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Abstract. In recent years, the conventional power grid system has been
streamlined towards Smart grid infrastructure that empowers two-way
communication between the consumers and the utility providers. This
however also makes the grid more susceptible towards faults as well as
physical and cyber attacks. In this work, we propose a Physically Un-
clonable Function (PUF) and Blockchain based detection and preven-
tion mechanism to secure the Smart grid system against such faults and
adversarial threats. In this context, we discuss a recently proposed Ma-
nipulation of demand via IoT (MadIoT) attacks, False Data Injection
Attacks (FDIA) via Smart meters and Electric Fault Attacks (EFA) on
Smart grid which can lead to localized blackout, falsified load forecast-
ing, imbalance in demand-response, generator tripping, frequency insta-
bility and loss of equipment. To detect these threats and to trace back
to the source of such attacks, we inspect the potential of the promis-
ing blockchain technology which gives a mechanism to authenticate and
ensure the integrity of real power consumption information. However,
the blockchain needs to be augmented with a root-of-trust, to bind the
Smart meter with a unique hardware fingerprint. This can be achieved
through Physically Unclonable Functions (PUFs) which is considered
to be an unconventional cryptographic primitive and used for keyless
authentication. The proposed PUF based authentication scheme would
further prevent the system from injection of any false data by an ille-
gitimate Smart meter that aids to false power estimation. The novelty
of the proposed work is to blend these two technologies in developing a
robust and secure framework which detects and prevents all of the above
mentioned security vulnerabilities and can be easily integrated with the
Smart grid infrastructure. Finally an end-to-end demonstration of the
attack has been presented using MATLAB and Power World simulator
and the proposed framework has been prototyped using commercial off-
the-shelf products such as Raspberry Pi and Artix 7 FPGA along with
an in-house blockchain simulator.

Keywords: MadIoT attacks · Electric Fault attack · False Data Injection At-
tack · Physically Unclonable Functions · Blockchain · Smart Meters · Crypto-
graphic Protocols
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1 Introduction

The rapid changes in consumer participation, urge for improved reliability and
efficiency and incorporation of renewable energy sources have made the moderni-
sation of power grid imperative and accelerated. Since the inception of Smart
grid, the sophisticated control system has been undergoing significant adjust-
ments due to the discovery of several security exploitation. In this work, we
mainly focus on recently proposed three categories of attacks that can pose a
serious threat against the Smart grid system. These attacks are illustrated as
follows:

1. MadIoT Attacks: Rapid growth of Internet-of-Things (IoT) devices and its
integration with electrical appliances have opened up a new dimension for the
attackers to affect the transmission as well as cyber plane of the Smart grid with
multitude of penetration techniques. A large-scale compromise of such devices
under Mirai Botnet [1] can elucidate a Distributed Denial of Service (DDoS)
attack. Its impact can be accentuated beyond network infrastructure and can
lead to localised or complete blackout in the Smart grid if not handled carefully.
Soltan et al. proposed a novel attack called Manipulation of demand via IoT
(MadIoT) where the attacker can collude with thousands of high-energy elec-
trical appliances through IoT devices. It can disrupt a black start, significant
drop/rise in the frequency, introduce cascading faults and increase operational
cost. Though there are some power system protections [2] mechanisms such as
automatic disconnection of the generators, under frequency load shedding, over
current protection, over/under voltage protection already present in the frame-
work, it can still lead to partition of a bulk power system and even to localised
blackout. Additionally, this protection mechanisms can not lead to the source of
such Botnet attacks.

2. Electric Fault Attacks: Similarly, cascading line failures can spring from the
electric fault attack (EFA) [3] introduced in the transmission line physically by
the adversary. The failure in one network eventuates in the disruption of another
network, which consecutively perturbs the former network. Set-Valued Observers
(SVOs) has been used for distributed fault detection system in the literature.
Silvestre et al. proposed to utilise this technique [4] for both centralized detec-
tion system as well as a fully decentralized system where various detector nodes
are distributed over the network and share a subset of measurements. Several
machine learning (ML) and deep learning (DL) based schemes [5] have been
proposed to provide a reasonable accuracy for detecting electric faults. How-
ever, such schemes work with original voltage/current consumption signals, thus
violating the privacy of the consumers. Keeping this in mind, we address the
issue of developing a detection mechanism for EFA which does not compromise
with the user privacy.

3. False Data Injection Attacks: On the other hand, load forecasting [6] is one
of the most important processes for system monitoring and involves an in-depth
analysis of Smart meter measurements and evaluates power system models. Liu
et al. [7] have proposed a new class of attacks, called false data injection attacks
(FDIA), against load forecasting in electric power grids. In such attack, it is
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assumed that the adversary can access the information regarding the system
setup and skillfully modify the Smart meter data to bring out random errors into
specific state variables without being noticed by existing algorithms. Though
several works have been proposed in the literature [8, 9] to detect such bad
measurements in the control system, no preventive mechanism has been taken so
far to address this issue. Hence, we try to build up an authentication framework
for the Smart meters to detect falsified power profile information before it gets
inserted in the cyber plane by the adversary.

In this work, we propose an end-to-end architectural solution that blends the
advantages of Physical Unclonable Functions (PUFs) and Blockchain technology
to detect the source of such physical disruption as well as prevent the fraudulent
data entry that can cause wrong decision making in load forecasting. Physically
Unclonable Functions (PUFs) has been proposed as a promising unconventional
cryptographic primitive for certificate-less identity based authentication [10,11].
A silicon PUF is an input-output mapping γ : {0, 1}n → {0, 1}m, where the
output m-bit output response words are unambiguously identified by both the
n-bit input challenge words, and the unclonable, unpredictable (but repeatable)
instance-specific system behavior. In the context of Smart grid, this tool can
be used to authenticate the Smart meters [12], maintain the integrity of power
profile that is sent by the legitimate Smart meters for the dedicated electrical
appliances and prevent the adversary from injecting falsified data into the con-
trol system. Accountability of nodes also matters when it deals with tracing back
the root cause of grid disruption. The existing grid technologies do not have suf-
ficient security in place to deal with accountability and non-repudiation. Hence
we integrate Smart Grid components with blockchain network. Blockchain is a
distributed ledger or database that maintains a continuously growing chain of
blocks. The chain is ever growing where only new records (blocks) can only be
added, subject to the consensus protocol of the network. Owing to its unique
design, it provides immutability, integrity, transparency and provenance to the
blockchain data. In the state-of-the-art literature, blockchain has been used in
Smart grid application for key management [13], energy trading [14], grid moni-
toring [15], trustworthy data aggregation [16], group signature and covert channel
authorization [17] etc. But to best of our knowledge, no previous work has been
proposed to use this technology to trace back and detect the source of Botnet
attacks or electric fault attacks.
Hence, to summarize our work, we have the following contributions in this paper:

– First, we demonstrate an undesirable MADIoT and EFA attack and explain the
intuition behind FDIA attack.

– Next, we propose a lightweight countermeasure to integrate PUF based power
profile verification process with the Smart meter setup to prevent the injection
of false data.

– We also propose a strategical solution to integrate blockchain network with Non
intrusive Load Monitoring (NILM) process of the Smart grid to trace back to
the physical attack and electrical fault source.
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Fig. 1: Enrolment Phase (Left), Authentication and Key Exchange Phase (Right)
[12]

– Finally a prototype has been implemented to demonstrate the proposed solution.

The rest of the paper is organised as follows. In Sec. 2, we provide a brief in-
troduction of PUF based authentication and key exchange protocol. In Sec. 3,
we demonstrate MadIoT attack and EFA. We also sketch the idea behind the
FDIAs. In Sec. 4, we describe the proposed architecture, threat model and pro-
posed scheme for demand modification attack detection and prevention. Finally
we present the experimental results in Sec 5 and conclude our work in Sec. 6.

2 Background: PUF based Authentication and Key
exchange Protocol [12]

Next we briefly describe the PUF based authenticated key exchange protocol [12]
which has been referred in our work. The scheme consists of three parties, cre-
dential generator (CG) which acts as a trusted third party (TTP), server and
the meter. The protocol executes in four phases as mentioned below:
Setup Phase: It is assumed that IBE is an identity-based encryption scheme
and SKE is a symmetric-key encryption scheme. H : {0, 1}∗ −→ {0, 1}λ and H′ :
{0, 1}∗ −→ G be two collision-resistant hash functions where λ is the security
parameter and G be a group of prime order q. CG sets up its private/public key

pair using IBE scheme as: (msk,mpk)
R←− IBE.SetUp.

Enrollment Phase. In this phase, the credential for the meter is generated
by characterising the embedded PUF instance for challenge C and collecting
the response R. Next the secret key skA is generated by applying R to H.
Next the credentials for the server skid is generated by using the IBE.KeyGen
applying the msk and the server’s identity id as input. The server then stores
skid in its non-volatile memory (NVM). Finally associations between (id,skA)
and (skid, C, A) are created using H. It is denoted as α1 and α2. These two
entities are encrypted with respective secret keys of meter A and server id using
the encryption scheme of SKE and IBE. The encrypted association data σ1

and σ2 along with the challenge are stored in the cloud as σ.
Mutual Authentication. For each authentication request from the meter, the
server responds with σ and a nonce value. The node then characterises its em-
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bedded PUF instance with C and generates the response R and re-generates skA
and α1 as described in enrollment phase. Further it decrypts σ1 to retrieve α′2.
α′2 ideally should be equal to α2. Similarly, server also decrypts σ2 to retrieve
α′1 using its secret key skid. It also generates α2 by hashing skid, C and A. Next
the meter and the server generate:

β1 = H (α1||α′2||nonce) , β2 = H (α1||α′2|| (nonce + 1))

γ1 = H (α′1||α2||nonce) , γ2 = H (α′1||α2|| (nonce + 1))

Session Key Exchange. Finally, the meter and the server randomly choose x
and y from Zq respectively. They next exchange H′ (α1||α2)

x
and H′ (α1||α2)

y
.

The final session key is: K = H (H′ (α1||α2)
xy || (nonce+ 2)). If β1 == γ1 and

β2 == γ2, then both parties successfully authenticate each other.

3 Attack Demonstration

The main objective of this work is to propose a attack source detection method-
ology for the very popular demand manipulation attacks on Smart grid as dis-
cussed above. But to fully realise the effectivity of the countermeasure, we first
need to recreate the attack scenario. In this section, we have used the concepts
of MadIoT and EFA from the state-of-the-art literature, but created our own
construction to replicate it. We also give a basic intuition of how FDI attack
can hamper the system monitoring given the knowledge of the underline system
model.

3.1 MADIoT Demonstration

Smart grid demand-response management systems continuously strive to min-
imize the imbalance of power consumed and power generated, ramping up or

Fig. 2: WSCC 9-bus system
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(a) (b) (c)

Fig. 3: Frequency deviation in load bus 5(blue), 6(red) and 8(green) for low
Inertia constant (15s) of the generators due to unpredicted demand alteration

in all the loads (a) Decrease of 15MW demand , (b) Decrease of 20MW
demand, (c) Increase of 30MW demand

(a) (b) (c)

Fig. 4: Frequency deviation in load bus 5(blue), 6(red) and 8(green) for low
Inertia constant (5s) of the generators due to unpredicted demand alteration in
all the loads (a) Decrease of 15MW demand, (b) Decrease of 20MW demand,

(c) Increase of 30MW demand

ramping down the power generation based on the real-time demand. It is ex-
tremely important to balance the load demand and generated power for main-
taining the stability of the grid. Here, we show how power demand can be ma-
nipulated through IoT devices to disrupt the frequency of the grid [1]. We run
our demonstration in a Power World simulator with the Western System Co-
ordinating Council (WSCC) 9-bus model having a total of 315MW of initial
demand as shown in Fig. 2. We consider the same model that has been used to
demonstrate the MADIoT attack [1]. The bus number 5, 6 and 8 are the load
buses of the corresponding model. The nominal frequency of the system is 60 Hz
and it is assumed that the frequency should be within 58.2 and 61.3 Hz approx-
imately for normal operation of the grid. Fig. 3 and Fig. 4 show the frequency
disturbances of the load buses under high (15s) and low (5s) inertia constants of
the generators when the demands of all the loads are unexpectedly alerted. We
know that the frequency of the system is directly proportionally to the differ-
ence between supply and demand generated. So any deviation in demand causes
fluctuation in the grid frequency. A large-scale coordinated MADIoT attack can
lead to further deviation of the grid frequency. This attack may also result in the
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Fig. 5: An IEEE 9-Bus Model augmented with Fault Injection.

activation of generator protection relays, loss of generators and grid blackout.
In case of a blackout, the grid operator needs to restart the system at the ear-
liest. This process is known as black start. To avoid frequency instability due to
unknown demand at this point, the operator divides the grid into small regions
(also called as islands). As a result, the inertia of each region becomes very low,
which makes the system vulnerable to any such demand modification. Hence,
the adversary can easily hamper the black start process by suddenly increasing
the demand once an island is up.

3.2 Electric Fault Attack Demonstration

In this demonstration, we show how electrical faults may cause a localized black-
out of a system by disconnecting faulty transmission lines from the grid. The at-
tack setup as shown in Fig. 5, consists of an IEEE 9-Bus power system model with
three generators, nine buses, circuit breakers, transmission lines, three loads and
three protection relay modules along with multiple faults. Below part of Fig. 5
shows the internal components of the block named “Generator 2 with Protection
Relays”. The “Protection Relays” block inside the “Generator 2 with Protection
Relays” block consists of overcurrent, overvoltage and undervoltage protection
systems to check whether the current and voltage of a bus are maintained within



8 Authors Suppressed Due to Excessive Length

(a) Current of two buses of inside
block “Generator 2 with Protection
Relays” as of Fig. 5

(b) Frequency of Generator 2

(c) Frequency of Generator 1

Fig. 6: Signals under Normal Operation

(a) Current of two buses of inside
block “Generator 2 with Protection
Relays” as of Fig. 5

(b) Frequency of Generator 2

(c) Frequency of Generator 1

Fig. 7: Signals after Fault is Induced

predefined threshold values. A circuit breaker trip signal is generated if the cor-
responding voltage and current values violate any of these predefined thresholds.
We simulate our model using Simulink in Matlab.

Fig. 6 shows the current through two of the buses and the frequency of both
generator 1 and generator 2 under normal condition. On the other hand, Fig. 7
shows the behaviour of the corresponding buses and generators when the fault is
induced after one second. Due to the fault, the current through one of the buses
starts increasing, resulting in a frequency disturbance leads to destabilization
of the speed of generators which may permanently damage the generators. As
a countermeasure, the overcurrent relay module generates an undesired breaker
trigger that cuts the line 6-9 and line 4-6 in the circuit resulted in a load-shedding,
as shown in Fig. 7a by using the red colour.
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3.3 False Data Injection Attack via Smart Meters

The System monitoring process generates pertinent information on the current
state of the power grid system. It collects all the meter readings and submits
it to the control centre for thorough analysis using the power flow model. It
finally estimates unknown state variables for contingency analysis. In general,
a linearized power flow model, DC Power Flow Model is used for this purpose.
Here, the relationship between measurements x = (x1, x2, ..., xn)T and state
variables z = (z1, z2, ..., zm)T can be represented as:

z = Hx + e (1)

where H is an m×n full rank matrix called system Jacobian to allow estimating
x from z, e is the error vector, n is the number of state variables, m is the
number of meter measurements. Assuming that error is normally distributed
with zero mean, the minimum mean squared error (MMSE) estimator leads to
the following matrix solution:

x̂ = (HTWH)−1HTWz (2)

where W represents diagonal matrix whose elements are reciprocals of the vari-
ances of meter errors. Now, to detect bad measurements, the state-of-the-art
literature proposed to calculate the measurement residue z−Hx̂ and compare
its 2-norm ||z−Hx̂|| with a threshold τ . There exists a bad measurement of
||z−Hx̂|| > τ .

Now, to achieve her goal, the adversary injects malicious data by adding it
with original data. Let us assume a = (a1, a2, ..., am)T is the malicious data
that has been added to z and calculate the spurious measurement za = z + a.
This new measurement can bypass the the detection approach if a is the linear
combination of H i.e., for any mismatch c, a = Hc [7].

||za −Hx̂a|| = ||z + a−H(x̂ + c)|| = ||z + a−Hx̂−Hc|| = ||z−Hx̂||

Further, Anwar et al. proposed an improved version of blind FDI attack [18]
where the stealthy attack-vector is prepared solely from the measurement matrix,
without the knowledge of underline system Jacobian and the number of system
states. From the above discussion, it is comprehensible that FDIA can introduce
any random faults in the system without getting detected. This stealthy FDIA
can disrupt system state estimation, as well as the energy distribution of the grid,
resulting in destabilization of grid infrastructure. In the next section, we will
describe the proposed Smart grid architecture to integrate PUFs and blockchain
within its components to resist the above mentioned attacks.

4 Proposed Architecture of the Smart grid System

4.1 System Model

The setting assumed here is that the components of the grid are divided into two
planes: a) Transmission Plane, b) Data Plane. Both the planes are monitored and
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managed by a supervisory control and data acquisition (SCADA) system which
provides various grid functionalities by maintaining power and information flow
between the grid entities. The information from the power system passes through
the Remote Terminal Units (RTUs) which is a fundamental part of SCADA, to
the Load Dispatch Centre (LDC). LDC also plays a crucial role in the reliable
and efficient operation of the grid infrastructure. It is mainly responsible for the
real-time grid monitoring, operation and control of the system.

The transmission plane consists of generation, transmission, distribution net-
works and the consumers. It connects the communication between the power
generation module, substations and consumers within a vast geographical re-
gion. This plane controls the power lines that are responsible for supplying the
electricity to the household as per the demand request. Local substations reg-
ulate the power distribution between generation systems and the loads along
with sending operational data to SCADA systems. The data plane maintains
the information flow between the Smart meters and the trusted utility server.
The Smart meters periodically collect consumers’ energy profile before send-
ing the reading streams to the trusted utility through Data Concentrator Units
(DCUs). SCADA consists of a collection of this information from meters dis-
tributed throughout the area through RTUs, before selectively sending them to
the LDC. While power flow from power systems through SCADA to LDC is
unidirectional, the information flow maintains a bidirectional interface between
power systems and LDC through SCADA. The permissioned blockchain net-
work of the Smart grid system is constructed by these power generation module,
the substations, the LDCs (local and centralized ), the DCUs and the trusted
utility server. We assume that the blockchain network maintains the basic se-
curity properties such as consistency (i.e. each node has the same view of the
blockchain) and immutability ( i.e. blockchain data once committed cannot be
changed).

4.2 Adversarial Model

As discussed earlier in Sec. 3, we assume the threat model considering three
potential scenarios through which the grid can be compromised. First, the at-
tacker has physical access to the appliances or can control those appliances from
a remote location. The attacker can manipulate the demand of these appliances,
which can lead to disrupting the grid frequency as a result of the supply and
demand imbalance. Secondly, we assume that the attacker can introduce electric
fault attacks into the system, which can result in a disconnection of the transmis-
sion lines for preventing generation tripping. Moreover, in the last scenario, we
assume the attacker with network access can perform eavesdropping, false data
injection and replay attack to insert falsified power profile information in the
Smart metering setup which may further cause undesirable control operations
in the grid. Also, from a privacy aspect, we consider the grid nodes to be honest
but curious entities, who want to gain the power consumption information of
individual consumers to sell it to the marketing companies or obtain additional
information of consumers’ daily life patterns.
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4.3 Working Flow of the Blockchain Network

The blockchain network consisting of the power generation modules, substations,
DCU(s) and LDC(s) and a trusted utility server, is entrusted with the role of
logging the events of the Smart grid. The blockchain allows grid functionalities
such as link break scenario between a generator and substation, change of utility
request from a consumer, or sending power consumption data of a consumer
to be transparent and accessible to all participants of the blockchain network.
The above-mentioned functionalities of the grid operations are realized with the
help of a grid topology encoded in the form of a graph and is updated during
every transaction. For instance, if an electrical link is broken between a generator
module and a substation in the Smart grid, the graph is updated by removing
the corresponding edge to reflect the change and the generator informs the other
members of the network by posting a new transaction. The PUF enabled Smart
meters, being resource thrifty, are not a part of the blockchain network. The
power profile of the consumer is sent to the DCU by the respective Smart meter
after its PUF instance is authenticated by the DCU. The DCU then stores the
data in Inter Planetary File System (IPFS) [19] and adds the hashed value of
the data (denoted by IPFS Hash) in a blockchain transaction (refer to Section
4.4 for details). The trusted utility server initiates the blockchain by creating
the genesis block and sharing the initial grid topology. The various transactions
used in our blockchain network are given as follows:

1. InitialTemplateTxn This transaction creates the genesis block and shares
the initial grid topology with all the nodes who are part of the blockchain
network. It is posted by the utility server and consists of a template file (in
xml schema) which is used to generate the graph. All the blockchain nodes
fetch the template file to build the initial grid view.

2. LinkDownTxn The transaction is posted by a node to inform other nodes
about a link break down in the grid. The nodes in the network, on receiving
this transaction, update their local graph to reflect the changes in the power
grid.

3. LinkUpTxn This transaction informs about the restoration of a broken
link and is posted by the same node which has posted the LinkDownTxn
previously after the link is again available.

4. DownReroutingTxn This transaction initiates the rerouting process after
a link breakdown to identify an alternate path to deliver electricity.

5. ChangeUtilityTxn This transaction is posted by a substation informing
the other nodes in the network regarding the change in utility of a consumer.

6. ConsumptionTxn This transaction posts the power profile of a consumer.
It consists of the Consumer Id and the IPFS hash of the power profile.

7. RegisterTxn This transaction logs the registration data of a consumer with
a substation.

8. CredGenTxn This transaction shares the association data of a PUF en-
abled Smart meter and a DCU binding the root-of-trust of Smart meter with
blockchain permanently and immutably.
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Smart Meter

d = Hash(P||K)
Checks whether Hash(P||K) == d?Generates Power Profile P in every t seconds.

If yes, accept P. Else, reject.

Data Concentrator Unit

P,d

Fig. 8: Power Profile Verification Protocol

9. AuthStatusTxn This transaction broadcasts the status after authentica-
tion and key-exchange between a Smart meter and a DCU.

10. NotifyLDCTxn This transaction is posted by a generator which notifies
the LDC whenever the frequency difference becomes more than the tolerance
threshold τ . It consists of the identity of the generator and the timestamp
when the disturbance has happened.

11. TriggerSubstationsTxn This transaction is posted by the LDC to trigger
the substations to initiate the backtrack process to identify the source of the
frequency disruption. It consists of the identity of LDC, the list of substations
needed to be triggered and timestamp of the attack.

4.4 Proposed Power Profile Verification Process

Here, we first map the PUF based authentication and key exchange protocol
explained in Section 2 in our usecase. We consider the utility server as a TTP.
If there is a demand to install a Smart meter in a household, an association
between the Smart meter and the DCU is made by the utility server in a secure
and trusted environment. Hence the DCU is analogous to the Server as shown
in Fig. 1 and assumed to have a secret key stored in its NVM. The Smart
meter is enabled with a embedded PUF instance. The utility server stores the
authentication credentials between the Smart meter-DCU pair in the IPFS) and
adds a CredGenTxn in the blockchain to log this event. This is considered
as the enrolment phase. For every sampling period, the Smart meter and DCU
generates a session key K by following the authentication and key exchange
protocol and a AuthStatusTxn is posted by the DCU in case the PUF instance
of the Smart meter is successfully authenticated by the DCU. As this procedure
is not part of the main contributions of the paper, we are not going into further
details. Rather, we concentrate on the power profile verification procedure.
For every new sampling period, the Smart meter generates the power profile.
It is to be noted that the power profile can not be encrypted with the session
key as it is not possible to aggregate the encrypted data collected from multiple
Smart meters at the DCU side. Moreover, encryption of such condensed data also
might incur considerable execution time. Hence, a privacy preservation metering
scheme is applied on it to camouflage the usage pattern of the household( refer
to Section 5.2 for details). Now, we denote the privacy preserved power signature
as P (refer to Fig. 8) for a sampling period of t seconds. It then calculates a hash
of P appended with session key K, i.e., d = Hash(P ||K) and sends (P, d) to the
DCU. As the DCU has also calculated the session key K, it can immediately
verify the authenticity of the source of P . If the hash value matches, it saves
the power profile in IPFS and posts ConsumptionTxn along with the Smart
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meter ID. The aggregated power profile from multiple sources are then sent
to the utility server for further analysis. Now, for every sampling period, a new
session key is used to generate the hash value. Hence, the freshness of the session
is maintained and replay attack is resisted. Moreover, if the adversary wants to
inject or modify the actual power profile, she would fail to calculate a valid
hash value corresponding to the modified data as she has no knowledge about
the session key K. Hence, using the simple verification procedure as proposed in
this work, the FDIA attack via Smart meter can be thwarted. Next, we propose a
novel tracing algorithm to detect the source of any physical disturbance induced
by the adversary using EFA or MadIoT attack.

4.5 Proposed Tracing Algorithm for Attack Source Detection

In this section, we propose a novel approach to detect the source of physical at-
tack when an adversary compromises thousands of electric appliances and creates
a power surge in the grid. As mentioned in Section 4, the software component
in a LDC processes collected Smart metering data to maintain the security and
stability of the system in real-time. However, since the number of components
that need to be monitored is vast, sophisticated digital processing of the data is
required. In this context, we propose our demand manipulation based attack de-
tection algorithm to identify compromised consumers in the grid infrastructure
as described in Algo. 1.
The centralized LDCs (located in state capitals) are usually connected to mul-
tiple area/sub LDCs, which are individually connected to major substations
and power generation stations. If there is significant change in the frequency of
any generator, the LDC gets notified. As mentioned in Algo. 1, it always looks
for deviation in the frequency of a particular generator vi (denoted as fTSvi ) at
timestamp TS from the ideal frequency (denoted as f∗) by a tolerable limit τ ,
as shown in line 5. For a unwanted scenario, the generator vi notifies the associ-
ated LDC about the disturbance (line 6). It also adds a NotifyLDCTxn in the
blockchain to log this event. The LDC immediately triggers the corresponding
substations under generator vi through TriggerSubstationsTxn to check the
consumers under its jurisdiction for any unexpected demand alteration. Every
substation vs is individually configured to identify the compromised consumer
by executing TriggerNILM function (Lines 27-33). For every consumer vc, the
TriggerNILM function collects the average power profile of vc. The average
value is calculated using the power data till the day before the abnormality is sus-
pected at the timestamp TS (line 29). This estimated power profile Pideal is then
compared with the current power profile Pcurrent of the consumer (line 30). The
Pideal and Pcurrent are then disaggregated by the NILM algorithm to find power
profile for each appliance ac (lines 36- 37). The algorithm then uses Distance
function, Student’s t-test to find any difference between the means of these two
power profiles. If the t-value resulted from the test is higher than of appliance
disturbance threshold φ, then the algorithm considered the consumer vc to be
compromised.
Additionally, the frequency deviation can also be caused by electric faults in
the transmission lines. Hence, along with triggering the NILM functionality in
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Algorithm 1 Algorithm for Detection of Attack Source
1: Inputs: VG : Set of Generator nodes;

VS : Set of Substation nodes;
VC : Set of Consumer nodes;
Grid Network G;
Blockchain Ledger T = {t1, ·, ti, ·, tn}; . ti is the tth block in the ledger;
Frequency Tolerance Threshold τ ;
Ideal Frequency f∗;
Appliance Disturbance Threshold φ;

2: Output: A set of consumers Consumer Id, set of broken links Broken Links;
3: Initialize: flag ← false, Consumer Id← {∅}, Broken Links← {∅};

4: for all vi ∈ VG do
5: if |fTS

vi
− f∗| > τ then

6: Consumer Idvi
← NotifyLDC(vi, TS);

7: flag ← true;

8: Consumer Id ← Consumer Id ∪ Consumer Idvi
;

9: if flag = true then
10: Broken Links← isLinkBroken(T, VG, VS , VC , G);

11: return 〈Consumer Id, Broken Links〉;

12: function isLinkBroken(T, VG, VS , VC , G)
13: for ti ∈ T do
14: if ti.type = “linkdown” & ti.timestamp ≥ TS then
15: Broken Links← Broken Link ∪ ti.link;

16: return Broken Links;

17: function NotifyLDC(vi, TS)
18: C id← {};
19: V ∗

S is set of substations in TriggerSubstationsTxn ti where ti.timestamp ≥ TS.
20: for all vs ∈ V ∗

S do
21: C idvs ← {};
22: V ∗

C is the set of all consumers under vs.
23: for all vc ∈ V ∗

C do
24: C idvs ← C idvs∪ TriggerNILM(vc , TS);

25: C id← C id ∪ C idvs ;

26: return C id ;

27: function TriggerNILM(vc, TS)
28: flag ← false;
29: Pideal ← getAveragePowerProfile(vc, TS);

. Returns average power profile of vc till last date
30: Pcurrent ← getPowerProfile(vc, TS); . Power profile of vc at TS
31: flag ← Compare(vc, Pideal, Pcurrent);
32: if flag then
33: return vc;

34: function Compare(vc, Pideal, Pcurrent)
35: for all ac ∈ vc do
36: Pideal(ac)← NILM(Pideal);
37: Pcurrent(ac)← NILM(Pcurrent);
38: if Distance(Pideal(ac), Pcurrent(ac)) ≥ φ then
39: return true;
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Fig. 9: PUF Enabled Smart Meter
Prototype

Fig. 10: Transmission Links in the Grid

the substations, the LDC also calls for IsLinkBroken function (Lines 12- 16)
to check whether there is any link that has been brought down recently. The
IsLinkBroken function traverses in the blockchain and retrieves all LinkDown-
Txn transactions whose timestamp is same or more than TS and returns the
links which are down. If there is any such fault, it triggers DownReroutingTxn
transaction to deliver the power supply through alternative link.

4.6 Overall Summary

On a summary, we first propose our power system model consisting of the
SCADA, RTU, LDC, DCU, power generation and distribution units, substations
and the consumers. Except the consumers, all the components of the power sys-
tem are considered to be a part of the blockchain network and assumed to log
their activities as a transaction in the blockchain ledger. The consumers are en-
abled with a PUF instance and the DCU(s) accept the Smart meter data after
verifying the authenticity of the same, thus resisting the FDIAs at the time of
state monitoring. Finally, in case of any demand manipulation or fault attack in
the system, the LDC or subsequent nodes are triggered to execute the tracing
algorithm (refer to Algo. 1) as described above to detect the source of physical
disruption using the power profile stored in the blockchain or identify the broken
links in the network from blockchain transaction history. Next, we discuss the
proof-of-concept implementation of the proposed model and the feasibility of the
countermeasures.

5 Experimental Setup and Results

In this section, we describe our experimental setup comprising of PUF enabled
Smart meter, blockchain network and the attack source detection procedure.

5.1 Setup for PUF enabled Smart Meter, Blockchain and
Authentication and Key-Exchange Protocol

As discussed in Sec. 4.4, a Smart meter embedded with a PUF instance can
thwart FDIA attacks (refer to Sec. 3.3). To realise this, we have made a PUF
enabled Smart meter prototype using Raspberry Pi, a non-invasive split core
current transformer (SCT-013-030) and a Digilent Nexys 4 FPGA board, as
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shown in Fig. 9. In any metering setup, current flowing through the meter to
load is monitored using a current sensor. Current measured by the sensor is cap-
tured by Raspberry Pi and sent to blockchain node (utility server). We choose
a 5-4 Double Arbiter PUF [20], and deploy it on Digilent Nexys-4 board contain-
ing Xilinx Artix-7 FPGA. Raspberry Pi communicates with the PUF instance
over USB to send challenges and receive the corresponding response. Now, the
blockchain framework (refer to Sec. 4.3) is implemented in Golang and Python.
Each blockchain node is enabled with a REST API built using Gorilla MUX that
is used to post transactions to the blockchain, along with providing the ability to
view the blockchain data in a web browser. Creation of point-to-point (P2P) net-
work and handling the P2P connections is implemented using go-libp2p library.
The web-server returns the chain of transactions in JSON format for simplicity.
File sharing in the blockchain is enabled by IPFS. In order to share a file, the
node posting the transaction adds the IPFS hash of the file to be shared in
the transaction block. The transactions used in the blockchain and their corre-
sponding actions are explained in Section 4.3. We have also shown the JSON
structure of four transactions, namely InitialTemplateTxn, LinkDownTxn,
ConsumptionTxn and NotifyLDCTxn in Fig. 11.
As mentioned in Sec. 4.1, the functionalities of utility server, LDC, DCU and
substation are executed using machine equipped with a Quadcore Intel i5-4570
@3.20GHz CPU. The authentication and key-exchange protocol (refer to sec: 2)
is implemented in C language. The IBE scheme used in the protocol is imple-
mented using Pairing-Based Cryptography (PBC) library, which provides APIs
to securely instantiate all bilinear pairing-related operations on the Barreto-
Naehrig family of elliptic curves with, embedding degree 12 and a security level
of 160 bits of finite field. The SKE scheme is realised using AES-128, hash func-
tion H using SHA-256 and hash function H′ using the element from hash API
of PBC library. The AES-128 and SHA-256 are implemented using Libgcrypt
and executed in Raspberry Pi which replicates the meter setup in our proposed
work. In order to execute the protocol, the smart meter needs to store exe-
cutable files of size around 89.8kB. The time taken to generate the association
data binding a smart meter and a substation is 0.124 seconds and the time taken
to authenticate and perform key-exchange is 0.885 seconds. Besides, setting up
the initial grid topology and posting the transaction takes 0.124 seconds and
events such as link breakdown or rerouting takes around 0.009 seconds.

5.2 Attack source detection

To realise the attack source detection methodology as proposed in Sec. 4.5, we use
the REDD data set [21] provided by Kolter and Johnson and Non-Intrusive Load
Monitoring Toolkit (nilmtk) [22] to desegregate the power profiles to acquire
the consumption of each appliance during a sampling period. However, the dis-
aggregation capabilities of the NILM algorithms raise severe concerns for user
privacy by leaking the power consumption status of individual appliance. Hence,
in this work, we use the privacy preserved Smart metering scheme proposed
by Barbosa et al. [23] that hides the usage patterns by providing differential
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(a)
(b)

(c) (d)

Fig. 11: Blockchain transactions given in Sec. 4.3 (a) InitTxn, (b) LinkDownTxn,
(c) ConsumptionTxn, (d) NotifyLDCTxn

privacy guarantees for the appliances. Here, the Smart meters transmit masked
measurements by adding noise generated by a distribution model. The maximum
allowed error between the original and the masked power consumption over a
billing period is bounded by a desired percentage, denoted by privacy level ε.
Based on this, the variance of the normal distribution is calculated in such a
way that the probability of obtaining the error within the desired value ε is very
high, for e.g. 98%. If Laplace distribution model is used for the privacy, the
magnitude of the Laplacian noise is determined by the scale parameter of the
original distribution which can be calculated using the obtained variance and
the total number of measurements. With the increasing value of ε, the privacy
of resulted stream w.r.t the original power profile increases.

For the experimental results, We show the feasibility of our approach with differ-
ent privacy levels (such as 0-5%) for the sampling period of 15 minutes. In our
attack preparation, we consider the building number 3 of the REDD dataset.
We have added 30W of extra demand for each of the channels presented in the
building assuming that the adversary is synchronously controlling multiple loads
at the same time. Fig. 12 shows the fraction of energy consumption of each appli-
ance of building 3 with privacy level of 0%, 1% and 5%. Simultaneously, Fig. 13
demonstrates the fraction of energy consumption for the same set of appliances
under the attack scenario mentioned earlier. It shows a significant deviation in
appliance power consumption estimation compared with the normal condition.
Fig. 14a shows the estimated power profile of the fridge on a particular date, 23rd
April 2011, when 5% privacy level is applied. On the other hand, Fig. 14b shows
the power profile of the fridge under the attacked scenario if the demand is ma-
nipulated (as discussed in Sec.3.1) throughout the whole day. It is clear from the
graph that the magnitude of the power profile has got a shift of approximately
30 Watts. Without loss of generality, we consider that the tracing algorithm
got triggered during the first reading stream on 23rd April 2011. Hence, we run
the t-test between the received power profile and the estimated power profile
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(a) No privacy

(b) 1% privacy level

(c) 5% privacy level

Fig. 12: Fraction of energy consumption
of each appliance under normal opera-
tion

(a) No privacy

(b) 1% privacy level

(c) 5% privacy level

Fig. 13: Fraction of energy consumption
after demand manipulation

of the fridge during that period. Tab. 1 shows calculated t-values for different
privacy levels if 30W and 20W demand alteration is done during this sampling
period. The expected value in the T-Distribution Table for 95% confidence level
is around 1.960 − 1.980. Tab. 1 displays that all the resulted t-values are very
much higher compared to the expected value. Hence, the received power profile
can be considered as manipulated for all of the above cases. Also, It reveals that
the privacy level of the metering infrastructure does not significantly affect the
outcome of our scheme.
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(a) (b)

Fig. 14: Disaggregated power profile of fridge with 5% privacy on 23rd

April,2011 (a) in estimated scenario (b) after demand manipulation

Privacy Level
(ε)

t-value
20W increase 30W increase

No privacy 6.04991 9.07487

1% 6.07545 9.11317

2% 6.11155 9.16732

3% 6.01353 9.02029

4% 5.81902 8.72853

5% 5.90373 8.85561

Table 1: T-test result between the fridge’s original and attacked power profile for
different privacy levels due to 30W and 20W demand alteration in every channel

6 Conclusion

In this paper we have demonstrated demand manipulation attacks through Ma-
dIoT, electric faults and false data injection that can inflict undesired load-
shedding. Next we have proposed a PUF based power profile verification and
attack source detection methodology without compromising the differential pri-
vacy guarantees. We have also addressed the issues related to transparency and
accountability in Smart grid operations using a permissioned blockchain net-
work. Finally, we have prototyped end-to-end security solution using Raspberry
Pi, Artix 7 FPGA and blockchain based simulator. The experimental results
show that the scheme takes significantly less execution time and memory foot-
print and makes it suitable for detecting any physical disturbance in the grid
and preventing injection of any falsified data.
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