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Abstract. In this paper, we study and construct multivariate schemes
with “ultra-short” signatures. We focus on the classic case where the
public key is a set of multivariate polynomials of degree 2.
To design ultra-short signature schemes, we consider that signing a mes-
sage and verifying a signature could require up to 1 minute of computa-
tion on a modern personal computer. Shorter time could be considered
but at the cost of a few additional bits in the signatures, more generally,
a trade-off may be found between computation time and signature size,
depending on the applications one is targeting.
Despite the fact that a time of 1 minute is far bigger than the time re-
quired by general purpose multivariate-based signature schemes, such as
Rainbow, GeMMS, and Quartz, it enables us to reach ultra-short signa-
ture lengths; for instance, around 70 bit-long signatures for a security of
80 bits.
In a first part, we describe generic and specific attacks against multivari-
ate public key signature schemes and use them to derive the minimal
parameters that an ultra-short signature scheme could have.
In a second part, we give explicit ultra-short signature schemes with
security in 80, 90 and 100 bits.
In order to construct these signatures scheme, we use “nude HFE” (i.e.
the classic HFE algorithm, without perturbations) and the new projec-
tion HFE algorithm described in [18].
Recent progress has been made on attacking the MinRank problem,
which is strongly connected to HFE, in [2], and on attacking HFEv−
in [24]. These potential threats against multivariate signature schemes
have been taken into account in this paper.

Keywords: Public Key Cryptography, Multivariate Cryptography, HFE,
Ultra-Short Signature.

1 Introduction

General context. At present, the RSA cryptosystem is the most used public
key signature algorithm. According to the current best (non-quantum) factor-



ization algorithm (General Number Field Sieve [7]) whose complexity is sub-
exponential, to reach a security of 80 bits (which means that an attacker would
need at least 280 operations to recover the secret), one requires a public key of
more than 1024 bits, and therefore the length of the signature is at least 1024
bits. Similarly, for a security of 128 bits, the length of an RSA signature is greater
than 3000 bits. Using elliptic curves, signatures are smaller: about 240 or 320
bits for a security in 80 bits, and about 384 or 512 for a security in 128 bits.

Nowadays, many cryptographers focus more on post-quantum cryptography,
that is to say on crypto-systems that could resist attacks performed by quan-
tum computers. There are mainly five kinds of post-quantum cryptography:
multivariate, isogeny, code, lattice and hash-based cryptography. Since we deal
with multivariate-based cryptography, our schemes might resist quantum at-
tacks, however this is not the topic of this paper which focuses only on attacks
with non-quantum computers.

Multivariate-based cryptography started in 1988 with the C* algorithm of
Matsumoto and Imai [17]. It was later broken by Patarin ([19]) who then sug-
gested a way to fix it with the Hidden Field Equations (HFE) scheme in 1999
([20]). Following it, a lot of variations of this scheme were proposed, for instance
HFEv− (also in [21]), Quartz [22], and GeMSS [8].

At present, multivariate cryptography is an active research field since seven
multivariate signature schemes have been submitted to the NIST Post-Quantum
standardization process in 2018 and two of them (Rainbow and GeMSS) made it
to the third round (including Alternate Candidates). Rainbow [11] is a multivari-
ate signature scheme designed by Ding from the “Unbalanced Oil and Vinegar”
scheme [16]. With multivariate-based cryptography, it seems possible to have
short signatures, for example for a 128 bit security level, Rainbow provides 528
bit-long signatures, and GeMSS 256 bit-long signatures; for a 80 bit security
level, Quartz provides 128 bit-long signatures.

In this paper, we will obtain even shorter signatures.

Our security model. In this article, we present multivariate ultra-short signa-
ture schemes which are secure in a security model where the cost of verifying a
signature and computing the hash value of a chosen message are non-negligible.

More precisely, if an adversary wants to forge a valid signature for a message
of his choice, he does have access to two oracles, one that computes hash values
and one that checks either a pair message-signature is valid or not ; but each
request to one of those oracles has a cost. We express this cost in term of a
minimal number of operations required to access the oracle’s answer. Note that
the verification oracle’s answers can only be “Yes” or “No”, that is to say that
these answers do not contain any hash values.

In Section 6, we will describe real-life applications of our schemes which jus-
tify the use of this model. Furthermore, we will see that most of our parameters
remain secure if the verification cost drops down to the cost of a single operation,
as long as the access to the hash oracle has a non-negligible cost.
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A generic and naive approach to get smaller signatures. One can always
derive a small signature from any signature scheme, as long as one is willing to
spend a longer time to verify the signature.

More precisely, one only has to pick any signature scheme of his choice, let us
consider that it outputs n-bits long signatures and that the verification process
usually takes T seconds, and to remove f bits from them, then the verification
process will take at most 2fT seconds, and the signature will be n− f bits long.

This generic construction is classic and enables one to shorten as much as
possible the length of a signature, at the expense of a longer verification process
due to an exhaustive search.

However, this construction is very different from the one we will present in
this article. In fact, our way to shorten signature does not depend on exhaustive
search, but on solving systems of multivariate polynomials. Doing so, we take
advantage of the very structure of multivariate-based cryptosystems.

Our contribution. In this paper, we describe generic attacks against multivari-
ate signature schemes and we use them to draw inferences about minimal values
of parameters one would have to set to build secure ultra-short multivariate
signature schemes.

In order to build signature schemes with ultra-short signatures, we exploit
original ideas such as time constraints: one should not be able to sign a message
or check a signature in less than a minute on a modern personal computer with a
3GHz frequency processor, that is to say with a total computation power around
3.109×60 ≈ 237 word operations. In addition to this, our parameters are chosen
not to require too much memory, typically less than 350MB.

Moreover, this paper gives explicit examples of ultra-short multivariate sig-
nature schemes based on HFE variants, for example, for a 80 bit security level,
our signatures are about 70 bit-long, which is less than 20 hexadecimal digits.

We provide many parameters for these schemes according to different security
levels (from 80 to 100 bits) and different choices of finite fields (from F2 to F17).

Structure of our paper. In Section 2, we describe three types of generic
attacks against multivariate signature schemes (namely Types 1, 2 and 3 attacks)
and we derive minimal lengths for our ultra-short signatures from them.

Then, in Section 3, we propose concrete designs for ultra-short multivariate
signature schemes based on HFE variants and we study their specific attacks as
well (we named them Type 4 attacks).

2 Generic Attacks

In this section, we describe the four main types of attacks that have to be
considered to design a signature scheme. The three first types are generic attacks
against the multivariate signature schemes, whereas the last one is specific to
the schemes using HFE variants.
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While describing those attacks, we will look for the shortest length L in bit a
signature can have for a given level of security of λ bits. In what follows, a λ bit
security means classically that the computational power required by an attacker
can not exceed 2λ operations. In the same spirit and to ease the wording, we
will say that a computation, the evaluation of a function or an algorithm for
instance, has a b-bit cost, when it requires 2b operations. Similarly, a b-bit list
or enumeration has 2b elements.

Here are the aforementioned four types of attacks:

– Type 1: refers to attacks that work against any public key signature scheme
whose signatures are L bit-long.

– Type 2: refers to attacks against signature schemes where the verification
of a signature S of a message M is done by checking if F (S) = H(M), where
F is a public function which can be evaluated efficiently and H is an hash
function.
Note that this verification process is different from the more classical one
where a function F takes the couple (S,M) as an argument and returns 1 if
S is a valid signature of the message M and 0 otherwise.

– Type 3: refers to attacks that work when F is a set of m multivariate
quadratic equations over a finite field Fq.

– Type 4: refers to attacks against signature schemes based on HFE with
some perturbations. Usually those perturbations, such as “v” (vinegar) or
“−” (minus), are used in order to introduce a secret trapdoor in F .

This Section focuses on the 3 first types, the attacks of Type 4 are discussed
in Section 3.2.

2.1 Type 1 attacks

Let G(S,M) be the signature verification function which outputs 1 if S is a valid
signature of message M , and 0 otherwise. Since G is public, a generic attack to
find a valid signature S of a message M is to try sufficiently enough values for
S until G(S,M) outputs 1.

Let g be the bit cost of G and L the length of the signature S in bits.
Assuming that the signature scheme is sound, any message M should admit at
least one signature, so it can be found by an L-bit search, with total cost L+ g.
So, in order to avoid this attack and if we want a λ bit security, we must have:
L ≥ λ− g.

For example, if we want signatures smaller than 80 bits for a 80 bit security,
we need the evaluation for G to be heavy (its cost must be high enough). This
is the core of this paper, that is to say to design multivariate signature schemes
relying on heavy modes of operation.

Let’s consider that a user has a computational acceptable work of, for in-
stance, 38 bits (1 minute of computation for a nowadays personal computer).
Thus, for a 80 bit security, the length L of the signature in bits will have to be
greater or equal to 80− 38 = 42 bits.
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The aim of this paper is to study what kind of value L (larger than this
bound, but as small as possible) we can choose and to design explicit schemes
with it.

Remark 1. If the signature has only, let us say 60 bits for example, the birthday
paradox states that if 230 messages are signed, two messages will have, with a
high probability, the same signature. This may not be a problem since these
two messages have been actually signed by the legitimate user, thus there is
no “dangerous” attacks based on the fact that they have the same signature.
Moreover, it is always possible to avoid this issue by asking the legitimate user
not to sign more than about one billion messages with the same public key.

2.2 Type 2 attacks and our modes of operation

In the multivariate signature schemes studied in this paper, one checks if S is a
valid signature of a message M using an equality like this:

G(S) = H(M),

where G and H are public (H stands for a hash function, and G is given by the
public key). This offers other possibilities of generic attacks detailed below.

Collisions on H. First, an attacker could look for collision on H. If one can
find two messages M1 and M2 with the same hash value, one could ask for the
signature of M1 and obtain the signature of M2. Let E be the number of bits
of the output of H (i.e. we can write the equality G(S) = H(M) as an equality
on E bits vectors). Let us write that H has a h bit cost. This birthday attack
proceeds like this: we enumerate a list of a bit size of values M and we store M
at the address H(M), hence a total cost of a+h. Then we will obtain with high
probability (thanks to the birthday paradox) that two values share the same
address (i.e. we have find a collision H(M1) = H(M2)) as soon as a > E/2. Let
λ be the desired security level. For any attacker, we have a+ h < λ. Therefore,
in order to avoid this collision attack on H, we must have:

E ≥ 2λ− 2h.

Note that there also exists time and memory trade-off: with more time we can
use less memory; however, in this paper, we focus only on the time complexity.

Recall that in this paper, the hash function H has a cost of about 37 bits.
So, if h = 37 and if we target an 80 bit security, then E has to be greater or
equal to 2× 80− 2× 37 = 86 bits.

However, the length L of the signature can be smaller than the outputs size
E as we will see below.
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Collisions of the type G(S) = H(M). Second, an attacker could look for
collision of the type G(S) = H(M). More precisely, by choosing a list of random
S of a bit size, and a list of random messages M of b bit size, an attacker would
find a collision G(S) = H(M) with high probability as soon as a+ b > E.

Let g be the bit cost of G, and let h be the bit cost of H. Since λ is the
security parameter, for any attacker we have a+g < λ and b+h < λ. Therefore,
the attack will be impossible when

E ≥ 2λ− h− g. (1)

We will denote ∆ = E − 2λ+ h+ g. So (1) can be written: ∆ ≥ 0.

Note that classical signature schemes such as RSA or ECDSA are not threat-
ened by this kind of attack since their signature lengths, way bigger than for
multivariate-based cryptography, make the complexity of the birthday paradox
attack larger than any other attacks.

To avoid this attack, which was first mentioned in [22], several ways have
been designed, usually one calls them “modes of operation”. Mainly, there are
the Feistel-Patarin, the Gui, the UOV, and the Dragon mode of operations. For
instance, the Feistel-Patarin mode of operation is the one used in the NIST
Post-Quantum candidate GeMSS, and in Quartz.

Nevertheless, we will not use most of the aforementioned modes of operation
since they usually raise the size of the signatures, which is what we want to avoid
for ultra-short signature schemes. We will generally use the Feistel-Patarin mode
with a slow hash function (see Sec. 4.1) and sometimes a “Multiple public key
mode” (see App. C). The “Multi public key” mode will also work with ∆ < 0
but at a cost of a larger public key.

These mode of operation rely on the use of a slow hash function, that is to say
an hash function which require around 1 minute to be computed (approximately
a 37 bit work cost) or 1 second (approximately a 31 bit work cost). Indeed, these
new modes of operation perfectly fulfill the requirement of ultra-short signature
schemes since they do not raise the length of the signature and are compatible
with the 1 minute (or 1 second) requirement described above.

How to build easily a slow hash function. Our modes of operation rely
on the use of a hash function H that requires a “lot” of operations. It can be
built using iterations of a standard hash function such as SHA-3 or SHA-256.
These functions on optimized platforms can operate at a rate of 13 cycles per
byte, which means that for a data of 72 bytes, (36 words of 16 bits) it requires
about 210 cycles (so a 10 bit work). For instance, if one wants to build a hash
function with 37 bit work, (i.e. around 1 minute to compute a hash value), one
needs to consider using 227 iterations of a standard hash function. To prevent
an attacker from speeding the computation, one may consider to tweak the hash
function, so the ith iteration may be for instance Hi(x) = SHA-3(x‖i), and
H(x) = H227(. . . H2(H1(x)) . . . ). However, we may also consider a “paralleliz-
able” version such as:
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H(x) = H1(x)
⊕
H2(x)

⊕
· · ·
⊕
H227(x), that enables a trade-off between time

and computing power. Whatever the choice, what matters is that an attacker
can not perform one evaluation of H in fewer operations than the legitimate
user.

2.3 Type 3 attacks

This section describes Type 3 attacks, that is to say, when the attacker wants
to forge a signature by solving a polynomial system of equations.

To forge a valid signature for a message M , an attacker wants to find a
string of bits S such that G(S) = H(M). Since G and H are public (recall that
G is a set of m quadratic multivariate polynomials given by the public key), the
attacker is left with solving a system of multivariate equations. In other words,
solving this system enables the attacker to find G−1(H(M)).

Of course, G is not a random set of multivariate equations, otherwise the
legitimate user would not be able to invert it. Indeed, G has a secret structure,
hidden as much as possible, which gives it what is called a trapdoor. With this
trapdoor, which is part of the private key, the legitimate user can invert G. The
purpose of hiding this special structure is that G looks random to the attacker
who can only invert it using generic polynomial system solvers such as Gröbner
basis algorithms. One sometimes speaks of “perfect trapdoor” to refer to the
hypothetical case where G would be perfectly random.

Thus, the complexity of solving a random system of multivariate equations
gives an estimation of the complexity to forge a multivariate signature.

This section first describes the classic way to solve a polynomial system,
namely Gröbner basis. Then, from the complexities obtained, we derive minimum
sizes multivariate signatures could have.

Remark 2 (Complexity of evaluating G).
Since G, the set of public equations, is composed of m dense quadratic equa-

tions in about m variables, the cost of one evaluation can be estimated as m3

2 .
However, an evaluation can be done quicker when it is not done from scratch,
but when reuses another one and only few bits in the input change. So the av-
erage cost could be as low as m2. It is probably possible to do even better, so in
our analysis, we will consider that this cost is an arbitrarily low constant.

Polynomial system solving using Gröbner basis. Let us briefly introduce
Gröbner basis techniques that are fundamental tools for solving systems of mul-
tivariate polynomial equations. Readers may refer to [23, 3, 4] for further details.

The computation of a Gröbner basis is a non-linear generalization of Euclid’s
algorithm for the greatest common divisor, as well as a generalization of Gaus-
sian elimination for linear systems. Roughly speaking, a Gröbner basis is a set
of multivariate polynomials having special properties that allow easy solutions
derivation for complex polynomial systems.
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As a matter of fact, it is possible to transform any multivariate polynomial
system, even complicated ones, into Gröbner basis form using specific algorithms
(like F4 [13] and F5 [14] algorithms).

The computational complexity of such method relies strongly on an impor-
tant notion, namely the degree of regularity dreg.

Intuitively, dreg is the minimal degree for which a set of polynomials of degree
d can form a Gröbner basis, and thus can be solved (see [1, 14] for more details).

The complexity of a Gröbner basis computation detailed in [1, 14] is in:

O

((
n+ dreg
dreg

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant. Note also that for random
systems, the degree of regularity can be evaluated by the computation of the
first non negative coefficient of a Hilbert serie, see [1].

Polynomial system solving using an hybrid approach. In order to speed
up the computation of a Gröbner basis, the authors of [5] combine an exhaustive
search for some variables and a Gröbner basis computation for the remaining
variables. Thus, this approach is called “hybrid”.

The complexity of this hybrid approach is:

min
0≤k≤n

(
qk

(
CF5(n− k, dmax

reg (k)) +O
(

(n− k)Dmax(k)ω
)))

,

where k is the number of fixed variables, 2 ≤ w ≤ 3 is the linear algebra con-
stant, Dmax(k) is the maximum number of solutions, counted with multiplicity,
of the system in Fq, and CF5 is the complexity of the F5 algorithm ([14]).

When the trade-off factor k is well chosen, the hybrid approach can be the
most efficient algorithm for solving polynomial systems.

Choice of the constant of linear algebra ω. As seen in the previous formu-
las, the constant of linear algebra ω plays an important role in the complexities
of Gröbner basis algorithms. From a practical point of view, we should choose
ω = 2.81 due to Strassen algorithm.

From a theoretical point of view, there exists an algorithm with ω ≈ 2.37 but
it would not be efficient in practice due to huge constant terms in its complexity.

However, in order to take into account the fact that the linear systems aris-
ing in the computation of a Gröbner basis are usually really sparse, one often
consider that ω = 2.

Size of the signature with a perfect trapdoor. As we did in the previous
Sections for the Type 1 and 2 attacks, we can now look for minimal parameters
for ultra-short multivariate signature schemes according to Type 3 attacks. All
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Table 1. Generic degree 2 table: Number f of variables that we can find with MAGMA

in about 1 minute when we have m equations of degree 2 (ω = 2.37), and size L in bits
if we can find a perfect trapdoor.

Degree 2
ω = 2.37

280 290 2100 2128 2192 2256

q = 2
m = 86
f = 29
L = 57+

m = 100
f = 30
L = 70+

m = 112
f = 31
L = 81+

m = 145
f = 33
L = 112+

m = 218
f = 37
L = 181+

m = 290
f = 42
L = 248+

q = 4
m = 43
f = 21
L = 44+

m = 50
f = 22
L = 56+

m = 56
f = 23
L = 66+

m = 73
f = 26
L = 94+

m = 113
f = 30
L = 166+

m = 154
f = 32
L = 244+

q = 5
m = 40
f = 20
L = 47+

m = 45
f = 20
L = 59+

m = 50
f = 21
L = 68+

m = 66
f = 24
L = 98+

m = 102
f = 27
L = 175+

m = 139
f = 30
L = 254+

q = 7
m = 35
f = 19
L = 45+

m = 40
f = 20
L = 57+

m = 45
f = 20
L = 71+

m = 59
f = 22
L = 104+

m = 91
f = 26
L = 183+

m = 124
f = 29
L = 267+

q = 8
m = 34
f = 19
L = 45+

m = 39
f = 19
L = 60+

m = 43
f = 20
L = 69+

m = 57
f = 23
L = 102+

m = 88
f = 27
L = 183+

m = 119
f = 29
L = 270+

q = 11
m = 32
f = 18
L = 49+

m = 36
f = 19
L = 59+

m = 40
f = 20
L = 70

m = 52
f = 21
L = 108+

m = 81
f = 26
L = 191+

m = 111
f = 28
L = 288+

q = 13
m = 31
f = 18
L = 49+

m = 35
f = 19
L = 60+

m = 39
f = 20
L = 71+

m = 51
f = 21
L = 112+

m = 79
f = 25
L = 200+

m = 107
f = 28
L = 293+

q = 16
m = 30
f = 18
L = 48+

m = 34
f = 18
L = 64+

m = 38
f = 19
L = 76+

m = 50
f = 21
L = 116+

m = 77
f = 26
L = 204+

m = 104
f = 28
L = 304+

q = 17
m = 29
f = 17
L = 50+

m = 33
f = 18
L = 62+

m = 37
f = 19
L = 74+

m = 49
f = 21
L = 115+

m = 76
f = 25
L = 209+

m = 103
f = 28
L = 307+

those information are gathered in Table 1, the rest of this Section is dedicated
to the explanation on how to read it.

From now on, let us take the first cell at the top left corner of Table 1
as an example. In this table, m stands for the number of equations and it is
equal to the number of variables. For instance, the first cell of the table gives
that the computational power needed to solve a random quadratic system of 94
multivariate equations in 94 unknowns is 280.

As the verifier has a computational power up to 237 operations (i.e. around 1
minute), the signature can be a part S′ of the signature S, containing only m−f
elements in the considered finite field. The value f (30 in our example cell) was
chosen so that recovering the signature S from S′ takes around 1 minute for the
verifier according to our MAGMA implementation.
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Knowing m and f , one finds the length of the signature in bits by computing:

L := (m− f) log2(q).

In our example cell, it is 94− 30 = 64 bits.

Nevertheless, as described in the previous Section, one should be careful that
the value of ∆ is not too small, in fact, if it is, the multivariate signature scheme
will have a public key far too large. Recall that in this paper we are looking for
ultra-short signature scheme whose verification and signing time are reasonable,
but we also want the public key not to be too large. In our example cell, the
value of ∆ = −10.4 is too large.

The purpose of the arrows and the new values on the right (m′, f ′, L′) is to
set new parameters with the same level of security, this time with ∆ as close
to zero as possible. Note that when ∆ is positive, there is no need to raise the
parameters, so there is no right part in the cell. In our example cell, we need to
increase m = 94 to 104 in order to get a value of ∆ closer to 0 (recall that this
is done to reduce the size of the public key). With this new m′ = 104, one needs
to update the value of f to f ′ = 31 and L to L′ = 73.

Finally, the “+” symbols by the signature length L′ means that this length
is a lower bound which will naturally go up while taking into account all the
other possible attacks.

Nevertheless, this table gives a glimpse of the minimal parameters ultra-short
multivariate signature could have in the general case.

Remark 3. First, a surprising fact is that q = 2 does not appear so far to be
the best choice of finite field for ultra-short signatures. Second, the lengths L for
various finite fields (q = 5, 7, 11, . . .) are very similar.

3 HFE and our schemes

In this Section, we describe the classic HFE algorithm, called “Nude” HFE
and its variants. Then we describe the best currently known attacks against it,
and finally, we use them to derive parameters for our ultra-short multivariate
schemes.

3.1 Nude HFE, and HFE Variants

Description of (nude) HFE. Hidden field Equations (HFE) algorithm was
proposed by Patarin at Eurocrypt [20] to repair the algorithm C* of Matsumoto
and Imai [17]. The basic idea of HFE is to hide the special structure of a uni-
variate polynomial F over some finite field (usually F2n) which allows F to have
a quadratic polynomials representation in the small field.
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HFE(q, n,D) shape.

Let F = Fq be a finite field of q = pm elements for some prime number p,
E = Fqn its n-th degree extension, and φ : E −→ Fn the canonical isomorphism
between E and the corresponding vector space Fn. Given (θ1, . . . , θn) a basis of
E as an F-vector space, we have:

φ : E = Fqn −→ Fn

V =

n∑
i=1

viθi 7−→ (v1, . . . , vn).

Let F∗ be the following map:

F∗ : Fqn −→ Fqn
V 7−→ F (V ),

with F ∈ E[X] is a univariate polynomial of the special form:

F =

qi+qj≤D∑
0≤i≤j≤n

αi,jX
qi+qj +

qi≤D∑
0≤i≤n

βiX
qi + γ, (2)

where αi,j , βi, γ ∈ Fqn , and F is of degree at most D ∈ N. Then, F has the
HFE(D) shape that allows to have multivariate quadratic polynomials represen-
tation over F using the map F = φ ◦ F∗ ◦ φ−1:

F : Fnq −→ Fnq
(v1, . . . , vn) 7−→ (f1(v1, . . . , vn), . . . , fn(v1, . . . , vn)),

with the quadratic polynomials (f1, . . . , fn) ∈ (Fq[x1, . . . , xn])n such that:

F
(
φ−1(x1, . . . , xn)

)
= φ−1(f1, . . . , fn)

F
( n∑

i=1

θixi

)
=

n∑
i=1

θifi.

HFE problem

Basically, F∗ is chosen to be an easily invertible and evaluated map. Using
the canonical isomorphism φ, the map F∗ can be transformed into a quadratic
map F = φ◦F∗◦φ−1. Thus, F can be written as a set of n quadratic polynomials
(f1, . . . , fn) in n variables (x1, . . . , xn) over F.

In order to build a cryptosystem based on the inversion of an HFE shaped
polynomial, the original structure of F must be hidden since it is possible to
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find solutions of F (x) = a, a ∈ Fqn in polynomial time. To do so, one uses two
invertible affine maps

S, T : Fn −→ Fn.

Therefore, the public key consists of

P = S ◦ F ◦ T = S ◦ φ ◦ F∗ ◦ φ−1 ◦ T ,

and the secret key that yields the inversion of the public key is given by S, T
and F∗. Thus, it is difficult to compute the inverse of P when its decomposition
remains secret. Some super-polynomial attacks are known on “Nude” HFE, this
is why we will see some perturbations to increase its security.

HFE is one of the most studied algorithms in public key cryptography. It can
be used for authentication, encryption and also signature purposes.

Probability to have 0 solutions in signature. For a random function f
from E to E, where E is a finite set, the probability that for a value y of E there
is at least one value x such that f(x) = y is about 63.2% (i.e. 1 - 1/e).

For a random non homogeneous polynomial of degree 2 in n variables, or
for a random homogeneous polynomial of degree 2 in F2n , it is also about 63%.
Therefore, one needs to try on average about 1.5 values in order to find a signa-
ture.

However, in Fqn , when q is odd, and for an homogeneous random polynomial
of degree 2, the probability is only 31.6% (i.e. 2 times less). Therefore, in this
case, one needs to try on average about 3 values in order to find a signature.
The reason is that, in this case, for all value X we have f(X) = f(−X) and
X 6= −X (except if X = 0).

So, when q is odd, we generally choose a non-homogeneous polynomial. Then
the secret linear transformations S and T defined in HFE will be chosen to be
affine (that is to say linear with constants).

We expect that this non-homogeneous choice (when q is odd) does not create
a security problem; since S and T are very general linear bijections, we expect
that no attack should exist by exploiting only the degree 1 part of the public
equations. However, if in the future it appears that non-homogeneous equations
are not a good choice, we could come back to homogeneous solutions, with a
probability to be invertible divided by 2.

3.2 The best known attacks against nude HFE

In this section, we briefly present the best known attacks against HFE; this will
enable us to choose our parameters accordingly. There are basically 3 kinds of
attacks against HFE schemes:

1. Differential attacks,
2. Direct attacks,
3. Key recovery attacks.

12



Differential attacks. These attacks are very efficient when only one monomial
is used, even when some perturbations are used. For example, SFLASH was
broken with a differential attack in [6].

Thus, in order to avoid these attacks, we will always use at least 2 monomials
of weight 2 in the secret HFE polynomial, i.e. we will always have at least the
monomials X2 and Xq+1 if q is not a power of 2, and at least the monomials
Xq+1 and X2q+1 if q is a power of 2.

Direct attacks. In these attacks, like in [12] or in [15], one tries to solve the
public equations for a given value Y (i.e. for a given message, one tries to find a
valid signature) by using Gröbner algorithms like F4 or F5.

Let D be the degree of the HFE polynomial. Let

r = blogq(D − 1)c+ 1,

it reflects the rank of the quadratic form associated to the HFE polynomial.
The order of magnitude of the complexity of this attacks is(

dreg + n

dreg

)ω
,

where dreg is the degree of “regularity” of the system, and ω is the linear algebra
constant ( 2 ≤ ω ≤ 3, usually we consider ω = 2 or ω = 2.37). Therefore, the
main difficulty in order to evaluate this complexity is to evaluate d.

In [12], an upper bound on this value d is given:

dreg ≤ 2 +
(q − 1)r

2
. (3)

This upper bound is interesting since it is proved and it is valid for all values
of q. It shows that the degree of regularity of HFEv− public equations is often
smaller than the one of a random system.

When q = 2, many experiments have been done. As long as dreg is not larger
than the degree of regularity of a similar random systems (that we can compute
from Hilbert series), these experiments show that dreg can be estimated by:

dreg =

⌊
r + 7

3

⌋
However, when q is different from 2, at present, very little is known about

dreg. This is why we made our own experiments with MAGMA. It is difficult to see
if q will be a factor as it is in Equation (3).

Nevertheless, we did observe that dreg starts with the value q (when D = 2),
and when q = 5, it seems to increase by 1 almost each time r increases by 1;
this is very different from what we have with F2 where r generally has to be
increased by 3 to have the same effect.

So, we will assume that when q ≥ 5, we have: dreg ≥ q−2 + r, as long as this
value is smaller or equal to the degree of regularity one would have with similar
random equations.
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Remark 4. When q ≥ n, we have noticed that dreg = n + 1. However, in our
parameters we will always have q < n.

Key recovery attacks. Let n be the number of public equations, equal to the
number of variables. let r = dlogq(D)e.

Attacking a HFE instance with parameters (n,D, r) reduces to solving a
MinRank instance of the following form: one wants to find a linear combination
with coefficients in Fqn of K := n square matrices of size n (with entries in Fq)
with a small rank r or less. This reduction correspond to the key recovery attack
described in [25].

With the recent progress made for solving the MinRank problem in [2], this
key recovery attack is currently the most threatening attack against HFE; pre-
viously it was the attack in [10]. [2] uses a clever algebraic modeling of the
MinRank problem in order to solve it by direct linearization instead of using
generic Gröbner basis algorithms such as F4 or XL.

For the MinRank parameters mentioned above, this attack requires

O

(
K(r + 1)

((
n

r

)(
K + b− 1

b

))2
)

(4)

operations in Fqn as long as there exists an integer b in {1, . . . , r + 2} which
fulfills the following condition (5) and such that b < q.(

n

r

)(
K + b− 1

b

)
− 1 ≤

b∑
i=1

(−1)i+1

(
n

r + i

)(
l + i− 1

i

)(
K + b− i− 1

b− i

)
. (5)

In the previous complexity formula, l := n is the number of rows of the matrices;
in order to get the smallest complexity, one can delete a few columns to get a
new instance with n′ columns as mentioned in [2]. Thus, one replaces n by n′ in
(4) and (5), but l := n has to remain the same. One should be careful that this
optimization works if and only if the new MinRank instance still has a single
solution. Thus, the complexity of the attack is the minimum value obtained from
(4) for a valid choice of b and n′.

3.3 Our ultra-short signature scheme and its parameters

In this Section, we present our ultra-short multivariate signature scheme based
on nude HFE in degree 2 and on the heavy mode of operation described in
Section 2.2. In order to do so, we will explain the choice of its parameters step
by step.

Recall that we want our signatures to be as short as possible, with reason-
able public key size, and verifiable in at most about 2 minutes on a modern
personal computer (1 minutes for the slow hash and 1 minute to recover the
whole signature).
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Choice of the degree D of the HFE polynomial. First of all, due to
many cryptanalytic results such as [6], the HFE polynomial must have at least 2
monomials. This is why our polynomials always have at least the two following
monomials: X2 and X1+q.

Let us denote d = dlogq(D)e. From our aforementioned MAGMA simulations,
we derived the following maximum values for d (see Table 2) , they are chosen
in order to spend about 1 minute for the verification process.

Table 2. Values of d according to q for 1 minute.

q 2 4 5 7 8 11 13 16 17

d 16 9 7 6 5 5 4 4 4

Variants. HFEv− schemes corresponds to the use of only the two perturbations:
− (minus) and v (vinegar). The main advantage of those perturbations is that
they only have a very limited impact on signatures sizes. However, due to the
recent attacks on these variants (see [24]), we will not use these perturbations
in this paper. We call “Nude HFE” a scheme with no additional perturbation.

Remark 5. It may look surprising to use Nude HFE since super-polynomials
attacks are known against it, and therefore it is generally not recommended.
However, since our purpose is very specific, this attack is not a problem. Indeed,
we want a scheme with very short signatures that can be computed in 237 opera-
tions for the legitimate users and 280 computations for the non-legitimate users.
One notices that as long as ω is greater than 2.47, the scheme keeps its security
of 80 bits. This is generally considered as a very reasonable assumption.

Nevertheless, for larger security requirements, (128 or 256 bit security for
example) the super polynomial attacks fall below the security level, and then
nude HFE is not useful anymore, but some other multivariate schemes schemes
still give very short signatures.

4 Examples of parameters for Ultra-Short signatures
with Nude HFE

In what follows, we use the following notation:

– λ : number of bits of expected security
– m : number of equations in the public key
– q, n : HFE is done in Fqn
– v : number of vinegar variables
– a : number of minus perturbation
– p : number of projections
– L : length of signature
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– R : number of Feistel-Patarin rounds
– h : the slow hash function requires 2h computations
– f : number of undisclosed bits of the signature
– D : degree of the HFE polynomial
– d : dlog2(D)e
– r : dlogq(D)e

Table 3. Examples of parameters for a security in 280 with q = 2 and approx. 1s. or
1 mn. to check a signature. Nude HFE with R rounds.

m 86 86 92 92 100 100

d 16 17 16 17 16 17

D 32769 65537 32769 65537 32769 65537

h (0.5 seconds) 31 31 31 31 31 31

R 9 9 5 5 3 3

Exhaust. search (m + 31 bits) 117 117 123 123 131 131

Birthday attack 80.5 80.5 81.8 81.8 82.7 82.7

Gröbner 33.14ω 36.69ω 33.79ω 37.43ω 34.6ω 38.35ω

MinRank1 83.6 87.6 83.9 87.9 84.3 88.3

Pub. Key Size (kBytes) 39.2 39.2 47.5 47.5 61.0 61.0

Time to sign (mn.) 2.25 5.6 1.25 3.13 0.75 1.88

Sig. size for 1s verif. (bits) 86 86 92 92 100 100

Sig. size for 1mn verif. (bits) 71 71 76 76 84 84

In table 3 (resp. tables 4 and 5), we present possible parameters for 80 bits
security (resp. 90 and 100 bits). We use here a Nude HFE with R rounds of
Feistel-Patarin mode. See next section.

4.1 Feistel-Patarin mode of operation

For most of our parameters, the number of input our output bits for the function
F is smaller than twice the desired security level. In order to avoid birthday
paradox attacks, we have to use a specific mode of operation, namely the “Feisel-
Patarin” with R rounds. This is similar to what was used in Quartz [22] or
GeMSS [8]. Note that another possibility which results in small signatures but
huge public keys is detailed in Section C.

It works as follow: let R be the number of rounds, R values Y1, . . . , YR are
derived from the hash of the message to sign, then R + 1 values X0, . . . , XR

satisfying X0 = 0 are computed, and F (Xi) = Yi
⊕
Xi−1, for i = 1, . . . , R,

finally XR is the signature.
To verify a signature, theR values Y1, . . . , YR are computed from the message,

the R + 1 values X0, . . . , XR are computed in reverse order, starting with XR

equal to the signature and then Xi−i = F (Xi)
⊕
Yi, for i = R, . . . , 1. The

signature is valid if and only if X0 is 0.
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Table 4. Examples of parameters for a security in 290 with q = 2 and approx. 1s. or
1 mn. to check a signature. Nude HFE with R rounds.

m 95 100 105 150 160 170

d 18 18 18 17 17 17

D 131073 131073 131073 65537 65537 65537

h (0.5s) 31 31 31 31 31 31

R 12 6 4 1 1 1

f 0 0 0 27 28 29

Exhaust. search (m + 31 bits) 126 131 136 161 191 201

Birthday attack 90.0 90.1 90.2 90.5 95.5 100.5

Gröbner 37.79ω 38.35ω 38.9ω 42.8ω 43.6ω 44.2ω

MinRank 92.0 92.3 92.7 90.0 90.3 90.6

Pub. Key Size (kBytes) 53 62 72 207 252 302

Time to sign (mn.) 20.4 10.2 6.7 0.63 0.63 0.63

Sig. size for 1s verif. (bits) 95 100 105 123 132 141

Sig. size for 1mn verif. (bits) 81 85 89 117 126 135

Table 5. Examples of parameters for a security in 2100 with q = 2 and approx. 1s. or
1 mn. to check a signature.

m 110 240 600

d 20 19 18

D 524289 262145 131073

h (0.5s) 31 31 31

R 7 1 1

f 0 34 40

Exhaust. search (m + 31 bits) 141 271 631

Birthday attack 100.1 135.5 315.5

Gröbner 43.1ω 48.1ω 58.6ω

MinRank 100.7 100.1 100.0

Pub. Key Size 82 kB 847 kB 12.9 MB

Time to sign (mn.) 73 4.2 1.7

Sig. size for 1s verif. (bits) 110 206 560

Sig. size for 1mn verif. (bits) 95 200 554
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For a security level λ, the number R of iterations must be chosen such that
(see [22] or [8]):

2
mR
R+1 ≥ 2λ.

When a slow hash function requiring 2h computations is used, this formula
becomes

2
mR+h
R+1 ≥ 2λ, i.e. R ≥ λ− h

m− λ
.

Remark 6. When R ≥ 2, the value of Table 1 are often the one with f = 0,
since some equations of larger degree will appear. However it is still possible to
find some missing bits of the signature by exhaustive search, instead of using
Gröbner basis.

5 Examples of parameters for Ultra-Short signatures
with pHFEv−

Expected security λ 80 100 128
[n, v, p, D, d], a = 0 [87, 10, 1, 129, 8] [113, 13, 1, 129, 8] [146, 25, 4, 129, 8]
h (0.5 s) 31 31 31
R 7 6 6

Gröbner attack 36.6ω 43.3ω 58ω
Attack in [18] 44.4ω 44.8ω 57ω

Public key size (kByte) 98 217 500
Time to verify (s.) 1 1 1
Time to sign (s.) 2 3.5 26
Signature size (bits) 150 185 272

Table 6: Examples of pHFEv− parameters, Feistel-Patarin mode
and slow hash function.

For security levels of 80, 90 or 100 bits, nude HFE with our specific mode of
operation gives the shortest signature size. If one wants to reach higher security
levels, for instance 128 bits or more, nude HFE becomes completely inefficient
due to the quasi polynomial attack in [9]

However, a new perturbation on HFE, namely “projection” (pHFEv−) has
been recently presented in [18].

Since this perturbation is quite new, its complexity is not stabilized yet,
nevertheless, we think that it is interesting to propose some parameters for ultra-
short signatures schemes based on it.

In addition to this, it shows that our construction is somehow generic, and
gives a framework to derive short signatures for future HFE perturbations.

In what follows, pHFEv− denotes the scheme based on HFE with the fol-
lowing perturbations: p (projections), v (vinegar) and − (minus). In Table 6, we
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present some examples of parameters with an expected security of 80, 100, and
128 bits on pHFEv−.

The three main kinds of attacks against pHFEv− are the generic attacks (see
Sec. 2), the Gröbner basis attack and the specific attack described in [18]. When
some projections are used (i.e. p 6= 0), [18] is the best known attack.

The complexity given in [18] is

O
(
(nxn

2
y + n2xny)ω

)
where nx = n+ v, n′ = d (n+v)(d+p+1)

n−a e+ d+ p+ 1, ny =
(
n′

d+p

)
.

Also, as said in [18], the complexity of Gröbner attack against pHFEv− is

not known so far, but we conjecture that it is O
((
n+dreg
dreg

)ω)
where dreg =

ba+v+d−p+7
3 c, which coincides with the Gröbner attack against HFEv− (when

p = 0).

6 Discussion about our security model

6.1 Examples of implementation of our security model together
with our ultra-short signatures

As our signatures are “ultra-short”, they could be stored in a tiny QR code, or
combined in watermarking applications. One of their most valuable interests is
also that they could, for instance, be spelled by a human to another one over
the phone. Indeed, we can deal with 64 bit-long signatures easily when they
are represented as 16 hexadecimal values such as: 45A5F352CDE20240. This is
less than the size of a strong Wifi-Box password that has to be typed into a
device. Moreover, if one uses alphanumeric value (consisting in digits 0 . . . 9,
letters a . . . z and A . . . Z), i.e. 62 characters, then 64 bits can be written with
only 11 Alphanumeric characters such as: 4fDjK457GfD.

Recall that, in this paper, all of our schemes rely on a security model where
the oracles for the verification and for the computation of hash values have
limited resources; that is to say that each request to one of those oracles has a
non-negligible cost for an attacker.

A concrete example involving non-negligible costs of verification and hash
could be the following: in order to activate a software, a user needs to enter an
ultra-short signature in it, this signature will be given to the user over the phone;
in this case, the cost of the verification would not be negligible as it would be
done by the user’s personal computer. In this example, if the user manages to
get an illegal copy of the software and is looking for a valid signature to activate
it, he would have to “pay” the cost of every verification on his computer.

Another example of our security model involves QR codes; as the ultra-short
signatures can fit in small QR codes, a hand device such a phone could be used
to verify them. In such a case, the verification cost would not be free as well.
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Last but not least, if the verification process is done online by a server which
receive requests from a user (a client), it is really easy to create artificially a
verification cost. Indeed, the server just has to require the client to solve a
puzzle before answering. The cost of solving the puzzle, to match our security
parameters, would never be more than 1 minute or, similarly, 237 bit operations.

These real-life applications of our security model seem legitimate since for all
of them an attacker would require billions of cell phones or personal computers
to be able to forge a valid signature for a given message.

6.2 Security of our ultra-short signature scheme in a classical
security model

In the classical security model used to prove the existential unforgeability under
chosen message attack (EUF-CMA), an attacker has access to an oracle which
can tell him if a given string of bits is a valid signature for a message. As our
signature scheme involves the use of hash functions, the attacker also requires
an oracle which computes hash values. If, like in the classical security model,
the attacker has access to those oracle “for free” (that is to say at no extra cost
than generating the request, or in other words at cost one since it is a single
operation), our scheme does not hold since it relies on slow verification and slow
hash functions. Nevertheless, we will see in this section that as long as the access
to the hash-oracle has a non-negligible cost, our scheme remains secure only by
changing a few of its parameters. Indeed, if the access to the hash-oracle was
free as well, this would improve significantly the birthday attack (such as the
one described in Section 2).

If the access to the verification oracle is free, for a given l bit-long signature
and for a security of 2λ operations, the attacker can brute force the 2l possible
signatures. Usually, as l ≥ λ, this is not a problem, but for the few parameters
for which the length of the signature is smaller than the security parameter λ,
we only need to adjust slightly the parameters. For example, for a security level
of 280, with q = 2 (see sec. ), we should set a + v = 7 (instead of 0), and r = 8
(instead of 16), then the signature length would be 80 bits instead of 73 bits.
Similarly, with q = 4, we should set a+ v = 9 (instead of 7), and r = 8 (instead
of 9), then the signature length would be 80 bits as well. With these parameters,
the other attacks are less efficient, so it enables us to reduce the value of D (from
65536 to 256 for the former and from 262144 to 65536 for the latter) and thus
obtain significantly faster signature.

Note that for 90 bits of security (or more), we do not have to change the
parameters given in sec. since the lengths of the signatures are already larger
than the security parameter λ.

Remark 7. To protect our signatures against brute-force attacks (i.e. finding at
least one valid signature among the 2L possible bit strings), there is not neces-
sarily a need for the verification cost to be as big as 237 operations. Indeed, for
the two sets of parameters for which the signatures are shorter than the security
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parameter λ, if the verification oracle asks the user/attacker to solve a simple
puzzle before answering his request, it is usually enough. More precisely, with
q = 2 and 73 bit-long signatures (see Sec. 3 ), a puzzle requiring 27 operations
to be solved would usually be enough to reach a security of 80 bits, and with
q = 2 and 64 bit-long signatures , a puzzle in 216 operations would usually be
enough.

7 Conclusion

At present, the shortest public key signatures are obtained with multivariate
signature schemes such as Rainbow, Quartz, or GeMMS. Usually, their lengths
are between 128 and 256 bits, and the times needed to sign and verify them are
in milliseconds.

In this paper, we have studied how to design shorter signatures as long as one
accepts to spend about 1 minute to sign a message or to verify a signature. For
instance, for a security of 80 bits, we have designed a signature scheme whose
signatures are only 71 bit-long. Interestingly, there are many ways to achieve
such short signatures (different designs, variants, and parameters set).

In order to avoid problems arising with ultra-short signatures, we have de-
signed some specific new modes of operations.

Overall, our ultra-short signature schemes were achieved thanks to the fol-
lowing ideas and tradeoffs:

– We find some missing bits of the signature much faster than with exhaustive
search using hybrid Gröbner bases algorithms.

– We use very slow hash functions.
– Sometimes, we rely on the use of many independent public keys.

Our implementation. We implemented our ultra-short signature schemes in
MAGMA, our source code is available on our website. Moreover, the MAGMA programs
we used to generates the values in the tables are on our website as well.

The advantage of these programs is that they can be executed with a free
MAGMA license, allowing everybody to sign messages and verify signatures with
our schemes or to verify the figures in our tables. In addition to this, according
to MAGMA free license limitations, our programs always return a value within at
most 2 minutes and using less than 366MB of memory.

To avoid desanonymization, we can not put the link in this very version of
the paper; nevertheless, our code is available upon request for the reviewers.

To go further: evolution of our scheme with time. In the near future, let
us say in 10 or 30 years, it is expected that computers will be more powerful
than now, whereas humans’ brain will remain the same.

As seen above, when the security parameter increases, the length of the signa-
ture must also increase. In the future, if the computational power of an attacker
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and of a legitimate user increase in the same proportion (for instance, from 280

to 290 for the attacker and from 237 to 247 for the legitimate user), will our
signatures sizes inevitably grow a lot ?

To answer that question, we could look in the past in order to extend the
results to the future. More precisely, for a former security level of 270 and with
a time allowed to sign or check a signature of 60ms (about 227 operations),
the signature length would be almost the same as it is for 80 bits of security
nowadays.

To be very specific, here are the parameters that enable us to get those
figures: q = 2, r = 6 (i.e. a degree D = 129), n = 95 (in order to have ∆ ≈ 0),
and f = 20 gives an HFE signature which can be computed or checked in 60ms.
Its length is 95 − 20 = 75 bits, i.e. about the same as in this paper with 1024
times more computations for the legitimate user and the attacks.

More investigations would be required here, nevertheless this example shows
that it is likely that the length of our ultra-short signature will grow very slowly,
even if the computational power of both the attacker and the legitimate user
goes up.

Appendices

A Best known attack complexities on nude HFE

Table 7: Complexity of the best attack against nude HFE, i.e. the
key recovery attack described in Section 3.2; n, d, and D are the
parameters, and q = 2. The complexities are given in bits and the
last column indicates the number of columns used for the attack
(see Section 3.2)

n d D Complexity Columns
50 15 16385 77.3 31/50

100 15 16385 80.3 31/100
300 15 16385 85.0 31/300
600 15 16385 88.0 31/600
50 16 32769 81.3 33/50

100 16 32769 84.3 33/100
300 16 32769 89.0 33/300
600 16 32769 92.0 33/600
50 17 65537 85.3 35/50

100 17 65537 88.3 35/100
300 17 65537 93.0 35/300
600 17 65537 96.0 35/600
50 18 131073 89.3 37/50

100 18 131073 92.3 37/100
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Table 7 (second part)
n d D Comp Columns

300 18 131073 97.0 37/300
600 18 131073 100.0 37/600
50 19 262145 93.3 39/50

100 19 262145 96.3 39/100
300 19 262145 101.0 39/300
600 19 262145 104.0 39/600
50 20 524289 97.3 41/50

100 20 524289 100.3 41/100
300 20 524289 105.0 41/300
600 20 524289 108.0 41/600
50 21 1048577 101.3 43/50

100 21 1048577 105.3 43/100
300 21 1048577 109.0 43/300
600 21 1048577 112.0 43/600
50 22 2097153 105.3 45/50

100 22 2097153 108.3 45/100
300 22 2097153 113.0 45/300
600 22 2097153 116.0 45/600
50 23 4194305 109.3 47/50

100 23 4194305 112.3 47/100
300 23 4194305 117.0 47/300
600 23 4194305 120.0 47/600
50 24 8388609 118.3 47/50

100 24 8388609 120.3 51/100
300 24 8388609 125.0 51/300
600 24 8388609 128.0 51/600
50 25 16777217 109.3 47/50

100 25 16777217 112.3 51/100
300 25 16777217 117.0 51/300
600 25 16777217 120.0 51/600

B Berlekamp algorithm, and roots finding with Magma

Berlekamp algorithm. The Berlekamp algorithm is generally what we use
to find the roots of a polynomial of degree D in Fqn for typical cryptographic
values. There are two parts in this algorithm: the computation of the Frobenius
application, and the computation of a GCD. For the Frobenius the complexity
(when D is larger than n) is in O(nD log2(D)). For the GCD the complexity
is in O(nD2). (Asymptotically the complexity is about in O(nD) but from a
practical point of view the asymptotic algorithms are not expected to be useful
for our parameters).

Here are in the tables below, the times taken by Magma to find the roots of
a polynomial of degree D on Fqn .
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Table 8. Time to compute roots of a polynomial of degree D, q = 2, n = 127.

D d Time (Magma) Time (GeMMS team)

129 8 0.095 s. 0.0041 s.

32769 16 98.3 s. 10 s.

65537 17 >2mn. 25 s.

131073 18 >2mn. 68 s.

In table 8, in addition to the time obtained by Magma, we present the time
obtained with the improved software of the GeMMS team. Note that for example,
when D = 19, the improved software is 23 times faster than Magma.

Table 9: Time to compute roots of degree D in Fqn , for various D,
q, and n.

q=4, n=47

D 17 65 257 1025
Time (ms) 4.29 31.2 140 650
D 4097 16385 65537
Time (s) 2.17 13.4 80.6

q=5, n=43
D 6 26 126
Time (ms) 20.2 76 840
D 626 3126 15626
Time (s) 4.5 17.4 117

q=7, n=40
D 8 50 344
Time (ms) 9.35 105 1630
D 2402 16808
Time (s) 10.2 110

q=11, n=35
D 12 122 1332 14642
Time 15 ms 360 ms 11.7 s 86.9 s

q=13, n=35
D 14 170 2198
Time 23 ms 540 ms 11.4 s

q=17, n=33
D 18 290 4914
Time 55 ms 1680 ms 29.2 s
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C Multiple independent public keys mode of operation.

In the main body of this paper, we have decided to use the “Feistel-Patarin”
mode of operation in order to avoid the birthday attacks. We will present here
another possible solution: the “Multiple independent keys” mode. In terms of
ultra short signatures, this mode is slightly better, however in terms of pub-
lic key length, the “Feistel-Patarin” mode is much better. In fact the Multiple
independent keys mode is often not realistic due to huge public key sizes.

In this mode of operation, we use a set of k independent public keys (the new
public key is a set of k previous public keys). Therefore, the length of the new
public key is k times what was previously the length of the public key, but the
security of the scheme remains the same. When we want to sign a message M ,
we will first compute a public function f(M) that gives an integer between 1 and
k, and this integer will be the number of the public key that we will use. Like
this, as we will see below, it is possible to avoid attacks based on the birthday
paradox, but this is only realistic when k is not too large. In this paper we will
first use a Slow Hash mode (cf below) and sometimes combine this Slow Hash
mode with this idea of Multiple independent public keys.

Signature generation. When we want to sign a message M in this “Mul-
tiple independent public keys”-mode, we will proceed like this:

1. We first compute H(M) a slow hash of M . This will take 2h computations
(typically h = 37 in this paper).

2. From this value H(M) we compute a value R(H(M)) between 1 and k. This
value gives the number of the public key that we will use (i.e. the m public
quadratic equations that must be satisfied to sign M).

3. From the secret key associated with this public key, the signature is com-
puted.

Attack. It is possible to attack this mode of operation with a complexity in
2λ and with a birthday paradox type of attack like this:

1. The attacker computes 2λ−h values R(H(M)).
2. The attacker selects the public key that was obtained the most. In general

he will obtain about 2λ−h/k values for this public key (see Remark below).
3. The attacker then computes 2λ−g values G(S) and looks for a collision with

a value obtained in 2. (Here 2g denotes as above the time to compute a value
G(S)).

This attack is expected to succeed with a good probability when 22λ−h−g ≥
k2E where E denotes as above the number of bits of equalities to be satisfied
when we check if a signature is valid from the public key.

Since by definition ∆ = E − 2λ + h + g, we see that in order to avoid this
attack we will have to choose: k ≥ 2−∆. This will give an acceptable public key
length only if ∆ is not too negative.

Example. In table 3 with m = 92, we have presented a scheme with a 76
bit long signature in security 280. If instead of using the Feistel-Patarin mode
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(R = 5), we use the multiple keys mode, then R = 1 (so we go 5 times faster)
and f = 29, so we can remove 29 bits (restored by Gröbner basis computation)
instead of 16 (restored by exhaustive search). Therefore our signature will have
only 63 bits (instead of 76). However here ∆ = 92−160+37+g so ∆ ≈ −30 and
the public key will be about 1 billion times larger, i.e. completely unrealistic.
We see that the multiple key mode of operation is only realistic when ∆ is not
too negative.

Remark 8. When 2λ−h is much larger than k, the number of values obtained in
2. for a given public key is a variable of mean value 2λ−h/k, and with a standard
deviation about the square root of this. Therefore for the public key with the
more solutions will still have about 2λ−h/k solutions as claimed. For example
we did a simple simulation by generating 10 millions random values between 1
and 100. The number that was obtained most was obtained 100 732 times in our
simulation, and this number is very near 100 000 as expected.
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22. Patarin, J., Courtois, N., Goubin, L.: Quartz, 128-bit long digital signatures. In:
Cryptographers’ Track at the RSA Conference. pp. 282–297. Springer (2001)
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