
Fast, Scalable, and Communication-Efficient Zero-Knowledge
Proofs for Boolean and Arithmetic Circuits

Chenkai Weng
Northwestern University
ckweng@u.northwestern.edu

Kang Yang
State Key Laboratory of Cryptology

yangk@sklc.org

Jonathan Katz∗

George Mason University
jkatz2@gmail.com

Xiao Wang
Northwestern University

wangxiao@cs.northwestern.edu

Abstract

Efficient zero-knowledge (ZK) proofs for arbitrary boolean or arithmetic circuits have recently
attracted much attention. Existing solutions suffer from either significant prover overhead (su-
perlinear running time and/or high memory usage) or relatively high communication complexity
(at least κ bits per gate, for computational security parameter κ and boolean circuits). We show
here a new protocol for constant-round interactive ZK proofs that simultaneously allows for a
highly efficient prover and low communication. Specifically:

• The prover in our protocol has linear running time and, perhaps more importantly, memory
usage linear in the memory needed to evaluate the circuit non-cryptographically. This allows
our proof system to scale easily to very large circuits.

• For circuits of size C over an arbitrary finite field and a statistical security parameter ρ, the
communication complexity of our protocol is roughly 3B + 1 elements per gate, where B = 1
for large fields and B = ρ

logC for small fields.

Using 5 threads and a 50 Mbps network, our ZK protocol (ρ = 40, κ = 128) runs at a rate
of 0.54µs/gate for a boolean circuit with 10 billion gates, using only 400 MB of memory and
communicating 9 bits/gate. This is roughly an order of magnitude faster than prior work.

1 Introduction

Zero-knowledge (ZK) proofs (of knowledge) [GMR85, GMW86] are fundamental cryptographic
tools. They allow a prover P to convince a verifier V, who holds a circuit C, that the prover knows a
witness w for which C(w) = 1 without leaking any extra information. While ZK proofs for arbitrary
circuits are possible [GMW86], historically such proofs were inefficient as they relied on reductions
to generic NP-complete problems. Over the past decade, however, several ZK proof systems have
been developed that yield far more efficient protocols. These include zero-knowledge succinct non-
interactive arguments of knowledge (zk-SNARKs) [Gro10, GGPR13, BCG+13, BCTV14, BCC+16,
BBB+18, WTs+18, BCR+19, BBHR19], ZK proofs based on interactive oracle proofs (IOPs) and
techniques from the setting of verifiable outsourcing [GKR08, ZGK+17, XZZ+19, ZXZS20], ZK
proofs following the “MPC-in-the-head” approach [IKOS07, GMO16, CDG+17, AHIV17, KKW18,
dDOS19], and a line of work constructing efficient ZK proofs from garbled circuits (ZKGC) [JKO13,

∗Work done as a consultant for Stealth Software Technologies, Inc.

1

Protocol libSNARK [BCTV14] Virgo [ZXZS20] Ligero [AHIV17] [HK20] This work
Type zk-SNARK IOP-based MPC-in-the-head ZKGC

Prover time 360 s 53 s 400 s 49 s 5.7 s
Verifier time 0.002 s 0.05 s 4 s 49 s 5.7 s

Communication 0.13 KB 253 KB 1.5 MB 182.2 MB 12.4 MB
Memory Usage � 10 GB ≥ 10 GB ≥ 10 GB ≤ 500 MB ≤ 500 MB

Table 1: Computing a ZK proof of knowledge of all leaves in a depth-9 Merkle tree based
on SHA-256 (256 leaves; 511 hash-function evaluations). Performance of our protocol
(with ρ = 40, κ = 128) is measured by running the prover and verifier on two machines, each
using 5 threads connected via a 50 Mbps network. Numbers for other protocols are taken from
the indicated references or directly from [XZZ+19], and use an experimental setup no slower than
ours. The memory usage numbers are either conservative estimation from prior reports, or private
communication with the authors.

FNO15, HK20]. Each of these works offers different tradeoffs between underlying assumptions
(both computational hardness assumptions as well as setup assumptions), round complexity (in
particular, whether the proof requires interaction or can be made non-interactive), expressiveness
(e.g., whether the scheme handles boolean or arithmetic circuits), and efficiency. With regard to
efficiency, measures of interest include the prover complexity, the verifier complexity, and the total
communication as a function of the circuit size.

Focusing on efficiency, existing work (see Table 1) can be characterized roughly as either having
very short proofs (e.g., sublinear in the circuit size, or in some cases even sublinear in the length
of a witness) but poor prover complexity1, as in the case of zk-SNARKs and ZK schemes following
the IOP-based approach, or achieving good prover complexity but having high communication
overhead, as in the case of MPC-in-the-head and ZKGC schemes.

In this work we propose a new approach to ZK proofs that enables an extremely efficient prover
while having lower communication complexity than comparable approaches. As in the ZKGC
approach, we obtain prover complexity linear in the circuit size. Moreover, the prover can process
the circuit “on-the-fly,” meaning that the prover’s memory usage is linear in the memory needed
to evaluate the circuit non-cryptographically; this allows our protocol to scale easily to very large
circuits. At the same time, we achieve communication complexity that is more than an order of
magnitude lower than what can be achieved using the ZKGC approach. We compare our work to
prior work in Table 1.

The main drawback of our protocol—shared by the ZKGC approach—is that it requires in-
teraction; we do not know how to use our techniques to obtain a non-interactive proof even in
the random-oracle model. Our proof system does, however, have a non-interactive online phase
following an interactive offline phase that can be executed by the parties before the circuit is known.

1.1 Outline of Our Solution

Our ZK protocol can be separated into two phases: an interactive offline phase that can be executed
by the prover and verifier before both the circuit and the witness are known, and an online phase
that can be made non-interactive in the random-oracle model. We describe the online phase first,
since we view this as our main conceptual contribution.

1Here we refer not only to the prover’s running time, but also its memory usage. Schemes that impose significant
memory requirements do not scale well to very large circuits.

2

Online phase. The online phase of our protocol can be viewed as adapting the core idea of the
ZKGC approach by viewing a ZK proof as a special case of secure two-party computation (2PC)
where one party has no input. We differ from the ZKGC approach in the underlying 2PC protocol
we use as our starting point: rather than using garbled circuits, we instead rely on a “GMW-style”
approach [GMW87] using authenticated multiplication triples [Bea92, NNOB12, DPSZ12] (whose
values are known to the prover) generated during the offline phase. A drawback of GMW-style
protocols in the context of secure computation is that they have round complexity linear in the
depth of the circuit being evaluated. Crucially, in the ZK context, we can exploit the fact that only
one party has an input to obtain a protocol that runs in constant rounds (or even one round in the
random-oracle model).

The prover and verifier run in linear time since they each make only one pass over the circuit.
Moreover, they can evaluate the circuit “on-the-fly” (i.e., with memory overhead linear in what
is needed to evaluate the circuit non-cryptographically), which allows our protocol to scale easily
to handle very large circuits. Our approach is communication-efficient as well: for a circuit with
C multiplication gates over an arbitrary finite field Fp, the marginal communication is only about
3B + 1 elements per multiplication gate, where B = 1 if log p > ρ and B = ρ

logC otherwise for a
statistical security parameter ρ.

Instantiating the offline phase. To give a ZK proof for a circuit with C multiplication gates
over an arbitrary field Fp, we use subfield Vector Oblivious Linear Evaluation (sVOLE) [BCGI18]
to set up BC authenticated triples in the offline phase. For boolean circuits (i.e., p = 2), we use the
recent work by Kang et al. [YWL+20] to generate an initial pool of authenticated bits, and then
use these authenticated bits to generate authenticated triples as in prior work [NO09]. For p > 2,
we extend their protocol to support larger fields, and obtain an sVOLE protocol for any finite field,
which may be of independent interest. We defer the details to Section 4.

Comparison to prior work [BCGI18, BCG+19b]. Boyle et al. [BCGI18, BCG+19b] also pro-
posed ZK proofs in which VOLE is used during an offline phase to set up the correlated randomness
between the prover and the verifier, and the online phase is non-interactive. Focusing on the online
phase, the primary advantages of their work are that it does not require the random-oracle model,
and it can be run multiple times following a single execution of the offline phase (that is, the offline
phase is reusable). The focus of our work is concrete efficiency, which was not investigated by
Boyle et al. Moreover, our work applies to circuits over arbitrary fields, whereas the work of
Boyle et al. applies either to circuits over large fields [BCGI18] or boolean circuits [BCG+19b]. We
also offer concrete efficiency improvements for the offline phase; some of our improvements could
be applied to the protocols of Boyle et al. as well. We defer further discussion to Section 4, and
provide a detailed performance evaluation in Section 5.

Overview of the paper. After reviewing some preliminaries in Section 2, we describe the online
phase of our ZK proof in Section 3. In Section 4 we describe the details of the offline phase. We
conclude with our experimental evaluation in Section 5.

2 Preliminaries

We use κ and ρ to denote the computational and statistical security parameters, respectively. We
let negl(·) denote some unspecified negligible function, and use log to denote logarithms in base 2.
We write x← S to denote sampling x uniformly from a finite set S, and x← D to denote sampling
x according to a distribution D. We set [a, b] = {a, . . . , b} and [a, b) = {a, . . . , b− 1}, and write [n]
as shorthand for [1, n]. We use bold lower-case letters like a for row vectors, and bold upper-case

3

letters like A for matrices. We let a[i] denote the ith component of a vector a (with a[0] the first
entry), and let a[i : j] and a[i : j) represent the subvectors (a[i], . . . ,a[j]) and (a[i], . . . ,a[j − 1]),
respectively.

A circuit C over a field Fp is defined by a set of input wires Iin and output wires Iout, along
with a list of gates of the form (α, β, γ, T), where α, β are the indices of the input wires of the gate,
γ is the index of the output wire of the gate, and T ∈ {Add,Mult} is the type of the gate. If p = 2,
then C is a boolean circuit with Add = ⊕ and Mult = ∧. If p > 2 is a prime, then C is an arithmetic
circuit where Add/Mult correspond to addition/multiplication in Fp. We let C denote the number
of Mult gates in the circuit.

When we work in an extension field Fpr of Fp, we fix some monic, irreducible polynomial f(X)
of degree r and so Fpr ∼= Fp[X]/f(X). We let g ∈ Fpr denote the element corresponding to
X ∈ Fp[X]/f(X); thus, every element w ∈ Fpr can be written uniquely as w =

∑r−1
i=0 wi · gi with

wi ∈ Fp, and we may view elements of Fpr equivalently as vectors in Frp. When we write arithmetic
expressions involving both elements of Fp and elements of Fpr , it is understood that values in Fp
are viewed as lying in Fpr in the natural way. We let F∗ denote the nonzero elements of a field F.

2.1 Information-Theoretic MACs and Batch Opening

We use information-theoretic message authentication codes (IT-MACs) [NNOB12, DPSZ12] to au-
thenticate values in a finite field Fp, where authentication is done in an extension field Fpr ⊇ Fp.
In more detail, let ∆ ∈ Fpr be a global key, sampled uniformly, that is known only by one party PB.
A value x ∈ Fp known by the other party PA can be authenticated by giving PB a uniform key
K[x] ∈ Fpr and giving PA the corresponding MAC tag

M[x] = K[x] + ∆ · x ∈ Fpr .

We denote such an authenticated value by [x]. Note that authenticated values are additively
homomorphic, i.e., if PA and PB hold authenticated values [x], [x′] then they can locally compute
[x′′] = [x + x′] by having PA set x′′ := x + x′ and M[x′′] := M[x] + M[x′] and having PB set
K[x′′] := K[x]+K[x′]. Similarly, for a public value b ∈ Fp, the parties can locally compute [y] = [x+b].
We denote these operations by [x′′] = [x] + [x′] and [y] = [x] + b, respectively.

We extend the above notation to vectors of authenticated values as well. In that case, [u] means
that (for some n) PA holds u ∈ Fnp and w ∈ Fnpr , while PB holds v ∈ Fnpr with w = v + ∆ · u.

An authenticated multiplication triple consists of authenticated values [x], [y], [z] where z = x ·y.

Batch opening of authenticated values. An authenticated value [x] can be “opened” by

having PA send x ∈ Fp and M[x] ∈ Fpr to PB, who then verifies that M[x]
?
= K[x] + ∆ · x. This

has soundness error 1/pr, and requires sending an additional r log p bits (beyond x itself). While
it is possible to repeat this in parallel when opening multiple authenticated values [x1], . . . , [x`],
the communication complexity can be reduced using batching [NNOB12, DPSZ12, NST17]. We
describe two such methods here.

One approach relies on a cryptographic hash function H. Specifically, PA sends (in addition to
the values x1, . . . , x` themselves) a digest h := H(M[x1], . . . ,M[x`]) of all the tags; PB then checks

that h
?
= H(K[x1] + ∆ ·x1, . . . ,K[x`] + ∆ ·x`). Modeling H as a random oracle with 2κ-bit output, it

is not hard to see that the soundness error (i.e., the probability that PA can successfully lie about
any value) is at most (q2

H + 1)/22κ + 1/pr, where qH denotes the number of queries PA makes to H.
The communication overhead is only 2κ bits, independent of `.

A second approach, which is entirely information theoretic, works as follows:

4

1. PA sends x1, . . . , x` ∈ Fp to PB.

2. PB picks uniform χ1, . . . , χ` ∈ Fpr and sends them to PA.

3. PA computes M[x] :=
∑`

i=1 χi ·M[xi] ∈ Fpr , and sends M[x] to PB.

4. PB computes x :=
∑`

i=1 χi · xi ∈ Fpr and K[x] :=
∑`

i=1 χi · K[xi] ∈ Fpr . It accepts the opened

values iff M[x]
?
= K[x] + ∆ · x.

The soundness error of this approach is given by the following lemma.

Lemma 1. Fix x1, . . . , x` ∈ Fp and M[x1], . . . ,M[x`] ∈ Fpr known to PA, and say a uniform ∆ ∈ Fpr
and {K[xi] = M[xi]−∆ · xi} are given to PB. For uniform χ1, . . . , χ` ∈ Fpr , the probability that PA

can successfully open values (x′1, . . . , x
′
`) 6= (x1, . . . , x`) to PB is at most 2/pr.

Proof. Fix (x′1, . . . , x
′
`) 6= (x1, . . . , x`) sent by PA in the first step. Set ω

def
=
∑`

i=1 χi · (x′i − xi). By
a standard argument, Pr[ω = 0] ≤ 1/pr.

Assume ω 6= 0. If PA sends M, then PB accepts only if

M =
∑̀
i=1

χi · K[xi] + ∆ ·
∑̀
i=1

·χi · x′i

=
∑̀
i=1

χi · (M[xi]−∆ · xi) + ∆ ·
∑̀
i=1

χi · x′i

=
∑̀
i=1

χi ·M[xi] + ∆ · ω.

Everything in the final expression is fixed and known to PA except for ∆. Moreover, PA succeeds
iff ∆ = ω−1 · (M−

∑`
i−1 χi ·M[xi]), which occurs with probability 1/pr. The lemma follows.

We can make this second approach non-interactive, using the Fiat-Shamir heuristic in the
random-oracle model, by computing the {χi} as a hash H of the {xi} values sent by PA in the first
step. Adapting the above proof, one can show that this has soundness error at most (qH + 1)/pr.

Hereafter, we write Open([x]) to denote a generic batch opening of a vector of authenticated
values. In addition, we write CheckZero([x]) for the special case where all xi are supposed to be 0
and so need not be sent. We let εopen denote the soundness error (which depends on the technique
used); note that when using either of the techniques described above, this probability is independent
of the number ` of authenticated values opened.

2.2 Security Model and Functionalities

We use the framework of universal composability (UC) [Can01] to prove security in the presence
of a malicious, static adversary. We say that a protocol Π UC-realizes an ideal functionality F if
for any probabilistic polynomial time (PPT) adversary A, there is a PPT simulator S, such that
for any PPT environment Z with arbitrary auxiliary input z, the distribution of the output of Z
in the ideal-world execution where the parties interact with F is computationally indistinguishable
from the output of Z in the real-world execution where the parties execute Π.

The protocol we construct in this work realizes the (standard) zero-knowledge functionality FZK,
reproduced in Figure 1 for convenience. (We omit session identifiers in all our ideal functionalities

5

Functionality FZK

Upon receiving (prove, C, w) from a prover P and (verify, C) from a verifier V where the same (boolean
or arithmetic) circuit C is input by both parties, send true to V if C(w) = 1; otherwise, send false to V.

Figure 1: The zero-knowledge functionality.

Functionality Fp,rsVOLE

Initialize: Upon receiving init from PA and PB, sample ∆← Fpr if PB is honest or receive ∆ ∈ Fpr from
the adversary otherwise. Store global key ∆, send ∆ to PB, and ignore all subsequent init commands.

Extend: Upon receiving (extend, `) from PA and PB, do:

1. If PB is honest, sample K[x]← F`pr . Otherwise, receive K[x] ∈ F`pr from the adversary.

2. If PA is honest, sample x← F`p and compute M[x] := K[x] + ∆ · x ∈ F`pr . Otherwise, receive x ∈ F`p
and M[x] ∈ F`pr from the adversary, and then recompute K[x] := M[x]−∆ · x.

3. Send (x,M[x]) to PA and K[x] to PB.

Global key query: If PA is corrupted, the adversary is allowed to make the following query only once:

1. Receive (guess,∆′) from the adversary where ∆′ ∈ Fpr .

2. If ∆′ = ∆, then send success to the adversary and continue. Otherwise, send abort to both parties
and abort.

Figure 2: Functionality for subfield vector OLE.

for the sake of readability.) The online phase of our protocol relies on a functionality for subfield
vector oblivious linear evaluation (sVOLE) [BCG+19a] that can be run by the prover and verifier
in an offline phase; the corresponding functionality Fp,rsVOLE is given in Figure 2. This functionality
allows two parties to generate a vector of authenticated values known to PA, as described in the
previous section. Our sVOLE functionality follows the definition of Boyle et al. [BCG+19a], except
that we allow the adversary to make a single global key query.

Other functionalities we rely on are given for reference in the appendix.

3 Online Phase of Our Zero-Knowledge Protocol

In Figure 3, we describe our zero-knowledge protocol ΠZK, which operates in the Fp,rsVOLE-hybrid
model. As noted in the Introduction, our protocol can be viewed as following a “GMW-style”
approach to secure two-party computation using authenticated triples [NNOB12, DPSZ12]. In the
secure-computation setting, evaluation of a multiplication gate requires two rounds of interaction,
since the parties hold shares of the values on the input wires, but neither party knows those values.
In the ZK setting, however, the prover P knows the values on all wires; thus, evaluation of a
multiplication gate can be done without any interaction.

At a high level, our protocol consists of the following steps:

1. Initialization. The parties prepare authenticated values {[wi]} for the witness, and {[si]} for
each multiplication gate in the circuit. The parties also generate some number of authenticated

6

Protocol ΠZK

Parameters and inputs: The prover P and verifier V hold a circuit C over finite field Fp with C
multiplication gates; P holds a witness w such that C(w) = 1. Fix values B, c, and r, and let ` = C ·B+c.

Offline phase:

1. P (act as PA) and V (act as PB) send init to Fp,rsVOLE, which returns a uniform ∆ ∈ Fpr to V.

2. P and V send (extend, |Iin| + 3` + C) to Fp,rsVOLE, which returns authenticated values {[λi]}i∈Iin ,
{([xi], [yi], [ri])}i∈[`], and {[si]}i∈[C] to the parties. (If V receives abort from Fp,rsVOLE, then it aborts.)

3. For i ∈ [`], P sends di := xi · yi − ri ∈ Fp to V, and then both parties compute [zi] := [ri] + di.

Online phase:

4. For i ∈ Iin, P sends Λi := wi − λi ∈ Fp to V, and then both parties compute [wi] := [λi] + Λi.

5. For each gate (α, β, γ, T) ∈ C, in topological order:

(a) If T = Add, the two parties locally compute [wγ] := [wα] + [wβ].

(b) If T = Mult and this is the ith multiplication gate, P sends d := wα · wβ − si ∈ Fp to V, and
then both parties compute [wγ] := [si] + d.

6. V samples a random permutation π on {1, . . . , `} and sends it to P. The two parties use π to permute
the {([xi], [yi], [zi])}i∈[`] obtained in step 3.

7. For the ith multiplication gate (α, β, γ,Mult), where the parties obtained ([wα], [wβ], [wγ]) in step 5,
do the following for j = 1, . . . , B:

(a) Let ([x], [y], [z]) be the
(
(i− 1)B + j

)
th authenticated triple (after applying π in step 6).

(b) The parties run δα := Open([wα] − [x]) and δβ := Open([wβ] − [y]). The parties then compute
[µ] := [z]− [wγ] + δβ · [x] + δα · [y] + δα · δβ , and finally run CheckZero([µ]).

8. For each of the remaining c authenticated triples, say ([x], [y], [z]), the parties run x := Open([x]) and
y := Open([y]). They also compute [ν] := [z]− x · y and then run CheckZero([ν]).

9. For the single output wire o with authenticated value [wo], the parties run CheckZero([wo]− 1).

Figure 3: Zero-knowledge proof in the Fp,rsVOLE-hybrid model.

multiplication triples {([xi], [yi], [zi])}; a malicious prover may cause some or all of these triples
to be incorrect (i.e., zi 6= xi · yi).

2. Circuit evaluation. Starting with the authenticated values {[wi]} at the input wires, the par-
ties inductively compute authenticated values for all the wires in the circuit. For addition gates,
this is easy. For the ith multiplication gate, the prover uses [si] to enable the verifier to com-
pute its component of the authenticated value for the output wire without revealing information
about the values on the input wires. Specifically, given authenticated values [wα], [wβ] on the
input wires to the ith multiplication gate, the prover sends wα ·wβ−si to the verifier; the prover
and verifier then compute

[wγ] := [si] + (wα · wβ − si)

as the authenticated value of the output wire. All communication here is from the prover to the
verifier, so the entire circuit can be evaluated using only one round of communication.

Once the parties have an authenticated value [wo] for the output wire, the prover simply opens
that value and the verifier checks that it is equal to 1.

7

3. Verifying correct behavior. So far, nothing has prevented a malicious prover from cheating.
To prevent this, the verifier needs to check the behavior of the prover at each multiplication gate
using the initial set of authenticated multiplication triples the parties generated. This can be
done in various ways. In the protocol as described in Figure 3, which works for circuits over an
arbitrary field Fp, the verifier checks the behavior of the prover as follows (adapting [FLNW17,
ABF+17]):

• The verifier checks a random subset of the authenticated multiplication triples to make sure
they are correctly formed. For an authenticated multiplication triple [x], [y], [z], this can be
done by having the prover run Open([x]) and Open([y]) followed by CheckZero([z]− x · y).

• The verifier then uses the remaining authenticated multiplication triples to check that each
multiplication gate was computed correctly. For a multiplication gate with authenticated
value [wα], [wβ] on the input wires and [wγ] on the output wire, the relation wγ = wαwβ can
be checked using an authenticated multiplication triple [x], [y], [z] by having the prover run
δα := Open([wα]− [x]) and δβ := Open([wβ]− [y]), followed by

CheckZero
(
[z]− [wγ] + δβ · [x] + δα · [y] + δα · δβ

)
.

Each multiplication gate is checked in this way using B authenticated multiplication triples.

Note that the checks for the openings of all the authenticated values (i.e., all the executions of
Open and CheckZero) can be batched together at the end of the protocol.

At the end of the following section, we describe a more efficient approach for verifying correct
behavior in the case of large p.

3.1 Proof of Security

Before giving the proof of security for protocol ΠZK, we analyze the procedure used to check
correctness of the multiplication gates. Consider some multiplication gate with authenticated values
[wα], [wβ] on the input wires and [wγ] on the output wire. If P cheated, so wγ 6= wα · wβ, then
this cheating will be detected in step 7 unless all B of the multiplication triples ([x], [y], [z]) used to
check that gate are incorrect. (We ignore for now the possibility that P is able to successfully cheat
when running Open.) But if too many of the initial multiplication triples are incorrect, then there
is a high probability that P will be caught in step 8. We can analyze the overall probability with
which a cheating P can successfully evade detection by considering an abstract “balls-and-bins”
game BBG with an adversary A, which is based on a similar game considered previously in the
context of secure three-party computation [FLNW17]. Specifically, the game proceeds as follows:

1. A prepares ` = CB + c balls B1, . . . ,B`, each of which is either good or bad. A also pre-
pares C bins, each of which is either good or bad. The balls {Bi}i∈[`] correspond to the triples
{([xi], [yi], [zi])}i∈[`] defined in step 3 of the protocol, and the bins correspond to the triples
{([wα], [wβ], [wγ])} defined for the multiplication gates during the circuit evaluation. A bad
ball/bin is an incorrect triple, while a good ball/bin is a correct triple.

2. Then, c random balls are chosen. If any of the chosen balls is bad, A loses. Otherwise, the game
proceeds to the next step.

3. The remaining CB balls are randomly partitioned into the C bins, with each bin receiving
exactly B balls.

8

4. We say that a bin is fully good (resp., fully bad) if it is labeled good and all the balls inside it are
good (resp., labeled bad and all the balls inside it are bad). A wins if and only if there exists at
least one bin that is fully bad, and all other bins are either fully good or fully bad.

Lemma 2. Assume c ≥ B. Then A wins the above game with probability at most
(
CB+c
B

)−1
.

Proof. Assume that A makes m bins bad for 1 ≤ m ≤ C. It is easy to see that A can only possibly
win if exactly mB balls among B1, . . . ,B` are bad, and they are exactly placed in the m bins that
are bad. We compute the probability that A wins for some fixed m.

Since exactly mB balls of the ` = CB + c balls are bad, the probability that none of the bad
balls is chosen in step 2 of the game is exactly(

`−mB
c

)(
`
c

) =
(`−mB)! · (`− c)!
`! · (`−mB − c)!

=
(CB + c−mB)! · (CB)!

(CB + c)! · (CB −mB)!
.

Assume that this occurs. We are left with `− c = CB balls, of which mB are bad. The probability
that B bad balls are placed in each bad bin is

(mB)! · (CB −mB)!

(CB)!
.

Thus, the probability that A wins is exactly(
`−mB
c

)(
`
c

) · (mB)! · (CB −mB)!

(CB)!
=

(CB + c−mB)! · (mB)!

(CB + c)!
=

(
CB + c

mB

)−1

.

When c ≥ B (and 1 ≤ m ≤ C), this is maximized when m = 1.

We now prove security of ΠZK.

Theorem 1. Let c ≥ B. Protocol ΠZK UC-realizes FZK in the Fp,rsVOLE-hybrid model. In particular,
no environment Z can distinguish the real-world execution from the ideal-world execution, except

with probability at most
(
CB+c
B

)−1
+ p−r + εopen.

Proof. We first consider the case of a malicious prover (i.e., soundness) and then consider the case
of a malicious verifier (i.e., zero knowledge). In each case, we construct a PPT simulator S given
access to FZK, and running the PPT adversary A as a subroutine while emulating functionality
Fp,rsVOLE for A. We always implicitly assume that S passes all communication between A and Z.

Malicious prover. S interacts with adversary A as follows:

1. S emulates Fp,rsVOLE for A by choosing uniform ∆ ∈ Fpr and recording all the values {λi}i∈Iin ,
{(xi, yi, ri)}i∈[`], and {si}i∈[C], and their corresponding MAC tags, sent to Fp,rsVOLE by A. These
values define corresponding keys in the natural way.

2. If A makes a global key query (guess,∆′), then S checks if ∆′ = ∆. If not, S sends abort to A,
sends (prove, C,⊥) to FZK, and stops. Otherwise, S aborts.

3. When A sends {Λi}i∈Iin in step 4, S sets wi := λi + Λi for i ∈ Iin.

4. S runs the rest of the protocol as an honest verifier, using ∆ and the keys defined in the first
step. If the honest verifier outputs false, then S sends (prove, C,⊥) to FZK and aborts. If the
honest verifier outputs true, S sends (prove, C, w) to FZK where w is as defined above.

9

We assume A does not correctly guess ∆; this is true except with probability at most p−r. It is
then clear that the view of A is perfectly simulated by S, and the simulated verifier run by S has
the same output distribution as the verifier in the real protocol execution. Whenever the verifier
simulated by S outputs false, the real verifier outputs false as well (since S sends ⊥ to FZK). It
thus only remains to show that, except with negligible probability, if the simulated verifier run by
S outputs true, then the witness w sent by S to FZK satisfies C(w) = 1. Below, we show that if

C(w) = 0 then the probability that the simulated verifier outputs true is at most
(
CB+c
B

)−1
+ εopen.

If C(w) = 0 then either wo = 0 or else at least one of the triples {([wα], [wβ], [wγ])} defined at
the multiplication gates during the circuit evaluation must be incorrect. In the former case, the
probability that P can succeed when running CheckZero(wo) is at most εopen. In the latter case,

Lemma 2 shows that the probability that A avoids being “caught” in steps 6–8 is at most
(
CB+c
B

)−1
;

if A is caught, then it succeeds in opening some incorrect value with probability at most εopen. This
completes the proof for the case of a malicious prover.

Malicious verifier. If S receives false from FZK, then it simply aborts. Otherwise, S interacts
with adversary A as follows:

1. S emulates Fp,rsVOLE for A by recording the global key ∆, and the keys for all the authenti-
cated values, sent to the functionality by A. Then, S samples uniform values for {λi}i∈Iin ,
{(xi, yi, ri)}i∈[`], and {si}i∈[C], and computes their corresponding MAC tags in the natural way.

2. S executes steps 3–8 of protocol ΠZK by simulating the honest prover with input w = 0|Iin|.

3. In step 9, S computes K[wo] (based on the keys sent to Fp,rsVOLE by A) and then sets M[wo] :=
K[wo] + ∆. Finally, it uses M[wo] to run CheckZero([wo]− 1) with A.

The view of adversary A simulated by S is distributed identically to its view in the real protocol
execution. This completes the proof.

Verifying correct behavior for large p. For large p, we can use a different procedure for checking
correctness of the multiplication gates that can be viewed as a simplified version of the check used
by SPDZ [DPSZ12]. Specifically, the parties now prepare a single multiplication triple [x], [y], [z]
per multiplication gate. To check correctness of a multiplication gate with authenticated values
[wα], [wβ] on the input wires, and [wγ] on the output wire, the verifier sends a uniform η ← Fp to
the prover, who responds by running δα := Open(η · [wα]− [x]) and δβ := Open([wβ]− [y]), followed
by

CheckZero([z]− η · [wγ] + δβ · [x] + δα · [y] + δα · δβ).

This has soundness error 1/p + εopen. To see this, say wγ = wαwβ + ∆w with ∆w 6= 0, and let
z = xy + ∆z. Then z − η ·wγ + δβ · x+ δα · y + δα · δβ = 0 iff η = ∆z/∆w. Note that this checking
procedure can be done for all multiplication gates in parallel using a single value η, and the overall
soundness error remains unchanged.

4 Subfield VOLE

The online phase of out zero-knowledge protocol relies on sVOLE [BCGI18, BCG+19b] to generate
authenticated values. Boyle et al. [BCGI18] proposed an sVOLE protocol with sublinear commu-
nication complexity, but their protocol relies on generic secure two-party computation (2PC) and
is thus not very efficient. Subsequent work either considered sVOLE for general fields but with

10

semi-honest security [BCG+19b, SGRR19], or focused on concrete efficiency but only for the case
of binary fields [BCG+19a, YWL+20].

Here, we extend the work of Kang et al. [YWL+20] to arbitrary fields. Moreover, although
Kang et al. only consider security in the stand-alone model, we prove our protocol secure in the UC
framework. To do so, we consider a slightly relaxed sVOLE functionality that allows for a single
global key query; this has negligible impact when using sVOLE in our ZK proof.

Overview. In Appendix B, we present an sVOLE protocol inspired by the work of Keller et
al. [KOS15, KOS16]. Although that protocol technically suffices for our ZK protocol, we can obtain
better efficiency using “sVOLE extension” (by analogy with OT extension), by which we extend a
small number of “base” sVOLE correlations into a larger number of sVOLE correlations. Toward
this end, in Section 4.1, we show how to construct a protocol for single-point sVOLE (spsVOLE)
from sVOLE, where spsVOLE is like sVOLE except that the vector of authenticated values has
only a single non-zero entry. Finally, in Section 4.2, we present an efficient protocol for “sVOLE
extension” using spsVOLE as a subroutine and relying on a variant of the learning parity with noise
(LPN) assumption. We provide intuition for each of these protocols in the relevant section.

4.1 Single-Point Subfield VOLE

Functionality Fp,rspsVOLE

Initialize: Upon receiving init from PA and PB, sample ∆← Fpr if PB is honest or receive ∆ ∈ Fpr from
the adversary otherwise. Store global key ∆, send ∆ to PB, and ignore all subsequent init commands.

Extend: Upon receiving (sp-extend, n), where n = 2h for some h ∈ N, from PA and PB, do:

1. If PB is honest, sample v ← Fnpr . Otherwise, receive v ∈ Fnpr from the adversary.

2. If PA is honest, then sample a uniform u ∈ Fnp with exactly one non-zero entry, and compute
w := v + ∆ · u ∈ Fnpr . Let α ∈ [0, n) be the index of the non-zero entry of u. Otherwise, receive
u ∈ Fnp (with at most one non-zero entry) and w ∈ Fnpr from the adversary, and set v := w −∆ · u.

3. If PB is corrupted, receive I ⊆ [0, n) from the adversary. If α ∈ I, send success to PB and continue.
Otherwise, send abort to PA; when PA responds with abort, send abort to PB and stop.

4. Send (u,w) to PA and v to PB.

Global key query: If PA is corrupted, the adversary is allowed to make the following query only once:

1. Receive (guess,∆′) from the adversary where ∆′ ∈ Fpr .

2. If ∆′ = ∆, then send success to the adversary and continue. Otherwise, send abort to both parties
and abort.

Figure 4: Functionality for single-point sVOLE.

We present the single-point sVOLE (spsVOLE) functionality Fp,rspsVOLE in Figure 4, where the

length n = 2h of the vectors is assumed to be a power of two for simplicity. Fp,rspsVOLE is a version
of sVOLE where the vector of authenticated values contains exactly one nonzero entry.

Overview of our protocol. In Figure 5, we present protocol Πp,r
spsVOLE that UC-realizes Fp,rspsVOLE

in the (FOT,Fp,rsVOLE,FEQ)-hybrid model, where FEQ corresponds to a weak equality test that reveals
PA’s input to PB. (See Appendix A.) The protocol can be conceptually divided into two steps: first,
the parties run a semi-honest protocol for generating a vector of authenticated values [u] having

11

a single nonzero entry; then, a consistency check is performed to detect malicious behavior. We
explain both steps in what follows.

PA begins by choosing a uniform β ∈ F∗p and a uniform index α. Letting u ∈ Fnp be the vector
that is 0 everywhere except that u[α] = β, the goal is for the parties to generate [u]. That is, they
want PA to hold w ∈ Fnpr and PB to hold v ∈ Fnpr such that w = v+∆·u. To do so, the parties begin
by generating the authenticated value [β]; this is easy to do using a call to Fp,rsVOLE. Next, they use
a subroutine [BGI15, BGI16, BCG+17] based on the GGM construction [GGM86] to enable PB to
generate v ∈ Fnpr while allowing PA to learn all the components of that vector except for v[α]. This
is done in the following way. Let G : {0, 1}κ → {0, 1}2κ and G′ : {0, 1}κ → F2

pr be pseudorandom
generators. PB chooses uniform s ∈ {0, 1}κ and computes all values in a GGM tree of depth h with
s at the root: That is, letting sij denote the value at the jth node on the ith level of the tree, PB

defines s0
0 := s and then for i = 1, . . . , h − 1 and j ∈ [0, 2i−1) computes

(
si2j , s

i
2j+1

)
:= G(si−1

j);

finally, PB computes a vector v at the leaves as (v[2j],v[2j + 1]) := G′(sh−1
j) for j ∈ [0, 2h−1). Next,

PB lets Ki
0 (resp., Ki

1) be the XOR of the values at the even (resp., odd) nodes on level i. (When

i = h we replace XOR with addition in Fpr .) We write
(
{v[j]}n−1

j=0 , {(Ki
0,K

i
1)}hi=1

)
← GGM(1n, s)

to denote this computation done by PB. It is easily verified that if PA is given {Ki
ᾱi}

h
i=1 (where

ᾱi is the complement of the ith bit of α), then PA can compute {v[j]}j 6=α, while v[α] remains
computationally indistinguishable from uniform given PA’s view. (PA can obtain {Ki

ᾱi}
h
i=1 using h

OT invocations.) We denote the resulting computation of PA by {v[j]}j 6=α ← GGM′(α, {Ki
ᾱi}

h
i=1).

Following the above, PA sets w[i] := v[i] for i 6= α. Note that w[i] = v[i] + ∆ · u[i] for i 6= α
(since u[i] = 0 for i 6= α), so all that remains is for PA to obtain the missing value w[α] = v[α]+∆·β
(without revealing α, β to PB). Recall the parties already hold [β], meaning that PA holds M[β]
and PB holds K[β] with M[β] = K[β] + ∆ · β. So if PB sends K[β]−

∑
i v[i], then PA can compute

the missing value as

w[α] := M[β]− (K[β]−
∑

i v[i])−
∑

i 6=α v[i]

= M[β]− K[β] + v[α] = v[α] + ∆ · β.

This completes the “semi-honest” portion of the protocol.
To verify correct behavior, we generalize the approach of Kang et al. [YWL+20] that applies

only to the case p = 2. We want to verify that w[i] = v[i] for i 6= α, and w[α] = v[α] + ∆ · β.
Intuitively, the parties do this by having PA choose uniform χ0, . . . , χn−1 ∈ Fpr and then checking
that ∑

i

χi ·w[i] =
∑
i

χi · v[i] + ∆ · β · χα.

Of course, this must be done without revealing α, β to PB. To do so, PA and PB use Fp,rsVOLE to
compute Z, Y ∈ Fpr , respectively, such that Z = Y + ∆ · β · χα. (We discuss below how this is
done.) They then use FEQ to check if VA =

∑n−1
i=0 χi ·w[i]−Z is equal to VB =

∑n−1
i=0 χi · v[i]− Y .

To complete the description, we show how PA, PB can generate Z, Y (held by PA, PB, respec-
tively) such that Z = Y + ∆ · β · χα. Although this looks like an authenticated value [β · χα], note
that β · χα lies in Fpr rather than Fp. PA views χα ∈ Fpr as a vector χα = (χα,0, . . . , χα,r−1) ∈ Frp
(namely, χα =

∑
i χα,i · gi), and then the two parties use Fp,rsVOLE to generate the vector of authenti-

cated values [β ·χα]. This means PA holds z and PB holds y such that z = y+ ∆ ·β ·χα. Letting

12

Protocol Πp,r
spsVOLE

Initialize: This procedure is executed only once.

1. PA and PB send init to Fp,rsVOLE, which returns ∆ ∈ Fpr to PB.

Extend: This procedure can be run multiple times. On input n = 2h, the parties do:

2. PA and PB send (extend, 1) to Fp,rsVOLE, which returns (a, c) ∈ Fp × Fpr to PA and b ∈ Fpr to PB such
that c = b + ∆ · a. Then, PA samples β ← F∗p, sets δ := c, and sends a′ := β − a ∈ Fp to PB, who
computes γ := b−∆ · a′. Note that δ = γ + ∆ · β ∈ Fpr .

PA samples α← [0, n) and defines u to be a vector of length n that is 0 everywhere except u[α] := β.

3. PB samples s← {0, 1}κ, runs
(
{vj}n−1

j=0 , {(Ki
0,K

i
1)}hi=1

)
← GGM(1n, s), and sets {v[j] := vj}n−1

j=0 .

PA sets αi as the ith bit of the binary representation of α. For i ∈ [h], PA sends ᾱi ∈ {0, 1} to FOT and
PB sends (Ki

0,K
i
1) to FOT, which returns Ki

ᾱi
to PA. Then PA runs {vj}j 6=α ← GGM′(α, {Ki

ᾱi
}hi=1).

4. PB sends d := γ −
∑
i∈[0,n) v[i] ∈ Fpr to PA. Then, PA defines w to be a vector of length n with

w[i] := vi for i 6= α and w[α] := δ −
(
d+

∑
i6=αw[i]

)
. Note that w = v + ∆ · u.

Consistency check:

5. Both parties send (extend, r) to Fp,rsVOLE, which returns (x, z) ∈ Frp × Frpr to PA and y∗ ∈ Frpr to PB

such that z = y∗ + ∆ · x.

6. PA samples χi ← Fpr for i ∈ [0, n), and writes χα =
∑r−1
i=0 χα,i ·gi. Let χα = (χα,0, . . . , χα,r−1) ∈ Frp.

PA then computes x∗ := β · χα − x ∈ Frp and sends {χi}i∈[0,n) and x∗ to PB, who computes
y := y∗ −∆ · x∗ ∈ Frpr .

7. PA sets Z :=
∑r−1
i=0 z[i] · gi and VA :=

∑
i∈[0,n) χi · w[i] − Z, while PB sets Y :=

∑r−1
i=0 y[i] · gi and

VB :=
∑
i∈[0,n) χi · v[i] − Y . Then PA sends VA to FEQ, and PB sends VB to FEQ. If either party

receives false or abort from FEQ, it aborts.

8. PA outputs (u,w) and PB outputs v.

Figure 5: Single-point sVOLE protocol in the (FOT,Fp,rsVOLE,FEQ)-hybrid model.

Z =
∑

i z[i] · gi and Y =
∑

i y[i] · gi, we then have

Z =
∑
i

z[i] · gi =
∑
i

(y[i] + ∆ · β · χα[i]) · gi

=
∑
i

y[i] · gi + ∆ · β ·
∑
i

χα[i] · gi

= Y + ∆ · β · χα,

as desired.
We remark that the consistency check allows a malicious PA to attempt to guess ∆, and allows a

malicious PB to attempt to guess a subset in which the index α lies. (This will become evident in the
proof of security below.) The possibility of such guesses is incorporated into the ideal functionality
Fp,rspsVOLE, and we show later that (as in prior work [BCG+19a, YWL+20]) this leakage is harmless

when Fp,rspsVOLE is used as a subroutine in our final sVOLE protocol.

Theorem 2. If G and G′ are pseudorandom generators, then Πp,r
spsVOLE UC-realizes Fp,rspsVOLE in

the (FOT,Fp,rsVOLE,FEQ)-hybrid model. In particular, no PPT environment Z can distinguish the
real-world execution from the ideal-world execution, except with probability at most 1/pr + negl(κ).

13

Proof. We first consider the case of a malicious PA and then consider the case of a malicious PB. In
each case, we construct a PPT simulator S given access to Fp,rspsVOLE that runs the PPT adversary

A as a subroutine, and emulates FOT,Fp,rsVOLE, and FEQ. We always implicitly assume that S passes
all communication between A and Z.

Malicious PA. S interacts with A as follows:

1. S emulates Fp,rsVOLE and records the values (a, c) that A sends to Fp,rsVOLE. When A sends the
message a′,then S defined β := a′ + a ∈ Fp and δ := c.

2. S picks d ← Fpr and sends it to A. For each i ∈ [h], S emulates FOT and receives ᾱi ∈ {0, 1}
from A, and executes the following:

(a) If 1 ≤ i < h, sample Ki
ᾱi ← {0, 1}

κ. Otherwise (i = h), sample Kh
ᾱh
← Fpr .

(b) Send Ki
ᾱi to A.

S defines an index α = α1 · · ·αh ∈ [0, n).

3. Simulator S defines u ∈ Fnp as a vector that is 0 everywhere except that u[α] = β, and runs

GGM′(α, {Ki
ᾱi}

h
i=1) to obtain {vi}i 6=α. Then, S sets w[i] = vi for i ∈ [0, n), i 6= α and computes

w[α] := δ − (d+
∑

i∈[0,n)\{α}w[i]). Next, S sends (sp-extend, n), u and w to Fp,rspsVOLE.

4. S emulates Fp,rsVOLE and receives (x, z) from A. Then, S receives {χi}i∈[0,n) and x∗ from A. S
computes x′ := x∗ + x ∈ Frp, and defines x′ =

∑r−1
i=0 x

′[i] · gi.

Note that if adversary A behaves semi-honestly, then x′ = β ·
(∑r−1

i=0 χα[i] · gi
)

= β · χα ∈ Fpr .

5. S emulates FEQ and receives an element V ′A ∈ Fpr from A. Then S computes VA :=
∑

i∈[0,n) χi ·
w[i]−

∑r−1
i=0 z[i] · gi ∈ Fpr and does the following:

• If x′ = β · χα, then S checks whether VA = V ′A. If so, S sends true to A. Otherwise, S sends
abort to A and aborts.

• Otherwise, S computes ∆′ := (VA − V ′A) /(β ·χα−x′) ∈ Fpr and make a global key query (∆′)
to functionality Fp,rspsVOLE. If Fp,rspsVOLE returns success, S sends true to A. Otherwise, S sends
abort to A and aborts.

Firstly, we note that the extraction of α and β is perfect. While d = γ −
∑

i∈[0,n) v[i] in the real
protocol execution, d ∈ Fpr is sampled at random by S in the ideal world execution. Following
the previous work [KPTZ13, BW13, BGI14], we easily prove that v[α] is computationally indistin-
guishable from a random value under the assumption that G and G′ are pseudorandom generators.
Therefore, it is computationally infeasible to find the difference of d. In the real protocol execution,
the OT message Ki

ᾱi for each i ∈ [h] is the sum of all the nodes at the either left-hand side (ᾱi = 0)
or right-hand side (ᾱi = 1) in the i-level of the GGM tree. Nevertheless, Ki

ᾱi for each i ∈ [h] is
sampled at random by S in the ideal world execution. For each i ∈ [h], adversary A never obtains
the PRG seed on node α1 · · ·αi. In other words, the PRG seed siα∗i

(where α∗i := α1 · · ·αi−1ᾱi)

is computationally indistinguishable from a random value, as G and G′ are both pseudorandom
generators. Therefore, we have that Ki

ᾱi for all i ∈ [h] generated in the real protocol execution
are computationally indistinguishable from random values. According to the GGM tree construc-
tion, we easily bound the probability of environment Z, which distinguishes element d and keys
{Ki

ᾱi}i∈[h] between the real world and the ideal world, by negl(κ) based on a standard hybrid
argument.

14

In the real protocol execution, A may send x∗ := x′ − x for some vector x′ ∈ Frp to PB, where
x′ = β ·χα if A behaves semi-honestly. Then PB will compute y := y∗−∆ ·x∗ = z−∆ ·x′. Thus,

Y =
r−1∑
i=0

y[i] · gi =
r−1∑
i=0

z[i] · gi −∆ · (
r−1∑
i=0

x′[i] · gi) = Z −∆ · x′.

Further, we have that

VA − VB =
∑
i∈[0,n)

χi · (w[i]− v[i])− (Z − Y) = ∆ · (β · χα − x′).

If x′ = β ·χα, then we obtain that VA = VB, and thus S can use VA to check the correctness of V ′A sent
by A to FEQ. Otherwise, V ′A = VA−∆ · (β ·χα−x′) if and only if ∆′ = (VA − V ′A) /(β ·χα−x′) = ∆.
Therefore, S can use the global key query from Fp,rspsVOLE to respond the query sent by A to FEQ.

Below, we analyze the outputs of two parties in the real protocol execution. From c = b+ ∆ ·a,
b = γ + ∆ · a′ and a = β − a′, we have that the following holds:

δ = c = b+ ∆ · a = γ + ∆ · a′ + ∆ · (β − a′) = γ + ∆ · β.

Following the proof of correctness in [BCG+19a, Theorem 7], we have that w[i] = v[i] for i ∈
[n], i 6= α. From d = γ −

∑
i∈[0,n) v[i], we have that:

w[α] = δ −
(
d+

∑
i∈[0,n)\{α}

w[i]
)

= γ + ∆ · β − γ +
(∑
i∈[0,n)

v[i]−
∑

i∈[0,n)\{α}

w[i]
)

= ∆ · β + v[α].

Therefore, w = v + ∆ · u where u is a vector that is 0 everywhere except that u[α] = β. That is,
if PB does not abort in the real protocol execution, it will output a vector v which has the same
distribution as the one in the ideal world.

Overall, environment Z cannot distinguish the real world execution from the ideal world exe-
cution, except with probability negl(κ).

Malicious PB. S has access to Fp,rspsVOLE, and interacts with adversary A as follows:

1. S emulates Fp,rsVOLE, and records all values from A, including ∆ ∈ Fpr and b ∈ Fpr . On behalf of
honest PA, S samples a′ ← Fp and sends it to A. Then S computes γ := b−∆ · a′.

2. S receives an element d ∈ Fpr from A. When playing the role of FOT, S receives the OT
messages {(Ki

0,K
i
1)}i∈[h] from A. Then S samples β ← F∗p and computes δ := γ + ∆ · β. Given

{(Ki
0,K

i
1)}i∈[h] and (d, δ), S computes a vector wα for each α ∈ [0, n) as follows:

(a) Run GGM′(α, {Ki
ᾱi}

h
i=1) to obtain {vi(α)}i 6=α. Set wα[i] = vi(α) for i ∈ [0, n), i 6= α.

(b) Compute wα[α] := δ − (d+
∑

i∈[0,n)\{α}wα[i]).

3. S emulates Fp,rsVOLE and records y∗ received from adversary A. Then, S samples χ0, . . . , χn−1 ←
Fpr and x∗ ← Frp, and sends them to A. Following the protocol specification, S computes

y := y∗ −∆ · x∗ and Y :=
∑r−1

i=0 y[i] · gi ∈ Fpr .

15

4. S emulates FEQ and receives an element VB ∈ Fpr from adversary A. Then S computes a set I
corresponding to the adversary’s guess on the index α? of honest PA as follows:

(a) For each α ∈ [0, n), compute VA(α) :=
∑

i∈[0,n) χi ·wα[i]−∆ · β · χα − Y .

(b) Define the set I = {α ∈ [0, n) | VA(α) = VB} ⊆ [0, n). Note that if adversary A behaved
semi-honestly, then we should have that VA(0) = VA(1) = · · · = VA(n− 1) = VB.

If I = ∅, S picks α̂← [0, n) and sends (false,Wα̂) to A, and then aborts.

5. Given the OT messages {(Ki
0,K

i
1)}i∈[h] and element d, S chooses any α ∈ I and computes a

vector v as the output of PB as follows:

(a) Run GGM′(α, {Ki
ᾱi}

h
i=1) to obtain {vi(α)}i 6=α. Then set vα[i] := vi(α) for i ∈ [0, n), i 6= α.

(b) Compute vα[α] = Kh
αh

+
∑

j∈[0,2h−1),j 6=α1···αh−1
v2j+αh(α).

(c) Compute an adversarially chosen error Eα := γ − d−
∑

i∈[0,n) vα[i].

(d) For i ∈ [0, n), define v[i] = vα[i] if i 6= α and v[α] = vα[α] + Eα otherwise.

6. S sends (sp-extend, n) and v to Fp,rspsVOLE. Then, S sends the set I to Fp,rspsVOLE. If receiving
success from this functionality, S sends (true, VB) to A on behalf of FEQ. Otherwise, S picks
α̂← [0, n)\I and sends (false, VA(α̂)) to A on behalf of FEQ, and then aborts.

In the real protocol execution, a′ ∈ Fp sent by PA is uniformly random, as it is masked by a uniform
element a output by Fp,rsVOLE. Thus, the element a′ simulated by S has the same distribution as the
real value. Note that the actual output β? of honest PA is unknown for S. Simulator S only uses
a dummy element β ∈ F∗p sampled uniformly by itself to extract a guess set I, and never uses it
elsewhere. Environment Z cannot notice the difference of computing the set I between a real value
β? and a dummy element β, as β has the same distribution as β?. In the real protocol execution,
x∗ ∈ Frp is masked by a random vector x ∈ Frp and is uniformly distributed in Frp. Therefore, the
vector x∗ simulated by S has the same distribution as the real vector.

The set I extracted by S corresponds to the selective failure attack on the index α? of honest
PA mounted by A. If S receives abort from Fp,rspsVOLE (or S aborts for I = ∅), we have that α? /∈ I.
In the real protocol execution, if VB 6= VA(α?), the honest PA aborts. By previous considerations,
this is equivalent to α? /∈ I. Therefore, Fp,rspsVOLE aborts if and only if the real protocol execution
aborts. In the case of honest PA, the index α? ∈ [0, n) is sampled uniformly at random in both the
real world execution and the ideal world execution. If receiving abort from Fp,rspsVOLE, then S needs
to send false along with an element VA(α̂) 6= VB to adversary A. Although S does not know the
actual index α?, it can sample a random index α̂ from the set [0, n)\I and send the element VA(α̂)
to A. In the case of aborting, this simulation is perfect, since Z cannot obtain the output of PA

due to aborting, and the dummy index α̂ has the same distribution as the actual index α? under
the condition that I is an incorrect guess.

Below, we prove that except with probability 1/pr, the output vector v ∈ Fnpr computed by S
is independent from the choice α ∈ I, and is correct such that w? = v + ∆ · u? if the protocol
execution does not abort, where u?,w? are the output of honest PA and u? is a vector with exactly
one nonzero entry u?[α?] = β?.

Claim 1. Except with probability at most 1/pr, all choices of α, α′ ∈ I in the step 5 of the simulation
lead to the same output vector v.

16

Proof. For the case of |I| = 1, this is trivial. For |I| > 1, we prove that for any two indices α, α′ ∈ I,
vα[i] = vα′ [i] for i ∈ [0, n), i 6= α, α′. In particular, from VA(α) = VA(α′) = VB, we have that:∑

i∈[0,n)

χi ·wα[i]−∆ · β · χα − Y =
∑
i∈[0,n)

χi ·wα′ [i]−∆ · β · χα′ − Y

⇔
∑

i∈[0,n)\{α,α′}

χi · (wα[i]−wα′ [i]) + χα · (wα[α]−wα′ [α]−∆ · β)

+ χα′ · (wα[α′]−wα′ [α
′] + ∆ · β) = 0.

Note that ∆, β, wα and wα′ have already been defined before {χi}i∈[0,n) is sampled. Furthermore,
each coefficient χi is uniformly random. Therefore, except with probability 1/pr, we have that:

wα[i] = wα′ [i] for i ∈ [0, n)\{α, α′},
wα[α]−wα′ [α] = wα′ [α

′]−wα[α′] = ∆ · β.

For all α ∈ [n], we have that vα[i] = wα[i] for i ∈ [0, n), i 6= α from their definitions. Thus, we
obtain that vα[i] = vα′ [i] for all i ∈ [0, n), i 6= α, α′. From the equations wα[α] = γ + ∆ · β − (d+∑

i∈[0,n)\{α}wα[i]) and Eα = γ−d−
∑

i∈[0,n) vα[i], we also have that wα[α] = (vα[α] +Eα) + ∆ ·β.
According to wα[α] − vα′ [α] = ∆ · β, we further have that vα′ [α] = vα[α] + Eα. Overall, for all
α, α′ ∈ I, S would compute the same output vector v, which completes the proof.

It is obvious that w? = v+u? ·∆ in the ideal world execution, where recall that u?,w? are the
output of honest PA. In the following, we focus on proving that this equation still holds in the real
protocol execution, except with probability 1/pr. We define a vector v? as v?[i] = vα? [i] for i 6= α?

and v?[α?] = vα? [α
?] +Eα? , where Eα? = γ− d−

∑
i∈[0,n) vα? [i]. Based on the analysis in Claim 1,

we have that w?[i] = v?[i] for all i 6= α? and w?[α?] = (vα? [α
?] + Eα?) + ∆ · β? = v?[α?] + ∆ · β?.

Therefore, we obtain that w? = v? + ∆ · u?. In the real protocol execution, adversary A can
compute an output vector v following the approach used by simulator S (i.e., the step 5 of the
simulation). Based on the Claim 1, if α? ∈ I (i.e., the real protocol execution does not abort),
we have that v = v? except with probability 1/pr, and thus w? = v + u? ·∆. In conclusion, any
environment Z cannot distinguish the real world execution from the ideal world execution, except
with probability 1/pr.

Implementation and optimizations. We discuss some implementation details and optimizations
for the protocol in Figure 5.

1. When p ≥ 2ρ, the parties can use the output of Fp,rsVOLE directly as [β] in step 2, since the value
β will be nonzero with overwhelming probability.

2. In the consistency check procedure, PA can send a uniform seed ∈ {0, 1}κ to PB, and then both
parties can simply derive the {χi} from seed using a hash function modeled as a random oracle.

3. When t extend executions of spsVOLE are needed, we can perform the consistency check in
a batch. This optimization reduces the need of t · r sVOLE correlations to only r sVOLE
correlations. Specifically, based on the batched idea by Kang et al. [YWL+20], we can combine
t consistency checks into only one check as follows:

(a) After t sVOLE correlations ((uj ,wj),vj) for j ∈ [t] have been computed, where uj is a
vector that is 0 everywhere except that uj [αj] = βj , PA and PB send (extend, r) to Fp,rsVOLE,
which returns (x, z) ∈ Frp × Frpr to PA and y ∈ Frpr to PB.

17

(b) PA samples χi,j ← Fpr for i ∈ [0, n), j ∈ [t], and writes χαj =
∑r−1

i=0 χj [i] · gi. It then
computes x∗ := x−

∑
j∈[t] βj · χj ∈ Frp and sends {χi,j}i∈[0,n),j∈[t] and x∗ to PB.

(c) PB computes y∗ := y+∆·x∗ ∈ Frpr , Y :=
∑r−1

i=0 y
∗[i]·gi ∈ Fpr , and VB :=

∑
i∈[0,n)

∑
j∈[t] χi,j ·

vj [i]−Y ∈ Fpr . PA computes Z :=
∑r−1

i=0 z[i]·gi ∈ Fpr and VA :=
∑

i∈[0,n)

∑
j∈[t] χi,j ·wj [i]−

Z ∈ Fpr . Then PA sends VA to FEQ, and PB sends VB to FEQ.

(d) If either party receives false or abort from FEQ, it aborts.

Following the analysis [YWL+20], the above batched consistency check guarantees the correct-
ness of outputs of two parties and the consistency of ∆ among t extend executions. We note
that the batched consistency check does not reveal more information on indices {αj}j∈[t] than
executing t independent consistency checks described in Figure 5.

4.2 A More Efficient sVOLE Protocol

Overview of our protocol. We use an LPN variant which states that uniform (A,x) ∈ Fk×np ×Fnp
is computationally indistinguishable from (A, s ·A + e), where s ∈ Fkp is uniform and e ∈ Fnp has
a small, fixed Hamming weight t. To increase efficiency, we consider a regular noise distribution,
which has been used in previous work [HOSS18, BCG+19a, YWL+20]. Specifically, the error vector
e ∈ Fnp is divided into t consecutive sub-vectors of length bn/tc, where each sub-vector has exactly
one uniform non-zero entry. Recall that our goal is to generate a vector of authenticated values
(i.e., sVOLE) [x]. Using the linearity of LPN, two parties just need to generate authenticated
values [s] and [e]. We can generate [e] by computing spsVOLE t times with each of length bn/tc
and then concatenating them together. The communication cost to generate [e] is O(t log n

t). Then
the LPN assumption essentially provides us a way to generate n authenticated values using the
communication cost to compute k authenticated values along with O(t log n

t). Based on the iteration
idea [YWL+20], we can first generate k authenticated values using a one-time setup protocol, and
then output n− k authenticated values for each iteration using only O(t log n

t) cost and remain k
authenticated values for the next iteration. In this case, the average communication cost for each
authenticated value is about O(t log n

t)/(n − k). Since n � t and n � k, the protocol is very
efficient.

4.2.1 An LPN Variant

Our sVOLE protocol depends on a variant of the Learning Parity with Noise (LPN) assump-
tion [BFKL94], called LPN with static leakage by Boyle et al. [BCG+19a]. Here, the adversary is
allowed to query for a single bit of leakage (on average) about the error vector. Following prior
works [HOSS18, BCG+19a], we consider a regular error distribution with fixed Hamming weight.

Definition 1 (LPN with static leakage [BCG+19a]). Let G be a polynomial-time code generation
algorithm such that G(k, n,Fp) outputs a matrix A ∈ Fk×np , and Dn,t be a regular error distribution
over Fnp with fixed Hamming weight t . Parameters k, n, t are functions of κ. Consider the following
game Gb(1

κ) involving a (PPT) adversary A parameterized by κ:

1. Sample A ← G(k, n,Fp) and u ← Fkp. Also sample an error vector e ← Dn,t. Let α1, . . . , αt be
the indices of the nonzero entries in e, each of which is located in a disjoint bn/tc-sized interval.

2. Selective failure query: A sends t sets I1, . . . , It ⊆ [0, n). If αi ∈ Ii for all i ∈ [t], then
send success to A; otherwise, abort and define the output of A as 0.

18

Protocol Πp,r
sVOLE

Parameters: LPN parameters n, k, t, `,m with k, t < n, ` = n− k, and m = n/t. A matrix A ∈ Fk×np

output by a code generator G(k, n,Fp).
Initialize: This procedure is executed only once.

1. PA and PB send init to Fp,rsVOLE, which returns ∆ ∈ Fpr to PB.

2. PA and PB send (extend, k) to Fp,rsVOLE, which returns (u,w) ∈ Fkp ×Fkpr to PA and v ∈ Fkpr to PB such
that w = v + ∆ · u.

Extend: This procedure can be called multiple times, and produces ` sVOLE correlations in each
iteration.

3. For i ∈ [t], PA and PB send (sp-extend,m) to Fp,rspsVOLE, which returns (ai, ci) ∈ Fmp × Fmpr to PA and
bi ∈ Fmpr to PB such that ci = bi + ∆ · ai and ai ∈ Fmp has exactly one nonzero entry.

In any of these spsVOLE executions, if either party receives abort from Fp,rspsVOLE, it aborts.

4. PA defines e = (r1, . . . , rt) ∈ Fnp and a vector t = (t1, . . . , tt) ∈ Fnpr . Then PA computes x :=
u ·A + e ∈ Fnp and z := w ·A + t ∈ Fnpr .

PB defines s = (s1, . . . , st) ∈ Fnpr and computes y := v ·A + s ∈ Fnpr .

5. PA updates u,w by setting u := x[0 : k) ∈ Fkp and w := z[0 : k) ∈ Fkpr , and outputs (b,M[b]) :=

(x[k : n), z[k : n)) ∈ F`p × F`pr .

PB updates y by setting v := y[0 : k) ∈ Fkpr , and outputs K[b] := y[k : n) ∈ F`pr .

Figure 6: Iterative sVOLE protocol in the (Fp,rsVOLE,F
p,r
spsVOLE)-hybrid model.

3. If b = 1, let x = u ·A + e; otherwise, sample x← Fnp .

4. Send x to A, who then outputs a bit b′.

The (Dn,t,G,Fp)-LPN(k, n, t) assumption with static leakage states that∣∣∣Pr
[
AG0(1κ) = 1

]
− Pr

[
AG1(1κ) = 1

]∣∣∣ ≤ negl(κ).

For our applications, we will choose the code matrix A from a family of d-local linear codes,
i.e., let G generate a matrix in which each column is uniform subject to having exactly d number
of nonzero entries, where d is a small constant. This is advantageous since such matrices support
efficient matrix-vector multiplications (linear in n). Note that the hardness of LPN for local linear
codes is a well-established assumption [Ale03]. Following prior works [HOSS18, BCG+19a], we will
use the following error distribution Dn,t: the uniform, weight t vectors over Fnp in a regular form.
That is, we consider the case where the error vector e ∈ Fnp is divided into t consecutive sub-vectors
of length bn/tc, with each sub-vector uniform subject to having exactly one nonzero entry.

4.2.2 Construction

We present the sVOLE protocol with iterations in Figure 6, which works in the (Fp,rsVOLE,F
p,r
spsVOLE)-

hybrid model. In the one-time setup phase, PA can use G(k, n,Fp) to output a matrix A ∈ Fk×np ,
and sends it to PB. This communication can be further reduced by sampling a random seed from
{0, 1}κ and computing A with the seed and G(k, n,Fp) in the random oracle model.

19

In our sVOLE protocol, we assume that Fp,rspsVOLE shares the same initialization procedure with

Fp,rsVOLE (adopting the same global key ∆). Recall that protocol Πp,r
spsVOLE shown in Figure 5 works

in the Fp,rsVOLE-hybrid model, and adopts the initialization procedure in Fp,rsVOLE to setup the global
key. In other words, if we use the protocol Πp,r

spsVOLE to securely compute the functionality Fp,rspsVOLE,
then this assumption holds.

For an honest execution of protocol Fp,rsVOLE, we show that the outputs of two parties satisfy
the correct correlation. Since ci = bi + ∆ · ai for i ∈ [t] from the spsVOLE definition, we have
t = s + ∆ · e. Together with w = v + ∆ · u from the definition of Fp,rsVOLE, we obtain that the
following holds for the first iteration:

z − y = (w − v) ·A + t− s = ∆ · (u ·A + e) = ∆ · x.

In any subsequent iteration, we still have that w = v+ ∆ ·u holds, as z = y+ ∆ ·x in the previous
iteration. Thus, in all subsequent iterations, we obtain that z = y + ∆ · x.

Theorem 3. Protocol Πp,r
sVOLE described in Figure 6 UC-realizes Fp,rsVOLE with any polynomial number

of sVOLE correlations in the (Fp,rsVOLE,F
p,r
spsVOLE)-hybrid model under the (Dn,t,G,Fp)-LPN(k, n, t)

assumption with static leakage. In particular, any PPT environment Z cannot distinguish the real
world execution from the ideal world execution, except with probability at most negl(κ).

Proof. We first consider the case of a malicious PA and then consider the case of a malicious PB.
In each case, we construct a PPT simulator S which runs a PPT adversary A as a subroutine, and
emulates the functionalities Fp,rsVOLE and Fp,rspsVOLE. We always implicitly assume that S passes all
communication between A and Z.

Malicious PA. In the setup phase, S receives a matrix A ∈ Fk×np from adversary A. Then S
emulates Fp,rsVOLE and receives vectors (u,w) ∈ Fkp × Fkpr from A. For each iteration, S has access
to functionality Fp,rsVOLE, and interacts with A as follows:

1. For i ∈ [t], S emulates Fp,rspsVOLE, and receives ai ∈ Fmp with at most one nonzero entry and
ci ∈ Fmpr from A. Then, S defines a regular error vector e = (r1, . . . , rt) ∈ Fnp , and sets vector
t = (t1, . . . , tt) ∈ Fnpr .

2. For i ∈ [t], if A sends a global key query ∆′i to Fp,rspsVOLE, then S records ∆′i. If there exists two
different indices i, j ∈ [t] such that ∆′i 6= ∆′j , S aborts. Otherwise, S defines ∆′ = ∆′i for some
i ∈ [t], and sends ∆′ to functionality Fp,rsVOLE. If receiving abort from Fp,rsVOLE, S aborts.

3. S computes x := u ·A + e ∈ Fnp and z := w ·A + t ∈ Fnpr , and then updates u := x[0 : k) ∈ Fkp
and w := z[0 : k) ∈ Fkpr for the next iteration. S sends x[k : n) ∈ F`p and z[k : n) ∈ F`pr to
functionality Fp,rsVOLE.

Clearly, the simulation of S is perfect. In the real protocol execution, we can see that honest PB

will compute a vector y for each iteration such that z = y+ ∆ ·x where (x, z) is computed by the
adversary, based on the correctness analysis. Overall, it is perfectly indistinguishable between the
real world execution and the ideal world execution.

Malicious PB. Simulator S uses G(k, n,Fp) to generate a matrix A ∈ Fk×np and sets it as a

parameter. Then S emulates Fp,rsVOLE, and receives ∆ ∈ Fpr and v ∈ Fkpr from adversary A. S
forwards ∆ to functionality Fp,rsVOLE. For each iteration, S interacts with A as follows:

1. S emulates Fp,rspsVOLE, and receives a vector bi ∈ Fmpr from A for i ∈ [t].

20

2. For i ∈ [t], A may send a set Ii ⊆ [0,m) to Fp,rspsVOLE emulated by S. After receiving t sets, S
samples an error vector e ← Dn,t and defines {α1, . . . , αt} to be the sorted indices of non-zero
entries of e. Then, for i ∈ [t], S updates αi := αi (mod m) and checks that αi ∈ Ii. If any check
fails, S aborts.

3. S sets s := (s1, . . . , st) ∈ Fnpr , computes y := v ·A + s ∈ Fnpr , and updates v := y[0 : k) ∈ Fkpr
for the next iteration. Then, S sends y[k : n) ∈ F`pr to functionality Fp,rsVOLE.

Note that the probability of aborting is the same in both the real world execution and the ideal
world execution, as S samples an error vector e defined just as in the real protocol execution.

It is easy to see that the simulation of S is perfect. Based on the correctness analysis, we easily
obtain that honest PA computed vectors x, z for each iteration such that z = y + ∆ · x. Below,
we focus on proving that the PPT environment Z cannot distinguish the honest party’s output
between the real world execution and the ideal world execution under the LPN assumption with
static leakage.

The vector z = y+∆·x computed by honest PA is always determined by x, y and ∆ in both two
worlds. Therefore, we focus on proving that vector x computed by honest PA in each iteration is
computationally indistinguishable from a uniform vector in Fnp under the (Dn,t,G,Fp)-LPN(k, n, t)
assumption with static leakage. This proof proceeds via a sequence of games.

• In Game 0, the protocol execution is simulated by S, which has the identical distribution as the
real protocol execution.

• In Game i (i ≥ 1), the vectors x computed by honest PA in the first i iterations are replaced
with uniform vectors from Fnp .

• In the final game, we have that the vectors computed by PA in all iterations are uniform, and
thus the PA’s output has the same distribution as that in the ideal world execution.

If there exists a PPT adversary Z which can distinguish Game i − 1 from Game i, then we can
construct a PPT algorithm B who can break the LPN assumption with static leakage. Specifically,
given a matrix A∗ ∈ Fk×np , B sets A∗ as a parameter, and behaves exactly as in Game i− 1, except
for the following differences in the ith iteration:

1. For i ∈ [t], emulate Fp,rspsVOLE, receive a set Ii ∈ [0,m) from the adversary, and update each entry
a in Ii as a := a+ (i− 1) ·m.

2. Send the updated sets I1, . . . , It to the LPN game. If this game aborts, then abort and output
0. Otherwise, receive success from this game, and continue the simulation.

3. After receiving a challenge vector x∗ from the LPN game, set x∗ as the vector x computed by
PA in the ith iteration.

4. If Z outputs i− 1, output 1. Otherwise (Z outputs i), output 0.

The probability that the LPN game aborts is the same as the probability that simulator S aborts,
and thus is identical to that of aborting in the real protocol execution. Note that the secret vector
u from either the (i − 1)th iteration or functionality Fp,rsVOLE is uniformly random, and is never
revealed to Z. If x∗ is sampled from a uniform distribution, then B behaves exactly as in Game i.
Otherwise, B behaves exactly as in Game i − 1. Therefore, the vector x computed by PA in each
iteration is computationally indistinguishable from a uniform vector under the LPN assumption
with static leakage.

21

Complexity analysis. Now, we analyze the rounds and communication complexity of our sVOLE
protocol in the Fp,rsVOLE-hybrid model, where Fp,rspsVOLE is instantiated by the single-point sVOLE
protocol with optimizations shown in Section 4.1. In the spsVOLE protocol, we can use an OT
extension protocol such as [YWL+20] to implement FOT, and need O(κ) bits of communication for
each OT correlation. Note that the OT extension protocol can be executed in parallel with our
sVOLE protocol. Therefore, for one iteration, our sVOLE protocol requires 4 rounds for the case
r log p ≥ κ (resp., 6 rounds for the case ρ ≤ r log p < κ), and needs a communication of O(tκ log n

t)
bits.

Optimizations. We observe that our single-point sVOLE protocol needs r+1 sVOLE correlations,
which can be optimized using the iteration idea. Specifically, n0 = k+ t(r+ 1) sVOLE correlations
are needed to execute one iteration of our protocol ΠsVOLE. Now in the one-time setup phase, we
can compute n0 sVOLE correlations, which are sufficient for the first iteration. By remaining n0

sVOLE correlations from this iteration, we can execute the next iteration without calling extra
sVOLE correlations. Using the above optimization, we can output n− n0 sVOLE correlations per
iteration by consuming n0 sVOLE correlations and communicating O(tκ log n

t) bits.
Now we turn our attention to the one-time setup phase, where we need to compute n0 sVOLE

correlations. We can again use the iteration idea to optimize the cost. Specifically, we can choose
another LPN parameters (n0, k0, t0). We can use the base sVOLE protocol described in Appendix B
to first generate about n′0 = k0 + t0(r + 1) sVOLE correlations by communicating O(n′0r log2 p)
bits, and then compute n0 sVOLE correlations by a single iteration of protocol ΠsVOLE with a
communication of O(t0κ log n0

t0
) bits.

5 Performance Evaluation

5.1 Practical Optimizations

Pipelining. We use pipelining [HEKM11] to streamline the protocol execution, where we send
the messages for some gate while computing for the next gate in the circuit. Pipelining has many
advantages: 1) it reduces the execution time, since we perform network transmission and computa-
tion at the same time; 2) it reduces the memory usage significantly. Without pipelining, we would
need to store all values in memory before sending them out, which takes memory linear to the
circuit size. Now we only need memory that is proportional to the memory needed to evaluate the
circuit in the clear.

Batch checking of multiplication triples. The other memory overhead is the need to store
all triples used to check the correctness of the execution (our main protocol step 6 to step 8). In
our implementation, we instead make a trade-off between round complexity and memory use. We
buffer a set of m gates and perform a batch checking on all of them together. As a result, the round
complexity is C/m and the memory usage is about mκ.

If the batch size is too small, we will incur a higher checking overhead as the bucket size has
to be large. To minimize the memory overhead, we find concretely the minimum batch size in the
cut-and-choose game. From the proof of Theorem 1, we conclude that if we set c = B, we have(

BC +B

B

)
=

∏B
i=1(BC + i)

B!
=

B−1∏
i=0

(
B

B − i
C + 1

)
≥ (C + 1)B ≥ 2ρ.

Therefore, we obtain that B ≥ ρ/ log(C + 1). Our goal is to minimize both bucket size B and the
circuit size C. Practically, we only consider the cases when B = 2 and B = 3. The Table 2 shows

22

ρ = 40 ρ = 64

B = 2 744, 960 3, 221, 225, 472
B = 3 6, 656 1, 638, 400

Table 2: The smallest circuit size for each bucket size and statistical security parameter, assuming
c = B.

0 20 40 60 80 100 120 140 160 180 200
Network bandwidth (Mbps)

0.0

2.5

5.0

7.5

10.0

12.5

Ti
m

e
pe

r A
N

D
 g

at
e

(μ
s) Our work

JKO

(a) Performance under different
network.

216 219 222 225 228

Number of bits for input

26

210

214

218

R
un

ni
ng

 ti
m
e
(m

s)

10 Mbps
50 Mbps
100 Mbps

(b) Scalability of our protocol for
large inputs.

218 221 224 227 230

Number of AND gate

27
210
213
216
219

R
un

ni
ng

 ti
m
e
(m

s)

10 Mbps
50 Mbps
100 Mbps

(c) Scalability of our protocol for
large circuits.

Figure 7: Efficiency of our protocol. We test our protocol by a) changing the network band-
width; b) increasing the input size; c) increasing the circuit size.

the minimal circuit size in these cases for the statistical security parameter ρ = 40 and ρ = 64. It
means that we can do a batched triple check according to the Protocol 3 with parameters B and
c, when every time we finish the evaluation of at least C non-linear gates.

5.2 Evaluation

We implement our boolean circuits protocol based on EMP-toolkit [WMK16] framework. Due to
hardware support for binary-field multiplication, we use random-coefficient based batch checking
protocol with and apply Fiat-Shamir heuristic to make it non-interactive. In our experiment, both
the prover and the verifier are hosted on Amazon EC2 c5.2xlarge machines with memory up to 16
GiB and network bandwidth up to 5 Gbps. However, our protocol only needs a small fraction of the
memory and network and thus we throttle the network and report memory usage in the evaluation.
Unless specified otherwise, we parallelize our protocol using 5 threads. We used the same formulas
to derive the LPN parameters that are also used in prior works [YWL+20, BCG+19a] with a target
that the adversary would need 2128 steps of computation to break the assumption. All evaluation
uses ρ = 40 and κ = 128.

Efficiency. To demonstrate the efficiency in both computation and communication, we show the
performance of our protocol and GCZK [JKO13] in different network settings from 10 Mbps to 200
Mbps. We only compare with GCZK since their protocol is the only one that can scale to Boolean
circuits with billions of gates. The Figure 7a shows the results of our experiment. Due to the low
communication cost of sVOLE and our zero-knowledge protocol, our protocol can achieve a rate of
500 ns per AND gate as long as the network bandwidth is larger than 40 Mbps. Even when the
network is as slow as 10 Mbps, the performance is still only 1.5µs per AND gate. Compared to the
GCZK [JKO13] protocol, our protocol performs far better in low-bandwidth settings because the
generation of correlated OT by VOLE saves a huge amount of communication.

Scalability. We also measure the scalability by increasing the size of the input and the size of
the circuit. The results are show in Figure 7b and Figure 7c. For both settings we do experiments

23

6 8 10 12 14 16 18
Depth of Merkle tree

22

25

28

211
R
un

ni
ng

 ti
m
e
(s
)

(a) The execution time of our protocol.

6 8 10 12 14 16 18 20
Depth of Merkle tree

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y
us
ag
e
(G

B
)

(b) The memory usage of our protocol.

Figure 8: Using our ZK protocol to prove knowledge of all leaves in a Merkle tree. The figures show
the performance of our ZK protocol for Merkle trees of different depths. The network bandwidth
is 50 Mbps.

with network throttled to 10 Mbps, 50 Mbps and 100 Mbps. From the figure, we can see that
the performance of our protocol is mostly linear to the input/circuit size. This means that the
efficiency preserves even for very large circuit of size more than a billion gates. In fact, due to our
use of pipelining, the performance per gate does not depend on the shape of the circuit or the size
of the circuit. The only potential bottleneck is the memory usage, which we will explore in detail
in the next part.

Example: Merkle trees. We use an example to further demonstrate the efficiency and scalability
of our protocol. Our example proves the knowledge of a set of Merkle-tree leaves that can be used
to compute a public Merkle-tree root. In Figure 8a and Figure 8b, we show both the efficiency
and the memory usage of our protocol when computing Merkle trees based on SHA-256 algorithm.
We use 5 threads and a 50Mbps network in this example. The depth ranges from 6 to 19, and the
number of SHA256 calls ranges from 63 to 524287. Since each SHA256 contains 22573 AND gates,
our largest instance contains more than 11 billion gates. We can see that the running time is linear
to the number of nodes in the tree and does not degenerate even for our largest instance. Although
the circuit size to compute the root is O(n) for n nodes, we can evaluate the circuit in memory of
size O(log n) by visiting all nodes in a DFS manner. This is also how we perform the computation.
As a result, the memory usage of our protocol is very small and is below 400 MB for all cases.

Acknowledgement

This material is based upon work supported by DARPA under Contract No. HR001120C0087. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of DARPA. Work of Kang Yang is supported by
the National Natural Science Foundation of China (Grant No. 61932019). Distribution Statement
”A” (Approved for Public Release, Distribution Unlimited).

References

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof,
Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority MPC

24

for malicious adversaries - breaking the 1 billion-gate per second barrier. In IEEE
Symposium on Security and Privacy (S&P) 2017, pages 843–862, 2017.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In ACM
Conf. on Computer and Communications Security (CCS) 2017, pages 2087–2104. ACM
Press, 2017.

[Ale03] Michael Alekhnovich. More on average case vs. approximation complexity. In 44th An-
nual Symposium on Foundations of Computer Science (FOCS), pages 298–307. IEEE,
2003.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
IEEE Symposium on Security and Privacy (S&P) 2018, pages 315–334, 2018.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowl-
edge with no trusted setup. In Advances in Cryptology—Crypto 2019, Part III, volume
11694 of LNCS, pages 701–732. Springer, 2019.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting.
In Advances in Cryptology—Eurocrypt 2016, Part II, volume 9666 of LNCS, pages
327–357. Springer, 2016.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying program executions succinctly and in zero knowledge. In
Advances in Cryptology—Crypto 2013, Part II, volume 8043 of LNCS, pages 90–108.
Springer, 2013.

[BCG+17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homo-
morphic secret sharing: Optimizations and applications. In ACM Conf. on Computer
and Communications Security (CCS) 2017, pages 2105–2122. ACM Press, 2017.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive secure
computation. In ACM Conf. on Computer and Communications Security (CCS) 2019,
pages 291–308. ACM Press, 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. In
Advances in Cryptology—Crypto 2019, Part III, volume 11694 of LNCS, pages 489–
518. Springer, 2019.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In ACM Conf. on Computer and Communications Security (CCS) 2018, pages
896–912. ACM Press, 2018.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Ad-
vances in Cryptology—Eurocrypt 2019, Part I, volume 11476 of LNCS, pages 103–128.
Springer, 2019.

25

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von Neumann architecture. In USENIX Security
Symposium 2014, pages 781–796. USENIX Association, 2014.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances
in Cryptology—Crypto 1991, LNCS, pages 420–432. Springer, 1992.

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryp-
tographic primitives based on hard learning problems. In Advances in Cryptology—
Crypto 1993, LNCS, pages 278–291. Springer, 1994.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Intl. Conference on Theory and Practice of Public Key Cryptography,
LNCS, pages 501–519. Springer, 2014.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Advances in
Cryptology—Eurocrypt 2015, Part II, volume 9057 of LNCS, pages 337–367. Springer,
2015.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and
extensions. In ACM Conf. on Computer and Communications Security (CCS) 2016,
pages 1292–1303. ACM Press, 2016.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In Advances in Cryptology—Asiacrypt 2013, Part II, volume 8270 of LNCS,
pages 280–300. Springer, 2013.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 136–145. IEEE, 2001.

[CDE+18] Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaoping Xing.
SPD Z2k : Efficient MPC mod 2k for dishonest majority. In Advances in Cryptology—
Crypto 2018, Part II, volume 10992 of LNCS, pages 769–798. Springer, 2018.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-
knowledge and signatures from symmetric-key primitives. In ACM Conf. on Computer
and Communications Security (CCS) 2017, pages 1825–1842. ACM Press, 2017.

[dDOS19] Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P. Smart.
BBQ: Using AES in picnic signatures. In Annual International Workshop on Selected
Areas in Cryptography (SAC) 2019, LNCS, pages 669–692. Springer, 2019.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical covertly secure MPC for dishonest majority - or: Break-
ing the SPDZ limits. In ESORICS 2013, LNCS, pages 1–18. Springer, 2013.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Advances in Cryptology—
Crypto 2012, volume 7417 of LNCS, pages 643–662. Springer, 2012.

26

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput se-
cure three-party computation for malicious adversaries and an honest majority. In
Advances in Cryptology—Eurocrypt 2017, Part II, volume 10211 of LNCS, pages 225–
255. Springer, 2017.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free gar-
bled circuits with applications to efficient zero-knowledge. In Advances in Cryptology—
Eurocrypt 2015, Part II, volume 9057 of LNCS, pages 191–219. Springer, 2015.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, October 1986.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Advances in Cryptology—
Eurocrypt 2013, LNCS, pages 626–645. Springer, 2013.

[Gil99] Niv Gilboa. Two party RSA key generation. In Advances in Cryptology—Crypto 1999,
volume 1666 of LNCS, pages 116–129. Springer, 1999.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: interactive proofs for muggles. In 40th Annual ACM Symposium on Theory of
Computing (STOC), pages 113–122. ACM Press, 2008.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge
for Boolean circuits. In USENIX Security Symposium 2016, pages 1069–1083. USENIX
Association, 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In 17th Annual ACM Symposium on
Theory of Computing (STOC), pages 291–304. ACM Press, 1985.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract). In
27th Annual Symposium on Foundations of Computer Science (FOCS), pages 174–187.
IEEE, 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In 19th Annual ACM
Symposium on Theory of Computing (STOC), pages 218–229. ACM Press, 1987.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Ad-
vances in Cryptology—Asiacrypt 2010, LNCS, pages 321–340. Springer, 2010.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security Symposium 2011. USENIX
Association, 2011.

[HK20] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive zero-knowledge
proofs. In Advances in Cryptology—Eurocrypt 2020, Part III, volume 12107 of LNCS,
pages 569–598. Springer, 2020.

27

[HOSS18] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez.
TinyKeys: A new approach to efficient multi-party computation. In Advances in
Cryptology—Crypto 2018, Part III, volume 10993 of LNCS, pages 3–33. Springer, 2018.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Advances in Cryptology—Crypto 2003, volume 2729 of LNCS, pages 145–
161. Springer, 2003.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In 39th Annual ACM Symposium on Theory of
Computing (STOC), pages 21–30. ACM Press, 2007.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In ACM Conf.
on Computer and Communications Security (CCS) 2013, pages 955–966. ACM Press,
2013.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero
knowledge with applications to post-quantum signatures. In ACM Conf. on Computer
and Communications Security (CCS) 2018, pages 525–537. ACM Press, 2018.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Advances in Cryptology—Crypto 2015, Part I, volume 9215
of LNCS, pages 724–741. Springer, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In ACM Conf. on Computer and
Communications Security (CCS) 2016, pages 830–842. ACM Press, 2016.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In ACM Conf. on Computer
and Communications Security (CCS) 2013, pages 669–684. ACM Press, 2013.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Advances
in Cryptology—Crypto 2012, volume 7417 of LNCS, pages 681–700. Springer, 2012.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In 6th Theory of Cryptography Conference—TCC 2009, volume 5444 of LNCS, pages
368–386. Springer, 2009.

[NST17] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round mali-
ciously secure 2PC with function-independent preprocessing using LEGO. In Network
and Distributed System Security Symposium. The Internet Society, 2017.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Dis-
tributed vector-OLE: Improved constructions and implementation. In ACM Conf. on
Computer and Communications Security (CCS) 2019, pages 1055–1072. ACM Press,
2019.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Multi-
Party computation toolkit. https://github.com/emp-toolkit, 2016.

28

https://github.com/emp-toolkit

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zkSNARKs without trusted setup. In IEEE Symposium on Security
and Privacy (S&P) 2018, pages 926–943, 2018.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn
Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. In
Advances in Cryptology—Crypto 2019, Part III, volume 11694 of LNCS, pages 733–
764. Springer, 2019.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
Extension for Correlated OT with Small Communication, 2020.

[YWZ19] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved triple
generation and authenticated garbling. Cryptology ePrint Archive, Report 2019/1104,
2019. https://eprint.iacr.org/2019/1104.

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. A zero-knowledge version of vSQL. Cryptology ePrint Archive,
Report 2017/1146, 2017. https://eprint.iacr.org/2017/1146.

[ZXZS20] J. Zhang, T. Xie, Y. Zhang, and D. Song. Transparent polynomial delegation and its
applications to zero-knowledge proofs. In IEEE Symposium on Security and Privacy
(S&P) 2020, 2020.

A Other Functionalities

Functionality FOT

On receiving (m0,m1) with |m0| = |m1| from PA and b ∈ {0, 1} from PB, send mb to PB.

Figure 9: The oblivious transfer functionality between a sender PA and a receiver PB.

We review the standard ideal functionality for oblivious transfer (OT) in Figure 9.

Functionality FEQ

Upon receiving VA from PA and VB from PB, send (VA
?
= VB) and VA to PB, and do:

• If PB is honest, or is corrupted and sends continue, then send (VA
?
= VB) to PA.

• If PB is corrupted and sends abort, then send abort to PA.

Figure 10: Functionality for equality test of two elements in Fpr .

In Figure 10 we define a functionality FEQ implementing a weak equality test that reveals PA’s
input to PB. This functionality is easy to be UC-realized in the FCom-hybrid model as follows:

(1) PB commits to VB by calling FCom; (2) PA sends VA to PB; (3) PB outputs (VA
?
= VB) and

aborts if they are not equal, and then opens its input VB by calling FCom again; (4) if PB opened

its commitment to a value VB, then PA outputs (VA
?
= VB); otherwise it aborts. The commitment

functionality FCom is easy to be UC-realized in the random oracle model (see, e.g., [DKL+13]).

29

https://eprint.iacr.org/2019/1104
https://eprint.iacr.org/2017/1146

Functionality Fp,rCOPEe

Initialize: Upon receiving (init) from PA and PB, sample ∆← Fpr if PB is honest, and receive ∆ ∈ Fpr
from the adversary otherwise. Store ∆, output ∆ to PB, and ignore all subsequent (init) commands. Let
∆B ∈ {0, 1}rm be a bit-decomposition representation of ∆ such that 〈g,∆B〉 = ∆.

Extend: Upon receiving (extend, u) from PA and (extend) from PB, this functionality operates as follows:

1. Sample v ← Fpr . If PB is corrupted, instead receive v ∈ Fpr from the adversary.

2. Compute w := v + ∆ · u.

3. If PA is corrupted, receive w ∈ Fpr and u ∈ Frmp from the adversary, and recompute

v := w − 〈g ∗ u,∆B〉 ∈ Fpr ,

where ∗ denotes the component-wise product.

4. Output (u,w) to PA and v to PB.

Figure 11: Functionality for correlated oblivious product evaluation with errors (COPEe).

B Constructing the Base sVOLE Protocol

In this section, we present a construction of the base sVOLE protocol over finite fields Fp and Fpr .2
As described in Section 4, we will use this protocol to set up a small number of initial authenticated
values, and then extend them to a large number of authenticated values via our sVOLE protocol
with iterations.

We first describe the correlated oblivious product evaluation with errors (COPEe) functionality
FCOPEe (which extends the analogous functionality introduced by Keller et al. [KOS16] to support
the subfield case we are interested in), and show how to realize this functionality in the FOT-hybrid
model. We then construct a protocol that UC-realizes a selective-failure version of functionality
Fp,rsVOLE in the FCOPEe-hybrid model. We show that such a functionality is sufficient to guarantee
the security of the ZK protocol.

B.1 COPEe

Functionality FCOPEe is described in Figure 11, where m = log p. Note that the (extend) command
of FCOPEe can be called multiple times. In the functionality, we define a gadget vector

g =
(
(1, 2, . . . , 2m−1), (1, 2, . . . , 2m−1) · g, . . . , (1, 2, . . . , 2m−1) · gr−1

)
∈ (Fpr)rm,

and the following operation

〈g,x〉 =
r−1∑
i=0

m−1∑
j=0

x[im+ j] · 2j
 · gi ∈ Fpr ,

where x ∈ Frm for a finite field F ∈ {F2,Fp,Fpr}. A malicious PA can cause the outputs of two
parties to satisfy a COPE correlation with the specific error defined in Figure 11.

We present an efficient protocol Πp,r
COPEe shown in Figure 12 to securely compute Fp,rCOPEe in the

FOT-hybrid model. Our COPEe protocol follows the construction by Keller et al. [KOS16], which

2If p = 2 and r = κ, then our protocol is a slight improvement of the KOS OT extension protocol [KOS15].

30

Protocol Πp,r
COPEe

Let PRF : {0, 1}κ × {0, 1}κ → Fp be a pseudorandom function.

Initialize: This initialization procedure is executed only once.

1. For i ∈ [rm], PA samples Ki
0,K

i
1 ← {0, 1}

κ
. PB samples ∆ ← Fpr and defines its bit-composition

representation as ∆B = (∆1, . . . ,∆rm) ∈ {0, 1}rm.

2. For i ∈ [rm], PA sends (Ki
0,K

i
1) to FOT and PB sends ∆i ∈ {0, 1} to FOT, which returns Ki

∆i
to PB.

Extend: This procedure can be executed many times. For the jth input u ∈ Fp from PA, two parties
execute the following:

3. For i ∈ [rm], do the following in parallel:

(a) PA computes wi0 := PRF(Ki
0, j) and wi1 := PRF(Ki

1, j); and PB computes wi∆i
:= PRF(Ki

∆i
, j).

(b) PA sends τ i := wi0 − wi1 − u ∈ Fp to PB.

(c) PB computes vi := wi∆i
+ ∆i · τ i = wi0 −∆i · u ∈ Fp.

4. Let v = (v1, . . . , vrm) and w = (w1
0, . . . , w

rm
0) such that w = v + u ·∆B ∈ Frmp .

5. PA outputs w = 〈g,w〉 ∈ Fpr and PB outputs v = 〈g,v〉 ∈ Fpr , where w = v + ∆ · u ∈ Fpr .

Figure 12: The COPEe protocol in the FOT-hybrid model.

is in turn based on the IKNP OT extension protocol [IKNP03] and Gilboa’s approach [Gil99] for
oblivious product evaluation. The only difference is that the original COPEe protocol [KOS16] is
further extended to support the subfield case. In the protocol Πp,r

COPEe, a malicious PA may use
different values w.r.t. u to compute each element τ i sent in the step 3b. Suppose that a corrupt
party PA uses ui ∈ Fp to compute τ i for i ∈ [rm]. Then, in the step 4 of protocol Πp,r

COPEe, we
will instead have that w = v + u ∗∆B ∈ Frmp , where ∗ means element-wise multiplication. where
u = (u1, . . . , urm). This results in

w = v + 〈g ∗ u,∆B〉 ∈ Fpr .

The malicious behavior is not prevented, and instead is modeled in functionality Fp,rCOPEe. In the
proof of Appendix B.2, we show that such functionality is sufficient to guarantee the security of
our sVOLE protocol. Following the proof [KOS16], one can easily obtain the following lemma.

Lemma 3. Let PRF be a pseudorandom function. Protocol Πp,r
COPEe shown in Figure 12 UC-realizes

functionality Fp,rCOPEe in the FOT-hybrid model.

Note that the OT messages {(Ki
0,K

i
1)} are uniform in the COPEe protocol, and thus we can

replace FOT with a random oblivious transfer (ROT) functionality FROT. This allows us to obtain
better efficiency.

B.2 Base sVOLE

We first define an sVOLE functionality with the selective failure leakage of global key ∆ (denoted
by Fp,rLsVOLE). Functionality Fp,rLsVOLE is the same as FsVOLE described in Figure 2, except that if
PA is corrupted, then the adversary is additionally allowed to make the following selective failure
query only once for each extend execution before the output is sent:

31

Protocol Πp,r
base-sVOLE

1. PA and PB send init to functionality Fp,rCOPEe, which returns ∆ ∈ Fpr to PB.

2. PA samples ui ← Fp for i ∈ [n] and ah ← Fp for h ∈ [r]. For i ∈ [n], PA sends (extend, ui) to
Fp,rCOPEe, and PB sends (extend) to Fp,rCOPEe, which returns wi ∈ Fpr to PA and vi ∈ Fpr to PB such
that wi = vi + ∆ · ui. For h ∈ [r], both parties also call Fp,rCOPEe on respective input (extend, ah) and
(extend), where PA gets ch ∈ Fpr and PB obtains bh ∈ Fpr such that ch = bh + ∆ · ah.

3. PB samples χ1, . . . , χn ← Fpr , and sends them to PA. Then PA computes x :=
∑n
i=1 χi ·ui+

∑r
h=1 ah ·

gh−1 ∈ Fpr and z :=
∑n
i=1 χi · wi +

∑r
h=1 ch · gh−1 ∈ Fpr , and then sends (x, z) to PB.

4. PB computes y :=
∑n
i=1 χi · vi +

∑r
h=1 bh · gh−1 ∈ Fpr , and then check that z = y+x ·∆. If the check

fails, PB aborts.

5. PA outputs u := (u1, . . . , un) and w := (w1, . . . , wn); PB outputs v = (v1 . . . , vn).

Figure 13: Base sVOLE protocol in the Fp,rCOPEe-hybrid model.

• Wait for the adversary to input (guess, S) where S efficiently describes a subset of Fpr . If ∆ ∈ S,
then send success to the adversary and continue. Otherwise, send abort to both parties and abort.

Compared to the functionality FsVOLE introduced before, the selective failure queries on ∆ may
leak a small amount of bits of ∆, where an incorrect guess will be caught. This leakage can be
eliminated without increasing much cost by using the technique by Nielse et al. [NST17]. On the
other hand, even if we do not eliminate this leakage, it will not impact the overall security of the
ZK protocol, following the observation in prior works [KOS15, CDE+18, YWZ19]. In particular,
the probability that all the selective failure queries are successful is bounded by |S|/pr (if there are
more than one query then S is taken as the intersection of all sets). Conditioned on this event,
the min-entropy of global key ∆ is reduced to log |S|. Therefore, the overall probability of the
adversary that made successful selective failure queries on ∆ and passed the batched check on the
opening of authenticated values is bounded by

|S|
pr
· 1

2log |S| =
1

pr
,

which is the same as that without such leakage.
In Figure 13, we show a protocol Πp,r

base-sVOLE that UC-realizes Fp,rLsVOLE in the FCOPEe-hybrid
model. The construction of our protocol is inspired by the OT extension protocol [KOS15] and the
SPDZ-like protocol MASCOT [KOS16], and particularly supports the subfield case. In the protocol
Πp,r

base-sVOLE, PB performs a correlation check (i.e., steps 3 and 4) to check that the outputs of two
parties satisfy a correct correlation (i.e., w = v + ∆ · u). From the construction, we note that the
base sVOLE protocol allows PA to choose its output vector u. Similarly, PB can send a uniform
seed ∈ {0, 1}κ to PA, and then both parties can simply derive the coefficients {χi} from seed using
a random oracle.

Below, we prove the security of our base sVOLE protocol, based on the proof idea of the
MASCOT authentication protocol [KOS16].

Theorem 4. Protocol Πp,r
base-sVOLE UC-realizes Fp,rsVOLE in the Fp,rCOPEe-hybrid model. In particular,

no PPT environment Z can distinguish the real world execution from the ideal world execution,
except with probability at most (r log p)2/pr.

32

Proof. We first consider the case of a malicious PA and then consider the case of a malicious PB.
In each case, we construct a PPT simulator S which runs a PPT adversary A as a subroutine, and
emulates the functionality Fp,rCOPEe. We always implicitly assume that S passes all communication
between A and Z.

Malicious PA. S has access to functionality Fp,rLsVOLE, and interacts with adversary A as follows:

1. S emulates Fp,rCOPEe, and receives the values (wi,ui) ∈ Fpr × Frmp for i ∈ [n] and (ch,ah) ∈
Fpr × Frmp for h ∈ [r] from adversary A.
In the (semi)-honest case, we have that ui = (ui, . . . , ui) for some ui ∈ Fp and ah = (ah, . . . , ah)
for some ah ∈ Fp.

2. S samples χ1, . . . , χn ← Fpr and sends them to adversary A. Then, S receives x ∈ Fpr and
z ∈ Fpr from A. Simulator S computes an adversarially chosen error

ez := z −
n∑
i=1

χi · wi −
r∑

h=1

ch · gh−1 ∈ Fpr .

3. S computes a guess set S∆ as follows:

• Solve the following equation:〈
g · x− g ∗

n∑
i=1

χi · ui − g ∗
r∑

h=1

ah · gh−1,∆B

〉
= ez. (1)

• For each solution ∆B, compute ∆ := 〈g,∆B〉 and add ∆ into the set S∆.

4. S sends (guess, S∆) to functionality Fp,rLsVOLE. If receiving abort from Fp,rLsVOLE, S aborts. Other-
wise, S continues the simulation.

5. S computes another set S̃∆̃ as follows:

• Solve the following equation:〈
g · x− g ∗

n∑
i=1

χi · ui − g ∗
r∑

h=1

ah · gh−1, ∆̃B

〉
= 0. (2)

• For each solution ∆̃B, compute ∆̃ := 〈g, ∆̃B〉 and add ∆̃ into the set S̃∆̃.

6. If S̃∆̃ only involves a single entry 0, then S aborts. Otherwise, S chooses any non-zero element

∆̃ ∈ S̃∆̃ and for i ∈ [n], computes

ui := ∆̃−1 · 〈g ∗ ui, ∆̃B〉, (3)

where ∆̃ = 〈g, ∆̃B〉. We will show that ui is unique over all possible ∆̃ in set S̃∆̃.

7. For i ∈ [n], S computes an adversarially chosen error ei = ui − (ui, . . . , ui) ∈ Frmp , and then
computes w′i := wi − 〈g ∗ ei,∆B〉 ∈ Fpr for any ∆B such that ∆ = 〈g,∆B〉 ∈ S∆. Then, S
sends u = (u1, . . . , un) and w = (w′1, . . . , w

′
n) to functionality Fp,rLsVOLE.

33

The simulation for the protocol transcript is straightforward, and thus we focus on other analysis
(particularly the probability of aborting and uniqueness of ui). In the following, we first consider
the case of p = 2, and later will discuss the case that p > 2 is a prime.

In the real protocol execution, the correlation check has the following equation:

x ·∆ = z − y =
n∑
i=1

χi · (wi − vi) +
r∑

h=1

(ch − bh) · gh−1 + ez. (4)

In the case of malicious PA, we have that wi−vi = 〈g ∗ ui,∆B〉 for i ∈ [n] and ch−bh = 〈g ∗ ah,∆B〉
for h ∈ [r]. Thus, we can rewrite the equation (4) as follows:

x ·∆−
n∑
i=1

χi · 〈g ∗ ui,∆B〉 −
r∑

h=1

〈g ∗ ah,∆B〉 · gh−1 = ez

⇔

〈
g · x− g ∗

n∑
i=1

χi · ui − g ∗
r∑

h=1

ah · gh−1,∆B

〉
= ez.

The solution set S∆ corresponds to the adversary’s guess on global key ∆. In the following, we will
prove that this set is unique. Under the condition, we obtain that the probability of aborting in
the ideal world execution is the same as that in the real world execution.

For any two different solutions ∆,∆′ ∈ S∆, we define ∆̃ = ∆ − ∆′ ∈ Fpr and thus ∆̃B =
∆B −∆′B ∈ {0, 1}

rm. From the equation (1), we easily obtain that the equation (2) holds. This
also shows that the set S∆ for equation (1) is an affine subspace of Fpr . Note that the solution
set S̃∆̃ about equation (2) is a linear space parallel to S∆. If there is only one solution for the

equation (1), then S̃∆̃ includes only one zero entry. In this case, simulator S aborts, and the
probability, that the real protocol execution does not abort, is at most 1/pr.

Let ah = ah + e′h ∈ Frmp for h ∈ [r] and some ah ∈ Fp such that

r∑
h=1

〈g · ah − g ∗ ah, ∆̃B〉 · gh−1 = 0, (5)

where e′h is an adversarially chosen error and ∆̃ = 〈g, ∆̃B〉 ∈ S̃∆̃ is used to compute ui for i ∈ [n]
in the equation (3). Clearly, the equations (3) and (5) provide a solution for x =

∑n
i=1 χi · ui +∑r

h=1 ah · gh−1 ∈ Fpr such that
∑r

h=1〈g · ah − g ∗ ah, ∆̃B〉 · gh−1 = 0 and

〈g · ui − g ∗ ui, ∆̃B〉 = 0 for all i ∈ [n]

hold for some ∆̃ = 〈g, ∆̃B〉 ∈ S̃∆̃. Below, we need to prove that {ui}i∈[n] computed by the

equation (3) is the unique solution for a sufficiently large subspace of S̃∆̃. Now, we assume that
for some l ∈ N, for each f ∈ [l], there exists a different set {uf,i}i∈[n] along with the set {af,h}h∈[r]

such that x =
∑n

i=1 χi · uf,i +
∑r

h=1 af,h · gh−1 and

〈g · uf,i − g ∗ ui, ∆̃f
B〉 = 0 for all i ∈ [n] and

r∑
h=1

〈g · af,h − g ∗ ah, ∆̃f
B〉 · g

h−1 = 0, (6)

for all ∆̃f = 〈g, ∆̃f
B〉 ∈ S̃f ⊆ S̃∆̃ such that |S̃f | > 1. The condition of |S̃f | > 1 is required for

adversary A to pass the correlation check successfully with probability more than 1/pr. Since S̃f
clearly is a linear space for all f ∈ [l] and S̃f ∩ S̃f ′ = {0} from the definition, and |S̃∆̃| ≤ pr by
definition, we have that l ≤ r log p.

34

Let f 6= f ′ ∈ [l]. From the equation (2) and x =
∑n

i=1 χi ·uf ′,i +
∑r

h=1 af ′,h · gh−1, we have that
the following holds:

n∑
i=1

χi · uf ′,i · ∆̃f −
n∑
i=1

χi · 〈g ∗ ui, ∆̃f
B〉+

r∑
h=1

af ′,h · ∆̃f · gh−1 −
r∑

h=1

〈g ∗ ah, ∆̃f
B〉 · g

h−1 = 0.

Using the equation (6), we obtain that

n∑
i=1

χi · (uf ′,i − uf,i) · ∆̃f +
r∑

h=1

(af ′,h − af,h) · ∆̃f · gh−1 = 0. (7)

By definition, there exists some j ∈ [n] such that uf,j 6= uf ′,j . Furthermore, there are at least two
values for ∆̃f ∈ S̃f , and thus we assume that in the above equation ∆̃f 6= 0. Thus, (uf ′,j−uf,j)·∆̃f 6=
0. Note that χ1, . . . , χn are sampled uniformly at random and independent from the other values
involved in the equation (7). Therefore, the equation (7) holds with probability at most 1/pr. There
are less than l2 ≤ (r log p)2 pairs f 6= f ′ ∈ [l]. The overall probability is bounded by (r log p)2/pr.

We have established that there exists a unique solution ui for i ∈ [n]. This means that for all
∆̃ = 〈g, ∆̃B〉 ∈ S̃∆̃, we have that 〈g · ui − g ∗ ui, ∆̃B〉 = 0 for i ∈ [n]. Therefore, we obtain that

〈g ∗ ei, ∆̃B〉 = 0 for all i ∈ [n]. If there exists two different ∆,∆′ ∈ S∆ such that 〈g ∗ ei,∆B〉 6=
〈g ∗ ei,∆′B〉 for some i ∈ [n] where 〈g,∆B〉 = ∆ and 〈g,∆′B〉 = ∆′, then we define ∆̃B := ∆B−∆′B
such that ∆̃ = 〈g, ∆̃B〉 ∈ S̃∆̃ and 〈g ∗ ei, ∆̃B〉 6= 0. This is contradict with 〈g ∗ ei, ∆̃B〉 = 0. This
concludes that 〈g ∗ ei,∆B〉 is a unique value for all possible ∆ = 〈g,∆B〉 ∈ S∆, and can be
computed by the simulator (and the adversary) using any ∆ ∈ S∆. In the real protocol execution,
adversary A can compute w′i := wi − 〈g ∗ ei,∆B〉 for i ∈ [n] just as that computed by simulator
S. Together with that wi = vi + 〈g ∗ ui,∆B〉, we have that

w′i = vi + 〈g ∗ ui,∆B〉 − 〈g ∗ ei,∆B〉 = vi + ∆ · ui.

We now discuss the case of a prime p > 2. The main difference to the case of p = 2 is that
the canonical maps between ∆ ∈ Fpr and ∆B ∈ {0, 1}rm are not bijective. This implies that the
solutions of equations (1) and (2) are not necessarily vectors of bits rather than elements of Fp.
Following the proof [KOS16, Lemma 2], we have that if S̃f includes at least two vectors that only
consist of bits, which is necessary for the adversary to pass the correlation check with probability
more than 1/pr, then it has dimension at least 1 for all f ∈ [l]. We also have the fact that S̃∆̃ has

dimension at most r log p and S̃f ∩ S̃f ′ = {0} for f 6= f ′ ∈ [1, l] by definition. Together, we obtain
that l ≤ r log p as above.

Malicious PB. S has access to functionality Fp,rLsVOLE, and interacts with adversary A as follows:

1. S emulates Fp,rCOPEe, and receives the values ∆, vi for i ∈ [n] and bh for h ∈ [r] from A.

2. After receiving coefficients χ1, . . . , χn ∈ Fpr , S samples x ← Fpr , computes y :=
∑n

i=1 χi · vi +∑r
h=1 bh · gh−1 ∈ Fpr , and computes z := y + x ·∆ ∈ Fpr . Then S sends (x, z) to adversary A.

3. S defines v = (v1, . . . , vn) and sends v ∈ Fnpr to functionality Fp,rLsVOLE.

In the real protocol execution, the elements ah for all h ∈ [r] output by Fp,rCOPEe are uniform in
Fp. Therefore,

∑r
h=1 ah · gh−1 is uniform in Fpr , and thus x =

∑n
i=1 χi · ui +

∑r
h=1 ah · gh−1 is

uniformly random in Fpr . We obtain that the simulation is perfect. It is easy to see that the
outputs of two parties have the same distribution between the real world execution and the ideal
world execution.

35

	Introduction
	Outline of Our Solution

	Preliminaries
	Information-Theoretic MACs and Batch Opening
	Security Model and Functionalities

	Online Phase of Our Zero-Knowledge Protocol
	Proof of Security

	Subfield VOLE
	Single-Point Subfield VOLE
	A More Efficient sVOLE Protocol
	An LPN Variant
	Construction

	Performance Evaluation
	Practical Optimizations
	Evaluation

	Other Functionalities
	Constructing the Base sVOLE Protocol
	COPEe
	Base sVOLE

