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Abstract—Authentication continues to be a challenge for legacy
real-time communications networks involving low-speed buses
interconnecting resource-limited devices. A commercial vehicle
network is such a network which does not change much over
the years due to safety standards and regulations in the trans-
portation domain. The SAE J1939 incorporating the ISO 11898-
1 specification for the data link and physical layers of the
standard CAN and CAN-flexible data rate (CAN-FD) handles
communication among electronic control units (ECUs). The SAE
J1939 is susceptible to attacks such as replay, masquerading
and man-in-the-middle. This paper presents a formal analysis
of the existing authentication protocols for the SAE J1939
and identifies limitation, especially man-in-the-middle attack. To
mitigate the attack, we propose two new authentication protocols.
One pass authentication protocol is proposed for computationally
restricted nodes, and for the nodes that support public key
operations, a certificateless signature-based authentication pro-
tocol is proposed which is based on certificateless key insulated
manageable signature scheme (CL-KIMS). The security of the
new protocol suite and the signature scheme is formally analysed
in the random oracle model. We use the Tamarin tool to verify
mutual authentication, session key security, known key secrecy
and forward security of the proposed protocols. Performance
comparison shows that compared with the existing protocol
suite, the new protocol suite is computation and communication
efficient with robust security. Our simulation study in Matlab
2018a reveals that the key exchange protocols in the new protocol
suite are efficient regarding consumption of lesser total message
delay than its counterpart.

Index Terms—J1939 security, IVN security, security protocols,
control system security, commercial vehicle cybersecurity, Truck
security.

I. INTRODUCTION

In the past, the safety of vehicles relied much on the relia-
bility of its crucial mechanical parts, e.g. steering and brake,
and communication protocols that were deployed to assist the
mechanical parts inside the vehicles, e.g. the SAE J1939 [1],
CAN 2.0A and CAN 2.0B [2]. Nonetheless, at present, the
safety of vehicles have the dependability on the security of
the information that are exchanged using the communication
protocols. Moreover, advancements in the vehicular ad-hoc
network (VANET) facilitate the vehicles to utilise different
modes of communication, such as vehicle to infrastructure
[3], vehicle to vehicle [4], vehicle to X communications [5])
to exchange information beyond its realm. But these com-
munication modes help adversaries to infiltrate into the intra-
vehicular network (IVN) of the vehicles. Thus, the information
exchanged in the communication protocols are under threat for
the adversarial attacks, namely replay, masquerading and man-
in-the-middle (MITM) [6]. For instance, there is a chance for

a highly likely situation of a deadlock condition to occur for
the movement of vehicles on roads when a small portion of
vehicles is targeted for the attacks [7].

As of 2015, there are 335 million commercial vehicles in
operation across the world [8]. The SAE J1939 is the defacto
communication protocol deployed in the IVN of commercial
vehicles [9]. The commercial vehicles can be attacked by an
adversary if the SAE J1939 communications are unprotected.
It should be noted that a fair amount of steps that have been
taken to safeguard the life on roads by the introduction of
autonomous vehicles could go in vain as the autonomous
driving is forecasted to cut down 5 million accidents and 2
million injuries occurring every year [10]. Authentication for
SAEJ1939 can bring down the possibilities of the attacks in
the commercial vehicles [9]; thence, establishing a secure and
efficient authentication in SAE J1939 is an obligatory demand.

Generally, group key-based authentication schemes (GKAs)
are efficient than the pair-wise key-based authentication
schemes (PKAs) for IVNs. In principle, for a n number of
nodes in IVN, group key schemes require n folded interac-
tions, interactions containing a specified number of steps for
exchanging a session key, by a trusted entity. Nevertheless,
PKAs need 1

2

(
n
2

)
interactions for establishing a session key

among n nodes. Researchers have conspicuously enumerated
the pros and cons of the security strength of GKAs and PKAs
for an IVN setting; they have also briefed out the historical
timeline of the attempts taken for analysing and securing IVN
[11].

Initially, the research on vehicular communication security
has been focused on passenger cars. Charlie Miller and Chris
Valasek have pointed the insecurity issues, analysing some of
the passenger cars[12]. They have also shown the feasibility
of obtaining secret information from cars, especially crypto-
graphic keys[13]. Their research elucidates the necessity of an
alternative mechanism to protect IVN without relying on the
assumption of a tamper-proof modules (TPMs) [14] to secure
the keys.

In contrast, very few attempts have been taken towards
the analysis and design of security protocols for commercial
vehicles, i.e., trucks and heavy-duty vehicles. Notably, Murvay
et al. [9] have analysed the security issues in SAE J1939, and
they have proposed an authentication protocol suite to thwart
the identified issues, considering the computational capabilities
of nodes in IVN. Albeit researchers have handled security
problems of commercial vehicles and cars seperately hitherto,
there is an union of the problems prevailing in IVN which has
to be addressed. In essence, given an ”active adversary” with
the capacity to compromise previous secret session keys and
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long-term keys, a security protocol suite to withstand such an
adversary has not been evident in the union to the best of our
knowledge.

Following the convention in addressing the security prob-
lems of IVN, we enumerate the contributions:
• The protocol suite for SAE J1939 [9] is formally analysed

against the active adversary using the Tamarin tool. A
case study presenting an exploit of a MITM attack is
reported for the protocols in the protocol suite.

• To prevent the identified MITM attack and other known
attacks, namely, replay and masquerading, we present a
new protocol suite for the SAE J1939. A round optimal
authenticated key agreement protocol (AKEP) is designed
for the resource-restricted nodes. For the resource unre-
stricted nodes, a certificateless AKEP is designed.

• To facilitate the certificateless AKEP, we design a certifi-
cateless key insulated manageable signature scheme (CL-
KIMS).

• We analyze the security of the new protocol suite and
signature scheme in the random oracle model [15].

• We deploy the Tamarin tool to formally verify the secu-
rity goals of authenticated key exchange protocols; we
evaluate the performance of the protocol suites in Matlab
2018a.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents preliminaries.
Section IV presents the formal security analysis of the Murvay
et al. protocol [9]. Section V describes the new protocol
suite and our signature scheme. Section VI presents formal
security analysis of the new protocol suite in the random oracle
model. Section VII provides the formal verification of the
new protocol suite using Tamarin tool. Section VIII compares
performance of our protocol suite with the protocol suite of
Murvay et al. [9]. Section IX evaluates performance of the
protocol suites using Matlab 2018a. Section X concludes the
work.

II. RELATED WORKS

This section reviews related efforts taken towards securing
CAN communication inclusive of J1939, and it also presents
the works that are reported in designing key insulated signature
schemes and its light-weight versions.

A. J1939 protocol

Because J1939 is a higher-layer protocol that supports CAN
protocol in its lower layer, we review some of the authentica-
tion solutions available for the CAN protocol to understand the
strategies of authentication. The significant steps taken so far
is primarily to counteract any attempts made by adversaries to
disrurpt normal communication. CANAuth has been proposed
by Herrewege et al. [16]. CANAuth utilises hash-based mes-
sage authentication code (HMAC) to authenticate nodes. To
nullify the replay attacks, the researchers used counter values
in the HMAC computation. Nonetheless, CANAuth depends
on another protocol CAN+ to function [17].

Hartkopp et al. [18] have proposed MaCAN. Unlike CA-
NAuth, it does not require CAN+ protocol to transmit HMAC

tags. Since the data field is utilised for transmitting the
tags, this protocol requires extra data frames to carry out
authentication. MaCAN has been formally analysed by Bruni
et al. [19]. Bruni et al. [19] have found two flaws in MaCAN.
The first one allows an attacker to delete authentic messages
during authentication. The second flaw permits an attacker to
impersonate a legitimate node. In response, Bruni et al. [19]
have proposed a modified MaCAN protocol that eliminates the
attack feasibilities for an adversary.

LibraCAN has been proposed by Groza et al. [20]. Li-
braCAN achieves authentication by a mixed-mode approach.
The protocol deploys the strategy of key splitting and MAC
combining. LibraCAN leverages security by assuring a strong
non-malleability property. But the protocol is vulnerable to
the replay attack since the linear mixing procedure does not
include temporal information.

In a sequel, an efficient protocol for the CAN has been
proposed by Groza et al. [21]. The protocol is underpinned
with the widely known TESLA [22]. But the protocol is
designed on an assumption of a single secure node that acts
as a cornerstone in IVN. It should be noded that an adversary
can compromise a node completely [23].

Woo et al. [2] have demonstrated a practical remote attack
using a vehicle, and in response, and they have designed a
frame-level three-round authenticated key exchange protocol
for CAN 2.0B. However, an authentication scenario for the
nodes that are unrestricted in resources is not considered.

There are only few works that investigate security of the
J1939 protocol. The work by Burokova et al. [1] describes
practical attacks against the protocol used in trucks. They
have found that instrument cluster unit, power train and
engine brake can be controlled by spoofing and replaying
messages. Mukherjee at al.[24] have demonstrated denial of
service (DoS) attacks at the data link layer level of the SAE
J1939. No practical solutions are provided for mitigating the
attacks. Murvay et al. [9] have experimentally demonstrated
DoS attacks and have proposed two authentication protocols
to address the identified weaknesses. One is based on the
symmetric-key cryptography for the resource restricted nodes;
the other one is based on the public-key cryptography for the
resource unrestrcited nodes. The security of the protocols has
not been verified.

Overall, the security of all the protocols discussed above
depends on the protection of secret keys in TPM.

B. Key Insulated Signature Scheme

Now, we review considerable works that are proposed to
leverage the independence of TPM for securing secret keys.

In this regard, Dodis et al. [25] have introduced a key-
insulated public-key cryptosystem, where the lifetime N of
a secret key is split into t discrete-time durations. The cryp-
tosystem assures two prominent properties, i.e., key insulation
and random access key update. The key insulation property
ensures the secrecy of secret keys for the time duration
(`, . . . , t) even if the secret keys belong to the time duration
(1, . . . , `−1) are compromised. The random access key update
facilitates dynamic key update to any specific time duration in
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the discrete-time duration from any given time duration. The
key update from one period to another is accomplished by
interacting with a trusted helper environment.

Based on this idea, researchers [26] have designed a strong
key insulated signature scheme. For each key update, the
signature leaks some information about the helper key. To
address this problem, Hanaoka et al. [27] have proposed a
parallel key insulated public key encryption. In their scheme,
the decryption key is computed using two helper keys instead
of one. This allows to maintain security even when one of the
helper is compromised.

Computation restricted platforms (such as the internet of
things and in-vehicle network) need lightweight cryptographic
algorithms to achieve the intended security goals. Karati et al.
[28] have proposed a certificateless signature scheme for the
industrial internet of things. The scheme is based on bilinear
pairing so it is quite computationally expensive. The scheme
is analysed by Xiong et al. [29] who show that signatures
can be forged. To overcome the weakness, Xiong et al. [29]
have proposed a certificateless parallel key insulated signature
scheme (CL-PKIS). CL-PKIS claims to provide strong key
insulation property and light-weight computation cost. After a
careful investigation, one can see that CL-PKIS does not offer
key insulation property. This is to say that after compromising
the secret key of (`− 1)th period, the adversary can construct
a valid secret key for `th period by choosing an arbitrary
helper key. If an adversary signs any message in the `th period
using the constructed key, the verifier returns true without
differentiating a signature generated using the constructed key
and the actual key. This is due to two reasons: CL-PKIS
allows a signer to generate helper public keys without having
a provision for the verifier to update the helper public keys,
and the helper public key is made to be carried along with
message-signature pair to the verifier for every message, which
consumes additional bandwidth during communication.

In general, all the key insulated signature schemes dis-
cussed above cannot be straightforwardly adopted to the in-
vehicle environment because they require the involvement
of a user/driver to update the secret key from the helper
environment.

III. PRELIMINARIES

This section presents the SAE J1939 standard, network
architecture, adversarial model, security requirements and the
Tamarin tool to understand the background of this work.

A. The J1939 standard

Controller area network protocol is a broadcast commu-
nication protocol that supports a data rate up to 1 Mbps
[30]. The initial version of can bus is CAN 2.0A or standard
CAN. It supports four types of frames. They are data frame,
remote frame, overload frame and error frame. The data frame
and remote frame are used to send data and request data,
respectively. Both frames have a 11-bit identifier field to
resolve bus arbitration. That is when two or more frames are
simultaneously transmitted, the frame with the highest priority
wins the bus arbitration. In case of bus arbitration between data

Fig. 1: J1939 identifier field

frame and remote frame as they have the same identifier, data
frame wins the arbitration due to the dominant bit (logic 0)
in RTR field. The next version of can bus is CAN 2.0B or
extended CAN. The extended can has a 29-bit identifier field.
The standard CAN and the extended CAN may exist on same
bus, but the standard CAN has the highest priority. Another
version of CAN bus is the CAN-flexible data rate (FD), CAN-
FD. It supports three types of frames, viz: data, error and
overload frame. This frame also has a 29-bit identifier field,
but it supports variable data rate up to 8 Mbps. The size of
the data field in the standard CAN and the extended CAN is
8 bytes, whereas the size of the data field in CAN-FD is 64
bytes.

The SAE J1939 is a five-layered protocol (physical, data
link, network transport and application ). The physical and the
datalink layer of the SAE J1939 includes the speccification
of the ISO 118981. The SAE J1939 standard is built on
the CAN protocol. This means that the lower layers of the
SAE J1939 utilises CAN protocol [9]. The 29-bit identifier
specifies that the SAE J1939 transmits frames as extended
frames although standard CAN is supported. J1939 can support
the standard CAN and CAN-FD in its lower layers. The SAE
J1939 supports two data rates 250 Kbps and 500 Kbps. The
identifier of the standard is broken down into three main fields:
priority, parametric group number (PGN) and source address
(ref Fig. 1). The priority field decides the priority of the frame
during bus arbitration. The parametric group number is used
to encapsulate signals that are with a common characteristic.
The PGN is split into four fields: extended data page, data
page, protocol data unit (PDU) format and PDU specific. The
extended data page is always set to zero, and the data page
is set based on PDU format and PDU specific. The PDU
format denotes the type of PDU, i.e, if the PDU field is less
than 240, it is treated as a destination address (PDU type
1). If the address is between 240 and 255, it is treated as
a group extension (PDU type 2). If the PDU format is set to
255, it denotes a global reception address. This is separately
specified since messages that do not belong to the nodes are
discarded by the nodes. Each SAE J1939 message is broadcast
to all ECU nodes. PDU specific is meant to handle specific
purposes such as requesting information from other nodes
and multi-frame messaging. The source address is used to
include the address of the sender. The transport protocol of the
standard utilises two modes to transfer information: connection
mode data transfer and broadcast mode data transfer. More
information on these modes can be referred in [9].

B. Network architecure

The network architecture of an in-vehicular network (IVN)
is presented in Figure 2. It consists of three groups of ECUs,
namely G 1, G 2 and G 3 clustered at the three levels:
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Fig. 2: J1939 based IVN

criticality high, moderate and low, respectively. The level of
ECU can be determined using automotive safety integrity level
(ASIL) requirements [31]. For example, ECUs controlling the
windshield or wipers may be of low-level priority, whereas
ECU of the antilock braking system or engine control unit
are of high-level priority. SeCU is the central authority re-
sponsible for session keys management. SeCU maintains a
list of identities (see Figure 2) and counters for all the ECUs.
We write ECU S and ECU R to indicate the sender and
receiver ECU, respectively. Note that an ECU can broadcast
messages using multiple identities but we assume that ECUs
broadcast messages on a single identity. Every ECU maintains
a tuple which consists of identities and counters. Precisely,
every ECU maintains its own ID and counter, ID and counter
of its partners, ID and counter of SeCU and a session counter.

C. Adversary Model

We assume the presence of an active probabilistic polyno-
mial time adversary [32]. The adversary can inject, delete,
modify and replay messages during a key exchange and
normal communication. It can also acquire session keys and
session specific secrets when past communication sessions are
compromised. This may happen if an ECU is replaced for a
repair or an ECU establishes communication with an external
and insecure device.

For the signature scheme, we adopt the adversarial model
introduced by Al-Riyami and Paterson in [33]. They define
two types of adversaries: type-I and type-II adversaries (AI
and AII , respectively). For AI , the adversary can be any-
one except key generation centre (KGC). In case AII , the
adversary can be a malicious KGC. Consequently, AI can
replace public keys but cannot acquire user secret keys. AII
can acquire master secret key and partial secret key but it
cannot replace the public key.

Now we specify the list of queries that can be made to
ECUi by the adversary.
Extract − partial − private − key : A asks this query by

inputting S.No. Upon asking this query, the query returns a
tuple <skS.No, S.No> to adversary.
Extract − public − key : A asks this query by presenting

S.No. This query returns PECUi to A.
Extract−secret−key : Upon asking this query with S.No,

this query returns xi to A.

Public − key − replace : A asks this query by presenting
S.No and P ∗ECUi

. Upon querying, the oracle sets the public
key of S.No as P ∗ECUi

.
Extract − signing − key : A submits S.No and t to this

oracle. Upon submission, A is given with sigki,t.
Extract − helper − key : A asks this query by submitting

S.No and t. Upon asking this query, A is returned with hi,t.
Sign : A asks this query by presenting S.No∗, t and M∗.

The Sign query returns signature G∗, S.No∗, t and M∗.
A plays the following four games Gi∈{1, 2, 3, 4} with a

challenger C.
Game1 :
Setup : C generates master secret key and public parameters

by executing the setup algorithm. After generation of master
secret key, C hides the secret and gives params to AI .
Query : AI can access the above mentioned query adap-

tively for polynomial times.
Forgery : After finishing all the queries, AI randomly

chooses a message M∗ and outputs a signature G∗ at time t.
The adversary is said to win the game if the forgery meets the
following conditions.

1) AI has never asked S.No∗ to the oracle Extract −
partial − private − key , Extract − signing − key ,
Extract − secret − key and Extract − helper − key .

2) AI has never asked S.No∗, M∗ and t∗ to the sign oracle.
3) True ← verify (params, S.No∗, PECUi , HPi,

M∗,G∗).
Definition 1: A CL-KIMS scheme is secure if there does

not exist any probablistic polynomial time adversary AI that
wins Game1 with non-negligible advanatage.
Game2 :
Setup : C generates the params and master secret key. C

issues params and the master secret key to the adversary AII .
Query : A can ask the above mentioned queries adaptively.
Forgery : After collecting polynomial number of queries,
A chooses an arbitrary message M∗ and outputs the signature
G∗ at time t. A is supposed to win the game if the forgery
meets the following condition:

1) AI has never asked S.No∗ to the oracle Extract −
secret − key , Extract − signing − key and Extract −
helper − key .

2) A has never asked S.No∗, M∗ and t to the sign oracle.
3) True ← verify (params, S.No∗, PECUi

, HPi,
M∗,G∗).

Definition 2: If there does not exist an AII that wins the
game G2 with non-negligible advantage, then the CL-KIMS
is a secure signature scheme.
Game3 :
Setup : C generates master secret key and public parameters

by executing the setup algorithm. After generating master
secret key, C gives params to AI .
Query :A can access the above mentioned query adaptively

for polynomial times.
Forgery : After finishing all the queries, A randomly

chooses a message M∗ and outputs a signature G∗ at time
t. The adversary is said to win the game if the forgery meets
the following conditions.
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1) AI has never asked S.No∗ to the oracle Extract −
partial−private−key , Extract−secret−key , Extract−
helper − key at time t and Extract − signing − key at
time t.

2) A has never asked S.No∗, M∗ and t∗ to the sign oracle.
3) True ← verify (params, S.No∗, PECUi

, HPi,
M∗,G∗).

Definition 3: A CL-KIMS scheme is perfectly key insulated
secure if there does not exist probablistic polynomial time ad-
versary AI that wins Game3 with non-negligible advanatage.
Game4 :
Setup : C generates the params and master secret key. C

issues params and the master secret key to AII .
Query : AII can ask the above mentioned queries adap-

tively.
Forgery : After collecting polynomial number of queries,

A chooses an arbitrary message M∗ and outputs the signature
G∗ at time t. A is supposed to win the game if the forgery
meets the following condition:

1) AII has never asked S.No∗ to the oracle Extract −
secret − key , Extract − signing − key at time t and
Extract − helper − key at time t.

2) A has never asked S.No∗, M∗ and t to the sign oracle.
3) True ← verify (params, S.No∗, PECUi

, HPi,
M∗,G∗).

Definition 4: If there does not exist an adversary AII that
wins the game G4 with non-negligible advantage, then the
CL-KIMS is a strong key insulated secure signature.

D. Security requirements

The parties involved in the protocols are SeCU and the
ECUs. The following security goals should be achieved by an
authenticated key exchange protocol (AKEP).
• S1. Mutual entity authentication, i.e. each of the commu-

nicating parties should be able to verify the identity of
other party (through acquisition or collaborative evidence)
[34].

• S2. Key freshness guarantees that the current session key
is chosen independently and at random [35].

• S3. Forward secrecy (FS) prevents the adversary to com-
pute session keys even if the long-term secrets of a party
are compromised [36].

• S4. Known-key secrecy (KKS) assures the secrecy of cur-
rent session key/secret when the old session secrets/keys
are compromised [37].

• S5. Session key secrecy assures that the session key
generated for every session is secret and it is not known
to the adversary.

AKEP should resist the following attacks: replay, masquerad-
ing and MITM.

E. Tamarin

Tamarin is a “state-of-the-art” tool used for verifying the
security properties claimed by cryptographic protocols. The
tool accepts different adversary models. In particular, it can be
deployed to verify protocols for the Dolev-Yao adversary [38]

TABLE I: Notations
Notation Description

Kses The session secret key
Ksync A secret key for time synchronisation
Ksyncpair A secret key for time synchronisation between a sender ECU and a receiver ECU
Km The secret master key

CertECUi
Certificate of ith ECU

CertOEM Certificate of the original eqipement manufacturer
rand Random material
tSeCU Curent time in security designated ECU

cntri Counter of ith ECU
cntrses Session counter
tsnd Present counter value on the sender ECU
trcv Present counter value on the receiver ECU
e Public key encryption
KD() Key derivation function
MAC Message Authentication Code

computed using HMAC
MACt 64-bit truncated message authentication code

computed using HMAC
LGK Long-term group secret key

Ki Pair-wise ith long-term secret key shared between ith ECU and SeCU

seedi Seed value for ith ECU
cntrses Session counter

or user specified adversarial capabilities. The later noteworthy
feature of this tool is a distinctive feature of this tool in
comparison with the rest of the formal verification tools. The
tool plays a priminant role for analysing group key schemes
[39]. The complete description of the tool and its potential can
be found in [40].

The mutual entity authentication can be verified using four
properties: aliveness, weak agreement, non-injective agree-
ment and injective-agreement. The properties follow a hierar-
chy. The top is the injective agreement [41]. It should be noted
that the verification of the injective agreement also guarantees
the resistance of the protocol towards the following attacks:
replay, masquerading and MITM. The properties are normally
verified using commit and running actions. Generally, us-
ing first-order logic, properties namely, the forward secrecy,
known-key secrecy and session key secrecy can be verified.

IV. FORMAL ANALYSIS OF MURVAY ET AL. PROTOCOLS

We analyse the latest security protocol suite proposed by
Murvay et al. for the SAE J1939. The suite consists of two key
exchange protocols based on symmetric and asymmetric cryp-
tography. Both protocols are followed by a runtime protocol
for broadcasting messages among ECUs. We formally analyse
the suite in Tamarin to determine its security weaknesses. For
convenience, we refer to the symmetric key exchange protocol
and asymmetric key exchange protocol as J1939-Sym and
J1939-Asym, respectively. For a detailed description of the
protocol, we refer the reader to the work [9].

A. Analysis of J1939-Sym

The purpose of this protocol to exchange session secrets
from SeCU to all ECUs. The protocol targets ECUs with com-
putationally limited resources. The protocol does not provide
secure mutual authentication because in the first protocol step,
it does not require authentication of the random value (randi)
obtained from ECUi. Consequently, the injective agreement
does not hold. Note that injective agreement requires a unique
sender for each fresh commitment. This also means that the
protocol accepts any replayed past communication. Figure 3
presents such case.
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The weakness can be exploited in a man-in-the-middle
attack. The steps given below explain the attack. The adversary
replays message rand∗ generated by ECUi (Step 1). The
message is not authenticated by SeCU so SeCU responds
according to the protocol and uses rand∗ in Step 3. Steps
from 5 to 11 are executed by ECUi and SeCU . Steps from
12 to 15 are run between the adversary and SeCU . Note that
SeCU is not able to authenticate random messages used in
Steps 1, 5 and 12 and follows the protocol computing the key
Ksync. This leads to MAC failure as ECUi, and SeCU are
in out-of-sync with different keys.

A
1) TokenECUi

rand∗(inject);
SeCU
2) Generate Kses and Ksync;
3) Send eKm (Kses, Ksync, rand∗);
A/ECUi

4) Store /Discard;
ECUi

5) TokenECUi
rand;

SeCU
6) Take Kses and generate K∗sync;
7) Send eKm (Kses, Ksync, rand);
ECUi

11) Decrypt and store Kses and Ksync;
A
12) TokenECUi

rand∗∗(inject);
SeCU
13) Take Kses and generate K∗∗sync;
14) Send eKm (Kses, K∗∗sync, rand);
A/ECUi

15) Store /Discard;
ECUi

16) Send rand, MACKsync (rand)

SeCU
17) MAC V erification fails (Ksync 6= K∗∗sync)

B. Analysis of J1939-Asym

This protocol aims to establish session secrets among ECUs
and SeCU . It applies public-key cryptography and needs a
support of public key infrastructure (PKI) to obtain certificates
of public keys. The protocol also lacks secure mutual authen-
tication. The below steps present an MITM attack. It is easy
to see that the random number rand∗ is not signed in Step 1.
As the result, the protocol accepts past communication with
a new random number. This is to say that SeCU cannot tell
apart forged requests (Steps 1 and 12) from a valid one (Step
5). The MITM attack was successfully implemented using the
Matlab 2018 software.

A
1) Send CertECUi

= {gx, Info, rand∗, SigOEM (gx, Info)};
SeCU
2) Generate Kses and Ksync;
3) Send gy eK(SigSeCU (gx, gy , rand∗, Kses,

Ksync, rand∗), Kses, Ksync);
A/ECUi

4) Store /Discard;
ECUi

5) Send CertECUi
= {gx, Info, rand, SigOEM (gx, Info)};

SeCU
6) Generate Kses and Ksync;
7) Send gy eK(SigSeCU (gx, gy , rand, Kses,

Ksync, rand), Kses, Ksync);
ECUi

11) Decrypt and store Kses and Ksync;
A
12) Send CertECUi

= {gx, Info, rand∗∗, SigOEM (gx, Info)};
SeCU
13) Generate Kses and Ksync;
14) Send gy eK(SigSeCU (gx, gy , rand∗∗, Kses,

Ksync, rand∗∗), Kses, Ksync);
A/ECUi

15) Store /Discard;
ECUi

16) Send rand, MACKsync (rand)

SeCU
17) MAC V erification fails (Ksync 6= K∗∗sync)

The protocol lacks forward security. When the private key
x of ECUi is compromised, then the encryption key K=gxy

can be computed by the adversary. As K is known, the keys
Kses and ksync can be calculated.

V. NEW PROTOCOL SUITE

We propose a new protocol suite for J1939 to remove
the identified vulnerabilities. It is composed of two amal-
gamated protocols for computationally restricted and non-
restricted nodes. Each amalgamated protocol consists of an
authenticated key exchange protocol (AKEP) and a proto-
col for time synchronization. Symmetric key AKEP (J1939-
symmetric) based on hash functions only is proposed for the
computationally restricted nodes. We remove the identified
vulnerabilities in J1939-Sym as follows. MAC computations
in J1939-symmetric includes all the random numbers. All the
messages in J1939-symmetric are accompanied by their MAC
tags. Certificateless AKEP (J1939-PKI) is proposed for the
nodes that support PKI. Challenge-response pair is properly
included in the signature computation to remove the identified
vulnerability in J1939-Asym.

A. Registration & Protocols

All parties involved in the protocol must be registered by a
trusted authority. In our case, the trusted authority is a vehicle
manufacturer.

J1939-symmetric-Registration

The steps shown below present the registration procedure
of vehicle manufacturer for J1939-symmetric involving SeCU
and ECUi. The communication is done via a secure channel.
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Fig. 3: J1939-Sym injective agreement

ECUi

1) Send ID;
SeCU
2) Generate Ki;
3) Send Ki;
ECUi

5) Store Ki in TPM

J1939-PKI-Registration

For J1939-PKI registration, we assume the vehicle manufac-
turer and key generation centre KGC are same. Since J1939-
PKI is based on certificateless signature scheme, we present
the construction of CL-KIMS.

Construction of CL-KIMS

CL-KIMS is composed of the following nine algorithms.
1) Setup: KGC executes the algorithm. After recieving the

security parameter n, KGC produces the master secret key and
the public parameters params .

(i) KGC picks up an additive cyclic group G whose order is
p. KGC randomly chooses a generator P ∈ G.

(ii) KGC selects the master secret key as k ∈R Zp and
computes the public key of KGC as PKGC=k.P .

(iii) KGC advertises five hash functions:
H1:{0, 1}∗×G→Zp, H2:Zp×{0, 1}64× Zp→Zp,
H3:Zp×Zp→Zp, H4:{0, 1}∗×G×G×G→Zp and
H5:{0, 1}∗×{0, 1}∗×G×G×G×{0, 1}∗×{0, 1}64→Zp.

(iv) KGC finally outputs the public parameters as
params={G, P, PKGC , H1, H2, H3, H4, H5}.

2) Partial private key: After getting params , ECUi inputs
its serial number S.No = {0, 1}∗. KGC generates the partial
private key as follows:

(i) KGC picks up a random number r ∈ Zp and computes
RS.No=r.P and m=H1(S.No ‖ RS.No).

(ii) KGC calculates skS.No=r+m.k mod p and returns
(skS.No, RS.No) to ECUi.

3) Set secret key: Upon receiving params , S.No and time
period t, ECUi generates its secret, helper key and initial
sigining key as follows:

(i) ECUi picks xi∈RZp and computes its public key as
PECUi=xi.P .

4) Set helper key: SeCU sets the initial helper key for
ECUi.

(i) SeCU picks seedi∈RZp as the initial seed for ECUi

and computes helper value as h1=H2(seed
i ‖ LGK).

Correspondingly, the initial helper public key can be
computed as HP1=h1.P .

5) Set signing key: ECUi sets the signing key as follows:
sigki=skS.No-hi+l.x. Prior to setting the signing key, ECUi

computes k = H4(S.No ‖ PECUi
‖ PKGC ‖ RS.No) and

l=H3(k ‖ t).
6) Update helper key: SeCU and ECUi execute this

algorithm to update helper keys.
(i) In general, ith helper value can be computed as

hi=H3(hi−1 ‖ LGK). SeCU computes the ith public
terms of the helper values as HPi=hi.P .
In contrast to Xiong et al. [29] signature scheme, in this
scheme the helper key is generated using a hash chain
hi−1 and long-term group secret key LGK. The helper
keys can be updated at specified time interval. The key
update can be done with the help of session counter
cntrses. The automatic key update assures self-healing
ability to the signature scheme.

7) Update signing key: ECUi updates the signing key as
follows: sigki+1=skS.No-hi+1+l.x

8) Set signing: Given a message M ∈ {0, 1}∗ ∈ Zp and
period i, ECUi signs the message as follows:

(i) ECUi picks up j∈Zp and computes J=j.P .
(ii) ECUi computes u=H5(M,S.No,RS.No, PECUi

, J, PKGC

, t) G=j+ u.sigki mod p.
9) Verify: The verification algorithm is loaded

with params , S.No, PECUi
, HPi and message

signature pair (M,G). Then, it verifies whether the
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following equation holds: G.P=J+u.(RS.No+H(S.No ‖
RS.No).PKGC−HPi+l.PECUi ). If the equation holds, then
the verifier returns true; otherwise, the verifier returns false .
Secure channel is maintained during registration.

B. J1939-symmetric

J1939-symmetric suite consists of two protocols: key ex-
change and time synchronization. J1939-symmetric is pre-
sented below. The first seven steps present the key exchange
protocol executed between ECUi and SeCU . ECUi sends a
tag along with a random number. SeCU verifies the authentic-
ity of ECU and picks up a random token. The random token
is fixed for the ECU group and it is changed, when SeCU
receives a request from another ECU group. The random
token is forwarded to ECUi after deriving session and syn-
chronous keys. ECUi verifies the authenticity of SeCU and
computes the keys by using the token. The protocol for time
synchronisation consists of Steps 1.8 to 1.11 and is executed
between ECUi and SeCU . It is designed using symmetric
cryptography (only MAC). All the tag computations in the key
exchange protocol and the protocol for time synchronisation
should include all the fields of a J1939 frame except the fields,
where the tag is fed.

In order to broadcast messages using the standard CAN
frame, messages to be broadcasted should be mapped to the
standard CAN frame. To present the frame allocation in the
standard CAN, we assume the following: size of a random
number, token, key, truncated MAC tag and counter is 64 bits,
64 bits, 128 bits, 64 bits and 32 bits, respectively. Accordingly,
the key exchange protocol needs two frames each for Step 1.1
and 1.5. In total, the key exchange protocol demands four
frames.
ECUi

1.1)rand∗ ∈ Zp, Send rand∗, MACt(rand∗ ‖ Ki);
SeCU
1.2) V erify MACt(rand∗ ‖ Ki);
1.3) Generate token∗Gi

∈ {0, 1}64
1.4) KD(token∗Gi

‖ LGK) = Kses, Ksync, Ksyncpair;

1.5) Send token∗Gi
, MACt(token∗Gi

‖ rand∗ ‖ Ki);
ECUi

1.6) V erify, MACt(token∗Gi
‖ rand ‖ Ki);

1.7) KD(token∗Gi
‖ LGK) = Kses, Ksync, Ksyncpair;

ECUi

1.8)rand∗∗ ∈ Zp, Send rand∗∗, MAC./t(rand
∗∗ ‖ Ksync);

SeCU
1.9) V erify MAC./t(rand

∗∗ ‖ Ksync);
1.10) Send tSeCU , MAC./t(tSeCU‖rand∗∗‖Ksync

);

ECUi

1.11) V erify MAC./t(tSeCU‖rand∗∗‖Ksync
);

The last protocol of J1939-symmetric is the protocol for
synchronising time among ECUs. The below steps presents the
synchronising steps between a sender and a receiver ECUs.
ECUs

2.1)rand ∈ Zp, Send rand, tsnd, MAC(tsnd ‖ rand ‖ Ksyncpair);
ECUr

2.2) V erify MAC(tsnd ‖ rand ‖ Ksyncpair);
2.3) Accept tsnd;
4) Send rand, trcv , MAC(trcv ‖ rand ‖ Ksyncpair);
ECUs

2.5) V erify MAC(trcv ‖ rand ‖ Ksyncpair);
2.6) Accept trcv ;

C. J1939-PKI

The below steps present J1939-PKI. ECUi generates and
forwards x.P along with a signature to SeCU. SeCU verifies
the signature and computes a session key K. The encrypted
secrets C, y.P and a signature are sent to ECUi. ECUi

verifies the signature and decrypts the cipher text C. The
signature computation in Step 3.2 and Step 3.6 includes all
the fields of a J1939 frame. The frame allocation requires 2
frames for the messages at Step 3.2 and Step 3.6.
ECUi

3.1) Choose x ∈R Zp, x.P, SigECUi
(x.P );

3.2) Send x.P, SigECUi
(x.P );

SeCU
3.3) V erify SigECUi

(x.P ), token∗∗Gi
∈R Zp;

3.4) KD(token∗∗Gi
‖ LGK) = Kses, Ksync, Ksyncpair;

3.5) Choose y ∈R Zp, y.P, K = x.y.P, C =
{Kses, Ksync, Ksyncpair}K;
3.6) Send C, y.P, SigSeCU (y.P ‖ C ‖ x.P );
ECUi

3.7) V erify SigSeCU (y.P ‖ C ‖ x.P ), K = x.y.P ;
3.8) Decrypt C;

VI. SECURITY ANALYSIS

A formal analysis of J1939-symmetric and J1939-PKI is
presented using the radom oracle model [42] to prove the
security of the session secrets. Informal analysis of J1939-
symmetric and J1939-PKI is done to prove the security of the
protocols against the security goals and the attacks.

A. Informal analysis

Proposition 1: The protocols J1939-symmetric and J1939-
PKI provide session key freshness.

In J1939-symmetric, the session keys, namely Kses, Ksync

and Ksyncpair are generated using a randomly generated token
(token∗G) for every session by the key derivation function KD
(ref Step 1.7 in J1939-symmetric). Hence, J1939-symmetric
assures the session key freshness.

Similar to J1939-symmetric, in J1939-PKI the session keys,
namely Kses, Ksync and Ksyncpair are generated using a
randomly generated token (token∗∗G ) for every session by
the key derivation function KD (ref Step 3.4 in J1939-PKI).
Therefore, J1939-PKI ensures the session key freshness.

Proposition 2: For the protocols J1939-symmetric and
J1939-PKI, any replay of messages will be detected and
discarded by the protocol parties.

In J1939-symmetric protocol, the challenge-response pair is
properly established. That is, rand∗ in the step 1.1 (challenge)
is included in the MAC of Step 1.5. Therefore, any attempt of
replay will not yield for the adversary. In J1939-PKI protocol,
challenge message (xP in Step 3.2) is included in the response
message (the signature in Step 3.6). Since the challenge-
response pair is properly included in the protocol, the replay
attack will not work on this protocol.

Proposition 3: Given the protocols J1939-symmetric and
J1939-PKI, any attempt of masquerading attack will fail with
non-negligible probability.
In J1939-symmetric protocol, the adversary has the mas-
querading possibility in the steps 1.1, 1.8 and 1.10. In all
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the aforementioned steps, a MAC is included which require
a session-specific secret or long-term secret. In particular, the
steps 1.1 and 1.8 need the long-term secret Ki, and the step
1.10 requires session-specific secret ksync. Hence, without the
knowledge of either long-term or session-specific secret, the
adversary cannot masquerade with high probability.

Similarly, in J1939-PKI, for the adversary to masquerade
with non-negligible probability, the knowledge of long-term
secret key is needed to construct a valid message specified in
Step 3.2 and Step 3.6. Therefore, without knowing the long-
term secrets of parties in the protocol, the adversary cannot
masquerade with non-negligible probability.

Proposition 4: Given the protocols J1939-symmetric and
J1939-PKI, any attempt of MITM attack will suceed with
negligible probability.
In J1939-symmetric, we have argued that the adversary can
succeed either the replay or the masquerading attack in the
steps 1.1, 1.5, 1.8 and 1.10 with negligible probability. Hence,
it is infeasible for the adversary to mount a MITM attack with
non-negligible probability.

In J1939-PKI, to successfully mount a MITM attack with
non-negligible likelihood, the adversary should be able to
replay and masquerade messages. Since we have argued that
neither of the attacks can succeed with non-negligible like-
lihood, it is infeasible for the adversary to mount a MITM
attack with non-negligible likelihood.

B. Formal Analysis

Now, we present a formal analysis of J1939-symmetric and
J1939-PKI. J1939-symmetric uses long-term secrets (Ki and
LGK) to establish session secrets among ECUs that does not
support PKI. J1939-PKI utilises long-term secrets sk(ECUi)
and sk(SeCU)to establish session secrets among ECUs that
support PKI.

A generic party P is introduced, which can be either one of
ECUi or SeCU. An instance can be defined as an execution
of a protocol (T ). For example, an instance of T run by P
is denoted by T (i)

P , where i is the i-th run of the protocol.
An oracle is defined as a collection of protocol instances that
are run by the same parties OTP = {T (i)

P |i = 1, 2, . . .}. A
sequence of games is defined for the protocol to prove its
security. The first game defines the attack against real protocol,
and the final game defines the attack against the ideal protocol,
where the advantage of adversary A is negligible. Since an
advantage between any two consecutive games is negligible,
we can conclude that A has a negligible advantage of winning
the game against the real protocol.
A can make the following queries:
—Send(T (i)

P ,M): The adversary ability to send messages
is modelled using this query.

—Execute(T (i)
P ): A can overhear any communication in

insecure channel that is modelled using this query.
—Hash(T (i)

P ): The hash oracle may be queried by an
adversary. When the hash oracle receives a query, it looks
at the hash table (H), which stores the message and hash in
the format (M,H).If the queried message (M ) and is stored
already in H, it will return the stored hash (H). Otherwise,

it will return a random number (H ′) for the inquired M and
stores the pair (M,H ′) in H.

Similarly, —Sig(T (i)
P ) & —Enc(T (i)

P ) queries model sig-
nature and encryption queries made by A, respectively. The
signature and the encryption oracles use tables E and S ,
respectively to store message and cipher text pair, and message
and signature pair in the form (M,C) and (M,S), respectively.
When E and S receive cipher text or a signature that is not
in E and S, respectively, E and S return a random cipher text
and a random signature as S′ and C ′, respectively, and the
tables make an appropriate record of the returned values.

—Session − key reveal(T (i)
P ): The ability of learning

session keys by A is modelled using this query.
—Session−state reveal(T (i)

P ): A uses this query to learn
session specific ephemeral secrets.

—Corrupt(P(i)
G ): Long-term secrets of parties can be ac-

quired by A if A uses this query.
—Test(P(i)

G ): This query can be asked by A once only
at the very end of the game. The asked party G, tosses an
unbiased coin b. If b = 1, then it returns the actual session
key. Otherwise, it returns a random number. A wins the game
if it is able to identify b.

Remark 1: The hash H(·), encryption Enc(·) and signature
Sig(·) oracles are instances of the random oracle (RO).

Now the definitions that are needed for our analysis is
introduced. The definition for partnership, and accepted and
sid can be referred in [43] and [44], respectively.

Definition 5: (Freshness) The i-th session is fresh if P(i)
G

is in accept state and the following queries are not asked,
Session − state reveal(T (i)

P ), Session − key reveal(T (i)
P )

and Corrupt(T (i)
P ).

Definition 6: (Negligible function [45]) A function m:N→R
is negligible if it approaches zero fater than the reciprocal of
any polynomial. That is, for every c∈N there exist an integer
nc, such that m(n)≤ 1

nc for all n≥ nc.
Definition 7: (Elliptic curve discrete logarithm problem

(ECDLP) assumption) For the given two points P and xP ,
it is assumed that finding x from the points is computation-
ally intractable or any probabilistic polynomial time algo-
rithm A has a negligible advantage in finding the integer x
AdvECDLP

A (n) = Pr[A(1n, P, xP )] = x] ≤ m(n).
Definition 8: (Computational elliptic curve Diffie-Hellman

(CECDH) assumption ) Given three points P , xP , yP , it
is assumed that finding the point xyP from the points is
computationally intractable or any probabilistic polynomial
time algorithm A has a negligible advantage in finding xyP
AdvECCDH

A (n) = Pr[A(1n, P, xP, yP )] = xyP ] ≤ m(n).
Definition 9: (Semantic security) The protocol is seman-

tically secure if the adversarial advantage is negigible in
guessing a secret bit for a test query issued to a fresh session
or AdvSS

A (T , n) = Pr[A(T , n) = b]− 1
2 ≤ m(n).

Difference lemma [46] Let A, B and F be events defined
in some probability distribution, and suppose that A ∧ ¬F ≡
B ∧ ¬F . Then, Pr[A]− Pr[B] ≤ Pr[F ].

Theorem 1: For the j1939-symmetric protocol (further
called T ) and the following assumptions: a long term secret
key can be guessed with an advantage 1

2l
, the hash function
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generates MACs with ` bits, A has access to all public
oracles and can issue a polynomial number of queries. Then,
semantic security of T can be broken by A with the advantage
AdvSS

P ≤
q2hash

2`
+ 1

2`
,

where qhash stands for the number of queries to the hash
oracle.

Proof of Theorem 1: Three games G0, G1 and G2 are
defined. The event in which A wins the game Gi, where
i = 0, 1, 2 is Ei.
Game G0: The real-world attack against semantic security is
specified in this game. The adversary issues a Test(P) query
to an arbitrary session which is in the accept state and the
freshness holds. A wins the game if it can guess the bit b.
According to the definition of semantic security, A wins with
an advantage:
AdvEE

T = |Pr(E0)− 1
2 |.

Game G1: This game and the previous game are identical
unless the collision is found for MACs, i.e., MAC in the steps
1.1 and 1.5 of J1939-symmetric. If the collision occurs (in
the hash table) for the MACs in the steps 1.1 and 1.5, A
can modify the random integer and the token, respectively.
As a result, A can inject tokens from the past communica-
tions, which will make the protocol to loose the session key
freshness. According to the birthday paradox, the number of
queries to the hash table need to be at least q2hash

2`
. We use the

difference lemma to show that
| Pr[E1]− Pr[E0] |≤ q2hash

2`
.

Game G2: This game presents the known key secrecy of
T . In this game, A asks Session − key reveal(T ) without
losing the freshness of the session. That is, the queries are
issued to the remaining sessions apart from the test session to
get the session keys (Kses, Ksync and Ksyncpair). Despite
possessing the remaining session keys, A requires the long-
term secret key LGK to compute the present session keys. The
advantage of A for attaining the LGK is 1

2`
. The advantage

of A in this game is:
| Pr[E2]− Pr[E1] |≤ 1

2`
.

The game G2 is the final one, where the probability of A in
winning the event is, Pr[E2] =

1
2 . By the triangular inequality,

we have:

| Pr[E0]− Pr[E2] |=| Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] |

≤| Pr[E0]− Pr[E1] | + | Pr[E1]− Pr[E2] |=
q2hash
2`

+
1

2l
.

This means that

| Pr[E0]− Pr[E2] |=| Pr[E0]−
1

2
|

AdvEE
T ≤ q2hash

2`
+

1

2l
.

This concludes our proof. 2

Theorem 2: For the J1939-PKI protocol (referred as T ) and
assuming that the signature function generates digests with k
bits of security, the encryption function produces cryptogram
with l bits of security, the ECDLP and CECDH problem can be
solved with an advantage AdvDLP and AdvCECDH , respec-
tively the random numbers of m bits are used, A has access
to all public oracles and can issue a polynomial number of

queries. Then, semantic security of T can be broken by A with
the advantage AdvEE

T ≤ max(AdvECDLP , Adv
2
ECDLP ) +

q2enc

2l
+ AdvECDLP +max(AdvECDLP , AdvECDHP ) where

qenc stands for the number of queries to the encryption oracle.
Proof of Theorem 2: Three games are defined (G0 to G2).

Ei be the event in which adversary wins the game Gi.
Game G0: This game presents the real-world attack against
T . After collecting polynomial number of queries, A issues
Test(T ) query to arbitrary session which is in accept state and
freshness holds. The test query returns a bit to A. A wins the
game and gets session secrets if A guesses the bit correctly;
otherwise, A gets random strings for the session secrets. As
per the definition of semantic security, the advantage of A is
AdvEE

T = |Pr(E0)− 1
2 |.

Game G1: This game is identical to previous game except
that A finds collision in the signature table. If A can forge
signatures in Step 2 and Step 6, then it can forge ECUi to
SeCU and inject fake session secrets to ECUi by forging
SeCU , respectively. The forgery can be done by two types of
activities, which gives two cases.

Case i: Outsider adversary which can replace the public
key of ECUi but it cannot access the master secret key. For
the replaced public key, PK1 cannot be constructed as s is
unknown. A can acquire s from PK1 by employing a ECDLP
solver. The advantage attained by A for employing the solver
is AdvECDLP .

Case ii: Insider adversary can acquire the pubic key as a
honest ECUi, but the adversary cannot change the public
key in the public directory. For replacing the public key
from the public directory, PK1 and PK2 must be changed.
The advantage attained by A for replacing the public key is
Adv2ECDLP . The overall advantage acquried by A is
|Pr(E1)− Pr(E0)| ≤ max(AdvECDLP , Adv

2
ECDLP ).

Game G2: This game and the previous game are same
except that A finds collision in the encryption table. If A
can find collision in the encrytion table, then it can inject fake
session secrets by replacing C. The advatage gained by A as
per the difference lemma is
|Pr(E2)− Pr(E1)| ≤ q2enc

2l
.

Game G3: Known key secrecy is presented in this game.
A issues Session − key reveal(T (¬i)

ECU〉) and Session −
state reveal(T (¬i)

ECU〉) queries to the remaining session to ac-
quire remaining session secrets and ephemeral secrets, respec-
tively. Although A can acquire the remaining session secrets,
K of the ith session cannot be computed as ECDHP holds.
So to compute K, A employs a ECDHP solver and feeds x.P
and y.P . The advantage attained by A for the employment is
AdvECDHP . Then, according to the difference lemma
|Pr(E3)− Pr(E2)| ≤ AdvECDLP .

Game G4: This game presents the forward security of the
protocol, and it is similar to the previous game. A issues
Corrupt(P(i)

ECU〉) finally to acquire the long-term secret r
of ECUi. Although A knows r, it cannot decrypt C. So
to decrypt C A must be knowing either x or K.A can
employ two seperate solvers to acquire x and xy from x.P
and K, respectively. The advantage of A in the employment
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is AdvECDLP and AdvECDHP . Then, as per the difference
lemma
|Pr(E4)− Pr(E3)| ≤ max(AdvECDLP , AdvECDHP ).

In this final game, the probability of winning the event E4

for A is 1
2 . by the triangular inequality, we have:

| Pr[E0]− Pr[E4] |=| Pr[E0]− Pr[E1] + Pr[E1]−
Pr[E2] + Pr[E2]− Pr[E3] + Pr[E3]− Pr[E4] |
≤| Pr[E0]− Pr[E1] | + | Pr[E1]− Pr[E2] |
+ | Pr[E2]− Pr[E3] | + | Pr[E3]− Pr[E4] |

= max(AdvECDLP , Adv
2
ECDLP ) +

q2enc
2l

+

AdvECDLP +max(AdvECDLP , AdvECDHP ).

This means that

| Pr[E0]− Pr[E4] |=| Pr[E0]−
1

2
|

AdvEE
T ≤ max(AdvECDLP , Adv

2
ECDLP ) +

q2enc
2l

+

AdvECDLP +max(AdvECDLP , AdvECDHP ).

This concludes our proof. 2

Theorem 3: Suppose that if the discrete logarithmic problem
is intractable in G, then the CL-KIMS is secure under the
random oracle model.
The above theorem can be proved using the following four
lemmata.

Lemma 4: If an adversary AI can break the CL-KIMS
scheme against replacing public key attack with non-negligible
advanatge εAIsuccess and makes the following queries qSSK ,
qSS , qPPK , qSH and qH1

to the oracles set secret key, set
signing key, set partial private key, set helper key and hash
oracle respectively, then there exist a challanger C that can
solve the discrete logarithmic problem with the following
advantage:

εCSuccess ≥ (1− qPPK + qSSK + qSH + qSS

p
).

1

qH1

.εAIsuccess

T
′

m≈O(Tm.(qSS+qPPK+qSSK+qSH )).
Proof: Given a random instance (P,Q) of a discrete logarith-
mic problem such that Q=a.P , where a ∈ Zp, the goal of the
challanger C is to compute a. To compute a, the challanger C
simulates oracles and interact with AI .

Setup: Before interacting with AI , C initialises AI
and itself with the following. At first, C sets AI with
PKGC=Q and sends (P, PKGC) to AI . Further, C randomly
chooses S.No∗ ∈ {0, 1}∗ as the target S.No for A. To
consistently reply to AI’s query, C maintains six lists.
They are L0 ={S.No, skS.No, RS.No, xi, PECUi

, G, J},
L1={S.No,RS.No}, L2={seedi1, cntrGECU

1 , GK},
L3={hi−1, GK}, L4={S.No,RS.No, PECUi

, PKGC},
L5={M,S.No,RS.No, PECUi , J, PKGC , i}.
H1−Query: C maintains a list called L1. If AI queries C

by inputting S.No. C performs the following:

1) If S.No is already in the list, then C outputs the tuple
< S.No,RS.No > to AI .

2) Otherwise, C chooses a random number for r∗ ∈ Zp and
computes R∗S.No as r.P ∗.

3) C updates the list L0 with the tuple < S.No,R∗S.No >.

H2 − Query: C maintains a list called L2. If AI queries
C by inputting seedi1 and CntrGECU

1 , then C performs the
following:

1) If seedi1 and CntrGECU
1 are in the list L2, then C outputs

the tuple < seedi1, Cntr
GECU
1 , GK > to AI .

2) Otherwise, C chooses a random number GK∗ ∈ Zp for
GK and computes < seedi1, Cntr

GECU
1 , GK∗ >

3) C returns < seedi1, Cntr
GECU
1 , GK∗ > to AI and

updates the list with < seedi1, Cntr
GECU
1 , GK∗ >.

H3−Query: C maintains a list called L3. If AI queries C
by inputting S.No, then C performs the following:

1) If H(hi−1 ‖ GK) is in the list L2, then C outputs
H(hi−1 ‖ GK) to AI .

2) Otherwise, C chooses two random numbers GK∗ ∈
Zp for GK and h∗i−1 ∈ Zp for hi−1 and computes
H(h∗i−1, GK

∗).
3) C returns H(h∗i−1 ‖ GK∗) to AI and updates the list L2

with H(h∗i−1 ‖ GK∗).
H4−Query: C maintains a list called L4. If AI queries C

by inputting S.No, RS.No, PECUi , PKGC , then C performs
the following:

1) If H(S.No ‖ RS.No ‖ PECUi ‖ PKGC) is in the list L4,
then C outputs H(S.No ‖ RS.No ‖ PECUi

‖ PKGC) to
AI .

2) Otherwise, C chooses random numbers for all the el-
ements in H4 and computes H4(S.No

∗ ‖ R∗S.No ‖
P ∗ECUi

‖ P ∗KGC).
3) C returns H4(S.No

∗ ‖ R∗S.No ‖ P ∗ECUi
‖ P ∗KGC) to

AI and updates the list L4 with H4(S.No
∗ ‖ R∗S.No ‖

P ∗ECUi
‖ P ∗KGC).

H5−Query: C maintains a list called L5. If AI queries C
by inputting S.No and M , then C performs the following:

1) If H(M ‖ S.No ‖ RS.No ‖ PECUi ‖ J ‖ PKGC ‖ i) is
in the list L4, then C outputs H(M ‖ S.No ‖ RS.No ‖
PECUi

‖ J ‖ PKGC ‖ i) to AI .
2) Otherwise, C chooses random numbers for all the ele-

ments in H5 and computes H5(M
∗ ‖ S.No∗ ‖ R∗S.No ‖

P ∗ECUi
‖ J∗ ‖ P ∗KGC ‖ i∗).

3) C returns H5(M
∗ ‖ S.No∗ ‖ R∗S.No ‖ P ∗ECUi

‖ J∗ ‖
P ∗KGC ‖ i∗) to AI and updates the list L5 with H5(M

∗ ‖
S.No∗ ‖ R∗S.No ‖ P ∗ECUi

‖ J∗ ‖ P ∗KGC ‖ i∗).
Partial private key extract −Query : A list is maintained
by C called PPKlist. AI queries the list.

1) If < skS.No, RS.No > is in PPKlist, then C outputs
< skS.No, RS.No > to AI .

2) Otherwise, C chooses two random numbers from Zp, r∗

and k∗ and computes R∗S.No=r∗.P and sk∗S.No=R∗S.No+
r∗ +m.k∗.

3) C returns < R∗S.No, sk∗S.No > to AI and updates the list
with < R∗S.No, sk∗S.No > .

Secret key extract −Query : A list is maintained by C
called SKlist. AI queries the list.
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1) If < xi, PECUi
> is in SKlist, then C outputs <

xi, PECUi > to AI .
2) Otherwise, C chooses a random x∗i ∈ Zp and computes

P ∗ECUi

3) C returns < x∗i , P
∗
ECUi

> to AI and updates the list with
< x∗i , P

∗
ECUi

>.
Signing key extract − Query : A list is maintained by
C called SGlist. AI queries the list by inputting i.

1) If < skS.No, hi, x.k > is in SGlist, then C outputs <
skS.No, hi, x.k > to AI .

2) Otherwise, C chooses three random numbers (<
sk∗S.No, h

∗
i , x.k

∗ >) from Zp.
3) C returns < sk∗S.No, h

∗
i , x.k

∗ > to AI and updates the
list with < sk∗S.No, h

∗
i , x.k

∗ >.
Public key replace −Query : A list is maintained by C

called L0. AI queries the list by inputting P ∗ECUi
.

1) If L0 ={S.No, skS.No, RS.No, xi, P
∗
ECUi

} is in L0, then
C outputs {S.No, skS.No, RS.No, xi, P

∗
ECUi

} to AI .
2) Otherwise, C chooses a random number (< x∗∗i >) from

Zp and computes P ∗∗ECUi
=x∗∗i .P .

3) C returns {S.No, skS.No, RS.No, x
∗∗
i , P

∗∗
ECUi

}
to AI and updates the list with
{S.No, skS.No, RS.No, x

∗∗
i , P

∗∗
ECUi

}.
Helper key extract − Query : A list is maintained by C
called HP list. AI queries the list by inputting t.

1) If < H3(hi−1, GK) > is in HP list, then C outputs <
H3(hi−1, GK) > to AI .

2) Otherwise, C chooses two random numbers GK∗, hi−1
∈ Zp and computes < H3(h

∗
i−1, GK

∗) >.
3) C returns < H3(h

∗
i−1, GK

∗) > to AI and updates the
list with < H3(h

∗
i−1, GK

∗) >.
Sign − Query : When the tuple < S.No∗,M∗, t∗ > is
delivered to the oracle, C chooses the list L5 and reply to
AI as follows:

1) If < S.No∗,M∗, t∗ > is in
L5={M∗, S.No∗, RS.No, PECUi

, J, PKGC , i
∗}, then

C outputs G∗=j+l∗.sigki mod p and J to AI .
2) Otherwise, C chooses two random numbers

< j∗∗, sigk∗∗i > from Zp and computes
G∗∗=j∗∗+l∗∗.sigk∗∗i mod p and J∗∗. C updates
L5={M∗, S.No∗, RS.No, PECUi

, J∗∗, PKGC , i
∗}.

3) C returns {G∗∗, J∗∗} to AI and updates the list L0

={S.No, skS.No, RS.No, xi, PECUi , G
∗∗, J∗∗}.

Forgery : After finishing the oracle queries, AI outputs a
forged signature (G∗, J∗, i∗) for M∗ and S.No∗.AI computes
G∗. The G∗ can be verified as follows: G∗.P=J+l.(RS.No +
H1(S.No ‖ RS.No).PKGC − H2(seed

i
1 ‖ cntrGECU

1 ‖
GK).PECUi

According to forking lemma [47], if the chal-
langer replays the oracle queries with same random tape for
a different random function, then the challanger can produce
five different valid signatures G∗1, G∗2, G∗3, G∗4 and G∗5. From
the signature G∗, C has an opportunity to compute the discrete
logarthim for the following: J=j.P , RS.No=r.P , PKGC=k.P ,
H(hi−1 ‖ GK).P and PECUi

=x.P .
Now, we analyse the the probability that C solves the

discrete logarthimic problem. We define three events where
C invovles in solving the discrete logarthimic problem.

1) S1: The event in which C does not abort the simulation
while interacting with AI .

2) S2:The event in which AI generates a valid signature
forgery for the message M∗ and S.No∗ at time t.

3) S3: The event in which AI satisfies the generated signa-
ture for S.No∗=S.No.

The success probability of C is defined by the following
equation.

Pr[success] = εCSuccess

= Pr[S1 ∧ S2 ∧ S3]

= Pr[S1].P r[S2 | S1].P r[S3 | S1 ∧ S2]

The probability that C does not abort the simulation when AI
makes at most queries to partial private key is (1 − 1

p )
qPPK .

The probability that C does not abort the simulation when
AI makes at most queries to set secret key is (1 − 1

p )
qSSK .

The probability that C does not abort the simulation when AI
makes at most queries to set helper key is (1 − 1

p )
qSH .The

probability that C does not abort the simulation when AI
makes at most queries to set signing is (1 − 1

p )
qSS . That

gives Pr[S1] ≥ (1 − qPPK+qSSK+qSH+qSS

p ). The probability
that C outputs a valid signature is Pr[S2 | S1]≥εAIsuccess. The
probability that AI produces a valid signature by satisfying
S.No=S.No∗ without aborting the simulation is given by
Pr[S3 | S2 ∧ S3] ≥ 1

qH1
. Hence, the probability of solving

the discrete logarthimic problem is given by

εCSuccess ≥ (1− qPPK + qSSK + qSH + qSS

p
).

1

qH1

.εAIsuccess

Analysis of running time : As the computation time for
scalar multiplication is dominant than the computation time
of other primitives, the running time complexity is evalu-
ated for the operations involving point multiplication alone.
T
′

m≈O(Tm.(qSS+qPPK+qSSK+qSH ))
Lemma 5: If an adversary AII who knows master secret

(k) and partial private key (skS.No) breaks the CL-KIMS with
non-negligible advanatge εAII

success and makes the following
queries qSSK , qSS , qSH and qH1 to the oracles set secret key,
set signing key, set helper key and hash oracle respectively,
then there exist a challanger C that can solve the discrete
logarithmic problem with the following advantage:

εCSuccess ≥ (1− qSSK + qSH + qSS

p
).

1

qH1

.εAIIsuccess

T
′

m≈O(Tm.(qSS+qSSK)).
The proof of this lemma is exactly same as that of proof of
lemma 4. So we skip the proof of this lemma here. The only
difference is that partial private key query does not involve.

Lemma 6: If an adversary AI who knows the helper keys
and signing keys for (t−1) period and tries to alter the public
key of ECUi at t can break the CL-KIMS with non-negligible
advantage εAIsuccess which makes the following queries qSSK ,
qSS , qPPK , qSH and qH1 to the oracles set secret key, set
signing key, set partial private key, set helper key and hash
oracle respectively, then there exists a challenger C that can
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solve the discrete logarithmic problem with the following
advantage:

εCSuccess ≥ (1− qPPK + qSSK + qSH + qSS − 2(t+ 1)

p
).

1

qH1

.εAIsuccess

The proof of this lemma is exactly same as that of proof of
lemma 4. So we skip the proof of this lemma here.

Lemma 7: If an adversary AII who knows the helper keys
and signing keys for (t− 1) period ECUi can break the CL-
KIMS with non-negligible advantage εAIsuccess which makes
the following queries qSSK , qSS , qSH and qH1

to the oracles
set secret key, set signing key, set helper key and hash oracle
respectively, then there exists a challenger C that can solve the
discrete logarithmic problem with the following advantage:

εCSuccess ≥ (1− qSSK + qSH + qSS − 2(t+ 1)

p
).

1

qH1

.εAIIsuccess

T
′

m≈O(Tm.(qSSK+qSH )).
The proof of this lemma is exactly same as that of proof of
lemma 4. So we skip the proof of this lemma here.

VII. FORMAL VERIFICATION

In this section, formal verification of J1939-symmetric and
J1939-PKI protocols is provided to ensure that the proposed
protocols satisfy the intended security attributes. The entire
scripts of the rewritten protocol can be found in [48].

A. Verification of J1939 symmetric protocol

Here, we present the security properties that are verified in
the Tamarin. We present the lemmata that are used to verify the
security properties. The following lemmata in the first order
logic verifies the security properties:

1) executable,
2) Injectiveagreement_ECU,

Injectiveagreement_SeCU,
3) ECU_secrecy, SeCU_secrecy and
4) ECUi_KKS.

1) lemma executable: exists-trace "(Ex
ECU SeCU m #i #j. Send(<ECU,m>)@i &
Receive(<SeCU,m>) @ j & i <j) <=> T"

This lemma states that there exist ECU that sends message
m at time i, and there exists GECU that recieves the m at time
j. This lemma is essential to verify the reachability of states.

2) lemma Injectiveagreement_ECU:" All
rand ECU SeCU #i.Commit_strongA(ECU,
SeCU, rand)@ i==>(Ex #j . Running_
strongA(SeCU,ECU,rand) @ j & j < i
& not (Ex ECU2 SeCU2 #i2. Commit_
strongA(ECU2,SeCU2,rand) @ i2 & not
(#i2 = #i)))"
lemma Injectiveagreement_SeCU:" All
rand ECU SeCU #i.Commit_strongB(SeCU,
ECU,rand)@ i ==>(Ex #j . Running_
strongB(ECU,SeCU,rand) @ j & j < i
& not (Ex ECU2 SeCU2 #i2. Commit_

strongB(SeCU2,ECU2,rand) @ i2 & not
(#i2 = #i)))"

The above two lemmata verify the injective agreement
property. The lemmata verify that there uniquely exists a
running partner for each commit by a party. It is noted that
the injective agreement alone is verified as it sits on the top
of the hierarchy of authentication claims.

3) lemma ECU_secrecy:" not(Ex k_ses
k_sync k_pair #r.!KU(<k_ses,k_sync,
k_pair>)@r)"

lemma SeCU_secrecy: exists-trace" not
( Ex k_ses k_sync k_pair #r.!KU(<k_ses,
k_sync,k_pair>)@r)"

The above two lemmata state that it cannot be the case that
the knowledge of the adversary includes kses, ksync and kpair.

4) lemma ECUi_KKS:exists-trace" not (
Ex k_ses k_sync k_pair #r.K(<k_ses,

k_sync,k_pair>)@r) & Ex ECU #y.Sesre-
veal(ECU)@ y "

The above lemma states that the knowledge of the adversary
does not include any session secrets even upon sesssion state
and session key reveal is done.

Mapping security goals: The verification of injective agree-
ment (lemmata 2) satisfies the mutual entity authentication
(S1) and resistance of the protocol towards the following
attacks: replay, masquerading and MITM. The verification
of lemmata 3 satisfies the session key secrecy (S5). The
verification of lemma 4 satisfies the security goal (S4), which
is the known key secrecy.

B. Verification of J1939 PKI protocol

The security verification of J1939 PKI protocol is similar
to the verification of the J1939 symmetric protocol. The
verification consist of five lemmata. They are
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1) executable,
2) Injectiveagreement_ECU,

Injectiveagreement_SeCU,
3) ECU_secrecy, SeCU_secrecy,
4) ECUi_KKS and
5) forward secrecy.

As the first four lemmata is similar to the lemmata specified
in verification of J1939 symmetric protocol, the purpose of
the lemmata alone is discussed here. The executable lemmata
guarantees the reachability of states in the protocol. The
injective agreement of ECU and SeCU states that for commited
variables xp and yp, there uniquely exists a running partner.
The secrecy lemma states that the knowledge of the adversary
does not include any session secrets. The known key secrecy
lemma specifies that the knowledge of the adversary does not
include any session secrets even upon session key and session
secret are revealed. The forward secrecy lemma is specified
below.

5) lemma FS:" All lecu #y.K(<lecu>) @y
==>not(Ex k_ses k_sync k_syncpair #r

.K(<k_ses,k_sync,k_syncpair>)@r)"

This lemma states that it cannot be the case that the
knowledge of the adversary does not include any session
secrets even up on revealing the long-term secret of ECUi.
Table II consolidates the verified lemmata of the two protocols.

Mapping security goals: The verification of injective agree-
ment satisfies mutual entity authentication (S1) and resistance
of the protocol towards the following attacks: replay, mas-
querading and MITM.The verification lemma 3 satisfies the
security goal session key secrecy (S5). The verification of
lemma 4 satisfies the security goal (S4) KKS. The verification
of lemma 5 ensures the satisfaction of the security goal FS
(S3).

TABLE II: Verified lemmata for the new protocol suite
XXXXXXXXXXProtocol

Lemmata
Injective agreement Session key security KKS FS

J1939-symmetric& syn X X X NA
J1939-PKI & syn X X X X

VIII. PERFORMACE COMPARISON

In this section, we compare the performace in regards
to computation and communication efficiencies of the new
protocol suite with the protocol suite of Murvay et al. [9]
initially. Then, we compare the performance of our signature
scheme with related signature schemes [29] and [28].

The TEPLA library [49] is used to evaluate the various
elliptic curve operations. From the library, BN-254 curve with
the base field size of 512 bits is chosen for the evaluation.
The inputs for the evaluation are fed as per the specifications
in the library. For the evaluation of AES-128 and SHA-256,
the pycrypto library [50] is utilised. All the operations are
iterated for 1000 iterations, and the average value is taken as

the computation time (CT ) of the operations. Correspondingly,
CPU cycles per operation (CPO) is measured.

The evaluation is done on Ubuntu (V 16.04) with 64 bit Intel
core I7 central processing unit (CPU) at 2.6 GHz operating
frequency. The average computation time and CPO of the
operations on Ubuntu is presented in Table III. We define
the following notations. TA, TM , TP , TEx, TE and TH -time
required for a point addition on the curve, for a point multi-
plication on the curve, for a pairing operation on the curve,
for an exponentiation operation on the curve, for performing
an encryption operation and for performing a hash operation,
respectively. It should be noted that the time duration for
exponentiation operation (TEx) and the point multiplication
are approximately equal [51]. To present a fair comparison
at protocol level, we assume that a signature computation,
signature verification, public-key encryption/decryption and
certificate verification need a pairing operation in Murvay et
al. [9] protocol and a point multiplication in J1939 PKI as the
protocol suite of Murvay et al. [9] is based on conventional
elliptic curve based PKI. To compare the communication cost
involved in protocols, we assume the following: the size of
a token is 64 bits, the size of a random number is 64 bits,
the size of a symmetric encryption is 128 bits, the size of a
MAC/MACt is 256/64 bits, the size of a signature is 512 bits,
the size of a certificate is 512 bits, the size of a public key is
512 bits and the size of an elliptic curve point is 256 bits.

TABLE III: Average compuation time and CPO of the cryp-
tographic operations in the Ubuntu OS

Notations TA TM TP TE TH
CT 0.2 µs 1.38 ms 13.44 ms 0.22 ms 55.11 µs
CPO 5.18× 104 3.6× 106 41.78× 106 5.46× 105 14.61× 104

TABLE IV: Security properties governed in J1939-symmetric
protocol

Comparison of various security attributes
Security properties Murvay et al.[9] J1939-symmetric
Mutual authentication No Yes
KKS Yes Yes
Session key security No Yes
Session key freshness Yes Yes
Resistance to imperson-
ation attack

No Yes

Resistance to replay attack No Yes
Resistance to MITM No Yes
DoS No Yes
Provable security No Yes
Formal verification No Yes

For J1939-symmetric protocol, the total computation time
required is 6 TH which is 330.66 µs and 87.66 × 104 CPU
cycles, whereas Murvay et al. [9] protocol requires TE which
is 0.22 ms and 5.46 × 105 CPU cycles. It is apparent that
J1939-symmetric requires ≈ 99 % lesser CPU cycles than
the protocol suite of Murvay et al. [9]. The communication
cost involved in J1939-symmetric is 256 bits that accounts for
four standard CAN frames, whereas the communication cost
involved in J1939-Sym [9] is 384 bits that accounts for six
standard CAN frames. It is conspicuous that the key exchange
protocol in J1939-symmetric consumes 20 % lesser number
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TABLE V: Security properties governed in J1939-PKI proto-
col

Comparison of various security attributes
Security properties Murvay et al.[9] J1939-PKI
Mutual authentication No Yes
KKS Yes Yes
Session key security Yes Yes
Forward secrecy No Yes
Session key freshness Yes Yes
Resistance to imperson-
ation attack

No Yes

Resistance to replay attack No Yes
Resistance to MITM No Yes
DoS No Yes
Provable security No Yes
Formal verification No Yes

of bits than J1939-Sym [9]. Table IV presents the security
and functional attributes of J1939-symmetric in comparison
with the protocol of Murvay et al. [9]. Therefore, J-1939-
symmetric is computation and communication efficient with
robust security.

The computation cost involved in J1939-PKI protocol is
4 TM+2TEx+TE , which is 8.5 ms and 221.46 × 105 CPU
cycles. But J1939-Asym [9] needs 4TP +Texp+2TH , which
is 55.58 ms and 171.01 × 106 CPU cycles. It is clear that
J1939-PKI consumes ≈ 60 % lesser CPU cycles than J1939-
Asym [9]. Regarding communication cost, J1939-symmetric
consumes 2176 bits that accounts for five CAN-FD frames,
whereas J1939–Asym [9] needs 2368 bits that accounts for
10 CAN-FD frames. It is apparent that J1939-PKI consumes
3 % lesser bits than J1939-Asym [9]. In terms of security and
functional attributes, Table IV presents the comparison result.
Hence, J1939-PKI is computation and communication efficient
and robust in security.

In table IV, V and VI yes denote the property is satisfied.
No denotes the property is not satisfied, and NA denotes not
applicable. In table VI, DL denotes discrete logarithm. EBSDH
and BSDH denote extended bilinear strong Diffie- Hellman
and Bilinear strong Diffie-Hellman problems, respectively
[28]. Table VI and VII show the security property satisfied
and performance comparison of the protocol, respectively.
From Table VII, it is evident that CL-KIMS and Xiong et
al. [29] signature scheme posses lesser computation time
and CPU cycles than the signature scheme of Karati et al.
[28]. Despite having the same computation time and CPU
cycles, CL-KIMS satisfies important security attributes (ref
Table VI) than the signature scheme of Xiong et al. [29].
Hence, CL-KIMS preserves important security attributes of a
key insulated signature scheme, namely strong key insulation
and secure random access key update and additionally offers
properties namely, self-healing ability and independence of
user involvement during key update.

IX. SIMULATION PERFORMANCE

In this section, we simulate the behaviour of key exchange
in Matlab 2018a using the vehicular network toolbox to
analyse the simulation performance of the proposed protocol
suite in comparison with the protocol suite of Murvay et al.

Fig. 4: TMD of PKI nodes at 250 kbps

[9]. We measure the communication response time regarding
total message delay for both protocol suites. At first, we
present the experimental scenario, and then we present the
evaluation of total message delay (TMD). Before presenting
the experimental scenario and TMD, the vehicular network
toolbox in Matlab 2018a is introduced.

The vehicular network toolbox allows a user to simulate
in-vehicle communication protocols, namely CAN, CAN-FD,
J1939 etc. using Matlab functions and Simulink block sets.
The toolbox has an industrial standard CAN database files
which can be used to relay messages by choosing any pro-
tocol supported by the tool. Specifically, choosing a protocol
supported by the tool, replay and injection of messages can be
performed. Further analysis on the relayed messages can be
performed by exploring the log file. The tool also facilitates
visualisation of the signals with the help of scope in the
toolbox.

A. Experimental Scenario

We consider four experimental scenarios in which the num-
ber of ECUs chosen are 25, 50, 75 and 100, respectively. All
the experimental scenarios are simulated for 250 kbps and 500
kbp. Virtual channel 1 is chosen as the transmitter and receiver
channel. To relay the frames, single frame transmission is cho-
sen over the multi-frame transmission. Time taken to complete
frame transmission is measured using tic-toc command, and
the time taken is measured by average elapsed time to relay
the frames. It should be noted that the tic-toc command in
the Matlab behaves like a stop-watch timer. When a tic is
encountered in the code, the timer in the Matlab starts. When
toc is encountered in the code, the timer stops. Then, the
difference in time between toc and toc is displayed as elapsed
time for relaying frames.

1) Total message delay: Figure 4 and 5 present total
message delay of proposed protocol suite for PKI nodes and
Murvay et al. protocol suite at 250 kbps and 500 kbps,
respectively. In the figures 3 and 4, it is apparent that the
TMD of the proposed protocol suite is lesser than the TMD
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TABLE VI: Security properties governed in proposed signature scheme

Comparison of various security attributes
Security properties Karati et al.[28] Xiong et al.[29] CL-KIMS
Security against type-I ad-
versary

No Yes Yes

Security against type-II
adversary

No Yes Yes

Strong key insulation NA No Yes
Independence of user in-
volvement during key up-
date

NA No Yes

Secure random access key
update

NA No Yes

Self-healing ability NA No Yes
Security assumption EBSDH &

BSDH
DL DL

TABLE VII: Performance comparison of the signature scheme

Item Karati et al.[28] Xiong et al.[29] CL-KIMS
Signature length 2 | G | 2 | G |+| Zp | 2 | G |+| Zp |
Signing cost (S) 3Texp 2TM 2TM

Verification cost (V) 2Texp+TP 6TM 6TM

Total cost (S+V) 20.34ms 11.04 ms 11.04 ms
CPU cycles 115.99×106 30.04×106 30.40×106

Fig. 5: TMD of PKI nodes at 500 kbps

of Murvay et al. protocol suite. Based on the scenarios 1, 3
and 5 in figure 4 and 5, the TMD of the proposed protocol
suite is approximately 50 % lesser than the TMD of Murvay et
al. protocol suite. This is due to the fact that the lesser number
of frames are relayed because of not using certificates. In case
of Murvay et al. protocol, the elliptic curve implementation
requires 10 frames of CAN-FD in total for a given session,
whereas the proposed protocol suite require only 5 frames of
CAN-FD in a given session.

Figure 6 and 7 present TMD of proposed protocol suite for
non-PKI nodes and Murvay et al. protocol suite at 250 kbps
and 500 kbps. From both figures 6 and 7, it is clear that TMD
of the proposed protocol suite for non-PKI nodes is lower than
the TMD of Murvay et al. protocol suite. It is due to the lesser
number frames consumed in Step 1.1 and Step 1.5 of J1939-
symmetric. In case of Murvay et al. protocol suite, the total

Fig. 6: TMD of non-PKI nodes at 250 kbps

standard CAN frames required is 6 frames in a given session,
whereas in the proposed protocol suite, just 4 standard CAN
frames are sufficient.

Based on the simulation, it is evident that the key exchange
protocols in the new protocol suite outperform the key ex-
change protocols of Murvay et al. [9].

X. CONCLUSION

In this paper, the protocol suite of Murvay et al. is formally
analysed. We describe the vulnerability of insecure mutual
authentication that leads to MITM attack using the Tamarin
tool. In response, a new protocol suite is proposed. The new
protocol suite has key exchange and time synchronisation
protocols and a signature scheme. The key exchange protocol
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Fig. 7: TMD of non-PKI nodes at 500 kbps

for computationally restricted node assures one pass authenti-
cation, and the protocol for the nodes that support PKI is based
on certificateless signature scheme. Both the protocols assure
secure mutual authentication, and the later one assures forward
secrecy. CL-KIMS assures important properties, namely strong
key insulation, secure key update and self-healing ability.
The protocol suite and the signature scheme are formally
analysed in the random oracle model. The protocol suite is
formally verified using Tamarin tool for mutual authentication,
session secrecy, resistance towards the attacks such as replay,
masquerading and MITM and other security properties. The
performance comparison shows that the new protocol suite
is computation and communication efficient than the protocol
suite of Murvay et al. with robust security; the simulation
performance shows that the key exchange protocols in the new
protocol suite hold lesser total message delay than the protocol
suite of Murvay et al.
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