
Does Fiat-Shamir Require a Cryptographic Hash Function?
Yilei Chen* Alex Lombardi† Fermi Ma‡ Willy Quach§

Abstract

The Fiat-Shamir transform is a general method for reducing interaction in public-coin protocols
by replacing the random verifier messages with deterministic hashes of the protocol transcript. The
soundness of this transformation is usually heuristic and lacks a formal security proof. Instead, to argue
security, one can rely on the random oracle methodology, which informally states that whenever a random
oracle soundly instantiates Fiat-Shamir, a hash function that is “sufficiently unstructured” (such as fixed-
length SHA-2) should suffice. Finally, for some special interactive protocols, it is known how to (1) isolate
a concrete security property of a hash function that suffices to instantiate Fiat-Shamir and (2) build a
hash function satisfying this property under a cryptographic assumption such as Learning with Errors.

In this work, we abandon this methodology and ask whether Fiat-Shamir truly requires a crypto-
graphic hash function. Perhaps surprisingly, we show that in two of its most common applications —
building signature schemes as well as (general-purpose) non-interactive zero-knowledge arguments —
there are sound Fiat-Shamir instantiations using extremely simple and non-cryptographic hash functions
such as sum-mod-𝑝 or bit decomposition. In some cases, we make idealized assumptions about the in-
teractive protocol (i.e., we invoke the generic group model), while in others, we argue soundness in the
plain model. At a high level, the security of each resulting non-interactive protocol derives from hard
problems already implicit in the original interactive protocol.

On the other hand, we also identify important cases in which a cryptographic hash function is provably
necessary to instantiate Fiat-Shamir. We hope that this work leads to an improved understanding of the
precise role of the hash function in the Fiat-Shamir transformation.

*Visa Research. Email: chenyilei.ra@gmail.com.
†MIT. Email: alexjl@mit.edu. Research supported in part by an NDSEG fellowship. Research supported in part by NSF

Grants CNS-1350619 and CNS-1414119, and by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.

‡Princeton University and NTT Research. Email: fermima@alum.mit.edu.
§Northeastern University. Email: quach.w@husky.neu.edu.

Contents
1 Introduction 1

1.1 Our Contributions . 2
1.2 Conclusions . 7
1.3 Related Work . 8

2 Technical Overview 9
2.1 Warm-up: Fiat-Shamir for the Schnorr Protocol . 9
2.2 A Non-Interactive Argument for the Diffie-Hellman Language. 10
2.3 A Non-Interactive Lattice-Based Identification Scheme . 12
2.4 Negative Results . 13

3 Preliminaries 15

4 Fiat-Shamir in the Generic Group Model 15
4.1 Generic Group Model Preliminaries . 15
4.2 Chaum-Pedersen Protocol . 17
4.3 Application: NIZKs for NP . 19

5 Lattice-Based Identification Protocols 20
5.1 Preliminaries . 20
5.2 Identification Protocols based on SIS . 21
5.3 Identification Protocols based on LWE . 24
5.4 More Efficient Protocols via Rejection Sampling . 27

6 Negative Results for Fiat-Shamir with Non-Cryptographic Hash Functions 30
6.1 Main Information-Theoretic Lemma . 31
6.2 Negative Result for Blum in the Random Oracle Model . 32
6.3 A General Polynomial-Query Attack . 33
6.4 A General “Cryptography is Necessary” Result . 36

A Correlation Intractability and the Idealized Blum Protocol 42

1 Introduction
The Fiat-Shamir transform is a general-purpose method for converting public-coin interactive protocols into
non-interactive protocols with the same functionality. As a prototypical example, let Π denote a 3-message
(public-coin) argument system with transcripts of the form (𝛼, 𝛽, 𝛾). Then, given any hash function ℎ, the
Fiat-Shamir transform of Π using ℎ, denoted ΠFS,ℎ, is a one-message argument system in which the prover
sends an entire transcript (𝛼, 𝛽 = ℎ(𝛼), 𝛾) in one shot.

The Fiat-Shamir transform was introduced by [FS87] to remove interaction from a 3-message identification
scheme, but it was later realized1 that the transformation is extremely general: it can plausibly be applied
to any constant-round public-coin interactive argument system (and more). Due to its generality and its
practical efficiency (it removes interaction with very low computational overhead), the transformation has
been a cornerstone of both theoretical and practical cryptography for over 30 years. Some of its applications
include the construction of efficient signature schemes [FS87, Sch90, PS96], non-interactive zero-knowledge
arguments (NIZKs) [BR94, CCRR18, CCH+19, PS19], and succinct non-interactive arguments (SNARGs)
[Kil92, Mic00, BCS16, BBC+17, BBHR18b, BBHR18a, WTs+18, BCR+19, BBHR19].

However, the vast majority of applications of the Fiat-Shamir transform are only heuristically sound.
That is, the resulting non-interactive protocols do not have proofs of soundness based on the computational
intractability of a well-studied mathematical problem [GM82]. Nonetheless, the protocols appear to be sound
in practice, so it has been a long-standing goal of theoretical cryptography to justify the soundness of the
transformation.

So far, there have been two main approaches for justifying soundness of Fiat-Shamir.

∙ The Random Oracle Model [BR94]: In this design methodology, a Fiat-Shamir hash function is first
modeled as a random function 𝒪 to which all parties (honest and dishonest) have public query access.
Security is “argued” by showing that the protocol ΠFS,𝒪 is sound “in the random oracle model” (i.e.,
against query-bounded adversaries). In reality, the hash function ℎ is instantiated by an “unstructured”
hash function (such as SHA-2 on bounded-length inputs), where the implicit expectation is that “Fiat-
Shamir for Π” is not an application that can distinguish ℎ from a random oracle.

∙ Correlation Intractability: In a recent line of work [KRR17, CCRR18, HL18, CCH+19, PS19,
BKM20, LV20], a different methodology was developed for provably instantiating Fiat-Shamir in the
standard model:

– Identify a special class 𝒞 of protocols and a cryptographic security property 𝒫 of a hash function
family ℋ such that if ℋ satisfies 𝒫, then ℋ soundly instantiates Fiat-Shamir for every Π ∈ 𝒞. In
all cases so far, 𝒫 has been a restricted form of correlation intractability [CGH98].

– Construct a hash function family satisfying 𝒫 under reasonable (hopefully standard) cryptographic
assumptions.

The first of these approaches attempts to justify the use of Fiat-Shamir in high generality, while the second
provides full security proofs for carefully chosen protocols and hash functions.

Why Cryptographic Hash Functions? In both approaches above, it is essential that the hash function
ℎ possesses a form of cryptographic hardness. In the random oracle methodology, it is heuristically assumed
that ℎ is indistinguishable from a truly random function (at least in any meaningful way), while in the
standard model, results so far have relied on correlation-intractable hash families [CGH98] whose security
can be based on standard cryptographic assumptions [CCH+19, PS19, BKM20].

All of these results support the intuition that the Fiat-Shamir hash family ℋ provides a form of cryp-
tographic hardness that ensures the soundness of ΠFS,ℋ. In this work, we ask whether this intuition is
accurate.

1See discussion in [BR94]

1

Is it possible to instantiate the Fiat-Shamir heuristic with a non-cryptographic hash function?

We note that this question requires formalizing what it means to be a “non-cryptographic” (rather than
cryptographic) hash function; we partially address this issue later, but this remains somewhat up to inter-
pretation.

A related question concerns the design of Fiat-Shamir hash functions. What should they look like?
Again, prior works give us some possible answers:

∙ As originally proposed in [FS87], a Fiat-Shamir hash function could be instantiated using a pseudo-
random function family [GGM84] (they give DES as an example instantiation).

∙ As proposed in the random oracle methodology [BR94], the following design advice is given. “When
instantiating a random oracle by a concrete function ℎ, care must be taken first to ensure that it
is adequately conservative in its design so as not to succumb to cryptanalytic attack, and second
to ensure that ℎ exposes no relevant ‘structure’ attributable to its being designed from some lower-
level primitive.” In other words, the hash function should be unstructured and complex enough to be
indistinguishable from a random function.

∙ For the special case of Schnorr signatures [Sch90], it was shown in [NSW09] that a form of random-prefix
(second) preimage-resistance (which is implied by collision-resistance) plausibly suffices for security,
which suggests using a collision-resistant hash function for Schnorr signatures.

∙ In the provably secure instantiations of [CCH+19, PS19], the hash function families are based on flavors
of fully homomorphic encryption, which can be instantiated from lattice assumptions [Gen09, BV11].

∙ In the recent work [BKM20], a (modified) trapdoor hash function [DGI+19] is used, which has instan-
tiations based on the DDH/LWE/QR/DCR assumptions.

A common theme is that all of the candidate Fiat-Shamir hash functions above are complex. Indeed,
they have to be complex enough to realize the described security properties. In contrast, we ask:

Is it possible to instantiate Fiat-Shamir with a simple hash function?

As an example, can we hope to have a linear Fiat-Shamir hash function ℎ(𝑥) = 𝐴𝑥 + 𝑏?
We note that for various contrived protocols Π, the answer is “yes” for uninteresting reasons. For example,

given any constant-round, public-coin interactive protocol Π, there is a protocol Π̃ that replaces all prover
messages 𝛼𝑖 with random-oracle commitments 𝒪(𝛼𝑖) and requires the prover to open these commitments in
the last round. For this protocol Π̃, even the identity function can be used to instantiate Fiat-Shamir in the
random oracle model, since we have in effect already applied a random-oracle Fiat-Shamir transformation
when converting Π to Π̃.

To avoid these trivialities, we phrase our goal more specifically: for various naturally occurring protocols
(or classes of naturally occurring protocols), determine if simple/non-cryptographic hash functions may
suffice for Fiat-Shamir, and give principled justification for this possibility or impossibility.

1.1 Our Contributions
We begin the systematic study of instantiating Fiat-Shamir with simple and non-cryptographic hash func-
tions. In particular, we focus on two common and important use cases of Fiat-Shamir:

1. Round-compressing 3-message identification schemes [FS87, Sch90, Lyu09], and

2. Round-compressing 3-message honest-verifier zero knowledge argument systems to obtain NIZK argu-
ments for NP [BR94, CCRR18, CCH+19, PS19].

For these two use cases, we identify some common 3-message protocols to which Fiat-Shamir is applied:

2

∙ Schnorr’s identification scheme [Sch90].

∙ The Chaum-Pedersen interactive proof system for the Diffie-Hellman language [CP93].

∙ Lyubashevsky’s lattice-based identification scheme [Lyu09].

∙ More generally, Σ-protocols [Dam10], which are typically repeated in parallel to obtain negligible
soundness error.

In this work, we consider whether existing protocols from above can be round-compressed using a simple/non-
cryptographic hash function. We are able to show both negative results and (perhaps surprisingly) positive
results on this front. To give a taste of our results, here is a theorem that we formalize and prove:

Theorem 1.1 (Informal). If the Schnorr identification scheme [Sch90] or the Chaum-Pedersen [CP93]
interactive proof system is instantiated with full-size challenges 𝛽 ← Z𝑝, then Fiat-Shamir for this protocol
can be soundly instantiated with an extremely simple (even Z𝑝-linear) hash function in the Generic Group
Model (GGM).

However, if either protocol is instantiated with {0, 1}-challenges and repeated 𝜆 times in parallel, then
Fiat-Shamir using a non-cryptographic hash function is unsound, even in the GGM.

Before stating our results more formally, we discuss our methodology, namely, (1) the problem we want
to solve and (2) what constitutes a (partial) solution to the problem.

1.1.1 Our Methodology

There are two major issues to resolve in order to define our problem:

(i) What does it mean for a hash function to be cryptographic?

(ii) How do we give evidence for the soundness (or lack thereof) of our round-compressed protocols?

We first partially address question (i). One appealing intuitive definition of a cryptographic hash function
is as follows:

Definition 1.2 (Cryptographic Hash Function, definition attempt). A hash function ℎ (or hash function
family ℋ) is cryptographic if there is a game 𝒢 between a challenger and adversary (who is given ℎ or
ℎ ← ℋ) with a statistical-computational gap; that is, the maximum probability that a computationally
bounded adversary can win 𝒢 is noticeably smaller than the maximum probability that an unbounded
adversary can win 𝒢.

Unfortunately, this definition has major issues. In particular, under a literal interpretation of the defi-
nition, if NP ̸⊂ BPP, then every hash function is “cryptographic”: just define the game 𝒢 that ignores the
hash family ℋ and gives the adversary an instance of a hard NP problem to solve.

More specific to our application, the soundness of ΠFS,ℋ is precisely a game with a computational-
statistical gap so long as an accepting proof exists but is computationally hard to find. Therefore, no matter
how “simple” or “non-cryptographic” ℋ appears to be, as long as it can compile Fiat-Shamir for some
protocol, it is necessarily “cryptographic” under this definition.

Indeed, an important philosophical point in this work is that the “computational hardness” within the
soundness property of ΠFS,ℋ can derive from two different places: the hash family ℋ and the interactive
protocol Π.

For our purposes, we appeal to the following intuitive (non-technical) definition of a cryptographic hash
function:

Definition 1.3 (Cryptographic Hash Function, intuition-level). Informally, a hash function ℎ (or hash
function family ℋ) is cryptographic if there is a game 𝒢 between a challenger and adversary with a statistical-
computational gap that does not derive from some separate hard problem.

Given this partial answer to question (i), we now describe how we handle (ii):

3

How We Give Positive Results. In order to obtain a positive result, we accomplish (at least) one of
three things:

∙ We show that any hash function ℎ (or hash family ℋ) satisfying an information-theoretic property
(e.g., pairwise-independence) suffices to instantiate ΠFS,ℋ soundly. We believe that in spirit, this says
that Fiat-Shamir for Π does not require a cryptographic hash function (Definition 1.3), as a purely
information theoretic property should be insufficient to establish computational hardness.

∙ We show that a single fixed hash function ℎ (rather than a distribution on hash functions) is enough
to soundly instantiate ΠFS,ℎ. More specifically, we show “average-case soundness”, i.e., soundness on
a random NO-instance. This is at least enough to strongly distinguish our Fiat-Shamir instantiations
from random-oracle hash functions as well as correlation-intractable hash functions, which crucially
rely on the randomness of the hash function to derive computational hardness.

∙ We instantiate ΠFS,ℎ with an extremely simple hash function ℎ, such as a linear function modulo a
prime 𝑝 or the bit decomposition function G−1 : Z𝑛

𝑞 → Z𝑛 log 𝑞
2 . This does not directly prove that ℎ

is not cryptographic, but it again distinguishes our constructions from prior work, in which the Fiat-
Shamir hash functions are comparatively complex (see above). Indeed, they are sufficiently complex
to guarantee security properties such as correlation intractability.

While some of our positive results hold in the standard model, others are shown to hold in the generic
group model [Nec94, Sho97]. One might ask why such a result is meaningful — after all, we are replacing
one random oracle (the hash function) with another (the generic group labeling). However, the idealized
assumptions in our constructions are used quite differently from assuming that a Fiat-Shamir hash function
behaves like a random oracle. Indeed, our hash functions are information-theoretic and do not make any
calls to the group oracle. As a result, our constructions are examples of naturally occurring interactive
protocols Π (unlike the contrived example from the introduction) that possess enough hardness to guarantee
that ΠFS,ℎ is sound for simple choices of ℎ satisfying only information-theoretic properties.

How We Give Negative Results. In order to obtain a negative result, we would like to show that for
a particular protocol Π, if ΠFS,ℋ is sound, then ℋ necessarily satisfies some concrete cryptographic security
property 𝒫. However, as already discussed, such a theorem is not meaningful — 𝒫 can just be “the soundness
of ΠFS,ℋ.” In other words, this fails to distinguish between hardness in the hash function family ℋ from
hardness in the protocol Π.

Instead, we switch the order of quantifiers in the theorem statement: we show that there exists a universal
security property 𝒫 such that for any protocol Π ∈ 𝒞 in a large class, if a hash function family ℋ soundly
instantiates Fiat-Shamir for Π then ℋ necessarily satisfies 𝒫. Since 𝒫 is independent of the protocol Π, this
comes closer to distinguishing ℋ-hardness from hardness in Π.

However, there is still one issue with the above strategy: NP-completeness also gives a (trivial) universal
property 𝒫. To avoid this problem, we prove a relativizing result: the same property 𝒫 is satisfied by ℋ
even if it instantiates Fiat-Shamir for various protocols Π𝒪(·) that exist relative to an oracle distribution 𝒪.
This establishes that the property 𝒫 is not “cheating” using NP-completeness. As an example, our negative
results will capture the {0, 1}-challenge variant of Schnorr’s identification scheme in the generic group model
as well as Blum’s Hamiltonicity protocol [Blu86] instantiated in the random-oracle model.

As an added bonus, we are also sometimes able to give direct attacks on ΠFS,ℋ relative to the oracle (i.e.,
in the generic group model or the random oracle model). That is, we show unconditional polynomial-query
attacks on the non-interactive protocol. This is further evidence that a sound Fiat-Shamir instantiation
must sometimes rely on hardness from the hash function family ℋ, in direct contrast to our positive results.

1.1.2 Our Results

With the above discussion in mind, we are now ready to formally state our results. First, we give several
positive results for soundly instantiating Fiat-Shamir with non-cryptographic hash functions.

4

Mini-Result: Schnorr Signatures with a Linear Fiat-Shamir Hash Function. Our first result
concerns the Schnorr signature scheme, obtained by applying Fiat-Shamir to Schnorr’s three-message pro-
tocol for proving knowledge of a discrete logarithm. We observe that for signing short messages, this classic
application of the Fiat-Shamir paradigm does not seem to require any cryptographic properties from the
underlying Fiat-Shamir hash function.

Recall that the Schnorr protocol works over a cryptographic group 𝐺 of order 𝑝, and that the Fiat-Shamir
hash function takes as input a group element 𝑔 ∈ 𝐺 along with a message 𝑚 ∈ℳ to be signed, and outputs
an element in Z𝑝.

Theorem 1.4 (Schnorr Signatures with a Z𝑝-Linear Hash Function). Consider the Schnorr signature scheme
over a group 𝐺 of order 𝑝, where the message space ℳ is a small subset of Z𝑝, i.e. ℳ⊂ Z𝑝 and |ℳ|/Z𝑝 ≤
negl(𝜆). Let ℓ be the maximum bit-length representation of any group element, so that any 𝑔 ∈ 𝐺 can be
viewed as 𝑔 ∈ {0, 1}ℓ = [2ℓ]. Define the hash function

ℎ(𝑔, 𝑚) := 𝑔 + 𝑚 (mod 𝑝),

where on the right-hand side, 𝑔 is the integer with binary representation 𝑔 ∈ {0, 1}ℓ.
In the generic group model, the Schnorr signature scheme instantiated using ℎ as the Fiat-Shamir hash

function is existentially unforgeable against chosen message attacks (EUF-CMA).

Soundness of the resulting Schnorr signature can be proved by re-purposing a security analysis due
to [NSW09]; this work characterized a security property of ℋ that suffices for (long-message) signatures
schemes in the GGM. In our case, an information-theoretic property of ℎ suffices; see Section 2 for details.

One takeaway from Theorem 1.4 is that Schnorr-like signatures can be obtained by combining a collision-
resistant hash function (to implement hash-and-sign) with an information-theoretic Fiat-Shamir hash func-
tion (for Schnorr signatures on short messages). While this does not appear significantly different from using
a cryptographic Fiat-Shamir hash function in implementation, it highlights the fact that cryptographic
hashing is required for signatures only to (computationally) avoid collisions in long messages.

The Chaum-Pedersen Protocol and NIZKs for NP. Next, we consider an interactive proof sys-
tem due to Chaum and Pedersen [CP93] for proving membership in the Diffie-Hellman language ℒDH :=
{(𝑔, 𝑔𝑢, 𝑔𝑣, 𝑔𝑢𝑣)}𝑔∈𝐺,𝑢,𝑣∈Z𝑝

. The protocol was originally introduced to instantiate a (special-purpose) blind
signature scheme, but it has since found other applications (e.g., to the Cramer-Shoup cryptosystem [CS98]).
Notably, a recent line of work [CH19, KNYY19, QRW19, CKU20] has shown that a non-interactive, adap-
tively sound, (single-theorem) zero-knowledge argument for ℒDH (along with CDH) suffices to instantiate
non-interactive zero-knowledge (NIZK) arguments for all of NP.

We prove in the generic group model that a simple, fixed Fiat-Shamir hash function ℎ suffices to compile
the Chaum-Pedersen protocol into an argument for ℒDH satisfying a weaker notion of soundness we call
semi-adaptive soundness. Here, the prover is given a random 𝑔𝑢, and wins if it convinces the verifier to
accept a NO-instance of ℒDH of the form (𝑔, 𝑔𝑢, 𝑔𝑦, 𝑔𝑧).

Theorem 1.5. Let ΠCP denote the Chaum-Pedersen protocol over a group 𝐺 of order 𝑝. Let ℓ be the
maximum bit-length representation of any group element, so that any 𝑔 ∈ 𝐺 can be viewed as 𝑔 ∈ {0, 1}ℓ =
[2ℓ]. Define the hash function

ℎ(𝑔1, 𝑔2, 𝑔3, 𝑔4) = 𝑔1 + 𝑔2 + 𝑔3 + 𝑔4 (mod 𝑝),

where on the right-hand side, each 𝑔𝑖 is the integer with binary representation 𝑔𝑖 ∈ {0, 1}ℓ.
In the generic group model, (ΠCP)FS,ℎ is a semi-adaptively sound argument system for ℒDH.

In Section 4, we prove a stronger result: as long as ℎ satisfies an (easily satisfied) information theoretic
property, (ΠCP)FS,ℎ is sound in the GGM.

5

By tweaking the hash function to be ℎ′(·) := ℎ(·) + 𝑟 where 𝑟 is a common random string, (ΠCP)FS,ℎ′

becomes a (single-theorem) NIZK argument for ℒDH with semi-adaptive soundness. It turns out that semi-
adaptive soundness suffices to instantiate the hidden bits model of [FLS99], and consequently NIZKs for NP
in the standard model [CH19, KNYY19, QRW19, CKU20].

This gives an interesting alternative to two prior constructions of NIZKs for NP based on pairing-free
groups [CCRR18, CKU20]: as in [CKU20], our NIZK implements the hidden bits model using a Fiat-Shamir
NIZK for the DDH language, but we replace the correlation-intractable Fiat-Shamir hash function of [CKU20]
built from exponentially KDM-secure ElGamal with the addition-mod-𝑝 function.

Lattice-Based Identification Schemes. We next turn to lattice-based analogues of the Schnorr protocol.
In particular, we consider variants of Lyubashevsky’s identification schemes [Lyu08, Lyu09, Lyu12], which
were designed to obtain efficient signature schemes in the random oracle model via Fiat-Shamir.

We obtain a sound Fiat-Shamir instantiation for a protocol Π that is a small modification of the
“basic Lyubashevsky protocol.” Our Fiat-Shamir hash function in ΠFS,ℎ maps Z𝑞 elements to their bit-
decomposition (also known as the G−1 function).
Theorem 1.6 (Informal). For close variants of the [Lyu09] ID scheme based on either SIS or LWE, the non-
interactive protocol resulting from the Fiat-Shamir transform using the G−1 “hash function” is average-case
sound under SIS.

As in the group setting, we obtain meaningful soundness guarantees using a deterministic hash function.
We also prove Theorem 1.6 for a large class of Fiat-Shamir hash functions (that includes bit-decomposition).
However, unique to the lattice setting, we manage to prove soundness in the standard model, relying only
on the Short Integer Solution (SIS) assumption! More specifically, the SIS assumption suffices to argue
average-case soundness, where soundness holds over randomly generated (false) instances.

Variants of our protocol ΠFS also show a surprising connection to Micciancio-Peikert lattice trapdoors
[MP12, LW15]. Namely, the prover algorithm in ΠFS can be interpreted as a preimage sampling algo-
rithm using a Micciancio-Peikert trapdoor. This highlights a potential connection between two seem-
ingly orthogonal paths to build signatures from lattice-based assumptions: one using lattice trapdoors
[GPV08, CHKP10, MP12] and the other through the Fiat-Shamir heuristic [Lyu08, Lyu09, Lyu12]. To
the best of our knowledge, no such connection was known before. We discuss this connection in more detail
in the technical overview.

Negative Results. To complement our positive results, we also give evidence that for some protocols,
Fiat-Shamir necessarily requires a cryptographic hash function. Our negative results apply to a class of
three-message honest-verifier zero-knowledge (HVZK) arguments (or proofs). Two prototypical
examples to have in mind are:

∙ Blum’s Hamiltonicity protocol [Blu86], repeated in parallel to obtain negligible soundness error.

∙ The one bit challenge variant Πbit−Sch of Schnorr’s identification scheme, again repeated in parallel.

We analyze Fiat-Shamir for these protocols in both the standard model and in idealized models (the
random-oracle model and the GGM, respectively). We give evidence that analogues to Theorem 1.4, Theo-
rem 1.5, and Theorem 1.6 do not exist for these protocols. Our two results are as follows.

∙ Polynomial-Query Attacks: First, we show that in idealized models, there will (unconditionally)
be a polynomial-query attack on ΠFS,ℋ, as long as ℋ does not depend on the oracle. In other words, a
(poly-query) sound Fiat-Shamir instantiation requires that ℋ depends on the oracle, which is one way
of arguing that ℋ is cryptographic.
Theorem 1.7 (Informal). For Π = Πbit−Sch instantiated in the generic group model, if ℋ is a hash
family that does not call the group oracle, then Π𝑡

FS,ℋ is unsound in the GGM.
For any instantiation of the [Blu86] protocol in the random oracle model, if ℋ is a hash family that
does not depend on the oracle 𝒪, then ΠFS,ℋ is unsound.

6

This stands in contrast to our results for Schnorr/Chaum-Pedersen, in which an oracle-independent
hash function suffices for a sound Fiat-Shamir instantiation.
More generally (see Theorem 6.7), we give such an impossibility result for any 3-message HVZK protocol
Π in the ROM/GGM satisfying some technical requirements. The most important requirement is that
Π is the result of parallel repetition applied to a protocol with a small (i.e., polynomial) challenge
space. This property distinguishes the protocols that we can attack from the protocols for which we
find sound Fiat-Shamir instantiations.

∙ Conditional Polynomial-time Attacks and Mix-and-Match Resistance: We describe a con-
crete security property (which we call “mix-and-match resistance” (Definition 6.8)) such that for any
protocol Π in a large class 𝒞 (again including the two example protocols above, in the standard model),
any hash function (family) ℋ that instantiates Fiat-Shamir for Π must possess this security property.
In other words, we show:

Theorem 1.8 (Informal, see Theorem 6.9). If ℋ is not mix-and-match resistant, then for any Π ∈ 𝒞,
there is a polynomial-time attack on the soundness of ΠFS,ℋ.

At a high level, mix-and-match resistance is a security property asserting the hardness of finding a
combination of many partial inputs that hashes to a corresponding combination of prescribed outputs.
This result also holds in the ROM and the GGM, in the sense that if ℋ does not depend on the oracle
𝒪 and is not mix-and-match resistant, then the polynomial-query attack from Theorem 1.7 can be
upgraded to a polynomial-time attack. As discussed above, this further establishes that the “mix-and-
match resistance” property of ℋ is not “borrowing hardness” from the protocol Π, since our analysis
applies to protocols whose security is unconditional.
Somewhat orthogonally, one might wonder whether mix-and-match resistant hash functions (as in-
troduced in this work) are known to exist under standard cryptographic assumptions. The work of
[CCH+19, PS19] tells us that the answer is “yes,” because they give a standard-model instantiation of
Fiat-Shamir for a protocol Π ∈ 𝒞 under standard assumptions. In Appendix A, we explore this connec-
tion further by showing that correlation-intractable hash functions (as constructed by [CCH+19, PS19])
suffice to instantiate Fiat-Shamir for (a variant of) the idealized Blum protocol.

1.2 Conclusions
The soundness of Fiat-Shamir has typically been argued by either (1) treating the hash function as a random
oracle or (2) invoking some concrete security property of the function family. That is, the computational
hardness of some problem related to 𝐻 guarantees the soundness of the protocol. In this work, we argue
soundness of Fiat-Shamir (for certain protocols) by using an information-theoretic property of 𝐻, and using
cryptographic hardness from the interactive protocol.

As mentioned before, this leads to noticeable qualitative differences from prior approaches, such as being
able to use a single hash function ℎ (rather than a family), much simpler hash functions, and ones that contain
no associated cryptographic hardness. This constrasts strongly with how we usually think of Fiat-Shamir;
essentially all prior work required that the hash function be complex and/or cryptographic.

We believe that our framework can serve as a potential complement to the correlation intractability
framework for provable Fiat-Shamir soundness. Towards this end, we broadly ask,

Which interactive protocols allow for “simple” Fiat-Shamir compilers?

To start with, we consider differences between the protocols in our positive and negative results. Heuris-
tically, we note that all protocols in our positive results achieve negligible soundness error using a single
non-separable large challenge. In contrast, the separability of the challenge in the parallel repetition of a
Σ-protocol appears to necessitate using a cryptographic hash function.

We view our contributions as a starting point for a more precise understanding of when hardness is
required from a Fiat-Shamir hash function.

7

1.3 Related Work
To the best of the authors’ knowledge, the only prior work to explicitly consider Fiat-Shamir for non-
cryptographic hash functions is the work of Mittelbach and Venturi [MV16]. They identify a class of so-
called “highly sound” protocols for which Fiat-Shamir can be soundly applied using any 𝑞-wise independent
hash function.2 Moreover, they showed that using indistiguishability obfuscation, any 3-round public coin
interactive proof system can be converted into one that is “highly sound.” However, the class of protocols
for which their compiler works is extremely narrow; the only non-trivial protocols we are aware of satisfying
their criteria are obtained through indistinguishability obfuscation.

Negative Results for Fiat-Shamir. A celebrated result of [DNRS99] shows that Fiat-Shamir in the
standard model is not instantiable for a 3-message protocol Π that is malicious-verifier zero knowledge. This
result can be seen as an extension of prior impossibility results [GO94, GK90] for constant-round public-coin
zero knowledge.

The basic ideas present in these (and other) negative results — use a zero-knowledge simulator for the
protocol to contradict the soundness of a related protocol — appear in an altered form in our negative results
(Theorem 6.9, Theorem 6.7). However, in this work, we show that (in some settings) even honest-verifier
zero knowledge (which is easily satisfied by many 3-message protocols) of the interactive protocol is sufficient
to imply that a Fiat-Shamir hash function must be cryptographic.

Correlation Intractability and Fiat-Shamir. In a long sequence of works [KRR17, CCRR18, HL18,
CCH+19, PS19, BKM20, LV20], it was shown that Fiat-Shamir in the standard model can be provably
instantiated (for an interesting class of protocols) by using a Fiat-Shamir hash family ℋ satisfying variants
of correlation intractability [CGH98]. A hash family ℋ is correlation intractable for a sparse relation 𝑅(𝑥, 𝑦)
if given ℎ← ℋ, it is computationally hard to find an input 𝑥 such that (𝑥, ℎ(𝑥)) ∈ 𝑅.

There is a fairly strong established connection between correlation-intractability and Fiat-Shamir (see
discussion in [CCRR18]); in fact, it is known that (under appropriate formulations) for a hash family ℋ,
correlation intractability for all sparse relations is equivalent to soundly instantiating Fiat-Shamir for all
constant-round public-coin (statistically sound) interactive proofs. This implies a weak negative result for
Fiat-Shamir with information-theoretic hash functions: it says that if ℋ instantiates Fiat-Shamir simulta-
neously for a large class of interactive protocols, then ℋ is cryptographic.3

As a result, one could attempt to study the questions in this paper through the correlation intractability
lens. However, our questions do not appear to translate well into the language of correlation intractability.
This is mainly because we do not ask ℋ to instantiate Fiat-Shamir for such a large class of protocols (such
as all 3-round public coin interactive proofs) at once. For any fixed 3-message protocol Π, correlation
intractability for the “transcript relation” 𝑅𝑥 = {(𝛼, 𝛽) : ∃𝛾 such that 𝑉 (𝑥, 𝛼, 𝛽, 𝛾) = 1} is too strong of
a security property to exactly capture the soundness of Fiat-Shamir for Π. This is because correlation
intractability does not capture the hardness of finding an accepting third message 𝛾 along with the first
message 𝛼.

On a related note, the work of Dodis et al. [DRV12] shows that a property of hash function families called
“entropy preservation” is necessary for the soundness for Fiat-Shamir for proofs (it is shown in [CCR16] that
entropy preservation and correlation intractability are equivalent in some parameter settings). This is also
a characterization of when a hash family ℋ instantiates FS simultaneously for all (constant-round public
coin) interactive proofs. The result of Dodis et al. does not show that entropy preservation is necessary for
instantiating FS for any fixed protocol such as Blum’s protocol for Hamiltonian cycles.

2In fact, 𝑞-wise independence was only used to obtain 𝑞-theorem zero-knowledge; soundness follows from 1-wise independence.
3It is not hard to see that correlation-intractable hash functions (for a fairly small class of sparse relations) imply the

existence of one-way functions: in the case that ℎ is shrinking by a factor of 2, consider the function family 𝑓(𝑥) = ℎ(𝑥) + 𝑝(𝑥)
for ℎ←ℋ and 𝑝 sampled from a pairwise independent hash family.

8

2 Technical Overview
We give an overview of our positive results for group-based protocols in Sections 2.1 and 2.2 and our positive
results for lattice-based identification protocols in Section 2.3. We then highlight the intuition behind our
negative results in Section 2.4.

2.1 Warm-up: Fiat-Shamir for the Schnorr Protocol
We begin with some positive results to build intuition for our approach. The results in this warm-up section
are easy from a technical standpoint and we will not revisit them in the body of this paper.

Our positive results begin with the classic Schnorr protocol for proving knowledge of a discrete logarithm.
Recall that the protocol relies on a cryptographic group 𝐺 = ⟨𝑔⟩ of prime order 𝑝. The prover and verifier
share an instance 𝑔𝑢 for a random 𝑢 known to the honest prover, and engage in the following interaction:

∙ The prover samples a random 𝑟 ← Z𝑝 and sends 𝑔𝑟.

∙ The verifier replies with a random 𝑐← Z𝑝.

∙ The prover sends 𝑧 = 𝑟 + 𝑐𝑢.

∙ The verifier accepts if 𝑔𝑧 = (𝑔𝑟)(𝑔𝑢)𝑐.

To build intuition, we will try to construct a (one-time secure) non-interactive identification scheme using a
simple Fiat-Shamir hash function. We will later see how to extend this intuition to build full-fledged digital
signatures.

For a Fiat-Shamir hash function ℎ, a malicious prover for the non-interactive Schnorr protocol must solve
the following problem.

∙ Input: A group description 𝐺 = (𝑔, 𝑝), a hash function ℎ : 𝐺→ Z𝑝, and a random group element 𝑔𝑢.

∙ Output: 𝑔𝑟, 𝑧 satisfying 𝑔𝑧 = (𝑔𝑟)(𝑔𝑢)ℎ(𝑔𝑟).

Our first goal is to identify simple, fixed choices for ℎ such that this problem is plausibly hard.
At the very least, ℎ should not be a constant function, i.e. ℎ(𝑔𝑥) = 𝑐 for all 𝑔𝑥, since the malicious prover

could always win by outputting 𝑧 = 0 and 𝑔𝑟 = ((𝑔𝑢)𝑐)−1 = 𝑔−𝑢𝑐. Taking this a step further, we can argue
that for any constant 𝑐 ∈ Z𝑝, the hash function ℎ should not output 𝑐 on a 1/poly(𝜆) fraction of its inputs.
Otherwise, a malicious prover can pick a random 𝑧 and set 𝑔𝑟 = 𝑔−𝑢𝑐+𝑧. Since 𝑔𝑟 is distributed randomly,
ℎ(𝑔𝑟) = 𝑐 holds with 1/poly(𝜆) probability, in which case 𝑧, 𝑔−𝑢𝑐+𝑧 is a solution.

Put another way, as long as the min-entropy of ℎ on a random input is 𝑂(log(𝜆)), the above is a completely
generic method (i.e. one that works on any cyclic group) for breaking the resulting non-interactive protocol.

Mini-Result: One-Time Soundness Against Generic Algorithms. This characterization of insecure
choices for ℎ turns out to be tight for generic algorithms.

Theorem 2.1. In the generic group model (GGM), the non-interactive Schnorr protocol is one-time secure
provided ℎ(·) on a random input has entropy 𝜔(log 𝜆).

In the generic group model, group elements 𝑔𝑥 are replaced by labels 𝜎(𝑥) where 𝜎 is a random injection
from Z𝑝 to an exponentially-larger label space [𝐿]. The attacker interacts with an oracle (who knows the
truth table of 𝜎) to perform honest group operations such as raising a group element to a known exponent,
performing the group operation on any two group elements, and taking the inverse of a group element.

In this model, the only way an attacker can output a valid group label 𝜎(𝑟) is to obtain this label from
oracle queries (with overwhelming probability, any other label it might choose to output will not have a
preimage). Furthermore, if the attacker is initialized with 𝜎(1), 𝜎(𝑢) for random 𝑢 ← Z𝑝, then any label it
obtains from the oracle is of the form 𝜎(𝛼 · 𝑢 + 𝛽), where 𝛼, 𝛽 can be determined from prior oracle queries.
In other words, the attacker must “know” 𝛼 and 𝛽.

9

The attacker is trying to find 𝑧 along with 𝜎(𝑟) such that 𝑧 = 𝑟 + 𝑢 · ℎ(𝜎(𝑟)). But the attacker knows
𝛼 and 𝛽 such that 𝑟 = 𝛼 · 𝑢 + 𝛽, so this equation can be written as 𝑧 = 𝛼 · 𝑢 + 𝛽 + 𝑢 · ℎ(𝜎(𝛼 · 𝑢 + 𝛽)). If
𝛼 + ℎ(𝜎(𝛼 · 𝑢 + 𝛽)) ̸= 0, then the attacker can solve for 𝑢. However, this means the attacker has found a
discrete log, which it can only do with negligible probability [Sho97].

Therefore, it must be the case that 𝛼 + ℎ(𝜎(𝛼 · 𝑢 + 𝛽)) = 0. However, the poly-query attacker only
learns 𝜎(𝛼 · 𝑢 + 𝛽) for poly-many choices of (𝛼, 𝛽), and for each distinct choice of (𝛼, 𝛽), the resulting
label 𝜎(𝛼 · 𝑢 + 𝛽) is random. ℎ evaluated on a random input has min-entropy 𝜔(log(𝜆)), so the probability
𝛼 + ℎ(𝜎(𝛼 · 𝑢 + 𝛽)) = 0; a union bound over the polynomially many (𝛼, 𝛽) oracle queries completes the
argument.

Mini-Result: Schnorr Signatures. In the Schnorr signature scheme, the Fiat-Shamir hash function
additionally takes as input the message 𝑚 ∈ ℳ to be signed (in addition to the first message of the
interactive protocol), i.e. ℎ : 𝐺×ℳ→ Z𝑝.

The work of [NSW09] gives a necessary and sufficient security property for the Fiat-Shamir hash function
to ensure that the compiled Schnorr signature scheme is existentially unforgeable against chosen message
attacks (EUF-CMA) in the generic group model. In particular, the hash function must be “random prefix
pre-image resistant”. In this security game, the attacker commits to a hash output 𝑦 ∈ Z𝑝, the challenger
samples a random 𝑔𝑢 ← 𝐺, and the attacker wins if it can find 𝑚 ∈ℳ such that ℎ(𝑔𝑢, 𝑚) = 𝑦.

We observe that if the message spaceℳ is a small subset of Z𝑝, i.e. ℳ⊂ Z𝑝 and |ℳ|/Z𝑝 ≤ negl(𝜆), then
a similar entropic property of h will information-theoretically satisfy random prefix pre-image resistance.

Theorem 2.2. Suppose ℳ ⊂ Z𝑝 and |ℳ|/Z𝑝 ≤ negl(𝜆). Let ℎ : 𝐺×ℳ → Z𝑝 be a function such that for
any 𝑚 ∈ ℳ, ℎ(𝑔𝑢, 𝑚) has min-entropy log(|ℳ|) · log 𝜆 on a random 𝑔𝑢 ← 𝐺. Then the resulting Schnorr
signature sceme is EUF-CMA secure.

Given the [NSW09] characterization, it suffices to prove that ℎ statistically satisfies random prefix pre-
image resistance. For any choice of 𝑦 the attacker commits to in the “random prefix pre-image resistance”
game, any particular choice of 𝑚 ∈ ℳ is a solution to ℎ(𝑔𝑢, 𝑚) = 𝑦 with probability 1/(|ℳ| · 2𝜔(log 𝜆)); a
union bound over all 𝑚 ∈ℳ completes the argument.

As was the case for the simple non-interactive Schnorr identification scheme in the previous section,
many simple choices of ℎ will satisfy this definition. For instance, a hash function ℎ which interprets the
bit-representation of 𝑔𝑢 as an integer, adds 𝑚, and returns the result modulo 𝑝 suffices.

2.2 A Non-Interactive Argument for the Diffie-Hellman Language.
Our main positive result for compiling group-based protocols concerns the Chaum-Pedersen interactive proof
system for validity of a Diffie-Hellman tuples, i.e. membership in ℒDH := {(𝑔, 𝑔𝑢, 𝑔𝑣, 𝑔𝑢𝑣)}𝑢,𝑣∈Z𝑝

.
In the Chaum-Pedersen protocol, the prover and verifier have a shared instance (𝑔, 𝑔𝑢, 𝑔𝑣, 𝑔𝑤), and the

prover runs two simultaneous instances of the Schnorr protocol to convince the verifier it knows the discrete
log of 𝑔𝑣 with respect to 𝑔 and the discrete log of 𝑔𝑤 with respect to 𝑔𝑢. The crucial point is that the two
Schnorr instances are not fully independent: there will only be a single verifier challenge 𝑐 ∈ Z𝑝 and only a
single prover response 𝑧 ∈ Z𝑝. This ensures that not only does the prover know log𝑔(𝑔𝑣) and log𝑔𝑢(𝑔𝑤), but
that these discrete logs are equal, which implies 𝑔𝑤 = 𝑔𝑢𝑣. Concretely, the protocol is:

∙ The prover samples a random 𝑟 ← Z𝑝, computes 𝑔𝑠 = 𝑔𝑣𝑟, and sends 𝑔𝑟, 𝑔𝑠.

∙ The verifier replies with a random 𝑐← Z𝑝.

∙ The prover sends 𝑧 = 𝑟 + 𝑐𝑢.

∙ The verifier accepts if 𝑔𝑧 = (𝑔𝑟)(𝑔𝑢)𝑐 and (𝑔𝑣)𝑧 = (𝑔𝑠)(𝑔𝑤)𝑐.

A recent line of work [CH19, KNYY19, QRW19, CKU20] has shown that a non-interactive, adaptively
sound, (single-theorem) zero-knowledge argument for ℒDH (along with the Computational Diffie-Hellman

10

assumption) suffices to instantiate non-interactive zero-knowledge (NIZK) arguments for all of NP. This
makes the task of compiling Fiat-Shamir for this protocol, particularly with a simple, concrete hash function,
especially compelling. For this overview, we will focus on obtaining soundness, as zero-knowledge will follow
easily from standard techniques (see Section 4.3).

In an adaptively sound protocol, the cheating prover can win by convincing the verifier to accept an
arbitrary NO-instance of ℒDH. We will settle for a weaker security notion we call semi-adaptive soundness,
but we observe that the compiler of [CKU20] actually only requires this weaker notion of soundness to
construct NIZKs for NP. In semi-adaptive soundness, the cheating prover is given a random 𝑔𝑢, adaptively
selects 𝑔𝑣, 𝑔𝑤 such that (𝑔, 𝑔𝑢, 𝑔𝑣, 𝑔𝑤) ̸∈ ℒDH, and wins if the verifier accepts.

To apply Fiat-Shamir to this protocol, the hash function should take as input the first message of the
interactive protocol as well as any part of the instance that the prover controls. So for any particular
ℎ : 𝐺4 → Z𝑝, the cheating prover’s goal is to solve the following problem.

∙ Input: A group description 𝐺 = (𝑔, 𝑝), a hash function ℎ : 𝐺4 → Z𝑝, and a random group element 𝑔𝑢.

∙ Output: 𝑔𝑣, 𝑔𝑤, 𝑔𝑟, 𝑔𝑠, 𝑧 satisfying

𝑔𝑤 ̸= 𝑔𝑢𝑣,

𝑔𝑧 = (𝑔𝑟)(𝑔𝑢)ℎ(𝑔𝑣,𝑔𝑤,𝑔𝑟,𝑔𝑠),

(𝑔𝑣)𝑧 = (𝑔𝑠)(𝑔𝑤)ℎ(𝑔𝑣,𝑔𝑤,𝑔𝑟,𝑔𝑠).

We identify an information theoretic property on ℎ — that it is “well-spread on repeated random inputs”
— that makes this problem hard for generic attackers. For the sake of readability, we defer the definition
and the discussion of this property until after we give intuition for the security proof.

Theorem 2.3. In the generic group model, the non-interactive Chaum-Pedersen protocol is semi-adaptively
sound provided ℎ : 𝐺4 → Z𝑝 is “well-spread on repeated random inputs”.

Our generic group proof extends the ideas laid out in the generic group security argument given for the
one-time compilation of Schnorr’s identification protocol.

At a high level, the argument will rely heavily on the fact that an attacker cannot solve for 𝑢. We use
the fact that the group elements it outputs, 𝜎(𝑣), 𝜎(𝑤), 𝜎(𝑟), 𝜎(𝑠) must each be of the form 𝜎(𝛼 · 𝑢 + 𝛽) for
some choice of 𝛼 and 𝛽 known to the generic group attacker. Since the attacker knows 𝑧, the last two checks
will induce two equations that the attacker can satisfy (if it breaks soundness), both of which involve 𝑢.

Since the attacker cannot solve for 𝑢 except with noticeable probability, we will argue that these equations
must have a (net) coefficient of 0 on 𝑢. This will leads to several constraints involving the various 𝛼, 𝛽
coefficients of 𝑣, 𝑤, 𝑟, 𝑠, along with 𝑧 and the evaluation of the Fiat-Shamir hash function ℎ.

If the evaluation of the Fiat-Shamir hash function ℎ is taken to be a formal variable, the only way
the attacker can satisfy the induced constraints is to give a YES-instance of ℒDH, along with an honestly
generated proof 𝜎(𝑟), 𝜎(𝑠), 𝑧. The goal is then to identify an information theoretic property of ℎ that will
imply the only way the attacker satisfies these constraints with non-negligible probability is to satisfy them
when the evaluation of ℎ is taken as a formal variable.

The property we ask of ℎ is that it is “well-spread on repeated random inputs.” While the attacker can
pick 𝑣, 𝑤, 𝑟, 𝑠 however it likes, it is not evaluating ℎ directly on 𝑣, 𝑤, 𝑟, 𝑠, but instead on 𝜎(𝑣), 𝜎(𝑤), 𝜎(𝑟), 𝜎(𝑠).
Since 𝜎 is a uniformly random labeling function, the attacker can only evaluate ℎ on inputs that are essentially
random strings. There is one major caveat, however, which is that the attacker can choose to set any of
𝑣, 𝑤, 𝑟, 𝑠 equal to each other. In this case, ℎ will be run on random inputs that repeat in a pattern that the
attacker can specify.

Therefore, a hash function ℎ is well-spread on repeated random inputs if: for any choice of 𝑖1, 𝑖2, 𝑖3, 𝑖4 ∈
{1, 2, 3, 4}4, if 𝑥1, . . . , 𝑥4 are sampled as random strings, then ℎ(𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥𝑖4) has 𝜔(log 𝜆) min-entropy.

It turns out that many simple hash functions satisfy this property. For instance the function ℎ(𝑔1, 𝑔2, 𝑔3, 𝑔4)
that interprets the bit representation of each input as a positive integer and outputs the result mod 𝑝 will

11

satisfy this property. As another example, ℎ(𝑔1, 𝑔2, 𝑔3, 𝑔4) can apply a pair-wise independent hash function
outputting log(𝑝)/4 bits to each 𝑔𝑖 independently, and return the concatenation of the results (interpreted
as an element in Z𝑝).

2.3 A Non-Interactive Lattice-Based Identification Scheme
Next, we describe how we obtain positive results in the lattice setting (Theorem 1.6). We consider a natural
extension of Lyubashevky’s three-message identification protocol [Lyu09], which can be seen as a lattice
analogue to the Schnorr protocol.4

To sample an instance for the protocol, we sample a uniformly random wide matrix A over Z𝑞 along with
a wide matrix R with random small entries. The shared instance is (A, Y = AR mod 𝑞), and the prover’s
goal is to convince the verifier it knows a short R satisfying AR = Y mod 𝑞.

The interactive protocol Π then executes as follows:

∙ The prover samples a short vector t and sends 𝛼 := At mod 𝑞.

∙ The verifier responds by sending a random vector c with small entries.

∙ The prover responds with z := t + Rc.

∙ The verifier accepts if A · z = 𝛼 + Y · c mod 𝑞 and z is short.

As in [Lyu09], this interactive protocol is average-case sound under the SIS assumption. We now analyze
the non-interactive protocol ΠFS,h for a (vector-valued) Fiat-Shamir hash function h. A malicious prover
attacking the average-case soundness of ΠFS,h must solve the following problem.

∙ Input: Random matrices (A, Y) and the description of a (vector-valued) hash function h.5

∙ Output: Vectors 𝛼, z such that A · z = 𝛼 + Y · h(𝛼) mod 𝑞 and z is short.

Our main insight is that this problem is provably hard for a fixed Fiat-Shamir hash function h if simple
information-theoretic conditions are satisfied.

Theorem 2.4. Suppose h satisfies the following properties:

1. h produces “short” output, i.e, the entries are small relative to the modulus

2. 𝛼 is a linear function of h(𝛼), i.e. there exists a matrix G such that for all 𝛼, G · h(𝛼) = 𝛼 mod 𝑞.

Then, ΠFS,h is one-time (average-case) sound.

Theorem 2.4 can be proved as follows. If the condition in Theorem 2.4 are satisfied, then the relation
A · z−𝛼−Y · h(𝛼) = 0 mod 𝑞 checked by the verifier can be rewritten as

[︀
A‖Y + G

]︀
·
[︂

z
−h(𝛼)

]︂
= 0 mod 𝑞. (1)

Since A, Y are (statistically) uniformly random and z, h(𝛼) are short, a malicious prover outputting 𝛼, z
is solving SIS for the random matrix [A‖Y + G].

A simple concrete instantiation of h is the bit-decomposition function that maps (vectors of) Z𝑞 elements
to (the concatenation of) their bit decomposition in {0, 1}⌈log 𝑞⌉ (also called G−1(·) in the lattice literature).
The corresponding G is the “powers-of-two” gadget matrix of Micciancio-Peikert [MP12].

4Lyubashevky’s original protocol [Lyu09] uses a scalar challenge; in this work we consider an extension to vector-valued
challenges.

5Y is technically sampled as A ·R for some a “short” matrix R, but parameters are set so that Y is statistically close to
uniform.

12

Extensions. In Section 5, we study several variants of Π for the purposes of handling security against the
verifier (e.g., zero-knowledge):

∙ In its most basic variant, we instantiate Π using noise flooding to ensure (single-theorem) zero-
knowledge in the common random string (CRS) model. This gives a conceptually simple protocol
closely related to the Schnorr protocol over groups, but at the cost of being less practically efficient.
We note that to obtain zero-knowledge, we require a family of hash functions indexed by the CRS
(although soundness can be argued for deterministic hash functions).

∙ We also consider more efficient protocols that use rejection sampling [Lyu08, Lyu09, Lyu12], where
the prover aborts the execution of the protocol with some probability to ensure that the transcript
is independent of his secret. Those protocols are in the plain model, but only guarantee witness
indistinguishability. Note that because the prover has to run his algorithm several times in his head
until it does not abort, the resulting non-interactive protocol is not directly the result of applying the
Fiat-Shamir heuristic as is, but rather a “Fiat-Shamir with aborts” [Lyu09].

Lattice Trapdoors. Interestingly, it turns out the honest prover algorithm of the rejection sampling-
based protocol exactly matches the trapdoor preimage sampling algorithm of Lyubashevsky-Wichs [LW15]
using a Micciancio-Peikert trapdoor [MP12]. This can be seen by considering Eq. (1), which implies that
the transcript of the protocol gives a short preimage of 0 of a matrix with a Micciancio-Peikert trapdoor
(here R). Average-case soundness implies that this should be hard to do without knowledge of R (further
using that [A‖AR+G] looks uniformly random over the randomness of R), and witness-indistinguishability
implies that the preimage sampling algorithm reveals no more information about the trapdoor R.

In other words, our protocol can be viewed as having the prover sample a preimage for some matrix
with a Micciancio-Peikert trapdoor. On the flip side, the Lyubashevsky-Wichs trapdoor preimage sampling
algorithm of [LW15] can actually be derived by applying the Fiat-Shamir heuristic (with aborts) using the bit-
decomposition function (namely G−1(·)) as the hash function to Lyubashevsky’s three-message identification
scheme [Lyu09]. More generally, this seems to hint at a potential connection between seemingly orthogonal
paths to obtain signatures from lattice-based assumptions: one relying on lattice trapdoors and trapdoor
preimage sampling ([GPV08, CHKP10, MP12]) and another through Fiat-Shamir [Lyu08, Lyu09, Lyu12].

2.4 Negative Results
In this section, we give a simple example of a negative result that we can prove using our methods. In par-
ticular, we consider an idealized variant of Blum’s Hamiltonicity protocol [Blu86] in which the commitment
scheme is instantiated with a random oracle.

𝑃 (𝐺, 𝜎) 𝑉 (𝐺)
𝜋 ← 𝑆𝑛, 𝐺′ = 𝜋(𝐺)
𝛼← Com(𝐺′)

𝛼

𝛽 𝛽 ← {0, 1}

If 𝛽 = 0, decommit to 𝐻 and reveal 𝜋.
If 𝛽 = 1, reveal 𝜋 ∘ 𝜎 and decommit to the edges in 𝐺′

corresponding to the cycle 𝜋 ∘ 𝜎.

𝛾
Accept if all decommitments are correct and:
either 𝛽 = 0 and 𝐺′ = 𝜋(𝐺)
or 𝛽 = 1 and all edge decommitments are 1.

Figure 1: The Zero Knowledge Proof System ΠBlum for Graph Hamiltonicity.

The Blum protocol Π = ΠBlum is described in Fig. 1. For this example, we instantiate Com(𝑏; 𝑟) = 𝒪(𝑥, 𝑟)
as an idealized bitwise commitment scheme in the random oracle model. Π then is repeated 𝑡 times in parallel
to obtain soundness error 2−𝑡.

13

At first glance, especially given our positive results for Schnorr and Chaum-Pedersen, one might hy-
pothesize that since we have made the commitment scheme “super-secure”, Fiat-Shamir for Π𝑡 might be
instantiable with a simple hash function ℎ. In fact, we show that even for this idealized variant of the Blum
protocol, a (successful) Fiat-Shamir hash function ℎ for this protocol necessarily satisfies a cryptographic
security property.

As discussed earlier, there are two variants of this result. First, we give a polynomial-query attack on
Π𝑡

FS,ℎ for any hash function ℎ that does not invoke the random oracle 𝒪. Then, we extend this polynomial-
query attack to a polynomial-time attack assuming the easiness of some computational problem depending
on ℎ.

To understand our attack, we first consider an “obviously broken” choice of hash function ℎ: define
ℎ(𝛼1, . . . , 𝛼𝑡) = (𝑓(𝛼1), . . . , 𝑓(𝛼𝑡)) to be a fixed function applied to each commitment separately. This
corresponds to a parallel repetition of ΠFS,𝑓 , which is the application of Fiat-Shamir to a protocol with
constant soundness error. We know that such a non-interactive protocol is unsound via a reset attack: given
an instance 𝐺, it is possible to prepare a commitment 𝛼1 that can successfully answer either a “0” challenge
or a “1” challenge. Therefore, if 𝛼1 is prepared to answer the challenge 𝑏 (for a uniformly random bit 𝑏),
we have that 𝑓(𝛼1) = 𝑏 with probability 1/2 (since 𝛼1 hides 𝑏) and so after an expected constant number of
string commitment queries, we obtain an accepting transcript (𝛼1, 𝑏1, 𝛾1) for the first repetition. This can
be done for each “slot”, giving a polynomial-query break of soundness for the overall protocol.

To rephrase the attack, for our example choice of ℎ, if one prepares enough “fake commitments” {𝛼(𝑖)
1 },

{𝛼(𝑖)
2 }, . . . , {𝛼(𝑖)

𝑡 } for each of the 𝑡 repetitions, then with high probability, there exists a combination of the
individual commitments that hashes to the “bad challenge” whose answer was generated along with the
commitments. We show that the above argument generalizes to all hash functions ℎ. The poly-query attack
is as follows.

1. For 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ ℓ ≤ 𝑞, sample a random bit 𝑦
(𝑖)
ℓ ← {0, 1} and sample message 𝛼

(𝑖)
ℓ : if 𝑦

(𝑖)
ℓ = 0,

sample 𝛼
(𝑖)
ℓ as in the honest protocol, while if 𝑦

(𝑖)
ℓ = 1, and sample 𝛼

(ℓ)
𝑖 as a commitment to a cycle

graph.

2. Find 𝑣 ∈ [𝑞]𝑡 such that ℎ(𝛼[𝑣]) = 𝑦[𝑣]. Abort if no such 𝑣 exists.

3. Output 𝛼[𝑣] as well as the necessary decommitments to 𝛼[𝑣] (either the entire graph or just the edges
in the cycle).

This constitutes a poly-query attack on the protocol Π𝑡
FS,𝐻 in the random oracle model as long as Step

(2) has a solution with high probability over (𝛼, 𝑦). In the case ℎ = (𝑓, . . . , 𝑓) as above, this condition follows
immediately. We show in Section 6 (Lemma 6.1) that for any ℎ, as long as 𝑞 = 𝜔(𝑡), Step (2) has a solution
with high probability over (𝛼, 𝑦).

To obtain a (conditional) polynomial-time attack on the protocol, we note that if the solution to the
problem in Step (2) can be found efficiently, then the above attack can be implemented in polynomial time.

Crucially, the above analysis generalizes well because the computational problem in Step (2) does not
depend on the protocol. We accomplish this by reducing breaking the soundness of Π𝑡

FS,ℎ to solving a “mix-
and-match” problem of the following form: given many strings {𝛼(𝑖)

ℓ } (𝑞 strings for each slot) which are each
associated with a random bit 𝑏

(𝑖)
ℓ , find a concatenation 𝛼[𝑣] of 𝑡 different 𝛼

(𝑖)
ℓ (one for each slot) such that

ℎ(𝛼[𝑣]) = 𝑏[𝑣] (the corresponding combination of bits). This motivates our definition of “mix-and-match
resistance” Definition 6.8, a security property which captures the analogous problems for a wide class of
protocols Π.

While the analysis above is tailored to (parallel repeated) ΠBlum, it turns out that the argument only
relies on a couple of (basic) properties of the protocol, namely:

∙ Given a challenge 𝛽, it is possible to sample a (pseudorandom) first message 𝛼 along with an accepting
response 𝛾 for 𝛼, even when the statement 𝑥 is false. This property is used to construct a mix-and-
match problem in our attack, and essentially follows from an honest-verifier zero knowledge property
of the protocol.

14

∙ The protocol is obtained by applying parallel repetition to a protocol with polynomial-size chal-
lenge space. This independence property is enough to guarantee that the “mix-and-match” problem
information-theoretically has a solution.

We refer the reader to Section 6 for more details on the extent to which the result generalizes.

3 Preliminaries
In cryptography, the security parameter (denoted as 𝜆) is a variable that is used to parameterize the compu-
tational complexity of the cryptographic algorithm or protocol, and the adversary’s probability of breaking
security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time over 𝜆.

Let R,Z,N be the set of real numbers, integers and positive integers. For 𝑞 ∈ N≥2, denote Z/𝑞Z by Z𝑞.
For 𝑛 ∈ N, let [𝑛] := {1, ..., 𝑛}. A vector in R𝑛 (represented in column form by default) is written as a bold
lower-case letter, e.g. v. For a vector v, the 𝑖𝑡ℎ component of v will be denoted by 𝑣𝑖. A matrix is written
as a bold capital letter, e.g. A. We denote the transpose of a matrix A (resp. of a vector v) as A𝑇 (resp.
(v𝑇)). For matrices A, B, we denote their horizontal concatenation as [A‖B]. The 𝑖𝑡ℎ column vector of A
is denoted a𝑖. The infinity norm of a vector v is defined as ‖v‖∞ := max𝑖{|𝑣𝑖|}. When a variable 𝑣 is drawn
uniformly random from the set 𝑆 we denote as 𝑣 ← 𝒰(𝑆) or 𝑣 ← 𝑆.

Definition 3.1 (Fiat-Shamir transformation [FS87]). Given a three round public coin interactive protocol
Π, the Fiat-Shamir transformation with hash function familyℋ (possibly a singleton) syntactically transform
Π to a non-interactive protocol ΠFS,ℋ as follows. Sample ℎ← ℋ and let ℎ be the common reference string.
The prover in ΠFS,ℋ runs the prover in Π on ℎ to obtain the first message 𝛼, then compute 𝛽 = ℎ(𝛼), then
runs the prover in Π on ℎ, 𝛼, ℎ(𝛼) to obtain the third message 𝛾. The prover in ΠFS,ℋ then outputs 𝛼, 𝛽, 𝛾
as the proof.

The security properties for the non-interactive protocol vary in the applications. We will explicitly define
them when needed.

4 Fiat-Shamir in the Generic Group Model
4.1 Generic Group Model Preliminaries
The generic group model (GGM) [Nec94, Sho97] is an idealization of a cryptographic group in which the
representation of a group element leaks no information about the underlying exponent beyond what can be
learned through honest group operations. This is typically formalized by an oracle interface that implements
the group operations. Each group element is represented by a randomly chosen “label,” and the attacker
interacts with the oracle to perform meaningful operations on the labels. A generic group attacker is measured
by the number of oracle queries, but is otherwise computationally unbounded.

Definition 4.1 (Generic Group Model, Standard Formulation). In the generic group model, a cyclic group
of order 𝑝 is represented with a label space of size 𝐿 ≥ 𝑝 · 2𝜆. The generic group labeling function is a
randomly sampled injection 𝜎 : Z𝑝 → [𝐿]. For any 𝑥 ∈ Z𝑝, the corresponding 𝜎(𝑥) ∈ [𝐿] is the label
representing 𝑔𝑥.

In any application of the GGM, an attacker 𝒜 is initialized with a list of labels (𝜏1 = 𝜎(1), . . . , 𝜏𝑁 =
𝜎(𝑥𝑁)); the number 𝑁 of initial labels as well as how each 𝑥𝑖 is sampled will depend on the particular
application. The attacker is usually given access to a canonical group generator, which can be formalized by
requiring that 𝜏 = 𝜎(1) be included in the set of initial labels.

The attacker 𝒜 is given oracle access to the group operation oracle 𝒪𝐺(·, ·), which on input 𝜏1, 𝜏2 ∈ [𝐿]
does the following:

∙ If either of 𝜎−1(𝜏1) or 𝜎−1(𝜏2) are undefined, return ⊥.

15

∙ Otherwise, set 𝑥 = 𝜎−1(𝜏1) and 𝑦 = 𝜎−1(𝜏2), compute 𝑥 + 𝑦 ∈ Z𝑝, and return 𝜎(𝑥 + 𝑦).

We remark that 𝒪𝐺 suffices to implement all of the standard group element manipulations. Raising a
known group element to an arbitrary exponent 𝑎 ∈ Z𝑝 can be done via repeated squaring with 𝑂(log 𝑝)
queries to 𝒪𝐺. Computing the inverse of a group element is equivalent to raising the group element to the
exponent 𝑝− 1, and the attacker is explicitly given 𝑝 as input.

A cryptographic application is said to be (𝑇, 𝜖)-secure in the GGM if a (computationally unbounded)
𝑇 -query attacker 𝒜 cannot succeed with advantage greater than 𝜖 (over the randomness of the application
and the labeling function 𝜎).

Discrete Log and Linear Relations. Throughout this section, we will rely on a theorem of Shoup [Sho97]
stating that discrete log is hard in the GGM. Recall that in the discrete-log problem, the attacker 𝒜 is
instantiated with labels (𝜎(1), 𝜎(𝑥)) for a random 𝑥← Z𝑝, and it wins if it can output 𝑥.

Theorem 4.2 (Hardness of Discrete Log [Sho97]). The discrete-log problem is (𝑇, 𝑂(𝑇 2/𝑝))-secure in the
GGM.

An almost immediate corollary of Shoup’s result is that if a GGM attacker𝒜 is instantiated with 𝑑 random
group elements, it is hard to find a non-trivial linear relation among them. Formally, in the linear relation
problem parameterized by 𝑑 ≥ 1, 𝒜 is instantiated with labels (𝜎(1), 𝜎(𝑥1), . . . , 𝜎(𝑥𝑑)) where 𝑥1, . . . , 𝑥𝑑 are all
uniformly random in Z𝑝, and wins if it outputs a non-zero vector �⃗� ∈ Z𝑑+1

𝑝 such that ⟨�⃗�, (1, 𝑥1, . . . , 𝑥𝑑)⟩ = 0
over Z𝑝.

Theorem 4.3 (Hardness of Finding a Linear Relation). The linear relation problem with parameter 𝑑 is
(𝑇, 𝑂(𝑑𝑇 2/𝑝))-secure in the GGM.

Proof. A 𝑇 -query attacker 𝒜 solving outputting a linear relation �⃗� with advantage 𝜖(𝜆) implies a 𝑇 -query
attacker 𝒜 for discrete-log with advantage 𝜖(𝜆)/𝑑. The reduction randomly samples 𝑑− 1 uniformly random
group elements and places the discrete-log challenge 𝜎(𝑢) in a random position. At least one of the entries
of �⃗� other than the first entry must be non-zero, so a non-zero entry of �⃗� coincides with the random position
of the discrete-log challenge with probability at least 1/𝑑 independent of the attacker’s view. If this occurs
and the attacker succeeds, the reduction can solve for 𝑢.

4.1.1 An Alternative Formulation of the GGM

For our purposes, it will be more convenient to think of the GGM as an interface that permits an attacker
to perform arbitrary linear queries, but nothing else.

Definition 4.4 (Generic Group Model, Linear-Query Formulation). The setup is the same as the previous
formulation of the GGM, except the oracle 𝒪𝐺 is replaced by a linear-query oracle 𝒪𝐿𝑖𝑛.
𝒞 initializes 𝒜 with the labels 𝜏1 = 𝜎(𝑥1), . . . , 𝜏𝑁 = 𝜎(𝑥𝑁) and the group generator 𝜏 = 𝜎(1). 𝒪𝐿𝑖𝑛 takes

as input 𝛼1, . . . , 𝛼𝑁 , 𝛽 ∈ Z𝑝, and outputs

𝜎((
∑︁

𝑖∈[𝑁]

𝛼𝑖 · 𝑥𝑖) + 𝛽).

Generic group model security proofs frequently rely on the equivalence of these two formulations. For
the sake of completeness, we state this equivalence in the following claims.

Claim 4.5. If an application is (𝑇, 𝜖)-secure in the linear-query GGM, then the application is (𝑇, 𝜖 +
𝑂(𝑇/2𝜆))-secure in the standard GGM.

Proof. We prove that a 𝑇 -query attacker 𝒜 in the standard GGM attaining advantage 𝜖 implies a 𝑇 -query
attacker 𝒜′ in the linear-query GGM attaining advantage 𝜖−𝑂(𝑇/2𝜆).

16

Let E be the event that the attacker 𝒜 ever queries 𝒪𝐺 on a label 𝜏 which is not the output of a prior
query to 𝒪𝐺, or one of the elements 𝒜 is initialized with. Since 𝜎 is a random injection from Z𝑝 to [𝐿] where
𝐿 ≥ 𝑝 · 2𝜆, any label it tries which is not the result of a prior query to 𝒪𝐺 will have a valid preimage under
𝜎 with probability at most 𝑂(1

2𝜆). A union bound over all 𝑇 queries shows that E occurs with probability
at most 𝑂(𝑇

2𝜆).
Conditioned on ¬E, any query that 𝒜 makes to 𝒪𝐺 can be perfectly replaced by a single query to 𝒪𝐿𝑖𝑛.

We argue this by induction on the queries. The first query that 𝒜 makes to 𝒪𝐺 is can be represented as a
linear combination of (the preimages of) the initial labels (𝜎(1), 𝜎(𝑥1), . . . , 𝜎(𝑥𝑁)) since ¬E implies the inputs
to 𝒪𝐺 are in this list. For the inductive step, suppose each of the first 𝑖 queries to 𝒪𝐺 can be represented as
a linear combination of (the preimages of) the initial labels (𝜎(1), 𝜎(𝑥1), . . . , 𝜎(𝑥𝑁)). Given ¬E, the query
(𝜏1, 𝜏2) to 𝒪𝐺 must be from the results of prior queries to 𝒪𝐺 or the initial labels. But all such labels are
linear combinations of the initial labels, so this must be true for query 𝑖 + 1. It is straightforward to recover
the coefficients (𝛼1, . . . , 𝛼𝑁 , 𝛽) for the query 𝑖 + 1 given the initial labels and the input/output transcript of
the first 𝑖 queries.

Claim 4.6. If an application is (𝑇, 𝜖)-secure in the standard GGM, then the application is (𝑇/(Θ(𝑁 log 𝑝), 𝜖)-
secure in the linear-query GGM.

Proof. Any query to 𝒪𝐿𝑖𝑛 can be simulated with Θ(𝑁 log 𝑝) total queries to 𝒪𝐺. Each 𝜎(𝛼𝑖𝑥𝑖) as well as
𝜎(𝛽) can be computed in 𝑂(log 𝑝) queries to 𝒪𝐺 by repeated squaring. Combining these labels to obtain
𝜎((

∑︀
𝑖∈[𝑁] 𝛼𝑖 · 𝑥𝑖) + 𝛽) takes an additional Θ(𝑁) queries. The cost is dominated by the first step, which

takes Θ(𝑁 log 𝑝) queries.

4.2 Chaum-Pedersen Protocol
The Chaum-Pedersen protocol (see Fig. 2) gives an interactive proof of membership for the language Diffie-
Hellman tuples

ℒDH := {(𝑔, 𝑔𝑢, 𝑔𝑣, 𝑔𝑢𝑣)}𝑢,𝑣∈Z𝑝
.

𝑃 (𝑔, 𝑔𝑢, 𝑔𝑣, 𝑔𝑤) 𝑉 (𝑔, 𝑔𝑢, 𝑔𝑣, 𝑔𝑤)
𝑟 ← Z𝑝,
ℎ1 := 𝑔𝑟,
ℎ2 := (𝑔𝑢)𝑟

ℎ1, ℎ2

𝑐 𝑐← Z𝑝

𝑧 := 𝑟 + 𝑐𝑣 𝑧 Accept if 𝑔𝑧 = (ℎ1)(𝑔𝑣)𝑐

and (𝑔𝑢)𝑧 = (ℎ2)(𝑔𝑤)𝑐.

Figure 2: Protocol ΠCP for proving validity of a DDH tuple.

We compile the Chaum-Pedersen protocol into a non-interactive protocol satisfying semi-adaptive sound-
ness for the ℒDH language. In contrast to fully adaptive soundness, in which the cheating prover attempts
to convince the verifier to accept an arbitrary NO-instance of ℒDH, the semi-adaptive attacker is forced to
give a NO-instance whose second group element 𝑔𝑢 is sampled at random. It then picks 𝑔𝑣 and 𝑔𝑤 such that
(𝑔, 𝑔𝑢, 𝑔𝑣, 𝑔𝑤) ̸∈ ℒDH, and wins if the verifier accepts.

In this section, we prove that any fixed Fiat-Shamir hash function ℎ : 𝐺4 → Z𝑝 satisfying the following
information theoretic notion suffices to compile Chaum-Pedersen protocol into a semi-adaptively sound
argument for ℒDH.

Definition 4.7 (Well-Spread on Repeated Random Inputs). A hash function 𝐻 : [𝐿]𝑑 → Z𝑝 is well-spread
on repeated random inputs if for all choices of 𝑖1, ..., 𝑖𝑑 ∈ [𝑑],

H∞(𝐻(𝑥𝑖1 , . . . , 𝑥𝑖𝑑
) : (𝑥1, . . . , 𝑥𝑑)← [𝐿]𝑑) = 𝜔(log 𝜆).

17

A simple example of a hash function satisfying Definition 4.7 is the Sum-Mod-𝑝 hash function 𝐻𝑠𝑢𝑚. On
input (𝑥1, . . . , 𝑥𝑑), the function 𝐻𝑠𝑢𝑚 computes

∑︀
𝑖 𝑥𝑖 (identifying each input 𝑥𝑖 ∈ [𝐿] with its value as an

integer) and outputs the result modulo 𝑝.
For the protocol ΠCP, we will consider Fiat-Shamir hash function 𝐻 : 𝑔𝑣, 𝑔𝑤, ℎ1, ℎ2 ↦→ 𝑐 ∈ Z𝑝, as for

semi-adaptive soundness 𝑔𝑢 is picked uniformly.

Theorem 4.8. The protocol (ΠCP)𝐹 𝑆,𝐻 is semi-adaptively sound in the generic group model if the Fiat-
Shamir hash function 𝐻 : [𝐿]4 → Z𝑝 is well-spread on repeated random inputs (Definition 4.7).

Proof. We consider the generic group model in the linear-query formulation (Definition 4.4) which suffices
by Claim 4.5.

Suppose a generic group attacker 𝒜 breaks the semi-adaptive soundness of the non-interactive protocol
with advantage 𝜖(𝜆). This means 𝒜 instantiated with input (𝜎(1), 𝜎(𝑢)) will, with probability 𝜖(𝜆) over 𝑢
and 𝜎, output (𝜏𝑣, 𝜏𝑤) ∈ [𝐿]2 corresponding to a “no instance” of the DDH language, accompanied by an
accepting proof ((𝜏𝑟, 𝜏𝑠), 𝑧) where (𝜏𝑟, 𝜏𝑠) ∈ [𝐿]2 and 𝑧 ∈ Z𝑝.

Explicitly, 𝒜 outputs (𝜏𝑣, 𝜏𝑤, 𝜏𝑟, 𝜏𝑠, 𝑧) satisfying the following conditions with probability 𝜖(𝜆):

∙ (Condition 1: (𝜎(𝑢), 𝜏𝑣, 𝜏𝑤) is not a valid DDH tuple) Over Z𝑝, 𝑢 · 𝜎−1(𝜏𝑣) ̸= 𝜎−1(𝜏𝑤). If either of
𝜎−1(𝜏𝑣) or 𝜎−1(𝜏𝑤) do not exist, this condition is failed.

∙ (Condition 2: the verifier accepts (𝜏𝑟, 𝜏𝑠, 𝑧)). The two checks the verifier performs are:

𝑧 = 𝜎−1(𝜏𝑟) + 𝜎−1(𝜏𝑣) ·𝐻(𝜏𝑣, 𝜏𝑤, 𝜏𝑟, 𝜏𝑠), (2)
𝑢 · 𝑧 = 𝜎−1(𝜏𝑠) + 𝜎−1(𝜏𝑤) ·𝐻(𝜏𝑣, 𝜏𝑤, 𝜏𝑟, 𝜏𝑠). (3)

In the real protocol, the verifier is checking these relations in the exponent, but the cheating prover
must still satisfy them over Z𝑝. If either of 𝜎−1(𝜏𝑟) or 𝜎−1(𝜏𝑤) do not exist, this condition is failed.

Recall that in the linear-query formulation of the GGM (cf. Definition 4.4), any label the attacker 𝒜
obtains from the group oracle 𝒪𝑙𝑖𝑛 is of the form 𝜎(𝛼 ·𝑢+𝛽), where 𝛼 and 𝛽 are known to the attacker (since
𝒜 explicitly provides 𝛼, 𝛽 to make the query). If any of the labels 𝜏𝑣, 𝜏𝑤, 𝜏𝑟, 𝜏𝑠 that 𝒜 outputs are not the
result of a query to 𝒪𝑙𝑖𝑛 (or one of 𝜎(1) or 𝜎(𝑢)), then with probability 1− 𝑂(1/2𝜆) (over the randomness
of 𝜎) there will not exist a preimage under 𝜎 and the conditions will fail.

Therefore, for any attacker 𝒜, we can define an attacker that directly outputs those coefficients with
overwhelming probability. Up to renaming, we can therefore think of 𝒜 as directly outputting coefficients
𝛼𝑣, 𝛽𝑣, 𝛼𝑤, 𝛽𝑤, 𝛼𝑟, 𝛽𝑟, 𝛼𝑠, 𝛽𝑠 ∈ Z𝑝 such that

𝑣 = 𝛼𝑣 · 𝑢 + 𝛽𝑣,

𝑤 = 𝛼𝑤 · 𝑢 + 𝛽𝑤,

𝑟 = 𝛼𝑟 · 𝑢 + 𝛽𝑟,

𝑠 = 𝛼𝑠 · 𝑢 + 𝛽𝑠,

in place of 𝜏𝑣, 𝜏𝑤, 𝜏𝑟, 𝜏𝑠, as this can only hurt its advantage by an additive 𝑂(1/2𝜆).
We rewrite Eqs. (2) and (3) in terms of �⃗� := (𝛼𝑣, 𝛼𝑤, 𝛼𝑟, 𝛼𝑠) and 𝛽 := (𝛽𝑣, 𝛽𝑤, 𝛽𝑟, 𝛽𝑠):

𝑧 = (𝛼𝑟 · 𝑢 + 𝛽𝑟) + (𝛼𝑣 · 𝑢 + 𝛽𝑣) · 𝑓(�⃗�, 𝛽), (4)

𝑢 · 𝑧 = (𝛼𝑠 · 𝑢 + 𝛽𝑠) + (𝛼𝑤 · 𝑢 + 𝛽𝑤) · 𝑓(�⃗�, 𝛽), (5)

where
𝑓(�⃗�, 𝛽) := 𝐻(𝜎(𝛼𝑣 + 𝑢 · 𝛽𝑣), 𝜎(𝛼𝑤 + 𝑢 · 𝛽𝑤), 𝜎(𝛼𝑟 + 𝑢 · 𝛽𝑟), 𝜎(𝛼𝑠 + 𝑢 · 𝛽𝑠)).

In these equations, the attacker 𝒜 outputs (or can efficiently compute) every value except for 𝑢. If these
equations can be solved for 𝑢, this means the attacker can break discrete log with the same probability that

18

can satisfy these equations. By Theorem 4.2, a 𝑇 -query attacker can only break discrete log with probability
𝑂(𝑇 2/𝑝).

Therefore, with probability 𝜖(𝜆) − 𝑂(1/2𝜆) − 𝑂(𝑇 2/𝑝), the attacker outputs �⃗�, 𝛽, 𝑧 satisfying Eqs. (4)
and (5), and furthermore these equations cannot be solved for 𝑢. In other words, these equations should not
be formally solvable in 𝑢 as a formal variable. This gives rise to the following four equations, where the first
two state the coefficient of 𝑢 must be equal on both sides of Eqs. (4) and (5), and the last two are the result
of setting theconstant terms to be equal.

0 = 𝛼𝑟 + 𝛼𝑣 · 𝑓(�⃗�, �⃗�), (6)

𝑧 = 𝛼𝑠 + 𝛼𝑤 · 𝑓(�⃗�, 𝛽), (7)

𝑧 = 𝛽𝑟 + 𝛽𝑣 · 𝑓(�⃗�, �⃗�), (8)

0 = 𝛽𝑠 + 𝛽𝑤 · 𝑓(�⃗�, 𝛽). (9)

We finish the proof by showing that if �⃗�, 𝛽, 𝑧 does not correspond to a valid DDH tuple, then over the
randomness of 𝜎, these equations can only hold with probability 𝑂(𝑇 4/𝜆𝜔(1)). This means 𝜖(𝜆)−𝑂(1/2𝜆)−
𝑂(𝑇 2/𝑝) ≤ 𝑂(𝑇 4/𝜆𝜔(1)), from which the claimed bound of 𝜖(𝜆) ≤ 𝑂(𝑇 4/𝜆𝜔(1)) follows.

Suppose for a moment that 𝑓(�⃗�, 𝛽) is replaced by a formal variable f in each of Eqs. (6) to (9). Then for
any particular choice of �⃗�, 𝛽, either (1) none of these equations have any formal dependence on f or (2) at
least one of these equations determines f (if more than one equation determines f there may be no solution).

If (1) is the case, then the coefficients of f must be equal on both sides in all four equations. This gives
rise to the following conditions on �⃗�, 𝛽, 𝑧:

𝛼𝑣 = 0,

𝛼𝑟 = 0,

𝛼𝑤 = 𝛽𝑣,

𝛼𝑠 = 𝛽𝑟,

𝛽𝑤 = 0,

𝛽𝑠 = 0,

𝑧 = 𝛽𝑟 + 𝛽𝑣 · 𝑓(�⃗�, 𝛽).

These conditions are equivalent to 𝑤 = 𝑢 · 𝑣, 𝑠 = 𝑢 · 𝑟, and 𝑧 = 𝑟 + 𝐻(𝜏𝑣, 𝜏𝑤, 𝜏𝑟, 𝜏𝑠) · 𝑣, which precisely
corresponds to an honest execution of the protocol on a valid DDH tuple.

However, since 𝒜 is outputting (�⃗�, 𝛽, 𝑧) corresponding to a DDH “no instance” (with probability 𝜖(𝜆)−
𝑂(1/2𝜆)−𝑂(𝑇 2/𝑝)) this cannot correspond to (1). Therefore, it must be that the choice of �⃗�, 𝛽 determines
f .

Observe that there are at most (𝑇 + 2)4 possible choices for �⃗�, 𝛽, since we are already conditioning on
the attacker outputting only (𝛼, 𝛽) pairs corresponding to one of the 𝑇 queries it made 𝒪𝐿𝑖𝑛, or one of the
two group elements 𝜎(1), 𝜎(𝑢) (i.e. (𝛼, 𝛽) = (0, 1) or (1, 0)).

For any fixed choice of �⃗�, 𝛽, the value 𝑓(�⃗�, 𝛽) will be an evaluation of 𝐻 on four generic group labels
(𝜏𝑣, 𝜏𝑤, 𝜏𝑟, 𝜏𝑠). These generic group labels may be repeated, but the well-spread property of 𝐻 (Definition 4.7)
guarantees that 𝐻 still has min-entropy 𝜔(log 𝜆). So the probability that this value of 𝐻 will equal the
prescribed setting for f is at most 1/2𝜔(log 𝜆). By a union bound over all (𝑇 + 2)4 possible choices of (�⃗�, 𝛽),
the probability that the attacker satisfies all the equations is at most (𝑇 + 2)4/2𝜔(log 𝜆).

4.3 Application: NIZKs for NP
We now show that (ΠCP)𝐹 𝑆,𝐻 can be used to obtain NIZKs for all of NP. This follows the recent line work of
instantiating the hidden-bits model [FLS99] from standard assumptions [CH19, KNYY19, QRW19, CKU20].
In particular, Couteau, Katsumata and Ursu [CKU20, Theorem 28] show that any NIZK for the language

19

ℒDH is sufficient to build so-called Verifiable Pseudorandom Generators (VPRG) [CH19] (also known as
hidden bits generators [QRW19]), which in turn allows to instantiate the hidden bits model [CH19, KNYY19,
QRW19, CKU20].

While the statement of [CKU20, Theorem 28] specifies that the underlying NIZK for ℒDH be adaptively
sound, we note that our notion of semi-adaptive soundness suffices. This is because in the proof of [CKU20,
Theorem 28] the 𝑔𝑢 component of the Diffie-Hellman tuple is randomly sampled and included in the common
reference string of the VPRG; this is something which the malicious prover does not have any control over.
This gives the following theorem:

Theorem 4.9 (NIZKs for ℒDH imply NIZKs for all of NP, adapted from [CKU20]). Suppose Π is a semi-
adaptively sound, single-theorem zero-knowledge NIZK argument for ℒDH. Then, under the CDH assumption,
there exists an (adaptively sound, adaptively multi-theorem) NIZK argument for all of NP.

As is, our protocol (ΠCP)𝐹 𝑆,𝐻 is in the plain model, and is therefore not zero-knowledge (assuming
deciding DDH is not in BPP). However, one can generically add single-theorem zero-knowledge in the
following way. We now use a common random string crs := 𝜌 ← Z𝑝 and define our new hash function
𝐻𝜌 = 𝐻 + 𝜌. This makes 𝐻𝜌 1-wise independent, and allows to lift honest-verifier zero-knowledge of ΠCP to
single-theorem zero-knowledge of (ΠCP)𝐹 𝑆,𝐻 in the CRS model (by having the simulator program 𝜌 to map
the challenge 𝑐 to the honest-verifier simulator challenge).

5 Lattice-Based Identification Protocols
5.1 Preliminaries
We review basic definitions and lemmas we will use throughout the section.

Lemma 5.1 (Noise flooding). Let 𝐵 = 𝐵(𝜆), 𝐵′ = 𝐵′(𝜆) be integers such that 𝐵′/𝐵 = negl(𝜆). Then for
all 𝑥 ∈ [−𝐵′, 𝐵′], the distributions 𝒰([−𝐵, 𝐵] + 𝑥) and 𝒰([−𝐵, 𝐵]) are within negligible statistical distance
from each other.

Lemma 5.2 (Leftover Hash Lemma). Let ℋ = {ℎ : 𝒳 → 𝒴} be a 2-universal hash function family. Then
for any random variable 𝑋 ∈ 𝒳 , for 𝜖 > 0 s.t. log(|𝒴|) ≤ 𝐻∞(𝑋)− 2 log(1/𝜖), the distributions

(ℎ, ℎ(𝑋)) and (ℎ,𝒰(𝒴))

are 𝜖-statistically close.
Furthermore, the family {A ∈ Z𝑛×𝑚

𝑞 : r ↦→ Ar} is 2-universal for prime 𝑞.

SIS and LWE. We first recall the short integer solution (SIS) problem.

Definition 5.3 (Short Integer Solution (SIS) [Ajt96]). For any 𝑛, 𝑚, 𝑞 ∈ Z and 𝐵 ∈ R, define the short
integer solution problem 𝑆𝐼𝑆𝑛,𝑚,𝑞,𝐵 as follows: Given A ∈ Z𝑛×𝑚

𝑞 , find a non-zero vector x ∈ Z𝑚 such that
‖x‖∞ ≤ 𝐵, and

Ax = 0 mod 𝑞.

Definition 5.4 (Inhomogeneous Short Integer Solution (iSIS)). For any 𝑛, 𝑚, 𝑞 ∈ Z and 𝐵 ∈ R, define
the inhomogeneous short integer solution problem 𝑖𝑆𝐼𝑆𝑛,𝑚,𝑞,𝐵 as follows: Given A ∈ Z𝑛×𝑚

𝑞 , y ∈ Z𝑛
𝑞 , find

x ∈ Z𝑚 such that ‖x‖∞ ≤ 𝐵, and
Ax = y mod 𝑞.

Lemma 5.5 (Hardness of (i)SIS based on the lattice problems in the worst case [Ajt96, GPV08]). For any
𝑚 = Ω(𝑛 log 𝑞), any 𝛽 > 0, and any sufficiently large 𝑞 ≥ 𝛽 · 𝑝𝑜𝑙𝑦(𝑛), solving 𝑆𝐼𝑆𝑛,𝑚,𝑞,𝛽 or 𝑖𝑆𝐼𝑆𝑛,𝑚,𝑞,𝛽

(where y is sampled uniformly from Z𝑛
𝑞) with non-negligible probability is as hard as solving 𝐺𝑎𝑝𝑆𝑉 𝑃𝛾 and

𝑆𝐼𝑉 𝑃𝛾 on arbitrary 𝑛-dimensional lattices with overwhelming probability, for some approximation factor
𝛾 = 𝛽 · 𝑝𝑜𝑙𝑦(𝑛).

20

We recall the decisional learning with errors (LWE) problem.

Definition 5.6 (Decisional Learning with Errors (LWE) [Reg05]). For 𝑛, 𝑚 ∈ N and modulus 𝑞 ≥ 2,
distributions for secret vectors, public matrices, and error vectors 𝜃, 𝜋, 𝜒 ⊆ Z𝑞. An LWE sample is obtained
from sampling s← 𝜃𝑛, A← 𝜋𝑛×𝑚, e← 𝜒𝑚, and outputting (A, y𝑡 := s𝑡A + e𝑡 mod 𝑞).

We say that an algorithm solves 𝐿𝑊𝐸𝑛,𝑚,𝑞,𝜃,𝜋,𝜒 if it distinguishes the LWE sample from a random sample
distributed as 𝜋𝑛×𝑚 × 𝒰(Z𝑚

𝑞) with probability greater than 1/2 plus non-negligible.

Lemma 5.7 (Hardness of LWE based on the lattice problems in the worst case [Reg05]). Given 𝑛 ∈ N, for
any 𝑚 = 𝑝𝑜𝑙𝑦(𝑛), 𝑞 ≤ 2𝑝𝑜𝑙𝑦(𝑛). Let 𝜃 = 𝜋 = 𝒰(Z𝑞), 𝜒 = 𝐷Z,𝑠, the discrete Gaussian distribution of width
𝑠 ≥ 2

√
𝑛. If there exists an efficient (possibly quantum) algorithm that breaks 𝐿𝑊𝐸𝑛,𝑚,𝑞,𝜃,𝜋,𝜒, then there

exists an efficient (possibly quantum) algorithm for solving 𝐺𝑎𝑝𝑆𝑉 𝑃𝛾 and 𝑆𝐼𝑉 𝑃𝛾 on arbitrary 𝑛-dimensional
lattices with overwhelming probability, for some approximation factor 𝛾 = �̃�(𝑛𝑞/𝑠).

The next lemma shows that LWE with the secret sampled from the error distribution is as hard as the
standard LWE.

Lemma 5.8 ([ACPS09]). For 𝑛, 𝑚, 𝑞, 𝑠 chosen as in Lemma 5.7, 𝐿𝑊𝐸𝑛,𝑚′,𝑞,𝐷Z,𝑠,𝒰(Z𝑞),𝐷Z,𝑠
is as hard as

𝐿𝑊𝐸𝑛,𝑚,𝑞,𝒰(Z𝑞),𝒰(Z𝑞),𝐷Z,𝑠
for 𝑚′ ≤ 𝑚− (16𝑛 + 4 log log 𝑞).

Throughout the paper we will denote by 𝐿𝑊𝐸𝑛,𝑚,𝑞,𝜒 the assumption implicitly setting 𝜃 = 𝜒, 𝜋 = 𝒰(Z𝑞).

Definition 5.9 (Gadget Matrix). We say that a matrix G ∈ Z𝑘×ℓ
𝑞 is a gadget matrix if there exists an

efficient deterministic procedure G−1, which, on input X ∈ Z𝑘
𝑞 , output a matrix G−1(X) with small norm

such that GG−1(X) = X. A common choice of the gadget matrix is the following “power-of-b” matrix,
where the base 𝑏 is a small integer (say 𝑏 = 2). Let G = I𝑘⊗g𝑡 ∈ Z𝑘×𝑘⌈log𝑏 𝑞⌉

𝑞 with g𝑡 = (1, 𝑏, . . . , 𝑏⌈log𝑏 𝑞⌉−1)
(implicitly setting ℓ = 𝑘⌈log𝑏 𝑞⌉). The G−1 function is then the base-𝑏 decomposition function. By default
we will consider the “power-of-two” gadget matrix, but all our results apply with any matrix G with the
following property:

∙ There exists a deterministic function G−1(·), which on input 𝛼 ∈ Z𝑘
𝑞 outputs a short c such that

G(c) = 𝛼,

Looking ahead, if we do not use the “powers-of-two” gadge matrix, the “shortness” of c = G−1(𝛼) will
slightly modify the parameters of the schemes, namely the final check of the verifier with respect to the norm
of the third message, and the parameters underlying 𝑆𝐼𝑆 problem used to argue soundness.

5.2 Identification Protocols based on SIS
We first describe a variant of Lyubashevsky identification protocol. This can be also seen as a variant of
the Schnorr protocol ported to the SIS setting, using many secrets in parallel. For the sake of simplicity, we
will first deal with zero-knowledge using noise flooding rather than rejection sampling; we present a version
based on rejection sampling in Section 5.4.

Let 𝑛, 𝑚, 𝑞, and ℓ, 𝐵 be integers.

𝑃 (A, Y = AR) 𝑉 (A, Y = AR)
t← [−𝐵, 𝐵]𝑚,
𝛼 := At

𝛼

c c← {0, 1}ℓ

z := t + Rc z Accept if Az = 𝛼 + Yc
and ‖z‖∞ ≤ 𝐵 + ℓ.

Figure 3: Identification Protocol ΠSIS based on SIS.

Consider the following identification protocol:

21

∙ The public key is (A, Y) where A ← Z𝑛×𝑚
𝑞 , and Y = AR ∈ Z𝑛×ℓ

𝑞 where R ← {0, 1}𝑚×ℓ. The secret
key is R.

∙ The prover samples t← [−𝐵, 𝐵]𝑚, and sends 𝛼 = At ∈ Z𝑛
𝑞 to the verifier.

∙ The verifier sends a challenge c← {0, 1}ℓ as the second message.

∙ The prover computes z = t + Rc ∈ Z𝑚
𝑞 , and sends it to the verifier .

∙ The verifier accepts if Az = 𝛼 + Yc and ‖z‖∞ ≤ 𝐵 + ℓ.

Claim 5.10 (Completeness). The identification protocol ΠSIS is complete.

Proof. By linearity, Az = At + ARc = 𝛼 + Yc. Further, we have ‖t‖∞ ≤ 𝐵 and ‖Rc‖∞ ≤ ℓ, so that
‖z‖∞ ≤ 𝐵 + ℓ.

Next, we show that ΠSIS satisfies special soundness. Unfortunately, we are not able to extract a short
matrix R′ such that AR′ = Y. Instead, we show how to obtain a short (non-zero) vector r ∈ Z𝑚+ℓ

𝑞 such
that [A‖Y] · r = 0. Note that for uniformly random A and Y, this is hard to do assuming SIS.

Claim 5.11 (Relaxed Special Soundness). Suppose that 𝛼, z, z′ and c ̸= c′ such that (𝛼, c, z) and (𝛼, c′, z′)
are both accepting transcripts for ΠSIS. Then there exists an extractor ℰ((𝛼, c, z), (𝛼, c′, z′)) that computes
a non-zero element r ∈ Z𝑚+ℓ

𝑞 such that [A‖Y] · r = 0 and ‖r‖∞ ≤ 2(𝐵 + ℓ).

Proof. We have z − z′ = R(c − c′), so that A(z − z′) = Y(c − c′). We distinguish two cases. Either

Y(c − c′) = 0, in which case r :=
[︂

0
c− c′

]︂
is non-zero and satisfies [A‖Y] · r = 0, where ‖r‖∞ ≤ 2; or we

have z− z′ = R(c− c′), so that A(z− z′) = Y(c− c′). Because Y(c− c′) ̸= 0, we have that z− z′ ̸= 0, and

therefore r :=
[︂
z− z′
c′ − c

]︂
is a non-zero vector such that [A‖Y] · r = 0 with ‖r‖∞ ≤ 2(𝐵 + ℓ).

Claim 5.12 (Honest-Verifier Zero-Knowledge). Suppose ℓ/𝐵 = negl(𝜆). Then the identification protocol
ΠSIS is statistically honest-verifier zero-knowledge.

Proof. We define the honest-verifier simulator 𝒮 as follows. On input (A, Y, c), it samples z uniformly from
[−𝐵, 𝐵]𝑚, and sets 𝛼 = Az−Yc.

For c← {0, 1}ℓ, by Lemma 5.1, the resulting distribution (c, z) is statistically close to the one produced
by real proofs. Given (c, z), for accepting proofs, 𝛼 satisfies 𝛼 = Az−Yc and therefore the output (𝛼, c, z)
of 𝒮 is distributed statistically close to honestly generated proofs.

We now show that instantiating the Fiat-Shamir heuristic on ΠSIS with the hash function G−1(·) (Fig. 4)
preserves (average-case) soundness. In order to preserve zero-knowledge, we additionally rely on a common
random string.

crs = 𝜌← Z𝑛
𝑞

𝑃 (A, Y = AR, R) 𝑉 (A, Y = AR)
t← [−𝐵, 𝐵]𝑚,
𝛼 := At
c = G−1(𝛼 + 𝜌)
z = t + Rc

(𝛼, z)
Compute c = G−1(𝛼 + 𝜌)
Accept if Az = 𝛼 + Yc
and ‖z‖∞ ≤ 𝐵 + ℓ

and (c, z) ̸= (0, 0).

Figure 4: Non-interactive Identification Protocol (ΠSIS)FS,G−1 based on SIS.

Claim 5.13 (Completeness). The protocol (ΠSIS)FS,G−1 is complete.

22

Proof. This follows by completeness of the interactive variant ΠSIS.

Claim 5.14 (Average-case soundness). Under the 𝑖𝑆𝐼𝑆𝑛,𝑚+ℓ,𝐵+ℓ assumption, we have that for all efficient
cheating prover 𝑃 * for (ΠSIS)FS,G−1 :

Pr
crs←Zℓ

𝑞,A←Z𝑛×𝑚
𝑞 ,Y←Z𝑛×ℓ

𝑞

[(𝑃 *(crs, A, Y)↔ 𝑉 (crs, A, Y)) = Accept] ≤ negl(𝑛).

In particular, (ΠSIS)FS,G−1 is a one-time secure identification scheme.

Proof. Accepting proofs (𝛼, c, z) for (ΠSIS)FS,G−1 satisfy Az = 𝛼 + Yc where ‖z‖∞ ≤ 𝐵 + ℓ. This can be
rewritten as

[A ‖G + Y]
[︂

z
−G−1(𝛼 + 𝜌)

]︂
= 𝜌.

Let (B, 𝜌) be an inhomogeneous SIS instance where B = [B1‖B2] ← Z𝑛×(𝑚+ℓ)
𝑞 , and 𝜌 ← Z𝑛

𝑞 and let
𝑃 *(crs, A, Y) be a cheating prover breaking average-case soundness of (ΠSIS)FS,G−1 with probability 𝜖 over
the randomness of (crs, A, Y) ← Z𝑛

𝑞 × Z𝑛×𝑚
𝑞 × Z𝑛×ℓ

𝑞 . Then, any accepting transcript (𝛼, c, z) produced
by 𝑃 * on input (𝜌, B1, B2 − G) (which is distributed uniformly) induces an inhomogeneous SIS solution

r =
[︂

z
−G−1(𝛼 + 𝜌)

]︂
which is non-zero, as (z, c) ̸= (0, 0), and such that ‖r‖∞ ≤ 𝐵 + ℓ.

Note that the proof of Claim 5.14 does not strongly rely on the randomness of 𝜌. In particular, we could
set 𝜌 = 0 and still argue soundness of (ΠSIS)FS,G−1 , by relying directly on 𝑆𝐼𝑆 instead of its inhomogeneous
version in the proof. In other words, using the single, deterministic Fiat-Shamir hash function G−1(·)
preserves soundness of ΠSIS; it is only for zero-knowledge that we consider a (slightly modified) family of
hash functions G−1

𝜌 (𝛼) = G−1(𝛼 + 𝜌).
Next, we argue zero-knowledge of our construction. Note that the way we add the CRS to our protocol

is technically different from the one we use in the group-based setting. In more details, defining ̃︂G−1
𝜌(𝛼) :=

G−1(𝛼) + 𝜌 would break the structural requirement that we use to argue soundness. Instead, we define
G−1

𝜌(𝛼) := G−1(𝛼+𝜌), and we directly argue (single-theorem) zero-knowledge without using the fact that
ΠSIS is honest-verifier zero-knowledge.

Claim 5.15 (Zero-Knowledge). The protocol (ΠSIS)FS,G−1 is (single-theorem) statistically zero-knowledge.

Proof. We define our simulator S as follows. On input (A, Y), it samples u ← Z𝑛
𝑞 , and sets c = G−1(u).

It samples z uniformly from [−𝐵, 𝐵]𝑚, and sets 𝜌 = [A‖G + Y]
[︂

z
−c

]︂
. It sets 𝛼 = u − 𝜌, and outputs

(crs = 𝜌, (𝛼, c, z)).
Let us justify that the simulated distribution is statistically close to the real one. In the real distribution,

𝜌 is distributed uniformly, so 𝛼+𝜌 is distributed uniformly. The simulated z is distributed statistically close
to its honestly generated counterpart, by Lemma 5.1, even conditioned on c and u. Given z and c = G−1(u),

the simulated 𝜌 is entirely determined as 𝜌 = [A‖G + Y]
[︂

z
−c

]︂
, where 𝜌 is (taken alone) statistically close

to uniform by the leftover hash lemma (over the randomness of z). This in turn defines 𝛼 as u − 𝜌, which
makes the distribution output by 𝒮 statistically close to honestly generated proofs overall.

Parameters. To argue security of ΠSIS and (ΠSIS)FS,G−1 , we used the following properties:

∙ G ∈ Z𝑛×ℓ
𝑞 is a gadget matrix. It suffices to set ℓ = 𝑛⌈log 𝑞⌉ to satisfy this property when instantiating

G as the “powers-of-two” matrix. We stress that one could use any gadget matrix satisfying the
requirements of Definition 5.9, albeit with slightly different parameters depending on the gadget matrix.

∙ ℓ/𝐵 ≤ negl(𝑛) to argue zero-knowledge in Claims 5.12 and 5.15;

23

∙ (A, AR) (resp. (A, Az)) are statistically close to uniform, to argue that relaxed special soundness of
Claim 5.11 is non-vacuous (resp. zero-knowledge of (ΠSIS)FS,G−1 in Claim 5.15). By the leftover hash
lemma it suffices to set 𝑚 = 2𝑛 log 𝑞;

∙ 𝑖𝑆𝐼𝑆𝑛,𝑚+ℓ,𝑞,𝐵+ℓ is hard, to argue soundness of (ΠSIS)FS,G−1 in Claim 5.14.

Overall, setting 𝑚 = 2𝑛⌈log 𝑞⌉, ℓ = 𝑛⌈log 𝑞⌉, 𝑞 = 2𝑛𝜖 for any 0 < 𝜖 < 1, and any 𝐵 = 𝑛𝜔(1), our scheme is
secure under 𝑖𝑆𝐼𝑆𝑛,𝑚+ℓ,𝑞,𝐵+ℓ (where statistical zero-knowledge holds with statistical distance ≈ ℓ/𝐵 +𝑞𝑛/2),
and therefore under the hardness of 𝐺𝑎𝑝𝐶𝑉 𝑃 and 𝑆𝐼𝑉 𝑃 with sub-exponential approximation factors.

5.3 Identification Protocols based on LWE
Next, we show LWE counterparts to the identification schemes above. We will consider here the Hermite
Normal Form of LWE [ACPS09], where the secret is sampled from the error distribution. Looking ahead,
doing so will make the third message of the protocol short, which will be crucial to analyze the soundness of
our non-interactive version.

Let 𝑛, 𝑚, 𝑞, and ℓ, 𝐵 be integers, and let 𝜒 be a 𝛽-bounded error distribution for some integer 𝛽.

𝑃 (A, Y = SA + E, S) 𝑉 (A, Y = SA + E)
t← [−𝐵, 𝐵]1×𝑛,
e← [−𝐵, 𝐵]1×𝑚

𝛼 := tA + e

𝛼

c c← {0, 1}1×ℓ

z := t + cS z Accept if ‖zA− 𝛼− cY‖∞ ≤ 𝐵 + ℓ𝛽

and ‖z‖∞ ≤ 𝐵 + ℓ𝛽.

Figure 5: Identification Protocol ΠLWE based on LWE.

Consider the following identification protocol:

∙ The public key is (A, Y) where A← Z𝑛×𝑚
𝑞 , and Y = SA+E ∈ Zℓ×𝑚

𝑞 where S← 𝜒ℓ×𝑛 and E← 𝜒ℓ×𝑚.
The secret key is S ∈ Zℓ×𝑛

𝑞 .

∙ The prover samples t← [−𝐵, 𝐵]1×𝑛, e← 𝜒1×𝑚, and sends 𝛼 = tA + e ∈ Z1×𝑚
𝑞 to the verifier.

∙ The verifier sends a challenge c← {0, 1}1×ℓ as the second message.

∙ The prover computes z = t + cS ∈ Z1×𝑛
𝑞 , and sends it to the verifier.

∙ The verifier accepts if ‖zA−𝛼− cY‖∞ ≤ (ℓ + 1)𝛽 and ‖z‖∞ ≤ 𝐵 + ℓ𝛽.

Claim 5.16 (Completeness). The identification protocol ΠLWE is complete.

Proof. We have zA−𝛼−cY = −e−cE, where ‖e‖∞ ≤ 𝐵 and ‖E‖∞ ≤ 𝛽, and therefore ‖zA−𝛼−cY‖∞ ≤
𝐵 + ℓ𝛽. Similarly, ‖t‖∞ ≤ 𝐵 and ‖S‖∞ ≤ 𝛽, so that ‖z‖∞ ≤ 𝐵 + ℓ𝛽.

Next, we show that there are no (even inefficient) cheating strategies succeeding over random instances
(A, Y).

Claim 5.17 (Average-Case Soundness). Suppose that 𝑚 ≥ 2𝑛 log 𝑞 and 𝐵 + ℓ𝛽 ≤ 𝑞/2.
Then identification protocol ΠLWE is average-case statistically sound. Namely, for all (potentially ineffi-

cient) cheating provers 𝑃 *:

Pr
A←Z𝑛×𝑚

𝑞 ,Y←Zℓ×𝑚
𝑞

[(𝑃 *(A, Y)↔ 𝑉 (A, Y)) = Accept] ≤ negl(𝑛),

where 𝑃 *(A, Y)↔ 𝑉 (A, Y) denotes the output of the verifier after interacting with 𝑃 *.

24

Proof. By the leftover hash lemma, the distribution (Y, cY) is statistically close to (Y, U) where U ←
Z1×𝑚

𝑞 . Let 𝛼* = 𝛼*(A, Y) be the first message sent by 𝑃 *. Then (A, Y, 𝛼*, cY) is statistically close to
(A, Y, 𝛼*, U).

Fix 𝛼* ∈ Z1×𝑚
𝑞 . For a fixed z ∈ Z1×𝑚

𝑞 , the probability over u← Z1×𝑚
𝑞 that ‖zA−𝛼* − u‖∞ ≤ 𝐵 + ℓ𝛽

is at most ((ℓ + 1)𝛽)𝑚/𝑞𝑚.
By union bound over z, the probability over u← Z1×𝑚

𝑞 that there exists z ∈ Z1×𝑛
𝑞 such that ‖zA−𝛼*−

u‖∞ ≤ 𝐵 + ℓ𝛽 is at most
𝑞𝑛 · (𝐵 + ℓ𝛽)𝑚/𝑞𝑚 ≤ 𝑞𝑛/2𝑚 ≤ 𝑞−𝑛

which is negligible, so that with overwhelming probability no prover message in step 3 can make the verifier
accept.

Claim 5.18 (Honest-Verifier Zero-Knowledge). Suppose (ℓ𝛽)/𝐵 ≤ negl(𝜆). The identification protocol ΠLWE

is statistically honest-verifier zero-knowledge.

Proof. We define our honest-verifier simulator 𝒮 as follows. On input (A, Y, c), it samples z← [−𝐵, 𝐵]1×𝑛.
It samples e← [−𝐵, 𝐵]1×𝑚, sets 𝛼 = zA− cY + e, c = G−1(𝛼), and outputs (𝛼, c, z).

By Lemma 5.1, the distribution of z is statistically close to the one produced by real proofs. Then, for
accepting proofs, 𝛼 is distributed as 𝛼 = tA + e = zA − cY + cE + e where Y = SA + E, E ← 𝜒ℓ×𝑚,
and e ← [−𝐵, 𝐵]1×𝑚. But by Lemma 5.1, for all c ∈ {0, 1}1×ℓ, this distribution is statistically close to
𝛼 = zA− cY + e where e← [−𝐵, 𝐵]1×𝑚: this is the distribution output by the simulator 𝒮.

Next, we show that instantiation the Fiat-Shamir heuristic on ΠLWE with the hash function G−1(·)
preserves (average-case) soundness. As for the SIS version, we additionally rely on a common random string
to argue zero-knowledge.

crs = 𝜌← Z1×𝑚
𝑞

𝑃 (A, Y = SA + E, S) 𝑉 (A, SA + E)
t← [−𝐵, 𝐵]1×𝑚

e← [−𝐵, 𝐵]1×𝑛

𝛼 := tA + e
c = (G−1(𝛼𝑇 + 𝜌𝑇))𝑇

z = t + cS

(𝛼, z)
Compute c = G−1(𝛼𝑇 + 𝜌𝑇)
Accept if ‖zA− 𝛼− cY‖∞ ≤ 𝐵 + ℓ𝛽

and ‖z‖∞ ≤ 𝐵 + ℓ𝛽

and (c, z) ̸= (0, 0).

Figure 6: Non-interactive Identification Protocol (ΠLWE)FS,G−1 based on LWE.

Notice that now 𝛼, 𝜌 ∈ Z1×𝑚
𝑞 are row vectors. Therefore, (G−1(𝛼𝑇 + 𝜌𝑇)) ∈ Zℓ

𝑞 is a column vector and
c = (G−1(𝛼𝑇 +𝜌𝑇))𝑇 ∈ Z1×ℓ

𝑞 is in turn a row vector. In other words, in our syntax, G−1(·) expands column
vectors to column vectors (instead of row vectors to row vectors), which introduces the transposes in the
hash function G−1(·).

Claim 5.19 (Completeness). The protocol (ΠLWE)FS,G−1 is complete.

Proof. This follows by completeness of the interactive variant ΠLWE.

Claim 5.20 (Average-case soundness). Under the 𝑖𝑆𝐼𝑆𝑚, 𝑛+ℓ+𝑚, 𝑞, 𝐵+ℓ𝛽 assumption, we have that for all
efficient cheating prover 𝑃 *:

Pr
crs←Z1×𝑚

𝑞 ,A←Z𝑛×𝑚
𝑞 ,Y←Zℓ×𝑚

𝑞

[(𝑃 *(crs, A, Y)↔ 𝑉 (crs, A, Y)) = Accept] ≤ negl(𝑛).

In particular, (ΠLWE)FS,G−1 is a one-time secure identification scheme.

25

Proof. Accepting proofs (𝛼, c, z) for (ΠLWE)FS,G−1 satisfy ‖zA−𝛼− cY‖∞ ≤ 𝐵 + ℓ𝛽 where ‖z‖∞ ≤ 𝐵 + ℓ.
This can be rewritten as

[z ‖ − c ‖ zA−𝛼− cY]

⎡⎣ A
Y + G𝑇

−I

⎤⎦ = 𝜌,

where c = (G−1(𝛼𝑇 + 𝜌𝑇))𝑇 .
Let 𝑃 *(A, Y) be a cheating prover breaking average-case soundness of ΠLWE over the randomness of

(crs, A, Y) ← Z1×𝑚
𝑞 × Z𝑛×𝑚

𝑞 × Zℓ×𝑚
𝑞 . Let (B, 𝜏 𝑇) where B = [B1‖B2‖B3] ← Z𝑚×(𝑛+ℓ+𝑚)

𝑞 and 𝜏 ← Z1×𝑚
𝑞

be an inhomogeneous SIS instance.
We define a reduction as follows. If B3 is not invertible mod 𝑞, the reduction aborts. Otherwise, it

computes C = −B−1
3 B = [C1‖C2‖ − I] where C1 ∈ Z𝑚×𝑛

𝑞 , C2 ∈ Z𝑚×ℓ
𝑞 , and computes 𝜌𝑇 = −B−1

3 𝜏 𝑇 so
that −B3𝜌𝑇 = 𝜏 𝑇 .

Then, any accepting transcript (𝛼, c, z) produced by 𝑃 * on input (𝜌, C𝑇
1 , (C2 − G𝑇)𝑇) (which is dis-

tributed uniformly as B−1
3 is invertible) gives r =

⎡⎣ z𝑇

−c𝑇(︀
zA−𝛼− cY

)︀𝑇

⎤⎦ ∈ Z𝑛+ℓ+𝑚
𝑞 which is non-zero, as

(z, c) ̸= (0, 0) such that ‖r‖∞ ≤ 𝐵 + ℓ𝛽. Furthermore, we have Cr = [C1‖C2‖ − I] · r = 𝜌𝑇 so that
Br = −B3Cr = −B3𝜌𝑇 = 𝜏 𝑇 , and therefore r is an inhomogeneous SIS solution for (B, 𝜏 𝑇).

As for the protocols based on SIS, the randomness of the CRS 𝜌 is only used for zero-knowledge, and
could be set to 0 if we only cared about soundness. So as for the SIS case, using the single, deterministic Fiat-
Shamir hash function G−1(·) preserves soundness of ΠLWE; it is only for zero-knowledge that we consider
a (slightly modified) family of hash functions (G−1

𝜌)𝑇 (𝛼) = (G−1(𝛼𝑇 + 𝜌𝑇))𝑇 . Note that, as in the SIS
version, we directly argue zero-knowledge of the non-interactive protocol instead of relying on the honest-
verifier zero-knowledge property of the interactive version.

Claim 5.21 (Zero-Knowledge). Suppose ℓ𝛽/𝐵 ≤ negl(𝑛), let 𝛿 be the uniform distribution over [−𝐵, 𝐵]𝑚.
Under the 𝐿𝑊𝐸𝑛,𝑚,𝑞,𝛿 assumption,67 (ΠLWE)FS,G−1 is (single-theorem) computationally zero-knowledge.

We define our simulator S as follows. On input (A, Y), it samples u ← Z𝑚
𝑞 , and sets c = (G−1(u))𝑇 .

It samples z and e uniformly from [−𝐵, 𝐵]𝑚, and sets 𝜌 = [z‖ − c‖e]

⎡⎣ A
Y + G𝑇

−I

⎤⎦. It sets 𝛼 = u𝑇 − 𝜌, and

outputs (crs = 𝜌, (𝛼, c, z)).
First, u is statistically close to uniform over Z𝑚

𝑞 over the randomness of 𝜌 alone. Then, by Lemma 5.1, z
is distributed statistically close to z+cS even conditioned on c and u. Similarly, e is distributed statistically
close to zA−𝛼− cY = e + cE even conditioned on c and u. Now 𝜌 is entirely determined as

𝜌 = [z ‖ − c ‖ zA−𝛼− cY]

⎡⎣ A
Y + G𝑇

−I

⎤⎦ .

By the 𝐿𝑊𝐸𝑛,𝑚,𝑞,𝜒 assumption, 𝜌 is computationally indistinguishable from uniform. This in turn de-
termines 𝛼 = u𝑇 − 𝜌, and therefore the distribution output by 𝒮 is computationally indistinguishable to
honestly generated proofs.

Parameters. To argue security of ΠLWE and (ΠLWE)FS,G−1 , we used the following properties:

∙ G ∈ Z𝑚×ℓ
𝑞 is a gadget matrix. It suffices to set ℓ = 𝑚⌈log 𝑞⌉ to satisfy this property when instantiating

G as the “powers-of-two” matrix. We stress that we could technically use any gadget matrix satisfying
the requirements of Definition 5.9, albeit with slightly different parameters.

6Recall that this refers to the HNF form of LWE, where the secret is also taken from the distribution 𝛿.
7This assumption is in particular implied by 𝐿𝑊 𝐸𝑛,𝑚,𝑞,𝜒 for any 𝛽-bounded distribution 𝜒 such that 𝛽/𝐵 ≤ negl(𝑛).

26

∙ 𝐵 + ℓ𝛽 ≤ 𝑞/2 and 𝑚 ≥ 2𝑛 log 𝑞 to argue average-case soundness of ΠLWE;

∙ ℓ𝛽/𝐵 ≤ negl(𝑛) to argue zero-knowledge in Claims 5.18 and 5.21;

∙ 𝐿𝑊𝐸𝑛,𝑚,𝑞,[−𝐵,𝐵]𝑚 holds to argue zero-knowledge of (ΠLWE)FS,G−1 in Claim 5.21. Note that this holds
assuming 𝐿𝑊𝐸𝑛,𝑚,𝑞,𝜒 for any 𝛽-bounded distribution 𝜒 such that 𝛽/𝐵 ≤ negl(𝑛);

∙ 𝑆𝐼𝑆𝑛,𝑚+ℓ,𝑞,𝐵+ℓ holds, to argue soundness of (ΠSIS)FS,G−1 in Claim 5.14;

∙ 𝐿𝑊𝐸𝑛,𝑚,𝑞,𝜒 to argue that the base language is hard.

Overall, we can set 𝑚 = 2𝑛⌈log 𝑞⌉, ℓ = 𝑚⌈log 𝑞⌉, 𝑞 = 2𝑛𝜖 for any 0 < 𝜖 < 1, any 𝐵 = 𝑛𝜔(1) < 𝑞/4, and 𝜒
a 𝛽-bounded distribution such that 𝛽/𝐵 ≤ negl(𝑛).

Then our scheme is secure assuming both the 𝐿𝑊𝐸𝑛,𝑚,𝑞,𝜒 and 𝑆𝐼𝑆𝑛,𝑚+ℓ,𝑞,𝐵+ℓ assumptions (and where
statistical zero-knowledge holds with statistical distance ≈ ℓ𝛽/𝐵 + 𝑞−𝑛/2), and is therefore under the (quan-
tum) hardness of 𝐺𝑎𝑝𝐶𝑉 𝑃 and 𝑆𝐼𝑉 𝑃 with sub-exponential approximation factors.

Attacks on Worst-Case Soundness. Our claims for soundness for ΠLWE (Claim 5.17) and (ΠLWE)FS,G−1

(Claim 5.20) hold over random instances. One can naturally ask if they satisfy a standard notion of worst-
case soundness, which require that no cheating prover should convince a verifier on any false instance. Here,
by false instance, we mean any instance (A, Y) such that there does not exist E (nor S) with norm at most
𝛽 such that Y = SA + E.

We show here that they do not satisfy worst-case soundness as is, by showing an attack on particular
instances ΠLWE that breaks soundness with probability 1/2, and a full attack on particular instances of
(ΠLWE)FS,G−1 .

Pick A ∈ Z𝑛×𝑚
𝑞 uniformly at random. Suppose the first ℓ − 1 rows of Y are LWE samples, that is, are

set as Y𝑖 = S𝑖A + E𝑖 for some short S𝑖, E𝑖, and suppose the last row of Y is (0, . . . , 0, 𝑞/2). Then, with
high probability over the randomness of A, (0, . . . , 0, 𝑞/2) cannot be written as sA + e for any short e, and
therefore defines a false instance.8

Then, if c is set such that cℓ = 0, then a cheating prover can convince the verifier using his knowledge
of S𝑖, by running the honest prover (which would not use Sℓ in that case). This gives a cheating prover
strategy with success probability (negligibly close to) 1/2.

The same strategy also applies for (ΠLWE)FS,G−1 , but now the cheating prover can sample 𝛼 ̸= 0 honestly
until the last coordinate of G−1(𝛼) is zero, in which case he succeeds with probability close to 1 (notice that
under the LWE assumption, G−1(𝛼) is distributed computationally close to G−1(u) where u← Z1×𝑚

𝑞).

5.4 More Efficient Protocols via Rejection Sampling
One drawback of the previous identification protocols is that zero-knowledge is argued using noise flooding.
This requires the modulus 𝑞 to be super-polynomially larger than the secret (namely, R in the SIS versions
and S in the LWE ones), and in particular 𝑞 has to be super-polynomial. This leads to quite inefficient
schemes in practice.

Here, we describe variants of ΠSIS (Fig. 3) and (ΠSIS)FS,G−1 (Fig. 4) that are compatible with a polynomial
modulus 𝑞, using the rejection sampling technique of [Lyu09, Lyu12, LW15]. In a nutshell, instead of flooding
the dependence of the response z in the secret, the prover now uses a much smaller masking term, but
aborts the protocol with some probability. This will ensure that the distribution of the resulting response is
independent of his secret.

Unfortunately, this results in downgrading security from zero-knowledge to witness indistinguishability:
this is essentially because sampling from this secret-independent distribution is hard without any secrets.
While this is meaningful in the SIS regime, it is vacuous for LWE languages as the witness there is unique
(with overwhelming probability over A). We therefore focus on the SIS variants in this section.

8This can be seen by a union bound on the 𝑞𝑛 balls centered on points zA, e.g. [GPV08, Lemma 5.3].

27

Our interactive identification scheme only features weak properties: the prover has some chance of abort-
ing the execution of the protocol, compromising both completeness and witness-indistinguishability. Instead,
we obtain our non-interactive variant using the Fiat-Shamir with aborts technique of [Lyu09], where the
prover only sends a complete execution over to the verifier.

Interestingly this unveils a connection between lattice trapdoors and identification schemes. Indeed,
the transcript of our non-interactive protocol (ΠSIS−Rej)FS,G−1 (Fig. 8) exactly matches the output of the
trapdoor presampling algorithm of [LW15] where the target is 0. We develop on that connection at the end
of the section.

Let 𝑛, 𝑚, 𝑞, and ℓ, 𝐵 be integers. Let 𝑃t and 𝑃z be two probability distributions over Z𝑚
𝑞 , and let 𝑀 > 0

be a real. We first present an interactive identification protocol based on rejection sampling.

𝑃 (A, Y = AR) 𝑉 (A, Y = AR)
t← 𝑃t,
𝛼 := At

𝛼

c c← {0, 1}ℓ

With probability min
(︀

𝑃𝑧(z)
𝑀·𝑃𝑡(z−Rc) , 1

)︀
z := t + Rc

Otherwise
z := ⊥

z Accept if Az = 𝛼 + Yc
and ‖z‖∞ ≤ 𝐵 + ℓ.

Figure 7: Identification Protocol ΠSIS−Rej based on SIS.

Completeness holds whenever the prover sends z ̸= ⊥, and relaxed special soundness follows from a proof
nearly identical to Claim 5.11.

The advantages of using rejection sampling comes at the cost of downgrading zero-knowledge to witness-
indistinguishability. The proof of the following claim is essentially in [Lyu09, Section 3.1] for the following
distributions.

Claim 5.22 (Witness Indistinguishability). Suppose 𝑃t is a 𝑚-dimensional discrete gaussian with parameter
𝜎, and let 𝐼 = [−(𝑚𝑛𝜎 − ℓ), 𝑚𝑛𝜎 − ℓ]𝑚. Set 𝑀 = 1/𝑃t(𝐼) and define 𝑃z as 𝑃z(z) = 𝑃t(z) if z ∈ 𝐼 and 0
otherwise. Then, conditioned on z being sent in the third round, ΠSIS−Rej is witness-indistinguishable.

The protocol ΠSIS−Rej has quite a few drawbacks: it only achieves weak completeness and weak witness-
indistinguishability. A natural idea to boost completeness would be to repeat the protocol until some z ̸= ⊥
is sent. However, this is in general breaks witness indistinguishability: even though the third message
z = t + Rc itself does not reveal which secret R is used, the probability of sending z ̸= ⊥ does depend R. In
other words, seeing aborted transcripts could break security.

The key idea, introduced by [Lyu09], consists in applying the Fiat-Shamir heuristic regardless of the
weak properties of the base protocol. Now, for the resulting non-interactive protocol, the prover can keep
producing transcripts in his head until some outputs some z ̸= ⊥: this allows us to obtain (statistical)
completeness. Furthermore, the fact the prover only sends the one accepting transcript allows us to argue
witness indistinguishability. The resulting protocol is therefore not directly the result of the Fiat-Shamir
heuristic itself, but of a Fiat-Shamir with aborts.

We now define our protocol (ΠSIS−Rej)FS,G−1 in Fig. 8.
Completeness and average-case soundness for (ΠSIS−Rej)FS,G−1 follow from arguments nearly identical

to the ones of Section 5.2, where we implicitly set 𝜌 = 0: we do not need any common random string as the
rejection sampling will ensure witness indistinguishability.

Claim 5.23 (Completeness). Suppose 𝑃t is a 𝐵-bounded distribution for some 𝐵. Then the expected running
time of the prover is at most 2𝑀 , and the protocol (ΠSIS−Rej)FS,G−1 is complete.

28

𝑃 (A, Y = AR) 𝑉 (A, Y = AR)
t← 𝑃t,
𝛼 := At
c = G−1(𝛼)

With probability min
(︀

𝑃𝑧(z)
𝑀·𝑃𝑡(z−Rc) 1

)︀
:

z := t + Rc
Otherwise Repeat from the beginning.

(𝛼, z)
Compute c = G−1(𝛼)
Accept if Az = 𝛼 + Yc
and ‖z‖∞ ≤ 𝐵 + ℓ.

Figure 8: Identification Protocol (ΠSIS−Rej)FS,G−1 based on SIS.

Claim 5.24 (Average-case soundness). Suppose the distribution 𝑃z is 𝐵-bounded for some 𝐵. Then, under
the 𝑆𝐼𝑆𝑛,𝑚+ℓ,𝑞,𝐵+ℓ assumption, we have that for all efficient cheating prover 𝑃 * for (ΠSIS−Rej)FS,G−1 :

Pr
A←Z𝑛×𝑚

𝑞 ,Y←Z𝑛×ℓ
𝑞

[(𝑃 *(A, Y)↔ 𝑉 (A, Y)) = Accept] ≤ negl(𝑛).

In particular, (ΠSIS)FS,G−1 is a one-time secure identification scheme.

It remains to argue witness indistinguishability. This proof of the following claim is identical to the one
of [LW15, Section 3].

Claim 5.25 (Witness-Indistinguishability). Suppose that the distributions At and Az are statistically close
to uniform mod 𝑞, where t← 𝑃t and z← 𝑃z.9

Suppose furthermore that, over the randomness of 𝛼 ← Z𝑛
𝑞 , c = G−1(𝛼), and z ← 𝑃z conditioned on

Az = u + Yc:
Pr

[︂
𝑃z(z)

𝑃t(z−Rc) ≤𝑀

]︂
≥ 1− negl(𝑛).

Then the protocol (ΠSIS−Rej)FS,G−1 is statistically witness-indistinguishable.

Proof. Consider the following (inefficient) simulator 𝒮. It first generates 𝛼 ← Z𝑛
𝑞 , and sets c = G−1(𝛼).

It then samples z ← 𝑃z conditioned on Az = u + Yc. Notice that this last step is inefficient. Finally, the
simulator outputs (𝛼, c, z).

The proof of [LW15, Theoreom 3.1] exactly shows that the resulting distribution is statistically indistin-
guishable from a honestly generated transcript (setting their target t as 0).

Instantiations and parameters. As in Section 5.2, we can use the “powers-of-two” gadget matrix G ∈
Z𝑛×ℓ

𝑞 , which sets ℓ = 𝑛⌈log 𝑞⌉.. We stress that we could technically use any gadget matrix satisfying the
requirements of Definition 5.9, albeit with slightly different parameters.

To ensure the first hypothesis of Claim 5.25, we can set 𝑚 = 𝑛⌈log 𝑞⌉ as well (and require that the
distributions 𝑃t and 𝑃z have enough min-entropy to apply the leftover hash lemma).

The main parameters left to instantiate are the distributions 𝑃t and 𝑃z. [LW15] proposes two instantia-
tions that can directly be used to instantiate our theorems.

One is to set 𝑃t to be the uniform distribution over the cube [−(𝑚+1)ℓ, (𝑚+1)ℓ)]𝑚, and 𝑃z as the uniform
distribution over [−𝑚ℓ, 𝑚ℓ]𝑚. This sets 𝑀 ≈ 𝑒, and therefore the prover will run the loop 1/𝑀 = 1/𝑒 times
in expectation. This leads to a very simple “rejection sampling” step: the prover sends z ̸= ⊥ if and only if
‖𝑏𝑧‖∞ ≤ 𝑚ℓ. This makes the proof rely on the hardness of 𝑆𝐼𝑆𝑛,𝑚+ℓ,𝑞,(𝑚+1)ℓ.

Another possible choice is to set 𝑃t and 𝑃z as discrete gaussians over with the same parameter 𝜎 =
Θ(ℓ
√

𝜆), where 𝜆 denotes the security parameter. One can set 𝑀 = 𝑒1+1/𝜆, which makes the prover run the
loop < 3.5 times in expectation. This makes the proof rely on the hardness of 𝑆𝐼𝑆𝑛,𝑚+ℓ,𝑞,Θ(ℓ

√
𝜆).

In all cases security is implied by the (quantum) hardness of 𝐺𝑎𝑝𝐶𝑉 𝑃 and 𝑆𝐼𝑉 𝑃 with sub-exponential
approximation factors.

9By the leftover hash lemma, this holds if A← Z𝑛×𝑚
𝑞 and 𝑃t, 𝑃z have sufficiently high min-entropy.

29

Connection with the Trapdoor Preimage Sampling Algorithm of [LW15]. It turns out that the
transcript of the protocol (ΠSIS−Rej)FS,G−1 (Fig. 8) matches the output of the trapdoor preimage sampling
algorithm of [LW15]. In their context, the goal is to sample a short r ∈ Z𝑚+ℓ

𝑞 such that

[A ‖G + AR] · r = 0,

such that the distribution of r is independent of the trapdoor R. One could already do so using the
techniques of [MP12]. The main observation of [LW15] is that there exists a much simpler preimage sampling
algorithm which only uses rejection sampling, instead of relying both on discrete gaussian sampling and lattice
convolution theorems. It turns out that their algorithm is exactly the prover algorithm in (ΠSIS−Rej)FS,G−1 ,

with the syntactical difference of outputting r =
[︂

z
−c

]︂
instead of (𝛼, c, z) (note that 𝛼 can be recovered

as 𝛼 = Gc). In other words, the prover of (ΠSIS−Rej)FS,G−1 samples a short preimage of 0 under [A‖G +
AR]: this is easy to do using his knowledge of R, and witness indistinguishability ensures that the output
distribution is independent of R.

Using a common random string, in a similar way as (ΠSIS)FS,G−1 (Fig. 4), namely, setting it as some
arbitrary 𝜌← Z𝑛

𝑞 and setting the challenge as c = G−1(𝛼 + 𝜌), the output transcript now satisfies:

[A ‖G + Y]
[︂

z
−c

]︂
= 𝜌.

This exactly recovers the preimage sampling algorithm of [LW15] for abitrary targets 𝜌. Notice that the
randomness of 𝜌 was used in (ΠSIS)FS,G−1 to argue zero-knowledge. Here, rejection sampling allows to argue
witness indistinguishability, and setting 𝜌 to any arbitrary value does not affect any of the properties of
(ΠSIS−Rej)FS,G−1 , while completeness ensures that the equation above holds for accepting transcripts.

6 Negative Results for Fiat-Shamir with Non-Cryptographic Hash
Functions

In this section, we give evidence that in contrast to our positive results (Section 4, Section 5), Fiat-Shamir
for certain protocols necessarily requires a cryptographic hash function. Our prototypical example of such
an interactive protocol is Blum’s protocol for graph Hamiltonicity [Blu86], but our results extend to a broad
class of 3-message HVZK argument systems.

Our results have two different forms:

∙ We show that even if one is willing to use an oracle (such as a random oracle or a generic group oracle)
to instantiate the 3-message protocol (such as Blum), there is an unconditional break of soundness in
the resulting Fiat-Shamir protocol for any hash function ℎ that does not make use of the oracle. This
stands in contrast to our results in Section 4, where idealized (GGM) assumptions about 3-message
protocols did suffice for the soundness of Fiat-Shamir with an oracle independent hash function.

∙ We describe a concrete security property (which we call “mix-and-match resistance” (Definition 6.8))
such that for any protocol Π in a large class 𝒞, any hash function (family) ℋ that instantiates Fiat-
Shamir for Π must possess this security property. This result also holds relative to natural oracle
distributions 𝒪, which further establishes that the “mix-and-match resistance” property of ℋ is not
“borrowing hardness” from the protocol. This stands in contrast to our results in Section 5, where a
simple and non-cryptographic hash function was provably sufficient to instantiate Fiat-Shamir in the
standard model.

The two kinds of results are closely related. As described in the technical overview (Section 2), our
attacks in the random oracle model (for example) make only a polynomial number of queries to the oracle

30

but require solving some oracle-independent problem in unbounded time. Our concrete security property is
then the claim that this oracle-independent problem cannot be solved in polynomial time.

Of course, for this methodology to work, we have to ensure that the oracle-independent problem above
actually has an information-theoretic solution. We begin (Section 6.1) with a technical lemma that will
guarantee such an information-theoretic solution. We then apply this lemma to prove impossibility results
for instantiating Fiat-Shamir for the Blum protocol (Section 6.2) and then state and prove our two general
negative results (Section 6.3 and Section 6.4).

6.1 Main Information-Theoretic Lemma
Let 𝐴(1), . . . , 𝐴(𝑡) be arbitrary 𝑞 × 𝑤 binary matrices, and let 𝑓 : {0, 1}𝑤𝑡 → Σ𝑡 be an arbitrary function.
Finally, let 𝑦(1), . . . , 𝑦(𝑡) ← Σ𝑞 be i.i.d. uniformly random elements of Σ𝑞.

For any vector 𝑣 ∈ [𝑞]𝑡, fix the notation 𝐴[𝑣] = (𝐴(1)
𝑣1 , . . . , 𝐴

(𝑡)
𝑣𝑡) and 𝑦[𝑣] = (𝑦(1)

𝑣1 , . . . , 𝑦
(𝑡)
𝑣𝑡).

Lemma 6.1. If 𝑞 ≥ 𝑡|Σ|𝜆, then with 1−𝑂
(︀ 1

𝜆𝑡

)︀
probability, there exists a vector 𝑣 ∈ [𝑞]𝑡 such that 𝑓(𝐴[𝑣]) =

𝑦[𝑣].

Proof. For every vector 𝑣, define the random variable 𝑋𝑣 = 𝜒
(︁

𝑓(𝐴[𝑣]) = 𝑦[𝑣]
)︁

(i.e., the indicator variable for
𝑣 being a solution to our problem). Define 𝑋 =

∑︀
𝑣 𝑋𝑣. We want to show that 𝑋 > 0 with high probability.

To do this, we apply the second moment method (Chebyshev’s inequality). We first compute

E [𝑋] =
∑︁

𝑣∈[𝑞]𝑡

E[𝑋𝑣]

=
∑︁

𝑣∈[𝑞]𝑡

Pr
[︁
𝑓(𝐴[𝑣]) = 𝑦[𝑣]

]︁
=

∑︁
𝑣∈[𝑞]𝑡

|Σ|−𝑡 =
(︂

𝑞

|Σ|

)︂𝑡

.

The third equality holds because for any vector 𝑣, the random variable 𝑦[𝑣] is uniform over Σ𝑡. We next
compute the second moment of 𝑋, as follows

E
[︀
𝑋2]︀

=
∑︁

𝑣,𝑤∈[𝑞]𝑡

E[𝑋𝑣𝑋𝑤]

=
𝑡∑︁

𝑑=0

∑︁
𝑣,𝑤∈[𝑞]𝑡

𝛿H(𝑣,𝑤)=𝑑

E[𝑋𝑣𝑋𝑤],

where 𝛿H(𝑣, 𝑤) denotes Σ-Hamming distance (the number of symbols on which 𝑣 and 𝑤 disagree). We claim
that for every 𝑣, 𝑤 such that 𝛿H(𝑣, 𝑤) = 𝑑, E[𝑋𝑣𝑋𝑤] ≤ 2−𝑡−𝑑. This can be seen by the calculation

E [𝑋𝑣𝑋𝑤] = Pr
[︁
𝑓(𝐴[𝑣]) = 𝑦[𝑣] AND 𝑓(𝐴[𝑤]) = 𝑦[𝑤]

]︁
= |Σ|−𝑡 Pr

[︁
𝑓(𝐴[𝑤]) = 𝑦[𝑤] | 𝑓(𝐴[𝑣]) = 𝑦[𝑣]

]︁
≤ |Σ|−𝑡−𝑑,

where the last inequality follows from the fact that 𝑦[𝑤] has 𝑑 log |Σ|-bits of min-entropy given 𝑦[𝑣].
Therefore, we complete the calculation

31

E[𝑋2] =
𝑡∑︁

𝑑=0

∑︁
𝑣,𝑤∈[𝑞]𝑡

𝛿H(𝑣,𝑤)=𝑑

E[𝑋𝑣𝑋𝑤]

≤
𝑡∑︁

𝑑=0

∑︁
𝑣,𝑤∈[𝑞]𝑡

𝛿H(𝑣,𝑤)=𝑑

|Σ|−𝑡−𝑑

≤
𝑡∑︁

𝑑=0

(︂
𝑡

𝑑

)︂
𝑞𝑡+𝑑|Σ|−𝑡−𝑑

=
(︂

𝑞

|Σ|

)︂2𝑡 𝑡∑︁
𝑑=0

(︂
𝑡

𝑑

)︂ (︂
|Σ|
𝑞

)︂𝑡−𝑑

.

Thus, we can bound

Var[𝑋] = E[𝑋2]−E[𝑋]2

≤
(︂

𝑞

|Σ|

)︂2𝑡 𝑡−1∑︁
𝑑=0

(︂
𝑡

𝑑

)︂ (︂
|Σ|
𝑞

)︂𝑡−𝑑

=
(︂

𝑞

|Σ|

)︂2𝑡−1 (︂
1 + |Σ|

𝑞

)︂𝑡−1
.

We conclude that when 𝑞 ≥ 𝑡|Σ|𝜆,
Var[𝑋]
E[𝑋]2 = 𝑂

(︂
1
𝜆𝑡

)︂
,

which implies that Pr[𝑋 > 0] ≥ 1−𝑂
(︀ 1

𝜆𝑡

)︀
by Chebyshev’s inequality.

6.2 Negative Result for Blum in the Random Oracle Model
In this section, we give a simple example of a negative result that we can prove using our methods. In
particular, we consider an idealized variant of Blum’s Hamiltonicity protocol [Blu86] in which the commit-
ment scheme is instantiated with a random oracle. We show that even for this idealized variant of the Blum
protocol, a (successful) Fiat-Shamir hash function 𝐻 for this protocol necessarily satisfies a cryptographic
security property.

𝑃 (𝐺, 𝜎) 𝑉 (𝐺)
𝜋 ← 𝑆𝑛, 𝐺′ = 𝜋(𝐺)
𝛼← Com(𝐺′)

𝛼

𝛽 𝛽 ← {0, 1}

If 𝛽 = 0, decommit to 𝐻 and reveal 𝜋.
If 𝛽 = 1, reveal 𝜋 ∘ 𝜎 and decommit to the edges in 𝐺′

corresponding to the cycle 𝜋 ∘ 𝜎.

𝛾
Accept if all decommitments are correct and:
either 𝛽 = 0 and 𝐺′ = 𝜋𝐺

or 𝛽 = 1 and all edge decommitments are 1.

Figure 9: The Zero Knowledge Proof System ΠBlum for Graph Hamiltonicity.

The Blum protocol Π is described in Fig. 9. For this example, we instantiate Com(𝑏; 𝑟) = 𝒪(𝑥, 𝑟) as an
idealized bitwise commitment scheme in the random oracle model. Π is repeated 𝑡 times in parallel to obtain

32

soundness error 2−𝑡. We now give a polynomial-query attack on Π𝑡
FS,𝐻 for any hash function 𝐻 that does

not invoke the oracle10 𝒪.
Let 𝐻 denote a candidate Fiat-Shamir hash function for the above protocol ΠBlum when iterated 𝑡 times

in parallel. Consider the following attack on the Fiat-Shamir protocol Π𝑡
FS,𝐻 :

1. For 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ ℓ ≤ 𝑞, sample a random bit 𝑦
(𝑖)
ℓ ← {0, 1} and sample message 𝛼

(𝑖)
ℓ : if 𝑦

(𝑖)
ℓ = 0,

sample 𝛼
(𝑖)
ℓ as in the honest protocol, while if 𝑦

(𝑖)
ℓ = 1, and sample 𝛼

(ℓ)
𝑖 as a commitment to a cycle

graph.

2. Find 𝑣 ∈ [𝑞]𝑡 such that 𝐻(𝛼[𝑣]) = 𝑦[𝑣].

3. Output 𝛼[𝑣] as well as the necessary decommitments to 𝛼[𝑣] (either the entire graph or just the edges
in the cycle).

By Lemma 6.1, as long as 𝑞 = 𝜔(𝑡), Step (2) has a solution with high probability over (𝛼, 𝑦) (because the
joint distribution (𝛼, 𝑦) is statistically close to uniform). Therefore, this constitutes a poly-query attack on
the protocol Π𝑡

FS,𝐻 in the random oracle model. Moreover, if the computational problem in Step (2) (which
does not depend on 𝒪) can be solved efficiently, then there is a poly-time attack on Π𝑡

FS,𝐻 .

6.3 A General Polynomial-Query Attack
We now generalize our negative result for ΠBlum to a broader class of interactive arguments. Namely, we
consider a class of 3-message public-coin honest-verifier zero-knowledge arguments relative to an arbitrary
oracle (or efficiently simulatable oracle distribution11) 𝒪 and give polynomial-query attacks on resulting
Fiat-Shamir protocols for any (oracle-independent) hash function ℎ.

Definition 6.2 (HVZK Arguments relative to an Oracle). An interactive argument system Π𝒪(·) = (𝑃𝒪(·), 𝑉 𝒪(·))
for a language 𝐿 (with witness relation 𝑅𝐿) built relative to an oracle distribution 𝒪 is an HVZK argument
system relative to 𝒪 if it satisfies the following properties:

∙ Completeness: For any (𝑥, 𝑤) ∈ 𝑅𝐿, at the end of an interaction ⟨𝑃𝒪(·)(𝑥, 𝑤), 𝑉 𝒪(·)(𝑥)⟩, the verifier
outputs 1 with probability 1− negl(𝜆).

∙ Soundness error 𝜖: For any 𝑥 ̸∈ 𝐿 and any efficient 𝑃 *𝒪(·), 𝑉 𝒪(·)(𝑥) (in an interaction with 𝑃 *)
outputs 1 with probability at most 𝜖.

∙ Honest-Verifier Zero Knowledge: There exists a polynomial-time simulator Sim𝒪(·) such that for
every (𝑥, 𝑤) ∈ 𝑅𝐿, the following indistinguishability holds:

Sim𝒪(·)(𝑥) ≈ view𝑉 ⟨𝑃𝒪(·)(𝑥, 𝑤), 𝑉 𝒪(·)(𝑥; 𝑟)⟩.

That is, the simulator outputs a verifier view that is indistinguishable from the honest verifier’s view
in an interaction with an honest prover.

We emphasize that the Simulator is only given query access to 𝒪; it may not program the oracle.
Two Variants: We say that Π𝒪(·) satisfies HVZK against query-bounded adversaries if simulation

indistinguishability holds with respect to all polynomial-query distinguishers. We say that Π𝒪(·) satisfies
HVZK against polynomial-time adversaries if the indistinguishability holds with respect to all polynomial-
time distinguishers.

For our negative results, we focus on protocols Π𝒪(·) satisfying the following conditions
10Such an assumption is necessary, or else 𝒪 can be used to instantiate a standard Random-Oracle based Fiat-Shamir hash

function.
11An oracle distribution is efficiently simulatable if a polynomial-query interaction with 𝒪 can be simulated (up to negligible

statistical distance) in polynomial time. This captures models such as the random oracle model and generic group model.

33

∙ Public Coin: The verifier messages are assumed to be sampled publicly (no internal verifier state)
and uniformly at random. This restriction is necessary for Fiat-Shamir to be well-defined syntactically.

∙ 3-Messages: We assume that Π consists of only three rounds of interaction. This is mainly for
simplicity of the analysis.

∙ Small Challenge Space: We assume that the verifier’s message is an element of a polynomial-size
alphabet Σ. Fiat-Shamir is then applied to the protocol Π𝑡 repeated 𝑡 = 𝜔(1) times in parallel.

We note that for such protocols, the honest-verifier zero knowledge property is equivalent to special
honest-verifier zero knowledge:

Definition 6.3 (Special Honest-Verifier Zero Knowledge). A 3-message public-coin protocol Π𝒪(·) is special
honest-verifier zero knowledge if there exists a simulator Sim(𝑥, 𝛽)→ (𝛼, 𝛾) such that for all (𝑥, 𝑤) ∈ 𝑅𝐿 and
all verifier messages 𝛽, Sim(𝑥, 𝛽) is (computationally/query-bounded) indistinguishable from the distribution
{(𝛼, state)← 𝑃 (𝑥, 𝑤), 𝛾 ← 𝑃 (state, 𝛽) : (𝛼, 𝛾)}.

We now prove our two negative results on Fiat-Shamir using information-theoretic hash functions. For
our first result, we generalize the polynomial-query attack on Blum. This attack requires one further property
of the protocol Π: a variant of “zero-knowledge” that even holds for false statements:

Definition 6.4 (Challenge Hiding). For a 3-message special honest-verifier zero knowledge protocol Π, we
say that the SHVZK simulator Sim is challenge hiding if for all 𝑥 (not necessarily true statements) and all
challenges 𝛽, 𝛽′ ∈ Σ, the following (computational/query-bounded) indistinguishability holds:{︁

(𝛼, 𝛾)← Sim(𝑥, 𝛽) : 𝛼
}︁
≈

{︁
(𝛼′, 𝛾′)← Sim(𝑥, 𝛽′) : 𝛼′

}︁
.

That is, simulated first messages hide their corresponding challenges.

The above definition is a worst-case notion, meaning that we require that the property holds for every
false statement (and every true statement). We also consider an average-case variant:

Definition 6.5 (Average-Case Challenge Hiding). Let Π denote a 3-message special honest-verifier zero
knowledge protocol Π for a language 𝐿, and let 𝒟 be a distribution on NO-instances. We say that the SHVZK
simulator Sim is challenge hiding on average if the following two distributions are (computationally/query-
bounded) indistinguishable:

{︁
𝑥← 𝒟, 𝛽 ← Σ, (𝛼, 𝛾)← Sim(𝑥, 𝛽) : (𝑥, 𝛼, 𝛽)

}︁
≈

{︁
𝑥← 𝒟, 𝛽, 𝛽′ ← Σ, (𝛼, 𝛾)← Sim(𝑥, 𝛽′) : (𝑥, 𝛼, 𝛽)

}︁
.

Remark 6.6. As long as the oracle distribution 𝒪 is efficiently simulatable (such as a random oracle or a
GGM oracle), any Special HVZK protocol Π with simulator Sim is challenge-hiding against polynomial-time
adversaries for at least one false statement 𝑥 assuming that the underlying language 𝐿 is hard. Moreover, if
𝐿 is decisionally hard-on-average – meaning that there are computationally indistinguishable distributions
𝒟Yes ≈𝑐 𝒟No on YES-instances and NO-instances, respectively – then (Π, Sim) is average-case challenge
hiding for the distribution 𝒟No. However, challenge hiding against query-bounded adversaries does not
follow formally from hardness of the underlying language and SHVZK.

Theorem 6.7. Suppose that Π := Π𝒪(·) is a 3-message public-coin HVZK argument system (with simulator
Sim) relative to an (efficiently simulatable) oracle distribution 𝒪 satisfying query-bounded HVZK. Moreover,
suppose that

1. The underlying language 𝐿 ̸∈ BPP,

2. The Verifier’s challenge space Σ is polynomial-size, and

34

3. (Π, Sim) is challenge hiding (Definition 6.4).

Then, for any 𝑡 and any hash function ℎ (that does not query the oracle), the protocol Π𝑡
FS,ℎ is unsound

relative to 𝒪. Alternatively, if

1′. 𝐿 is hard-on-average for a distribution 𝒟 on no-instances

2. Σ is polynomial-size, and

3′. (Π, Sim) is 𝒟-average-case challenge hiding,

then Π𝑡
FS,ℎ is unsound as above.

Proof. We prove the “worst-case” variant of the theorem; the “average-case” variant follows by an almost
identical argument.

We describe a polynomial-query attack on Π𝑡
FS,ℎ. Given the oracle 𝒪 and an instance 𝑥, do the following,

with parameter 𝑞 = 𝑡|Σ|𝜆:

1. For 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ ℓ ≤ 𝑞:

∙ Sample a uniformly random challenge 𝛽
(ℓ)
𝑖 ← Σ

∙ Sample fake transcripts (𝛼(ℓ)
𝑖 , 𝛾

ℓ)
𝑖)← Sim𝒪(·)(𝑥, 𝛽

(ℓ)
𝑖) using the special honest-verifier zero-knowledge

simulator.

2. Given (𝛼, 𝛽), search for a vector 𝑣 ∈ [𝑞]𝑡 such that ℎ(𝛼[𝑣]) = 𝛽[𝑣].

3. If such a 𝑣 exists, output (𝛼[𝑣], 𝛽[𝑣], 𝛾[𝑣]).

We claim that for some 𝑥 ̸∈ 𝐿, this attack outputs an accepting transcript with high probability. To
prove this, we have to show two things occur (with non-negligible probability): Step (2) successfully finds a
vector 𝑣 as described, and that the resulting transcript is accepting.

We first show that the former event occurs for every 𝑥. To see this, consider the following hybrid
experiment (cut off at step (2)):

1. For 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ ℓ ≤ 𝑞:

∙ Sample i.i.d. uniformly random challenges 𝛽
(ℓ)
𝑖 , 𝛽

(ℓ)
𝑖 ← Σ.

∙ Sample fake transcripts (𝛼(ℓ)
𝑖 , 𝛾

ℓ)
𝑖)← Sim𝒪(·)(𝑥, 𝛽

(ℓ)
𝑖) using the special honest-verifier zero-knowledge

simulator.

2. Given (𝛼, 𝛽), search for a vector 𝑣 ∈ [𝑞]𝑡 such that ℎ(𝛼[𝑣]) = 𝛽[𝑣].

We claim that the probability that such a vector 𝑣 exists in the hybrid experiment is indistinguishable
from the analogous probability in the real attack. This follows from the Challenge-Hiding property of (Π, Sim)
(since in both experiments, only polynomially many queries are made to 𝒪).

Moreover, in the hybrid experiment, the probability that such a vector 𝑣 exists is 1−𝑂(1
𝜆𝑡) by Lemma 6.1.

Therefore, we conclude that for all statements 𝑥, our attack successfully outputs a tuple (𝛼[𝑣], 𝛽[𝑣], 𝛾[𝑣]) such
that ℎ(𝛼[𝑣]) = 𝛽[𝑣] with high probability.

To complete the proof of Theorem 6.7, we show that there exists some 𝑥 ̸∈ 𝐿 such that with probability
1−negl(𝜆) over the randomness of each (𝛼(ℓ)

𝑖 , 𝛾
(ℓ)
𝑖)← Sim(𝑥, 𝛽

(ℓ)
𝑖), the transcript (𝛼(ℓ)

𝑖 , 𝛽
(ℓ)
𝑖 , 𝛾

(ℓ)
𝑖) is accepting.

This follows from the SHVZK simulation security of Π, the completeness of Π, as well as the hardness of 𝐿.
In more detail, by the completeness and SHVZK of Π, we know that simulated transcripts (𝛼(ℓ)

𝑖 , 𝛽
(ℓ)
𝑖 , 𝛾

(ℓ)
𝑖)

are accepting with probability 1−negl(𝜆) whenever 𝑥 ∈ 𝐿. Since this property can be verified in polynomial
time, we conclude that if 𝐿 ̸∈ BPP, there exists some 𝑥 ̸∈ 𝐿 such that simulated transcripts are accepting
with probability 1− negl(𝜆) as well.

Thus, we conclude that our polynomial-query attack breaks the soundness of Π𝑡
FS,ℎ, completing the proof

of Theorem 6.7.

35

As a corollary to Theorem 6.7, we obtain explicit polynomial-query attacks on the soundness of Π𝑡
FS,ℎ –

for any hash function ℎ – for a large class of interactive protocols Π. For example, any “commit-challenge-
response” style argument system [Blu86, GMW87, IKOS07] instantiated using a commitment scheme that is
hiding against bounded-query adversaries in the ROM satisifes the hypotheses of Theorem 6.7, and so Fiat-
Shamir cannot be instantiated for such protocols if the Fiat-Shamir hash function does not depend on the
random oracle. An analogous result holds for the “single bit challenge” variant of the Schnorr identification
protocol [Sch90] in the generic group model.

6.4 A General “Cryptography is Necessary” Result
We move on to our second result, which states that for a broad class of interactive protocols, any sound
Fiat-Shamir hash function ℎ (or family ℋ) necessarily satisfies a cryptographic security property. This
result holds both in the standard model and relative to any efficiently simulatable oracle distribution (which
makes the negative result even stronger). The security property we consider is a computational hardness
assumption about making Lemma 6.1 effective.

Definition 6.8 ((𝑞, Σ)-Mix-and-Match Resistance). A hash function (family) ℋ with output space Σ𝑡 is
mix-and-match resistant with parameters (𝑞, Σ) if a computationally bounded adversary cannot win the
following game with non-negligible probability:

∙ The challenger samples a hash function 𝐻 ← ℋ.

∙ The challenger samples 𝑡 uniformly random 𝑞 ×𝑤 matrices 𝐴(1), . . . , 𝐴(𝑡) as well as uniformly random
𝑦(1), . . . , 𝑦(𝑡) ← Σ𝑞.

∙ The challenger sends (𝐻, 𝐴, 𝑦) to the adversary.

∙ The adversary outputs a string 𝑣 ∈ [𝑞]𝑡.

∙ The adversary wins if 𝑦[𝑣] = 𝐻(𝐴[𝑣]).

By Lemma 6.1, we know that for 𝑞 ≥ 𝑡|Σ|𝜆, an unbounded adversary can win the mix-and-match resis-
tance security game with probability 1− 𝑜(1). We emphasize that the matrices 𝐴(1), . . . , 𝐴(𝑡) are uniformly
random in Definition 6.8 so that mix-and-match resistance is a single, universal security property that will
not depend on the protocols Π discussed below.

Theorem 6.9. Suppose that Π := Π𝒪(·) is a 3-message public-coin HVZK argument system (with simulator
Sim) relative to an efficiently simulatable oracle distribution 𝒪. Moreover, suppose that

1. The underlying language 𝐿 ̸∈ BPP,

2. The challenge space Σ is polynomial-size, and

3. First messages are pseudorandom: that is, for every (𝑥, 𝑤) ∈ 𝑅𝐿, the first message 𝛼 ← 𝑃 (𝑥, 𝑤) is
computationally pseudorandom.

Finally, suppose that a hash function family ℋ (which does not make use of the oracle 𝒪) securely instantiates
the Fiat-Shamir heuristic for Π𝑡.

Then, ℋ is (𝑞, Σ)-mix-and-match resistant (Definition 6.8) with 𝑞 = 𝑡|Σ|𝜆. Alternatively, if

1. The underlying language 𝐿 is hard-on-average for a a distribution 𝒟Yes on pairs (𝑥, 𝑤),

2. The challenge space Σ is polynomial-size, and

3. First messages are pseudorandom-on-average: that is, the distribution (𝑥, 𝛼 ← 𝑃 (𝑥, 𝑤)) is computa-
tionally indistinguishable from (𝑥, $), for (𝑥, 𝑤)← 𝒟Yes.

36

Then, the same conclusion holds.

Proof. We prove the “worst-case” variant of the theorem; the “average-case” variant follows by an almost
identical argument.

Let ℋ be a hash function family with the appropriate input/output lengths, and assume that ℋ is
not mix-and-match resistant. Then, there is a polynomial-time algorithm 𝒜 breaking the mix-and-match
security game for ℋ. Assuming that 𝐿 ̸∈ BPP, we use 𝒜 to break the soundness of Π𝑡

FS,ℋ (relative to 𝒪) in
polynomial time.

The attack 𝑃 *𝒪(·) is as follows for an arbitrary instance 𝑥 and hash function 𝐻 ← ℋ:

1. For 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ ℓ ≤ 𝑞, sample fake transcripts (𝛼(ℓ)
𝑖 , 𝛽

(ℓ)
𝑖 , 𝛾

ℓ)
𝑖) ← Sim𝒪(·)(𝑥, 𝛽

(ℓ)
𝑖) using the special

honest-verifier zero-knowledge simulator on a uniformly random 𝛽
(ℓ)
𝑖 ← Σ.

2. Call 𝒜(𝛼, 𝛽) to obtain a vector 𝑣 ∈ [𝑞]𝑡.

3. Output (𝛼[𝑣], 𝛽[𝑣], 𝛾[𝑣]).

It now suffices to show that assuming Π is HVZK, Π has pseudorandom first messages, and 𝐿 ̸∈ BPP,
there exists 𝑥 ̸∈ 𝐿 such that 𝑃 *𝒪(·)(𝑥) outputs an accepting transcript with non-negligible probability.

To prove this, we consider a sequence of claims that each suffice.

Claim 6.10. For all 𝑥 ∈ 𝐿, 𝑃 *𝒪(·)(𝑥) outputs an accepting transcript with non-negligible probability.

Assuming Claim 6.10, since 𝑃 * is efficient, we conclude that if 𝐿 ̸∈ BPP, there exists an 𝑥 ̸∈ 𝐿 such that
𝑃 *𝒪(·)(𝑥) outputs an accepting transcript with non-negligible probability. Otherwise, 𝑃 * can be used as an
experiment to decide 𝐿.

Thus, it suffices to prove Claim 6.10. Let (𝑥, 𝑤) ∈ 𝑅𝐿 be an arbitrary instance-witness pair. We now
consider the following hybrid algorithm Hybrid, which is a modification (changes in red) of 𝑃 *.

1. For 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ ℓ ≤ 𝑞, sample real transcripts (𝛼(ℓ)
𝑖 , 𝛽

(ℓ)
𝑖 , 𝛾

ℓ)
𝑖) ← ⟨𝑃𝒪(·)(𝑥, 𝑤), 𝑉 𝒪(·)⟩ (playing the

role of both the prover and verifier).

2. Call 𝒜(𝛼, 𝛽) to obtain a vector 𝑣 ∈ [𝑞]𝑡.

3. Output (𝛼[𝑣], 𝛽[𝑣], 𝛾[𝑣]).

By the honest-verifier zero-knowledge of Π, the algorithm Hybrid outputs an accepting transcript with
the same probability as that of 𝒜 (up to negligible difference).

Finally, we note that in an execution of Hybrid, 𝒜(𝛼, 𝛽) is being called on a joint distribution that
is computationally indistinguishable from uniform (since 𝛼 is pseudorandom and 𝛽 is independent of 𝛼).
Therefore, the call to 𝒜 in Hybrid outputs a 𝑣 such that 𝐻(𝛼[𝑣]) = 𝛽[𝑣] with non-negligible probability.
Whenever this condition holds, the transcript (𝛼[𝑣], 𝛽[𝑣], 𝛾[𝑣]) is accepting, so we conclude that Hybrid
(and the actual cheating prover 𝑃 *) outputs an accepting transcript with non-negligible probability. This
completes the proofs of Claim 6.10 and Theorem 6.9.

Note that Theorem 6.9 applies to protocols in the random oracle model, in the generic group model, and
in the standard model (that is, the reduction makes black-box calls to the HVZK simulator but not to the
oracle 𝒪 itself). Therefore, this negative result applies to many 3-message argument systems, such as:

∙ Blum’s Hamiltonicity protocol [Blu86], when the commitment scheme Com outputs pseudorandom
values (i.e. Naor commitments [Nao90] in the CRS model or Blum commitments [Blu81]) in the plain
model).

∙ The [GMW87] 3-coloring protocol with either of the above choices of commitment scheme.

37

∙ The [IKOS07] “MPC-in-the-head” proof system, for any MPC protocol, when the commitment scheme
is instantiated as above.

∙ The {0, 1}-challenge variant of Schnorr’s identification scheme [Sch90], even in the generic group model.

∙ The [GMR85] proof system for Quadratic Residuosity.

∙ A simple proof system for bounded distance decoding (BDD) problem based on the natural “instance-
dependent commitment scheme [BMO90, IOS97]” for BDD. On a (worst-case) instance (𝐴, 𝑦 = 𝑠𝐴+𝑒)
of this language, the prover sends a “commitment” 𝑠′𝐴 + 𝑒′ for random 𝑠′ and random noise 𝑒′ that
floods 𝑒. On a challenge bit 𝑏, the prover replies with 𝑠′ + 𝑏𝑠. This can also be thought of as a
simplification of the [MV03] proof system for gap-CVP (restricted to BDD instances). Under the
LWE assumption, this protocol has pseudorandom first messages on random instances, so Theorem 6.9
applies.

Acknowledgments
We thank Brynmor Chapman, Justin Holmgren, Akshayaram Srinivasan, and Daniel Wichs for many helpful
discussions. Part of this work was done while the authors were visiting the Simons Institute for the Theory
of Computing in Spring 2020.

References
[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primi-

tives and circular-secure encryption based on hard learning problems. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 595–618. Springer, Heidelberg, August 2009.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM
STOC, pages 99–108. ACM Press, May 1996.

[BBC+17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan Hamilis,
Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars Virza. Com-
putational integrity with a public random string from quasi-linear PCPs. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS,
pages 551–579. Springer, Heidelberg, April / May 2017.

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive
oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
and Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss
Dagstuhl, July 2018.

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046,
2018. https://eprint.iacr.org/2018/046.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge
with no trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 701–732. Springer, Heidelberg, August 2019.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128.
Springer, Heidelberg, May 2019.

38

https://eprint.iacr.org/2018/046

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60.
Springer, Heidelberg, October / November 2016.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. Nizk from lpn and trapdoor hash via
correlation intractability for approximable relations, 2020. ePrint:2020/258.

[Blu81] Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor, CRYPTO’81, volume ECE
Report 82-04, pages 11–15. U.C. Santa Barbara, Dept. of Elec. and Computer Eng., 1981.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of the
International Congress of Mathematicians, volume 1, page 2. Citeseer, 1986.

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. Perfect zero-knowledge in constant rounds.
In 22nd ACM STOC, pages 482–493. ACM Press, May 1990.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Heidelberg, August
1994.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer Society
Press, October 2011.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Roth-
blum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith
Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation intractability of obfuscated
pseudorandom functions. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 389–415. Springer, Heidelberg, January 2016.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 91–122. Springer, Heidelberg,
April / May 2018.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

[CH19] Geoffroy Couteau and Dennis Hofheinz. Designated-verifier pseudorandom generators, and their
applications. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 562–592. Springer, Heidelberg, May 2019.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
523–552. Springer, Heidelberg, May / June 2010.

[CKU20] Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu. Non-interactive zero-knowledge in
pairing-free groups from weaker assumptions. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part III, volume 12107 of LNCS, pages 442–471. Springer, Heidelberg, May
2020.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993.

39

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of
LNCS, pages 13–25. Springer, Heidelberg, August 1998.

[Dam10] Ivan Damgard. On sigma-protocols, lecture notes, faculty of science aarhus university, depart-
ment of computer science, 2010.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky.
Trapdoor hash functions and their applications. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 3–32. Springer, Heidelberg,
August 2019.

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions. In
40th FOCS, pages 523–534. IEEE Computer Society Press, October 1999.

[DRV12] Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan. Randomness condensers for efficiently
samplable, seed-dependent sources. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 618–635. Springer, Heidelberg, March 2012.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs under
general assumptions. SIAM J. Comput., 29(1):1–28, September 1999.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (ex-
tended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984.

[GK90] Oded Goldreich and Hugo Krawczyk. Sparse pseudorandom distributions. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 113–127. Springer, Heidelberg, August 1990.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In 14th ACM STOC, pages 365–377. ACM Press, May
1982.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 171–185. Springer, Heidelberg, August 1987.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, December 1994.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206. ACM Press, May 2008.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way functions
(or: One-way product functions and their applications). In Mikkel Thorup, editor, 59th FOCS,
pages 850–858. IEEE Computer Society Press, October 2018.

40

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages
21–30. ACM Press, June 2007.

[IOS97] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. A language-dependent cryptographic primitive.
Journal of Cryptology, 10(1):37–50, December 1997.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
24th ACM STOC, pages 723–732. ACM Press, May 1992.

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Designated ver-
ifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 622–651.
Springer, Heidelberg, May 2019.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to the security
of Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part II, volume 10402 of LNCS, pages 224–251. Springer, Heidelberg, August 2017.

[LV20] Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated squaring with applications
to ppad-hardness and vdfs, 2020. To appear in CRYPTO 2020.

[LW15] Vadim Lyubashevsky and Daniel Wichs. Simple lattice trapdoor sampling from a broad class
of distributions. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 716–730.
Springer, Heidelberg, March / April 2015.

[Lyu08] Vadim Lyubashevsky. Lattice-based identification schemes secure under active attacks. In
Ronald Cramer, editor, PKC 2008, volume 4939 of LNCS, pages 162–179. Springer, Heidelberg,
March 2008.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–
616. Springer, Heidelberg, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Hei-
delberg, April 2012.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 700–718. Springer, Heidelberg, April 2012.

[MV03] Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs with efficient provers:
Lattice problems and more. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
282–298. Springer, Heidelberg, August 2003.

[MV16] Arno Mittelbach and Daniele Venturi. Fiat-Shamir for highly sound protocols is instantiable. In
Vassilis Zikas and Roberto De Prisco, editors, SCN 16, volume 9841 of LNCS, pages 198–215.
Springer, Heidelberg, August / September 2016.

[Nao90] Moni Naor. Bit commitment using pseudo-randomness. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 128–136. Springer, Heidelberg, August 1990.

41

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994.

[NSW09] Gregory Neven, Nigel P Smart, and Bogdan Warinschi. Hash function requirements for schnorr
signatures. Journal of Mathematical Cryptology, 3(1):69–87, 2009.

[PS96] David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In Kwangjo
Kim and Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163 of LNCS, pages 252–265.
Springer, Heidelberg, November 1996.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning
with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 89–114. Springer, Heidelberg, August 2019.

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier NIZKs for
all NP from CDH. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II,
volume 11477 of LNCS, pages 593–621. Springer, Heidelberg, May 2019.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997.

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-efficient
zkSNARKs without trusted setup. In 2018 IEEE Symposium on Security and Privacy, pages
926–943. IEEE Computer Society Press, May 2018.

A Correlation Intractability and the Idealized Blum Protocol
In this section, we show that correlation intractability for efficiently computable functions [CCH+19, PS19]
implies a sound instantiation of Fiat-Shamir for a variant of the idealized Blum protocol (Section 6.2).

First, we recall a minor modification of the Blum protocol (as in [CCH+19, PS19]) and instantiate the
commitment scheme with a random oracle, as in Section 6.2.

𝑃 (𝐺, 𝜎) 𝑉 (𝐺)
𝜋 ← 𝑆𝑛, 𝐺′ = 𝜋(𝐺)
𝛼← Com(𝐺′||𝜋)

𝛼

𝛽 𝛽 ← {0, 1}

If 𝛽 = 0, decommit to (𝐺′, 𝜋).
If 𝛽 = 1, reveal 𝜋 ∘ 𝜎 and decommit to the edges in 𝐺′

corresponding to the cycle 𝜋 ∘ 𝜎.

𝛾
Accept if all decommitments are correct and:
either 𝛽 = 0 and 𝐺′ = 𝜋(𝐺)
or 𝛽 = 1 and all edge decommitments are 1.

Figure 10: A Modified Idealized Blum Protocol Π

That is, we require the prover to additionally commit to the permutation 𝜋 and decommit to 𝜋 if 𝛽 = 0. In
this case, the verifier checks that 𝜋 is a valid permutation and that 𝐺′ = 𝜋(𝐺). The reason this modification is

42

made is so that given a (partial) decommitment to the first message 𝛼, it is possible to efficiently decide which
challenge is answerable using this decommitment. In the original Blum protocol, the analogous computation
requires solving a graph isomorphism problem.

As before, we instantiate Com(𝑏; 𝑟) = 𝒪(𝑏, 𝑟) using a random oracle. Concretely, we set |𝑟| = 𝜆 = 𝜆(𝑛)
and |𝒪(𝑏, 𝑟)| = 𝜅 = 𝜅(𝑛) to be arbitrary polynomial functions in 𝑛 = |𝑉 (𝐺)|. The protocol above is then
repeated 𝑡 = 𝑡(𝑛) times in parallel to obtain negligible soundness error. We then prove:

Theorem A.1. Suppose that for every (efficiently computable) 𝑠(𝑛) = poly(𝑛), there exists a hash family
ℋ = {ℎ𝑘 : {0, 1}𝑚(𝑛)𝜅(𝑛)𝑡(𝑛) → {0, 1}𝑡(𝑛)}𝑘∈{0,1}ℓ(𝑛) (for 𝑚(𝑛) = 𝑛2 + 𝑛) that is correlation intractable for
all functions computable by size 𝑠(𝑛) circuits.

Then, for an appropriate fixed choice of function 𝑠(·), the same hash family ℋ soundly instantiates the
Fiat-Shamir heuristic for the protocol Π𝑡 in the random oracle model.

By Theorem 6.9, we also obtain the following corollary.

Corollary A.2. Under the hypothesis of Theorem A.1, the hash family ℋ is also (𝑞, Σ) mix-and-match
resistant (Definition 6.8) for Σ = {0, 1} and arbitrary 𝑞 = poly(𝑛).

We now prove Theorem A.1.

Proof. Let ℋ be a family of correlation-intractable hash functions with parameters as above (for 𝑠 = 𝑠(𝑛)
chosen appropriately large). Since correlation-intractable hash functions imply the existence of one-way
functions, we additionally let 𝐹𝑠 : {0, 1}𝜅(𝑛)−1 → {0, 1} be a PRF family computable by a family of circuits
of size 𝑠(𝑛).

Now, suppose that an efficient adversary 𝒜𝒪(·), given a non-Hamiltonian graph 𝐺 and random hash
function ℎ, breaks the soundness of Π𝑡

FS,ℋ on 𝐺.
Let 𝜏 = 𝜏(𝒜,𝒪) denote the transcript of 𝒪-queries made by 𝒜; that is, for every 𝑖, 𝜏𝑖 = (𝑏𝑖, 𝑟𝑖, 𝑐𝑖) where

(𝑏𝑖, 𝑟𝑖) is the 𝑖th query made by 𝒜 to 𝒪, and 𝑐𝑖 = 𝒪(𝑏𝑖, 𝑟𝑖). Finally, let (𝛼*, 𝛽*, 𝛾*) denote the output of 𝒜.
Given an arbitrary first message 𝛼 and transcript 𝜏 , we say that a challenge 𝛽 is a bad challenge for

(𝛼, 𝜏) if the following conditions hold:

∙ For every 𝑖 such that 𝛽𝑖 = 0, the string of commitments 𝛼𝑖 = (𝑐𝑖,0, . . . , 𝑐𝑖,𝑚) is entirely contained within
the transcript 𝜏 , and the corresponding bits {𝑏𝑖,𝑗} consist of a permutation 𝜋 and the graph 𝜋(𝐺).

∙ For every 𝑖 such that 𝛽𝑖 = 1, the transcript 𝜏 contains a substring of 𝛼𝑖 consisting of commitments to
a cycle.

We now note a sequence of facts about the execution of 𝒜.

Claim A.3. The probability that 𝒜𝒪(·) wins with output (𝛼*, 𝛽*, 𝛾*) and 𝛽* is not a bad challenge for (𝛼*, 𝜏)
is negligible.

This claim follows from binding properties of the (random oracle) commitment scheme. This is because
if 𝛽* is not bad for (𝛼*, 𝜏) but (𝛼*, 𝛽*, 𝛾*) is accepting, then 𝛾* contains decommitments to bits that are not
present in 𝜏 ; this means that 𝒜𝒪(·) solves an (unconditionally) hard problem in the random oracle model.

Claim A.4. The probability that (𝛼*, 𝜏) has multiple bad challenges associated to it is negligible.

This again follows from binding properties of the commitment scheme, and the fact that 𝐺 is not Hamilto-
nian. Since 𝐺 is Hamiltonian, if no string 𝑐 appears twice (for two different choices of (𝑏, 𝑟)) in the transcript
𝜏 , bad challenges for any (𝛼, 𝜏) are unique (as each 𝛼𝑖 cannot have an opening to both a permutation of 𝐺
and a Hamiltonian graph simultaneously). However, 𝜏 only contains the same commitment string 𝑐 twice
with negligible probability, since it is (unconditionally) hard to find 𝒪-collisions.

Thus, given a transcript 𝜏 and message 𝛼, we define the efficiently computable “transcript bad-challenge
function” 𝑓(𝜏, 𝛼) as follows:

∙ If 𝛼𝑖 is present in 𝜏 as a commitment to (𝐺′, 𝜋) and 𝐺′ = 𝜋(𝐺), set 𝛽𝑖 = 0.

43

∙ Otherwise, set 𝛽𝑖 = 1.

∙ Output 𝛽 = (𝛽1, . . . , 𝛽𝑡).

By the above analysis, we conclude:

Claim A.5. With non-negligible probability, the adversary 𝒜𝒪(𝐺, ℎ) outputs (𝛼*, 𝛽*, 𝛾*) such that

∙ 𝛽* = ℎ(𝛼*) = 𝑓(𝛼*, 𝜏), and

∙ 𝜏 contains all necessary decommitments to answer the challenge 𝛽*.

Note that Claim A.5 is an efficiently decidable property of (𝜏, 𝛼*, 𝛽*). Thus, Claim A.5 also holds if we
replace the truly random oracle 𝒪 with the following oracle distribution 𝒪′:

∙ 𝒪′ has a hard-coded random seed 𝑠 for the PRF 𝐹𝑠 : {0, 1}𝜅(𝑛)−1 → {0, 1}

∙ 𝒪′(𝑏, 𝑟) samples a uniformly random 𝑟′ ← {0, 1}𝜅(𝑛)−1 and outputs (𝑟′, 𝐹𝑠(𝑟′)⊕ 𝑏).

This follows directly from the pseudorandomness property of the PRF family. Finally, we define the
following efficiently computable function 𝑔𝑠 : {0, 1}𝑚(𝑛)𝜅(𝑛)𝑡(𝑛) → {0, 1}𝑡(𝑛).

∙ Input: 𝛼 = (𝛼1, . . . , 𝛼𝑛)

∙ For all 𝑖, let 𝛼𝑖 = (𝑐𝑖,1, . . . , 𝑐𝑖,𝑚(𝑛)) and 𝑐𝑖,𝑗 = 𝑟′𝑖,𝑗 ||𝑏′𝑖,𝑗 . Compute 𝑏𝑖,𝑗 = 𝐹𝑠(𝑟′𝑖,𝑗)⊕ 𝑏′𝑖,𝑗 .

∙ Let 𝜏 denote a transcript containing triples of the form (𝑏𝑖,𝑗 , 𝑟𝑖,𝑗 , 𝑐𝑖,𝑗) where 𝑟𝑖,𝑗 are arbitrary.

∙ Output 𝑓(𝛼, 𝜏).

We claim that 𝒜𝒪′(·) breaks the correlation intractability of ℋ with respect to the function 𝑔𝑠. Indeed,
whenever the conditions of Claim A.5 hold, we also claim that ℎ(𝛼*) = 𝑔𝑠(𝛼*). To see this, we note that any
commitment 𝑐 = (𝑟′, 𝑏′) occurring as (𝑏, 𝑟, 𝑐) in the transcript 𝜏 must satisfy the property 𝑏′ = 𝐹𝑠(𝑟′) ⊕ 𝑏.
Thus, the 𝑖th bit 𝑓(𝛼*, 𝜏)𝑖 = 0 if and only if the 𝑖th bit 𝑔𝑠(𝛼*)𝑖 = 0.

We conclude that 𝒜𝒪′(·), which can be implemented efficiently given the PRF seed 𝑠, contradicts the
correlation intractability of ℋ with respect to 𝑔𝑠. Therefore, the protocol Π𝑡

FS,ℋ is indeed sound in the
ROM.

44

	Introduction
	Our Contributions
	Conclusions
	Related Work

	Technical Overview
	Warm-up: Fiat-Shamir for the Schnorr Protocol
	A Non-Interactive Argument for the Diffie-Hellman Language.
	A Non-Interactive Lattice-Based Identification Scheme
	Negative Results

	Preliminaries
	Fiat-Shamir in the Generic Group Model
	Generic Group Model Preliminaries
	Chaum-Pedersen Protocol
	Application: NIZKs for NP

	Lattice-Based Identification Protocols
	Preliminaries
	Identification Protocols based on SIS
	Identification Protocols based on LWE
	More Efficient Protocols via Rejection Sampling

	Negative Results for Fiat-Shamir with Non-Cryptographic Hash Functions
	Main Information-Theoretic Lemma
	Negative Result for Blum in the Random Oracle Model
	A General Polynomial-Query Attack
	A General ``Cryptography is Necessary'' Result

	Correlation Intractability and the Idealized Blum Protocol

