and Bo-Yin Yang. Power analysis on
NTRU prime. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):123–151,
2020.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions

24

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4.

[LLZ+18] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan
He, and Bao Li. LAC: practical ring-lwe based public-key encryption with
byte-level modulus. IACR Cryptol. ePrint Arch., 2018:1009, 2018.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams,
editor, Advances in Cryptology - CRYPTO ’85, Santa Barbara, Califor-
nia, USA, August 18-22, 1985, Proceedings, volume 218 of Lecture Notes in
Computer Science, pages 417–426. Springer, 1985.

[Nat20] National Institute of Standards and Technology. Post-quantum cryptography,
Created January 03, 2017, Updated June 24, 2020. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-Secure and Masked Ring-LWE Implementation. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(1):142–174, 2018.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-Trace Side-Channel
Attacks on Masked Lattice-Based Encryption. In Wieland Fischer and
Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer Science,
pages 513–533. Springer, 2017.

[QCD19] Yue Qin, Chi Cheng, and Jintai Ding. A Complete and Optimized Key
Mismatch Attack on NIST Candidate NewHope. IACR ePrint Archive, page
435, 2019.

[RBRC20] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.
Drop by Drop you break the rock - Exploiting generic vulnerabilities in Lattice-
based PKE/KEMs using EM-based Physical Attacks. IACR Cryptol. ePrint
Arch., 2020:549, 2020.

[RdCR+16] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren,
and Ingrid Verbauwhede. Additively homomorphic ring-LWE masking. In
Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
Fukuoka, Japan, February 24-26, 2016, Proceedings, pages 233–244, 2016.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of
the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93. ACM, 2005.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic Side-channel attacks on CCA-secure lattice-based PKE and
KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald 25

[RRdC+16] Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren, and
Ingrid Verbauwhede. Masking ring-lwe. J. Cryptogr. Eng., 6(2):139–153,
2016.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A Masked Ring-LWE Implementation. In Tim Güneysu and
Helena Handschuh, editors, Cryptographic Hardware and Embedded Systems -
CHES 2015 - 17th International Workshop, Saint-Malo, France, September
13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer Science,
pages 683–702. Springer, 2015.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[SAB+19] P Schwabe, R Avanzi, J Bos, L Ducas, E Kiltz, T Lepoint, V Lyubashevsky,
JM Schanck, G Seiler, and D Stehle. CRYSTALS-Kyber–Algorithm Specifi-
cations And Supporting Documentation. NIST Technical Report, 2019.

[Sho97] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing,
26(5):1484–1509, Oct 1997.

[STM16] STMicroelectronics. STM32F405xx STM32F407xx Datasheet, 9 2016. Rev 8.

26

A Message Distributions for Different Chosen Ciphertexts

Table 1: m-distributions for different intervals of u0 [0] with fixed v =
∑255
k=0 416 · xk.

u0

t coeff. of s
-2 -1 0 1 2

[0, 208] 0 0 0 0 0
[211, 416] 1 0 0 0 0
[419, 624] 1 1 0 0 0
[627, 1040] 1 1 0 0 1
[1044, 1248] 0 1 0 0 1
[1252, 1456] 0 1 0 1 1
[1460, 1869] 0 1 0 1 0
[1873, 2077] 1 1 0 1 0
[2081, 2285] 1 0 0 1 0
[2289, 2702] 1 0 0 1 1
[2705, 2910] 0 0 0 1 1
[2913, 3118] 0 0 0 0 1
[3121, 3326] 0 0 0 0 0

Table 2: m-distributions for different intervals of u0 [0] with fixed v =
∑255
k=0 1665 · xk.

u0

t coeff. of s
-2 -1 0 1 2

[0, 413] 1 1 1 1 1
416 0 1 1 1 1
[419, 829] 0 1 1 1 0
832 0 0 1 1 0
[836, 1248] 0 0 1 0 0
[1252, 2077] 1 0 1 0 1
[2081, 2493] 0 0 1 0 0
2497 0 1 1 0 0
[2500, 2910] 0 1 1 1 0
2913 1 1 1 1 0
[2916, 3326] 1 1 1 1 1

