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Abstract. Differential cryptanalysis is an important technique to eval-
uate the security of block ciphers. There exists several generalisations of
differential cryptanalysis and it is also used in combination with other
cryptanalysis techniques to improve the attack complexity. Usefulness of
Machine learning in differential cryptanalysis is introduced by Gohr in
2019 to attack the lightweight block cipher SPECK. In this paper, we
present a framework to combine the classical differential distinguisher
and machine learning (ML) based differential distinguisher. We propose a
novel technique to construct differential-ML distinguisher which provides
better results with reduced data complexity. This technique is demon-
strated on lightweight block ciphers SPECK & SIMON where 96% &
99% (or more) success rate is achieved for distinguishing the 6-round
SPECK and 9-round SIMON respectively.
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1 Introduction

Cryptanalysis of block ciphers witnessed remarkable progress after the proposal
of differential attack on DES by Biham and Shamir [5] in 1990. Differential attack
is the most basic and widely used cryptanalysis approach against block ciphers.
This attack is generalised and combined with other cryptanalysis techniques to
reduce the attack complexity. High probability differential trails are the first and
foremost requirement for differential cryptanalysis to succeed. Matsui proposed
a method to search the high probability differential trails based on branch-and-
bound technique [12] in 1994. For large block sizes, classical approaches are not
sufficient to provide the useful differential trails. In 2011, Mouha et.al proposed
a new technique using mixed integer linear programming (MILP) to search the
differential trails [13]. MILP based search method constructs the differential
trails with better efficiency than branch-and-bound based methods.

Since, block ciphers are designed to thwart differential attack using wide trail
design strategy [7] and Shannon’s principles [10]. Therefore, existing trail search
methods encounter a bottleneck for required data quickly and fail to provide the
trails covering the required number of rounds. In practice, we need a differential
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trail with probability greater than 2−n to distinguish r rounds of an n-bit block
cipher from random permutations. Whenever, the probability of an r-round trail
becomes less than 2−n, the trail is not useful for differential attack on r or more
rounds of a block cipher. A differential trail is useful until it requires less data
than available limit i.e. 2n pairs. Therefore, the aim is to find a technique which
can be used to extend the classical differential trails without increasing the data
complexity. Machine learning based differential cryptanalysis approach works as
a pretty solution to this problem.

In this paper, we combine the classical and machine learning techniques to
design a ML based generic extension for any classical differential distinguisher.
This provides the better results with a greater number of rounds and much lesser
data complexity. We extend r-round high probability classical differential distin-
guisher (DCD

1···r) with s-round high accuracy ML based differential distinguisher
(DML

r+1···r+s) and combined distinguisher (DCD→ML
1..r+s ) is used to distinguish (r+s)

rounds of a block cipher with much lesser data complexity. With this extension,
the hybrid distinguisher outperforms both classical and ML based distinguisher.
We experiment with two different types of lightweight block ciphers SPECK &
SIMON and acquire the results with very high accuracy.

The remaining part of the paper is organised in the following manner. Section
2 discusses previous work related to ML based distinguisher. In Section 3, we
provide the short description of lightweight block ciphers SIMON and SPECK.
We discuss classical differential distinguisher and machine learning based differ-
ential distinguisher in section 4 and describe the existing work on differential
distinguisher using machine learning in this section. In section 5, we propose
our novel technique which combines the classical differential and ML based dif-
ferential approaches. We demonstrate our technique on SPECK and SIMON
block ciphers with high success rate and present the results of Differential-ML
distinguisher in section 6. Finally, section 7 concludes the paper.

Conventions: Throughout this paper, we refer differential distinguisher with
single input and output difference as a classical differential distinguisher.

2 Previous Work

Machine learning techniques are very helpful for big data analytics and it is
used to determine minute relations in the data. In cryptology, identification of
minute relations in the data plays an important role because these relations
define the security strength of the cipher. In cryptanalysis domain, machine
learning techniques for differential cryptanalysis are explored very recently and
results are very promising.

Gohr[8] proposed the idea of learning differences for key recovery using ma-
chine learning. He presented a framework to construct the ML based differential
distinguisher and used it for key recovery attack on SPECK32. Gohr compared
this technique with classical differential attack and shown that data complex-
ity for key recovery attack using ML distinguisher is less. Baksi et al.[1] used
the same approach to design ML distinguisher for GIMLI cipher and GIMLI
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hash[3]. Different ML architectures are compared in this work and claimed that
ML distinguisher outperforms classical differential distinguisher. In comparison
to Gohr’s work[8], key recovery attacks are not demonstrated on GIMLI. In these
previous work, ML based distinguishers have limitations on computation power,
memory and data complexity. Due to these constraints, distinguisher cannot be
extended beyond certain number of rounds and it becomes a major hindrance
especially with a block size greater than 32.

3 SPECK and SIMON Block Ciphers

SPECK and SIMON are two families of block ciphers published by NSA[2] in
2013. These block ciphers are designed to provide high performance across a
range of devices. There are 10 versions of each cipher based on the block and
key size combinations which makes them suitable for wide range of applications.
We discuss the encryption algorithm for 32-bit block size and 64-bit key versions
of each block cipher. We omit the key expansion algorithm and NSA paper [2]
can be refereed for more details. A brief description of SPECK and SIMON block
cipher is provided in the following section.

3.1 Description of SPECK

SPECK32/64 is a block cipher with 32-bit block size and 64-bit key size. There
are 22 rounds in SPECK32/64 block cipher. It is based on Feistel network and
can be represented by composition of two Feistel maps. Encryption algorithm
divides 32-bit input into two 16-bit words (X2i+1, X2i) and key expansion algo-
rithm extract 16-bit round subkeys for each round. Round function comprises
of addition modulo 216, bitwise XOR, left and right circular shift operations as
described in Algorithm 1.

Algorithm 1: Encryption Algorithm of SPECK

1 Input: P = (X1||X0) and K
2 Output: C = (X65||X64)
3 for i=1 to 22 do
4 X2i = (X2i−1 ≫ 7 +X2i−2)⊕RKi−1
5 X2i+1 = (X2i−2 ≪ 2⊕X2i)

6 end

3.2 Description of SIMON

SIMON32/64 is a block cipher with 32-bit plaintext block and 64-bit secret mas-
ter key. There are 32 rounds in SIMON32/64 block cipher and it is also based
on Feistel network. Encryption algorithm divides the 32-bit input into two 16-
bit words Xi+1&Xi. Key expansion algorithm expands the 64-bit master key to
provide 16-bit round subkeys (RKi) for each round. It applies a round function
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consisting bitwise XOR, bitwise AND, and left circular shift operations on left
16-bit words in each round as described in Algorithm 2.

Algorithm 2: Encryption Algorithm of SIMON

1 Input: P = (X1||X0) and K
2 Output: C = (X33||X32)
3 for i=1 to 32 do
4 Xi+1 = (Xi ≪ 1&Xi ≪ 8)⊕ (Xi ≪ 2)⊕Xi−1 ⊕RKi−1
5 end

4 Differential Cryptanalysis

Differential attack is one of the most important analysis tool for cryptanaly-
sis of block ciphers. This is the first attack of its own kind which reduced the
complexity of DES better than exhaustive search [14]. Differential cryptanalysis
created a path for several new cryptanalysis techniques like linear, impossible,
algebraic and so on[6]. While designing an ideal block cipher, its output is tested
for indistinguishability form random permutations. Although, there do not exists
relationship between the single input and output occurrence of a block cipher,
there may exist non-random relations in the input and output differences. The
basic approach of differential attack is to study the propagation of input dif-
ferences and exploitation of non-random relations between input and output
differences. The classical differential attack works with a single differential trail
providing the high probability relation between an input and output difference.

4.1 Classical Differential Distinguisher

A high probability differential trail is used for key recovery attack by adding
some rounds on top/bottom of the trail. There exists several automated tech-
niques to search the optimal differential trails for block ciphers[11] [9]. We extend
2-round SPECK and 4-round SIMON differential trail by ML based differential
distinguisher. In this paper, we do not search for new differential trails for SI-
MON & SPECK but we use some part of existing differential trails published in
[4].

4.1.1 Differential Trails for SPECK Biryukov et.al[4] presented the 9-
round differential trails for Speck32/64 variant with probability 2−30. We use
2-round differential trail with probability 2−6 in our experiment from 9-round
trail presented in table 1.
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Round Input Difference Prob.
Index (4Xi+1,4Xi) (−log2pi)
∆0 8054 A900 0
∆1 0000 A402 3
∆2 A402 3408 3
∆3 50C0 80E0 8
∆4 0181 0203 4
∆5 000C 0800 5
∆6 2000 0000 3
∆7 0040 0040 1
∆8 8040 8140 1
∆9 0040 0542 2

Table 1: Differential Trail of SPECK [4]

4.1.2 Differential Trails for SIMON Biryukov et.al[4] presented the 12-
round differential trails for Simon32/64 variant with probability 2−34. We use
5-round differential trail with probability 2−8 in our experiment from the 12-
round trail presented in table 2.

Round Input Difference Prob.
Index (4X2i+1,4X2i) (−log2pi)
∆0 0400 1900 0
∆1 0100 0400 2
∆2 0000 0100 2
∆3 0100 0000 0
∆4 0400 0100 2
∆5 1100 0400 2
∆6 4200 1100 4
∆7 1D01 4200 4
∆8 0500 1D01 8
∆9 0100 0500 3
∆10 0100 0100 2
∆11 0500 0100 2
∆12 1500 0500 3

Table 2: Differential Trail of SIMON [4]

4.2 ML Based Differential Distinguisher

For a chosen input difference, we use neural distinguisher design proposed by
Gohr[8]. We also consider the improvements in this design suggested by Baksi
et al.[1]. We use dense layers of MLPs (Multi Layers Perceptrons) instead of
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ML

Based

Distinguisher

Training Data: 225 pairs

(∆r+s, b)

Trained for input difference ∆r

if ∆r 6→ ∆r+s : b = 0

if ∆r → ∆r+s : b = 1

Fig. 1. Training Phase for ML Based Distinguisher

ML
Based

Distinguisher

Input Data

(∆r+s)

Output: (p, b)
(b = 0 if p ≤ .51 )
(b = 1 if p > .51 )

b = 0⇒ ∆r 6→ ∆r+s

b = 1⇒ ∆r → ∆r+s

Fig. 2. Prediction using ML Based Distinguisher
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convolution networks and trained the ML distinguisher on ciphertext differences
rather than ciphertext pairs. These improvements make learning faster and effi-
cient than Gohr’s approach. Further, we use the same encryption key to generate
the required training data because differential distinguisher is key independent.
Therefore, we do not need to change the key for every encryption.

We train this ML distinguisher using the real and random differences ap-
proach proposed by Gohr. In this approach, half of the cipher text data belongs
to the chosen plaintext difference and the other half belongs to the random plain-
text differences. We label each ciphertext difference either with 1 if it belongs to
the chosen input difference and label it with 0 if it does not belong to the chosen
input difference. We provide this data to the MLP based model and train the
model with 2 hidden layers having 1024 neurons each.

We assume that targeted system is accessible and there is no constraint on the
training data required for learning the system. Therefore, we use 225 ciphertext
pairs for training phase. Out of these 225 pairs, 224 belongs to chosen plaintext
difference and 224 belongs to random plaintext differences as shown in Fig. 1. As
described by Gohr, this approach works pretty well because not only specificity
but also sensitivity is learned. Specificity and sensitivity are the learning of
relations whether a ciphertext belongs to the chosen input difference or not
respectively. We trained the model till the accuracy is saturated. This accuracy is
the combination of accuracy of specificity and sensitivity. A model with accuracy
greater than 0.51 (on the scale of 0 to 1) is considered as a distinguisher. After
training phase, ML distinguisher will be able to distinguish any given ciphertext
with a probability (p). We will label the ciphertext as 0 if probability is less than
0.51 and as 1 if probability greater than 0.51 as shown in Fig. 2. A distinguisher
with higher accuracy will result in better prediction.

5 Differential-ML Distinguisher: an Extension for
Classical Differential Distinguisher

Gohr’s distinguisher lacks extendability because ML based distinguisher can only
be designed if data requirement is computationally feasible. We propose a new
approach to work with ML based distinguishers to overcome this constraint to
a large extent. In our approach, we use ML based distinguisher in combination
with classical differential distinguisher. ML distinguisher works as an extension
to a classical distinguisher. We use an r-round classical differential trail and its
output difference ∆r is considered as an input difference for ML distinguisher.
ML distinguisher is trained on this input difference (∆r) instead of plaintext
difference (∆0). This new distinguisher reduces data complexity to a large extent
with high accuracy.

To extend the r-round classical differential distinguisher, we consider the out-
put difference ∆r of the r-round classical differential trail and use ∆r to train
s-round distinguisher DML

r+1···r+s. For training, half of the input data belongs to
input difference ∆r and half of the data belongs to random input differences. The
ML based distinguisher is modelled with an accuracy αi and we denote accuracy
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Classcial
Distinguisher

Plaintext Difference: ∆0

Round 1
Round 2

Round r − 1
Round r

(∆1, 2
−p1)

(∆2, 2
−p2)

(∆r−1, 2
−pr−1)

(∆r, 2
−pr )

ML Based
Distinguisher

Round r + 1
Round r + 2

Round r + s− 1
Round r + s

(Trained for ∆r)

ML Based
Distinguisher

Accuracy: αs

Round 1
Round 2

Round r + s− 1
Round r + s

(Trained for ∆r)

Data Requirement:

2pr+δ

Accuracy: αr+s

Fig. 3. Extension of Classical Distinguisher using ML Distinguisher
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of s-round ML distinguisher as αs. The accuracy α defines the strength of the dis-
tinguisher and better accuracy gives better predictions. Now, this distinguisher
DML
r+1···r+s can distinguish any (r + s)-round ciphertext with high probability.

For r-round classical differential trail, output difference ∆r with probability
2−pr requires 2pr data to get at least one occurrence of difference ∆r. If we
provide 2pr ciphertext pairs after (r + s) rounds of encryption to DML

r+1···r+s
then we expect DML

r+1···r+s to predict at least one occurrence of difference ∆r.
Although ML distinguisher works on multiple output differences, we expect it
to learn the pattern of differences which are more frequent and suggested by the
classical differential trail. Therefore, 2pr or more data is required for s-round
distinguisher (DML

r+1···r+s) to work as an (r+ s)-round distinguisher (DCD→ML
1..r+s ).

Differential-ML distinguisher (DCD→ML
1..r+s ) is a probabilistic distinguisher and we

need to provide more data based on accuracy αs for better prediction. Therefore,
data complexity of DCD→ML

1..r+s will be 2pr+δ, where δ defines the additional data
required to make predictions with higher accuracy (Fig. 3).

In our experiments, we observe that DCD→ML
1..r+s predicts ciphertexts belonging

to the chosen plaintext difference ∆0 with very high probability than random
plaintext differences using 2pr+δ data. We use this observation to increase the
accuracy αr+s by filtering higher probability predictions. We can always find
a high probability threshold T and a cutoff CT on the number of predictions
with probability greater than T . With threshold T and cutoff CT , we are able
to achieve a very high success rate to distinguish (r + s) rounds data. Experi-
mental results in the next section show that data complexity for (r + s) rounds
using differential-ML distinguisher is far less than the classical differential dis-
tinguisher.

6 Experimental Results

We apply Differential-ML distinguisher on 32-bit variants of two light weight
block ciphers SPECK and SIMON. We extend the classical differential distin-
guisher discussed in section 4 using 4-round Differential-ML distinguisher in each
case. Using this technique, we have constructed 6-round Differential-ML distin-
guisher for SPECK and 9-round Differential-ML distinguisher for SIMON with
very less data complexity than classical distinguisher.

6.1 Differential-ML distinguisher for SPECK

For SPECK32/64, we use the classical differential trail for initial 2 rounds as
described in the table 1. Output difference after initial 2 rounds is 0xA4023408
(∆2) with probability 2−6. We train ML distinguisher using ∆2 as input differ-
ence for next 4 rounds.
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6.1.1 Data Requirement

1. Training: Training data can be as large as possible because it does not
contribute to the data complexity of the distinguisher. We have used 225

ciphertext pairs for the training phase.

2. Prediction: Data used in predictions contributes to the data complexity of
the distinguisher and it must be as small as possible. Differential probability
for 2-round classical differential trail is 2−6, therefore we require at least
26 data to get predictions for entire 6 rounds. To get higher accuracy, we
require additional 215(δ) data which increases the data complexity to 221 for
distinguishing 6-round SPECK.

6.1.2 Accuracy of Differential-ML Distinguisher (αr+s) The 4-round
ML distinguisher is trained with validation accuracy (αs) 0.53. As described
in section 5, it is used to extend 2-round classical distinguisher. The accuracy
(αr+s) of Differential-ML distinguisher for different experiments is mentioned in
the table 3.

Experiment Sample Size Correctly Distinguished
No. (True Positive, True Negative)

1 100 96(50,50)
2 100 96(50,50)
3 100 98(50,50)
4 100 99(50,50)
5 100 96(49,50)

Table 3: Accuracy for SPECK with T = 0.60 & CT = 4800

In the experiments, 50 samples belong to the plaintext difference ∆0(=0x8054
a900) of classical distinguisher and 50 samples belongs to random input differ-
ences. We use 221 data and get 96% or more accuracy for each experiment. There-
fore, data complexity of 6-round differential-ML distinguisher for SPECK is 221.
However, data complexity of 6-round classical differential distinguisher is 226 as
mentioned in table 1. This shows that data complexity of 6-round differential-ML
distinguisher is far better than classical differential distinguisher.

6.2 Differential-ML distinguisher for SIMON

For SIMON32/64, we use the classical differential trail for initial 5 rounds as
described in the table 2. Output difference ∆5 after 5 rounds is 0x11000400 with
probability 2−8. We use ∆5 as input difference for training phase of 4-round ML
distinguisher.
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6.2.1 Data Requirement

1. Training: Training data requirements are similar to the case of SPECK. We
use 225 plaintext pairs for training the 4-round ML distinguisher.

2. Prediction: Similar to SPECK, we must reduce the data requirement for
predictions. Differential probability for 5-round classical differential trail is
2−8, therefore we require at least 28 data to distinguish 9-round SIMON.
To increase the accuracy, 24 additional data (δ) is required. We require less
additional data than SPECK due to high validation accuracy αs of the ML
distinguisher for SIMON. Due to this additional data, data complexity to
distinguish 9-round SIMON is increased to 212.

6.2.2 Accuracy of Differential-ML Distinguisher (αr+s) The 4-round
ML distinguisher is trained with validation accuracy 0.98. It is used to extend
5-round classical differential distinguisher. The accuracy of 9-round Differential-
ML distinguisher for different experiments is mentioned in the table 4.

Experiment Sample Size Correctly Distinguished
No. (True Positive, True Negative)

1 100 100(50,50)
2 100 100(50,50)
3 100 100(50,50)
4 100 99(49,50)
5 100 100(50,50)

Table 4: Accuracy for SIMON with T = 0.9997 & CT = 5

Similar to SPECK, 50 samples belong to the initial input difference ∆0

(=0x04001900) of classical distinguisher and 50 samples belongs to random input
differences. We use 212 data to achive accuracy near to 100% for each experi-
ment. Therefore, data complexity of 9-round differential-ML distinguisher is 212,
while data complexity for 9-round classical differential distinguisher is 227 (Table
2). This shows that differential-ML distinguisher provides much better results
than classical differential distinguisher in case of SIMON also.

7 Conclusion

In this paper, we have proposed a novel technique to extend the classical differ-
ential attack using machine learning based distinguisher. Experimental results
shows very high success rate for block ciphers SIMON & SPECK with a sig-
nificant reduction in data complexity. We have also shown that we can extend
any available classical differential distinguisher with machine learning based dif-
ferential distinguisher. The new technique provides the better results in terms
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of number of rounds and data complexity. This approach will open a new di-
mension for practical key recovery attacks using differential cryptanalysis where
data complexity is a major roadblock.
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