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Abstract. Secure, efficient execution of AES is an essential requirement for most
computing platforms. Dedicated Instruction Set Extensions (ISEs) are often included
for this purpose. RISC-V is a (relatively) new ISA that lacks such a standardised
ISE. We survey the state-of-the-art industrial and academic ISEs for AES, implement
and evaluate five different ISEs, one of which is novel, and make recommendations for
standardisation. We consider the side-channel security implications of the ISE designs,
demonstrating how an implementation of one candidate ISE can be hardened against
DPA-style attacks. We also explore how the proposed standard Bit-manipulation
extension to RISC-V can be harnessed for efficient implementation of AES-GCM. Our
work supports the ongoing RISC-V cryptography extension standardisation process.
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1 Introduction

Implementing the Advanced Encryption Standard (AES). Compared to more general
workloads, cryptographic algorithms like AES present a significant implementation chal-
lenge. They involve computationally intensive and specialist functionality, are used in a
wide range of contexts and form a central target in a complex attack surface. The demand
for efficiency (however measured) is an example of this challenge in two ways. First,
cryptography often represents an enabling technology vs. a feature and is often viewed
as an overhead from a user’s perspective. Addressing this is complicated by constraints
associated with the context, e.g., a demand for high-volume, low-latency, high-throughput,
low-footprint, and/or low-power implementations. Second, although efficiency is a goal in
itself, it also acts as an enabler for security. This is because one should not compromise
security to meet efficiency requirements. Hence a more efficient implementation leaves
greater margin to deliver countermeasures against attack.

AES is an interesting case-study wrt. secure, efficient implementation. For example,
per the request for candidates announcement,’ the AES process was instrumental in
popularising a model in which both “security” (e.g., resilience against cryptanalytic attack)
and “algorithm and implementation characteristics” form important quality metrics for the
design, in order to facilitate techniques for higher quality implementations of it. Additionally,
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2 The design of scalar AES Instruction Set Extensions for RISC-V

the design and implementations of AES are long-lived. The importance of AES has led
to special emphasis on related research and development effort before, during, and, most
significantly, after the AES process. The 20+ years since standardisation have forced an
evolution of implementation techniques, to match changes in the technology and attack
landscape. For example, [NBBT01, Section 3.6] covers implementation (e.g., side-channel)
attacks: this field has become richer, and the associated threat more dangerous during
said period.

Support via Instruction Set Extensions (ISEs). A large number of implementation styles
often exist for a given cryptographic algorithm. Techniques can be algorithm-agnostic
or algorithm-specific, and based on the use of hardware only, software only, or a hybrid
approach using ISEs [GB11, BGM09, RI16]. For the ISE case, the aim is to identify
through benchmarking, pieces of algorithm-specific functionality which are inefficiently
represented in the base ISA. Said functions are then implemented in hardware, and exposed
to the programmer via one or more new instructions.

ISEs are an effective option for both high-end, performance-oriented and low-end, con-
strained platforms. They are particularly effective for the latter where resource constraints
are tightest. An ISE can be smaller and faster than a pure software implementation, and
more efficient in terms of performance gain per additional logic gate than a hardware-only
option.

Abstractly, an ISE design constitutes an interface to domain-specific functionality
through the addition of instructions to a base ISA. As a fundamental and long-lived com-
puter systems interface, the design and extension of an ISA demands careful consideration
(cf. [Gue09, Section 4]). and the production of a concrete ISE design is not trivial. It
must deliver a quantified improvement to the workload in question and consider numerous
design goals including but not limited to:

e Limiting the number and complexity of changes and interactions with the parent ISA.

e Avoiding the addition of too many instructions, or requiring large additional hardware
modules to implement. This will hurt commercial adoption of the ISA.

e Adhering to the design constraints and philosophies of the base ISA.

e Maximising the utility of the additional functionality, i.e., favour general-purpose over
special-purpose functionality. Special-purpose functions can be justified in terms of how
frequently the workload is required. For example, though an AES ISE might only be
useful for AES, a webserver might execute AES millions of times per day.

The x86 architecture provides many examples of ISE design, having been extended nu-
merous times by Intel and AMD. Various generations of non-cryptographic Multi-Media
eXtensions (MMX), Streaming SIMD Extensions (SSE), and Advanced Vector Exten-
sions (AVX) support numerical algorithms via vector (or SIMD) vs. scalar computation.
Likewise, the cryptographic Advanced Encryption Standard New Instructions (AES-
NI) [Gue09, DGvK19] ISE supports AES: it significantly improves latency and throughput
(see, e.g., [FHLAO18]), and represents a useful casestudy in the design goals above: it
adds just 6 additional (vs. 1500+ total) instructions, reduces overhead by sharing the pre-
existing XMM register file, and facilitates compatibility via the CPUID [X8618a, Chapter 20]
feature identification mechanism. It is also (sometimes un-expectedly) useful beyond AES:
the Grostl hash function [GKMT11] uses the S-box, and the YAES [BV14] authenticated
encryption scheme uses a full round. It can even be used to accelerate the Chinese SM4
block cipher.?

RISC-V. RISC-V is a (relatively) new ISA, with academic origins [AP14, Wat16]. Unlike
x86 or ARMv8-A, RISC-V is a free-to-use open standard, managed by the independent
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RISC-V International Foundation. The base ISA is extremely simple, consisting of only 50
instructions, and adopts strongly RISC-oriented design principles. RISC-V is also highly
modular, having been designed to be extended. The general-purpose base ISA can (option-
ally) be supplemented using sets of special-purpose, standard or non-standard extensions to
support additional functionality (e.g., floating-point, via the standard F [RV:19a, Section
11] and D [RV:19a, Section 12] extension), or satisfy specific optimisation goals (e.g., code
density, via the standard C [RV:19a, Section 16] extension). The RISC-V International
Foundation delegates the development of extensions to a dedicated task group. The
Cryptographic Extensions Task Group® provides some specific context for this paper,
through their remit to develop scalar and vector extensions to support cryptography.

RISC-V uses 32 general purpose registers denoted GPR[:], for 0 < i < 32, and uses
XLEN to denote the register bit-width of the base ISA. Note that GPR[0] is fixed to 0. We
focus on extending the RV32I [RV:19a, Section 2] and RV64I [RV:19a, Section 5], integer
RISC-V base ISA and hence focus on systems where XLEN = 32 or XLEN = 64.

Remit and organisation. Set against on going effort to standardise cryptographic ISEs
for RISC-V, this paper investigates support for AES. In specific terms, our contributions
are as follows:

1. In Section 2 we capture some background, including a limited Systematisation of
Knowledge (SoK) for AES ISEs.

2. In Section 3 we implement and evaluate five different ISEs for AES on two different
RISC-V CPU cores. We explore existing ISE designs, and introduce what is, to the best
of our knowledge, a novel ISE design in Section 3.5 that uses a quadrant-packed state
representation.

3. In Section 4 we evaluate how the proposed standard Bit-manipulation extension [RV:19a,
Section 21] to RISC-V can be used to efficiently implement AES-GCM.

4. In Section 5 we select one candidate ISE design from Section 3, and demonstrate how
the associated implementation can be hardened against DPA-style attacks.

On the one hand, RISC-V represents an excellent target for such work: the ISA is
extensible by design and its open nature makes exploration of extensions easier through
the availability of (often open-source) implementations. Increased commercial deployment
of such implementations suggests that work on RISC-V is timely and potentially of high
impact. On the other hand, RISC-V also presents unique challenges vs. previous work.
For example, RISC-V could in fact be viewed as three related base ISAs, RV32I [RV:19a,
Section 2], RV64I [RV:19a, Section 5], and RV128I [RV:19a, Section 6], that each support
a different word size: designing ISEs that are applicable (or scale) across these options is
a complicating factor. We hope this work supports RISC-V in becoming the first widely
implemented ISA to support AES acceleration across all implementation profiles, from
embedded IoT devices to application and server class processors.

2 Background

FIPS-197 [FIPO1] represents the definitive specification of AES. An overview of related
design rationale is offered in [DR02]. We endeavour to follow the notation set out in
[FIPO1] in referencing specific parts of AES functionality.

3 https://lists.riscv.org/g/tech-crypto-ext
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4 The design of scalar AES Instruction Set Extensions for RISC-V

2.1 AES implementation
2.1.1 Representation

A field element in Fos can be represented by an 8-bit byte where the i-th bit of x for
0 <1 < 8 represents the i-th polynomial coefficient.

Beyond this, the state and round key matrices can be represented in several ways. The
most direct option would be termed array-based (or unpacked): the matrix is represented
as a 16-element array of 8-bit bytes, each representing field elements. FIPS-197 [FIPO1]
defines a word to be st. w = 32. We use R to refer to the register width of a target
platform. For RISC-V, R = XLEN where we consider XLEN € 32,64. Where R > 32, an
entire row or column of the AES state matrix can be packed into each register: we term
these “row-packed” and “column-packed” representations respectively. Where R > 128,
it is plausible to pack an entire AES state matrix into a single register: we term this a
“fully-packed” representation.

2.1.2 Hardware-only implementations

In a hardware-only implementation, execution of AES is performed by a dedicated hardware
module (e.g., a memory-mapped co-processor), while the software which uses AES is
executed on a general-purpose CPU core. A large design space exists for hardware
implementations of AES. Gaj and Chodowiec [GCO00, Section 3.3] give an overview, detailing
iterative, combinatorial (unrolled), and pipelined architectures. Similarly, [PMDWO04,
GB05, GCO09] survey concrete implementations on a variety of fabrics including FPGAs
and ASICs.

Although hardware-only designs are not our focus, the associated techniques inform
ISE-related design choices. First, they inform the ISE interface. For example, some
ISEs can be characterised as offering an interface to hardware constituting one round
(i.e., aligned with an iterative hardware implementation). Second, they inform the ISE
implementation. For example, a significant body of work focuses on efficient hardware
implementation of the S-box: [Can05, BP12, RMTA18].

2.1.3 Software-only implementations

In a software-only implementation, execution of AES and the associated application
program is performed by a general-purpose processor core, using only instructions in the
base ISA. Since we only consider use of the RISC-V scalar base ISA, we exclude work on
the use of vector-like extensions [Ham09].

Software-only techniques are important because many ISEs are evaluated against
baseline ISA implementations. Work such as that of Bernstein and Schwabe [BS08],
Osvik et al. [OBSC10], and Schwabe and Stoffelen [SS16] present and compare multiple
techniques across a range of platforms, but, for completeness, we present a (limited) survey
in what follows.

Compute-oriented. A compute-oriented implementation of AES favours online computa-
tion, thus reducing memory footprint at the cost of increased latency. Following [DR02,
Section 4.1], for example, the idea is to simply 1) adopt an array-packed representation
of state and round key matrices, then 2) construct a round implementation by following
the algorithmic description of each round function in a direct manner. Addition in Fas
can be implemented with a base ISA XOR instruction. Base ISA support is rarely present
for multiplication and inversion in Fos however. Hence it is common to pre-compute the
S-BOX and/or xtime functions. This requires pre-computation and storage of a 256 B
look-up table per function, but significantly reduces execution latency.
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On platforms where R = 32, Bertoni et al. [BBFT02] improve execution latency by
exploiting the wider data-path. They adopt a row-packed representation of state and
round key matrices, implementing ShiftRows using native rotation instructions to act on
the packed rows. MixColumns is implemented using the SIMD Within A Register (SWAR)
paradigm: applying xtime across a packed row in parallel.

Table-oriented. A table-oriented implementation of AES favours offline pre-computation,
reducing latency but increasing the memory footprint. The main example of this technique
is the so-called T-tables [DR02, Section 4.2] method. This involves adopting a column-
packed representation of state and round key matrices and pre-computing MixColumn o
SubBytes using the tables

02(16) ® S-BOX(2) [ 03(16) ® S-BOX()

- 01(16) ® S-BOX(2) _ 02(16) ® S-BOX()

Tola] = 01(16) ® S-BOX(x) hfe] = 01(16) ® S-BOX(x)
I 03(16) ® S-BOX(x) | 01(16) ® S-BOX()

01(16) X S- BOX((E)
03(16) ® S-BOX ()
02(16) ® S-BOX(x)
01(1 6) @ S- BOX(.Z‘)

TQ [l’] =

(
T3[z] = i E
L (

for x € Fys, 3) computing each j-th column of s"+1) as

To [SE,TJ‘)H (mod Nbyl ® T [Sz(‘,Tj)Jri (mod Nbyl @ T2 [Sz(‘,Tj)Jri (mod Nbyl © T3 [Sz(‘,rj)+i (mod Nb)]
where extraction of elements caters for ShiftRows, then XOR’ing the j-th column of k(")
to cater for AddRoundKey.

As such, each round becomes a sequence of look-ups into T3, plus XORs to combine
their result. Doing so demands pre-computation and storage of a 256 - 4 B = 1kB look-up
table per T;. The overhead related to extraction of each element from packed columns
representing s(") (to form look-table offsets) can be significant: Fiskiran and Lee [FLO1]
analyse the impact of different addressing modes on this issue, with Stoffelen [Stol9,
Section 3.1] concluding that RISC-V is ill-equipped to reduce said overhead, due to the
provision of a sparse set of addressing modes.

Bit-sliced. The term bit-slicing is an implementation technique due to Biham [Bih97],
which constitutes

1. a non-standard representation of data where each R-bit word x is transformed into &,
i.e., R slices, say £[i] for 0 <i < R, where %[i]; = x; for some j, and
2. a non-standard implementation of operation: each operation f used as r = f(z) must be
transformed into a “software circuit” f , i.e., a sequence of Boolean instructions acting
on the slices st. 7 = f(&).
Bit-slicing introduces some overhead related to conversion of x into & and 7 into r, plus
the (relative) inefficiency of f vs. f wrt. latency and footprint. However, if each slice is
itself an R-bit word, then it is possible to compute R instances of f in parallel on suitably
packed &. A common analogy is that of transforming the R-bit, 1-way scalar processor into
a 1-bit, R-way SIMD processor, thus giving (or recouping) up to a R-fold improvement in
latency.
As evidenced by [MNO07, K08] and [KS09], the application of bit-slicing to AES can be
very effective; Stoffelen [Sto19, Section 3.1] specifically investigates this fact within the
context of RISC-V.
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2.2 Existing AES ISEs

Here, we survey AES-related ISE designs split into 1) industry-specified ISEs, which are
standard extensions, and 2) academia-specified ISEs, which are non-standard extensions,
wrt. a given base ISA. Each ISE is classified as either workload-specific, if it is only useful
for AES, or workload-agnostic, if it is useful for AES and other workloads. Note that
we exclude work where an ISE for another workload can be applied to AES but was not
designed for AES (see, e.g., Tillich and Grofischadl [TG04] who apply an ISE intended for
ECC to AES).

2.2.1 Standard, industry-specified ISEs.

Intel. Introduced support for AES in x86 per [X8618a, Section 12.13]. Instructions use
a destructive 2-address (1 source, 1 source/destination) or non-destructive 3-address (2
source, 1 destination) format depending on the variant (e.g., XMM- vs. AVX-based), and
operate on data housed in the pre-existing vector register file, implying R = 128. AES is
implemented by 1) adopting a fully-packed representation of state and round key matrices,
then 2) using AESENC [X8618b, Page 3-54] to construct a round implementation as

AESENC +— AddRoundKey o MixColumns o SubBytes o ShiftRows

IBM. Introduced support for AES in POWER per [POW18, Section 6.11.1]. Instructions
use a non-destructive 3-address (2 source, 1 destination) format, and operate on data
housed in the pre-existing vector register file, implying R = 128. AES is implemented by
1) adopting a fully-packed representation of state and round key matrices, then 2) using
vcipher [POW18, Page 304] to construct a round implementation as

vcipher — AddRoundKey o MixColumns o ShiftRows o SubBytes

ARM. Introduced support for AES in ARMv8-A per [ARM20, Section A2.3|. Instructions
use a destructive 2-address (1 source, 1 source/destination) format, and operate on data
housed in the pre-existing vector register file, implying R = 128. AES is implemented
by 1) adopting a fully-packed representation of state and round key matrices, then 2)
using AESE [ARM20, Section C7.2.8 | and AESMC [ARM20, Section C7.2.10] to construct
a round implementation as

AESMC o AESE — MixColumns o (SubBytes o ShiftRows o AddRoundKey),

Oracle. Introduced support for AES in SPARC per [SPA16, Sections 7.3+7.4]. Instruc-
tions use a non-destructive 4-address (3 source, 1 destination) format, and operate on
data housed in the pre-existing general-purpose register file, implying R = 64. AES is
implemented by 1) using a column-packed representation of state and round key matrices,
then 2) using AES_EROUNDO1 [SPA16, Page 109] and AES_EROUND23 [SPA16, Page 109]
to construct a round implementation as

(AES_ERQUNDO1; AES_EROUND23) +— AddRoundKey o MixColumns o ShiftRows o SubBytes

in two steps: the first step processes columns 0 and 1 via AES_EROUNDO1 whereas the
second step processes columns 2 and 3 via AES_EROUND23.
2.2.2 Non-standard, academia-specified ISEs.

Burke et al. [BMAOO] propose a workload-agnostic ISE based on workload characterisation.
Per [BMAOQO], pertinent examples for AES include a) ROL and ROR, which perform left-
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and right-rotate, and b) SBOX, which extracts elements to form look-up table offsets. In
one configuration, the resulting memory accesses are supported by a set of special-purpose
“S-box caches”.

Fiskiran and Lee [FLO05] propose a workload-agnostic ISE that employs a so-called
Parallel Table Lookup Module (PTLU). For AES, this accelerates implementations based
on T-tables by affording an addressing mode that a) integrates extraction of elements
to form look-up table offsets, and b) performs the associated table look-ups in parallel,
supported by a dedicated scratch-pad memory.

Biham et al. [BAK98, Page 232] propose (in theory) and Grabher et al. [GGPO0S]
explore (in practice) a workload-agnostic ISE that supports bit-sliced implementations.
The ISE allows computation using configurable 4-input, 2-output Boolean functions, vs.
fized 2-input, l-output alternatives such as NOT, AND, OR, and XOR. Sequences of
native Boolean instructions, which dominate bit-sliced implementations, can thereby be
“compressed” into use of the ISE. Doing so improves both latency and footprint. [GGP08,
Section 4] details the application to AES.

Nadehara et al. [NIK04] propose a workload-specific ISE that could be described as
“hardware-assisted T-tables”: observing that Vz,i # j, T;[x] is a rotation of T}[z], they
support on-the-fly computation (vs. via look-up) of T-table entries. The ISE constitutes a
single instruction AESENC — T;, supported by a dedicated hardware module (see [NIK04,
Figure 6]). Instances of AESENC 1) extract an input element from a packed input column 2)
use the input to compute an output element equivalent to a look-up from the T-table, and
3) store the output element into a packed output column. This approach was reapplied by
Saarinen [Saa20] within the context of RISC-V.

Tillich et al. [TGS05] propose a workload-specific ISE that could be described as
“hardware-assisted S-box”. The ISE constitutes a single instruction sbox — SubBytes,
supported by a dedicated hardware module (see [TGS05, Figure 1]). Instances of sbox
1) extract an input element from a packed input row or column, 2) use the input to
compute an output element equivalent to a look-up from the S-box, and 3) insert the
output element into a packed output row or column. Using insert vs. overwrite semantics
allows ShiftRows to be computed for free.

Bertoni et al. [BBFR06] propose a workload-specific ISE that could be described
as “hardware-assisted round functions”. Per [BBFRO06, Section 4], the ISE includes 1)
zero-overhead rotation (similar to ARM), and 2) byte- and word-oriented variants of
SMix +— MixColumn o SubBytes.

Tillich and Grofischddl [TG06] propose a workload-specific ISE that could be described
as “hardware-assisted round functions”. Per [TGO06, Section 4], the ISE includes byte- and
word-oriented variants of sbox[4] [s|r] — SubBytes and mixcol[4] [s] — MixColumn;
per [TG06, Section 4.3], the most efficient variant allows a zero-overhead implementation
of ShiftRows to be realised.

2.3 Security

While the security of AES against a cryptanalytic attack is defined by the design, and so
is out of scope, implementation attacks are of central importance. An implementation
attack focuses on the concrete instance of a construct rather than the abstract specification.
Countermeasures against such attacks must therefore be considered alongside implementa-
tions they relate to. As AES is an important target, a significant body of literature exists
around implementation attacks on it, including both active (e.g., fault injection) or passive
(i.e., side-channel monitoring) attack techniques. The latter can be sub-divided into those
dependent on analogue (power-based [MOPOT]) or discrete (time-based [KQ99]) leakage.

Use of ISEs can provide some inherent protection against certain attacks. For example,
ISEs typically yield constant time execution, preventing some classes of timing or micro-
architectural attack techniques. (See [Szel9, Section 4] and [GYCHIS, Section 4])
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Unfortunately, use of ISEs also presents some unique challenges. For example, Saab et al.
[SRH16] discuss power-based attacks on AES-NI; concluding that naive use of AES-NI
yields exploitable information leakage. Mitigation of such leakage demands the ISE address
instances where the leakage stems from “inside” the ISE, and work with appropriate
countermeasures (e.g., hiding [MOPO07, Chapter 7] or masking [MOPO07, Chapter 10]).
Tillich et al. [THMO07] consider this problem to an extent, including an ISE-based option in
their investigation of hardened AES implementations. However, the challenge of developing
suitable ISEs is under-studied in general. We investigate this further in Section 5.

3 Exploring AES ISEs for RISC-V

Section 2.2 outlined a range of ISE designs, demonstrating a large design space of options
that we could consider. To narrow the design space into those we do consider, we use the
requirements outlined below:

Requirement 1. The ISE must support 1) AES encryption and decryption, and 2) all
parameter sets, i.e., AES-128, AES-192, and AES-256. Support for auxiliary operations,
e.g., key schedule, is an advantage but not a requirement.

Requirement 2. The ISE must align with the wider RISC-V design principles. This
means it should favour simple building-block operations, and use instruction encodings
with at most 2 source registers and 1 destination register. This avoids the cost of a
general-purpose register file with more than 2 read ports or 1 write port.

Requirement 3. The ISE must use the RISC-V general-purpose scalar register file to
store operands and results, rather than any vector register file. This requirement excludes
the majority of standard ISEs outlined in Section 2.2.

Requirement 4. The ISE must not introduce special-purpose architectural state, nor rely
on special-purpose micro-architectural state (e.g., caches or scratch-pad memory).

Requirement 5. The ISE must enable data-oblivious execution of AES, preventing timing
attacks based on execution latency (e.g., stemming from accesses to a pre-computed S-box).

Requirement 6. The ISE must be efficient, in terms of improvement in execution latency
per area required: this balances the value in both metrics vs. an exclusive preference for
one or the other. Efficiency wrt. auxiliary metrics, e.g., memory footprint or instruction
encoding points, is an advantage but not a requirement.

Overall, the requirements combine to intentionally target the ISE at low(er)-end, resource-
constrained (e.g., embedded) platforms. We view such a focus as reasonable, because
existing work on adding cryptographic support to the standard Vector extension [RV:19a,
Section 21] already caters for high(er)-end alternatives.

We arrive at five ISE variants using the requirements, the description of which is split
into an intuitive description in one of the following Sections and a technical description
(e.g., a list of instructions and their semantics) in an associated Appendix.

3.1 Variant 1 (V;): SubBytes + MixColumn + explicit ShiftRows

By reproducing [TG06, Section 4.2], V; assumes XLEN = 32 and adopts a column-packed
representation of state and round key matrices.

As detailed in Figure 3 and Figure 4, V; adds 4 instructions (2 for encryption, 2
for decryption). For example, saes.vl.encs applies SubBytes to elements in a packed
column, and saes.v1.encm applies MixColumn to a packed column; the instruction format
for saes.vl.encs and saes.vl.encnm includes 1 source and 1 destination register address.
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Since saes.vl.encs requires 4 applications of the S-box, a trade-off between latency and
area is possible st. n physical S-box instances are (re)used in 4/n cycles (e.g., 1 instance
in 4 cycles, or 4 instances in 1 cycle).

Figure 5 demonstrates that use of V; to implement AES encryption requires 47 in-
structions per round: 4 1w instructions to load the round key, 4 xor instructions to apply
AddRoundKey, 4 saes.vl.encs instructions to apply SubBytes, 31 instructions to apply
ShiftRows, and 4 saes.vl.encn instructions to apply MixColumns.

3.2 Variant 2 (V,): SubBytes + MixColumn + implicit ShiftRows

By reproducing [TG06, Section 4.3], V5 assumes XLEN = 32 and adopts a column-packed
representation of state and round key matrices.

As detailed in Figure 7 and Figure 8, Vs, adds 4 instructions (2 for encryption, 2
for decryption). For example, saes.v2.encs applies SubBytes to elements in a packed
column, and saes.v2.encm applies MixColumn to a packed column; the instruction format
for saes.v2.encs and saes.v2.encnm includes 2 source and 1 destination register address.
Vs improves V; by applying ShiftRows implicitly: this is possible by careful indexing of el-
ements in source and destination columns during application of SubBytes and MixColumns,
and also permits saes.v2.encs to be used within the key schedule. The same trade-off is
possible as in V;, whereby n physical S-box instances are (re)used in 4/n cycles (e.g., 1
instance in 4 cycles, or 4 instances in 1 cycle).

Figure 9 demonstrates that use of V, to implement AES encryption requires 16 in-
structions per round: 4 1w instructions to load the round key, 4 xor instructions to apply
AddRoundKey, 4 saes.vl.encs instructions to apply SubBytes, and 4 saes.vl.encnm in-
structions to apply MixColumns. In the Nr-th round, which omits MixColumns, ShiftRows
must be applied explicitly using an additional 12 instructions.

3.3 Variant 3 (V;): hardware-assisted T-tables

Vs is based on [NIK04, BBFR06, Saa20]; it assumes XLEN = 32 and adopts a column-
packed representation of state and round key matrices.

As detailed in Figure 11 and Figure 12, V3 adds 4 instructions (2 for encryption, 2
for decryption). The basic idea is to support an implementation strategy aligned with
use of T-tables [DR02, Section 4.2], but compute entries in hardware vs. storing the
look-up entries in memory. For example, saes.v3.encsm extracts an element from a
packed column, applies SubBytes to the element, expands the element into a packed
column, applies MixColumn, then applies AddRoundKey. The inclusion of AddRoundKey
follows [Saa20], which improves on [NIK04, BBFRO6]; as a result of this, the instruction
format for saes.v3.encsm includes 2 source and 1 destination register address. The
requirement for 1 application of the S-box allows for a more efficient functional unit than
V1 or Vs, for example, either wrt. latency or area.

Figure 13 demonstrates that use of V3 to implement AES encryption requires 20
instructions per round: 4 lw instructions to load the round key, and 16 saes.v3.encsm
instructions to apply SubBytes, ShiftRows, MixColumns, and AddRoundKey. In the Nr-th
round, which omits MixColumns, saes.v3.encsn is replaced by saes.v3.encs.

3.4 Variant 4 (V,): 64-bit data-path

V, is similar to the SPARC [SPA16, Page 109] ISE in requiring XLEN = 64 and adopting a
double column-packed representation of state and round key matrices, i.e., two columns (or
8 elements) are packed into a 64-bit word. While still adhering to a format that includes 2
source and 1 destination register address, a single instruction can therefore 1) accept all of
the current state as input, and 2) produce half of the next state as output.
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Figure 1: An illustration of quadrant-packed representation, as applied to a state matrix.

SPARC [SPA16, Page 109] adds 9 instructions (4 for encryption, 4 for decryption, and
1 auxiliary). For example, AES_EROUNDO1 and AES_ERQUND23 produce columns 0 and 1
and columns 2 and 3 respectively. As detailed in Figure 15 and Figure 16, V; refines
this slightly by adding 7 instructions (2 for encryption, 2 for decryption, and 3 auxiliary).
For example, saes.v4.encs applies SubBytes, ShiftRow, and MixColumn to elements
in a packed column, but differs from AES_EROUNDO1 and AES_ERQUND23, because 1) it
constitutes 1 (vs. 2) instruction, which is possible by observing that swapping the inputs
allows computation of either columns 0 and 1 or columns 2 and 3, and 2) it uses 2 (vs. 3)
source register addresses, as a result of opting not to include AddRoundKey.

Figure 17 demonstrates that use of V; to implement AES encryption requires 6 in-
structions per round: 2 1d instructions to load the round key, 2 xor instructions to
apply AddRoundKey, 2 saes.v4.encsm instructions to apply SubBytes, ShiftRows, and
MixColumns. In the Nr-th round, which omits MixColumns, saes.v4.encsm is replaced
by saes.v4.encs.

3.5 Variant 5 (V5): quadrant-packed

V5 assumes XLEN = 32 and adopts a novel, quadrant-packed representation of state and
round key matrices: per Figure 1 for example, doing so packs each 4-element quadrant of
the state into a 32-bit word. Note that either two rows or two columns of the state can
be accessed by accessing two quadrants: the intuition, based on this fact, is that such a
representation can 1) afford advantages of both row- and column-packed alternatives, and
2) allow an instruction format that includes 2 source and 1 destination register address.
However, it also implies a need to convert any input into (resp. output from) quadrant-
packed representation; although such conversion is amortised by N7 rounds of computation,
it represents an overhead vs. other variants.

As detailed in Figure 19 and Figure 20, V5 adds 7 instructions (3 for encryption, 3
for decryption, and 1 auxiliary). For example, saes.v5.esrsub.lo applies SubBytes
and ShiftRow to the lower row spanning two packed quadrants, saes.vb5.esrsub.hi
applies SubBytes and ShiftRow to the upper row spanning two packed quadrants, and
saes.v5.emix applies MixColumn to a column spanning two packed quadrants.

Figure 21 demonstrates that use of V5 to implement AES encryption requires 16
instructions per round: 4 lw instructions to load the round key, 4 xor instructions to
apply AddRoundKey, 4 saes.v5.esrsub.[lolhi] instructions to apply SubBytes and
ShiftRows, and 4 saes.v5.emix instructions to apply MixColumns. Note that conversion
into (resp. from) quadrant-packed representation requires a further 12 instructions; this
can be reduced to 4 pack[h] instructions using the standard Bit-manipulation [RV:19a,
Section 17] extension.
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3.6 Implementation

The evaluation of each ISE considers two different RISC-V compliant base micro-architectures,
which constitute two different host cores:

e The SCARV* core supports the RV32IMC instruction set, i.e., the 32-bit [RV:19a,
Section 2] base integer ISA plus standard Multiplication [RV:19a, Section 7] and
Compressed [RV:19a, Section 16] extensions. Per the block diagram shown in Figure 23,
the core executes instructions using a 5-stage, in-order pipeline. No branch prediction
is supported. There are two memory interfaces for instruction fetch and data memory
accesses. No instruction or data caches are supported. The core implements various
performance counters, and elements of the RISC-V Privileged Resource Architecture
(PRA) [RV:19b, Chapter 3] related to exception and interrupt handling.

e The Rocket [AAB+16] core executes instructions using a 5-stage, in-order pipeline which
is highly configurable. We take advantage of this, considering two variants whose exact
configuration is outlined in Figure 25 and Figure 26: the variants represent single 32-bit
and 64-bit cores respectively, and so support the RV32IMC (resp. RV64IMC) instruction
set, i.e., the 32-bit [RV:19a, Section 2] (resp. 64-bit [RV:19a, Section 5]) base integer
ISA plus standard Multiplication [RV:19a, Section 7] and Compressed [RV:19a, Section
16] extensions. Each variant is configured to support an instruction cache, a data cache,
and a branch prediction mechanism, but no floating-point support.

To support each ISE, two modifications were made to each host core: the instruction
decoder was modified to support operand selection and an AES Functional Unit (AES-FU)
was added to support execution of ISE instructions. The SCARV core integrates the
AES-FU directly into the pipeline, while the Rocket core accesses the AES-FU via the
Rocket Custom Coprocessor (RoCC) [AABT 16, Section 4] interface. Due to Requirement 2,
specifically that each instruction uses at most 2 source and 1 destination register, neither
micro-architecture required further structural alteration. A synthesis-time parameter was
used to switch between different ISEs.

3.7 Evaluation

Hardware Each ISE variant was integrated into the 3 host cores described in Section 3.6.
The variants which assume XLEN = 32 (Vy, Vs, Vs, and Vs5) were evaluated on both the
32-bit SCARV core and the 32-bit Rocket core; the variant which assumes XLEN = 64
(Vy) was evaluated on only the 64-bit Rocket core. For Vi, Vs and V5 a trade-off between
latency and area exists. Each such case is considered through two optimisation goals: the
(A)rea goal instantiates 1 S-box and has a n-cycle execution latency, whereas the (L)atency
goal instantiates 4 S-boxes and has a 1-cycle execution latency.

Table 1 records various metrics associated with the hardware implementations, arranged
in two parts: the left-hand part relates to each ISE in isolation, whereas the right-hand
part relates to each ISE integrated with a given core. Throughout, both area (measured in
NAND?2 equivalent gates) and Circuit Depth are as reported by Yosys [Wol]. We found
that none of the ISEs affected the critical path of either the SCARV or Rocket core.
Considering each ISE as implemented on the Rocket core, we note the overhead wrt. area
is marginal: this stems from the fact that the baseline area of Rocket includes the data
and instruction caches.

Software We evaluated each ISE variant by implementing the AES-128 ENc, DEC plus
Enc-KEYEXP and DEC-KEYEXP. We used a non-ISE T-table based implementation as
a baseline. The variants which assume XLEN = 32 (V;, Vs, V3, and Vs) used a rolled
strategy wrt. loops: Vi, Vo, and V5 used 1 round per iteration, whereas V3 used 2 rounds

4nttps://github.com/scarv/scarv
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per iteration to avoid needless register move operations. The variant which assumes
XLEN = 64 (V,) used an unrolled strategy. In all cases the state is naturally aligned,®
meaning any input (resp. output) can be loaded (resp. stored) using 4 1w instructions on
a 32-bit core or 2 1d instructions on a 64-bit core.

Table 2 records the memory footprint (i.e., code footprint and static data footprint)
of each software implementation. Where an entry for DEC-KEYEXP is zero, this implies
that ENC-KEYEXP = DEC-KEYEXP so there is no overhead. Where an entry for DEC-
KEYEXP is non-zero, this implies that ENC-KEYExP # DEC-KEYEXP, and the equivalent
inverse cipher construction [FIP01, Section 5.3.5] is used. This allows DEC-KEYEXP to call
ENc-KEYEXP, then perform some additional post processing, with the quoted footprint
therefore reflecting the latter only. Table 3 and Table 4 record instruction (i.e., iret)
and cycle counts of each implementation, as executed on the SCARV and Rocket cores
respectively.

Discussion Table 1 demonstrates that all ISE variants imply a modest area overhead
relative to their host core. The RV32 Rocket area results are not listed, as the ISE overhead
compared to the area of a synthesised Rocket Tile with caches was less than 1% in all
cases. Table 2 shows all ISE variants having similarly small memory footprints in terms of
both instruction code and data. Beyond this, and per Section 3, the primary metric of
interest is efficiency in terms of improvement in execution latency per area: this metric
draws on data from Table 1 plus either Table 3 or Table 4 for the SCARV or Rocket core
respectively, and, for each variant, is computed by dividing the improvement in execution
latency (relative to the T-table baseline) by the normalised area (i.e., the ISE area column
of Table 1). We deliberately omit the area of the host core from this calculation, as this
fixed overhead dominates the final value and detracts from the comparison between ISEs
themselves.

Table 5 captures the results for the Rocket core, although the same conclusion can be
drawn for the SCARV core. Qualitatively, we place more of a weight on ENC and DEC
vs. ENC-KEYEXP and DEC-KEYEXP, because typically many ENC or DEC operations
are performed per KEYEXP. For a 32-bit core, our conclusion is that Vs is the best
option. Despite not being the fastest (by a small margin), it is the most efficient, and
simplest to implement. The area optimised V» implementation sometimes comes close in
efficiency, but requires a more complex multi-cycle implementation in this case. For a
64-bit core, V, is the best option, which is somewhat obvious because it specifically makes
use of the wider data-path. With reference to Table 4, note that the number of cycles per
instruction executed is relatively low. This fact stems from use of the ROCC interface,
in that forwarding of the result from an ISE instruction (that uses the ROCC) incurs an
overhead vs. an ISE instruction; fine-grained integration of the AES-FU could therefore
incrementally improve the results.

We believe it is sensible to standardise different ISEs for the RV32 and RV64 base ISAs.
This allows each ISE design to better suit the constraints of each base ISA. In the RV32
case, this acknowledges that such cores will most often appear in resource-constrained,
embedded or IoT class devices. Hence, the most efficient ISE design is appropriate. For
necessarily larger RV64-based designs, it makes sense to take advantage of the wider
data-path, and acknowledge that these are more likely to be application class cores. Hence,
they will place a higher value on performance than area-efficiency.

4 Using ISEs to implement AES-GCM

SRISC-V does not mandate support for misaligned loads and stores, so aligning the state this way
ensures the best performance across all cores.
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Table 1: Hardware implementation metrics (e.g., area and Circuit Depth) for each ISE

variant.

’ ISA \ Variant  (Goal) \ ISE area \ ISE Circuit Depth \ SCARV + ISE area ‘
RV32IMC 37375 (1.00x%)
RV32IMC | W (L) 3472 19 | 41723 (1.12x)
RV32IMC V1 (A) 2174 22 40161 (1.07x%)
RV32IMC |V, (L) 3547 19 | 41199 (1.10x)
RV32IMC Vo (A) 1381 21 38885 (1.04><)
RV32IMC | Vs 1157 30 | 38610  (1.03x)
RV32IMC Vs (L) 4121 22 42070 (1.13x%)
RV32IMC | Vs (A) 1927 23 | 39251  (1.05x%)

ISA Variant  (Goal) | ISE area [ ISE Circuit Depth | Rocket + ISE area
RVGAIMC 3717607  (1.000x)
RV64IMC Vy 8312 27 | 3733786  (1.004x)

Table 2: Software implementation metrics (i.e., memory footprint measured in bytes) for
each ISE variant.

[ ISA | Variant | ENxc | DECc | ENC-KEYEXP | DEC-KEYEXP | .data |
RV32IMC | T-table 804 804 154 174 | 5120
RV32IMC Vi 424 424 68 0 10
RV32IMC Vo 234 238 68 62 10
RV32IMC V3 290 290 86 64 10
RV32IMC Vs 266 278 290 0 10
RV64IMC Vy 268 268 168 100 0

Table 3: Execution metrics for each ISE variant on the SCARV core. Note that the 64-bit
V, is absent, since there is no 64-bit SCARV core.

ISA Variant  (Goal) Enc DEc Enc-KEYEXxP | DEC-KEYEXP
iret | cycles | iret | cycles | iret | cycles iret | cycles

RV32IMC | T-table 998 1076 | 998 1103 | 466 5b4 | 1747 2346
RV32IMC %1 (L) 518 593 | 518 607 | 198 291 204 310
RV32IMC W (A) 518 753 | 518 775 | 198 331 204 350
RV32IMC Vs (L) 221 301 | 222 303 | 198 302 335 616
RV32IMC Vs (A) 221 538 | 222 540 | 198 332 335 754
RV32IMC V3 238 291 | 238 286 | 219 312 659 1118
RV32IMC Vs (L) 233 304 | 233 309 | 332 447 338 466
RV32IMC Vs (A) 233 556 | 233 550 | 332 477 338 496

Table 4: Execution metrics for each ISE variant on the Rocket core. Note that the 64-bit
V, uses the 64-bit Rocket core; all others use the 32-bit Rocket core.

ISA Variant  (Goal) Enc DEc Enc-KEYExXxP | DEC-KEYEXP
iret | cycles | iret | cycles [ iret | cycles | iret | cycles

RV32IMC | T-table 948 1143 | 949 1025 | 444 478 | 1726 1977
RV32IMC %1 (L) 528 685 | 529 680 | 212 341 214 290
RV32IMC %1 (A) 528 804 | 529 744 | 212 357 214 335
RV32IMC Vs (L) 231 359 | 233 368 | 212 315 350 508
RV32IMC Vo (A) 231 511 | 233 520 | 212 345 350 646
RV32IMC Vs 253 445 | 254 445 | 233 470 674 2425
RV32IMC Vs (L) 243 414 | 244 319 | 346 427 348 424
RV32IMC Vs (A) 243 585 | 244 543 | 346 504 348 454
RV64IMC Vs 81 119 82 125 66 204 136 306
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Table 5: Comparison of improvement per unit-area for each ISE variant.

ISA Variant  (Goal) Enc DEc Enc-KEYExp | DECc-KEYExP
iret | cycles | iret [ cycles | iret [ cycles | iret | cycles

RV32IMC Vi (L) 4.61 4.34 4.61 4.35 5.39 6.06 | 20.50 18.12
RV32IMC V1 (A) 7.37 5.46 7.37 5.44 8.61 6.40 | 32.74 25.63
RV32IMC Vs (L) 10.58 8.38 | 10.53 8.53 5.28 4.30 | 12.22 8.92
RV32IMC Vo (A) 27.18 12.04 | 27.06 12.29 | 13.56 10.04 | 31.39 18.73
RV32IMC V3 30.12 26.56 | 30.12 27.71 | 14.63 12.76 | 19.04 15.08
RV32IMC Vs (L) 8.64 7.14 8.64 7.20 2.71 2.50 | 10.43 10.15
RV32IMC Vs (A) 18.48 8.35 | 17.64 8.30 5.79 5.01 | 22.29 20.40
RV64IMC Vi 12.32 9.04 | 12.17 8.82 6.76 2.72 | 12.85 7.67

Table 6: Instruction counts for multiplication in Fai2s as used by GHASH.
’ ISA \ Karatsuba \ Reduce \ grev xor s[lr]li clmul clmulh Total

RV32IB no mul 4 36 0 20 20 80
RV32IB no shift 4 56 24 16 16 116
RV32IB yes mul 4 52 0 13 13 82
RV32IB yes shift 4 72 24 9 9 118
RV641B no mul 2 10 0 6 6 24
RV641B no shift 2 20 12 4 4 42
RV641B yes mul 2 14 0 ) 5 26
RV641B yes shift 2 24 12 3 3 44
Table 7: Modelled cycle counts for multiplication in Foi2s as used by GHASH.
ISA Karatsuba | Reduce 1-cycle 2-cycle 3-cycle 6-cycle
clmul[h] clmul[h] clmull[h] clmul[h]
RV32IB no mul 80 120 160 280
RV32IB no shift 116 148 180 276
RV32IB yes mul 82 108 134 212
RV32IB yes shift 118 136 154 208
RV64IB no mul 24 36 48 84
RV64IB no shift 42 50 58 82
RV64IB yes mul 26 36 46 76
RV641IB yes shift 44 50 56 74

The Galois/Counter Mode (GCM) [NIS07] is a block cipher mode of operation which
supports authenticated encryption. AES-GCM refers to an instantiation using AES as
the underlying block cipher, which is the only case mandated by TLS 1.3 [Res18, Section
9.1]; the importance of this construction means GCM and AES are frequently considered
together from an implementation and evaluation perspective. The computational core of
AES-GCM is formed from two components. GCTR, [NIS07, Section 6.5] is responsible for
encryption using AES, and GHASH [NIS07, Section 6.4] is responsible for authentication.
Having dealt with efficient implementation of AES and hence GCTR in Section 3, we turn
our attention to GHASH. Rather than further embellish the ISE for AES, we instead
focus on re-use of the proposed standard Bit-manipulation [RV:19a, Section 17] extension.

Implementation. GHASH [NIS07, Section 6.4] is a universal hash defined over the finite
field Foi2s constructed as Fo[x]/(x?® +x7 4+ x% + x + 1). Conversion of the input into the
correct endianness can be realised using the grev (or generalised reverse) instruction, which
can reverse the bits in each byte of an input word: 4 (resp. 2) grev instructions are therefore
required on RV32IB (resp. RV64IB). Beyond this, operations in Fyi2s dominate. Addition in
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Faiz2s is equivalent to XOR: thus 4 (resp. 2) xor instructions are required on RV32IB (resp.
RV64IB). Multiplication in Foi2s can be split into two steps: a (128 x 128)-bit polynomial
multiplication, followed by a reduction of the 256-bit result modulo x'?® +x7 +x2? +x + 1.
The first step can be realised using pairs of “carry-less” multiplication instructions clmul
and clmulh. These compute the least significant (resp. most-significant) half of a carry-less
product (i.e., product over F3). Pairs of clmul and clmulh should be scheduled adjacently,
allowing capable micro-architectures to fuse them. Use of a school book approach requires
16 (resp. 4) pairs on RV32IB (resp. RV64IB). Optimisation using the Karatsuba method
requires 9 (resp. 3) such pairs on RV32IB (resp. RV64IB), plus some additional xor
instructions. The second step can be implemented in two ways: a shift-based reduction,
made possible by the low Hamming weight of the primitive polynomial, or a multiplication-
based reduction, analogous to the Montgomery or Barret methods. The most efficient
approach depends on the relative execution latency of clmul[h] vs. xor and s[1r]1li.
Note that the entire GHASH operation, including clmul [h], must exhibit data-oblivious
execution latency (e.g., avoid data-dependent optimisations like early-termination) to avoid
associated side-channel attacks (cf. [GOPT09]).

Discussion. Table 6 lists instruction counts for multiplication in Fai2s, implemented
using combinations of the base ISA, and approaches for the polynomial multiplication
and reduction steps. Table 7 then models the execution latency (measured in cycles)
assuming grev, xor, and s[1r]1li take 1 cycle. Although the model only considers an
in-order core in line with those used in Section 3 and is focused on execution latency (vs.
other pertinent metrics, such as code footprint), there are two obvious conclusions: if
clmul[h] has 2 (or more) times the latency of xor and s[1r]li, a Karatsuba polynomial
multiplication is preferable. If clmul[h] has 6 (or more) times the latency of xor and
s[1r]1li, a shift-based reduction is preferable.

The authors recommend the carry-less multiply instructions specified in the proposed
RISC-V Bit-manipulation extension also be included in the RISC-V cryptography extension.
Implementers would otherwise need to implement (a subset of) the B extension, potentially
adding functionality and cost that is not nessesary.

5 Hardening an AES ISE against DPA attack

In embedded IoT class devices to which an attacker may have physical access, Differential
Power Analysis (DPA) attacks on cryptographic implementations [KJJ99] can be devas-
tating. While ISEs give a notable increase in efficiency, they can also create attractive
targets for DPA attacks. This stems from there being only one way to sensibly implement
AES using the ISE and the ISE having very well defined behaviour. This reduces the
number of target variables or implementation styles an attacker needs to consider. It is
then important to consider how an implementer might further extend a cryptographic ISE
to secure it against DPA attacks. While our focus here is on DPA attacks, we note that
Differential Electro-Magnetic Analysis attacks are exploited and countered using similar
techniques to DPA.

Having identified ISE V5 as a strong standardisation candidate for embedded 32-bit
RISC-V cores, we take a hardware/software co-design approach to extending the ISE,
adding 1st order DPA side-channel resistance.

5.1 Design

We based our design on boolean masking, and represent the secret key as two Boolean
masked shares.
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An implementation of the AES block encrypt/decrypt function using Vs requires eight
GPRs: four for the current round state and four to load the next round key and then
accumulate the next round state. See Figure 13 for an AES round function implementation
using V3. Storing shares of each secret variable in the General Purpose Register (GPR)
file is unreasonable, requiring drastic modifications to the instruction definitions and
register file to read four registers (two sources, of two shares each) and write two registers.
This would break the RISC-V 2-read-1-write principle. Storing corresponding shares in
the GPRs is also a security risk, as they may be accidentally combined due to careless
instruction use, or implicit register accesses by the CPU micro-architecture.

Instead, we define a new, 8-element “Mask Register File” (MRF). Each mask register
M; is R = 32-bits wide, and stores the mask for one of the GPRs. We use a fixed mapping
between GPRs and mask registers; not all GPRs have a corresponding mask register. We
use the mapping {a0..a3,t0..t4} = {m0..m7}.

Share 0 of each secret value is loaded into the GPRs using the standard RISC-V Load
Word (1w) instruction. We define a new Load Mask instruction 1m rd, offset(rsl)
which loads the mask for GPR rd (i.e. Share 1) from memory into the corresponding
MRF entry. A corresponding Store Mask instruction sm rs2, offset(rsl) writes the
mask corresponding to GPR rs2 to memory. The sm instruction is only used for context
switches, and destructively reads the MRF register value to prevent it being leaked to
other applications running on the same core.® We require the secret values be stored in
shared form in memory (rather than splitting them into shares upon being loaded) to
extend the SCA protection boundary outside the CPU. Otherwise, the hamming weight of
unmasked secret values would be leaked by memory-hierarchy registers outside the CPU.
Executing an 1m instruction such that rd does not map to a mask register raises an illegal
opcode exception. Likewise for sm and rs2.

When an ISE instruction is executed and its GPR source registers map to an MRF
register, both the GPRs and MRF are read simultaneously and fed to the AES functional
unit. If any GPR source does not map to an MRF register, we assume that operand is
unmasked and represent the other share as 0.

Within the AES-FU the instruction result is computed entirely in a masked represen-
tation. The result shares are then re-masked before being written back to the GPRs and
MRF. This is necessary, because Vs instructions are designed such that rsi=rd for all use
cases. Without re-masking, overwriting a source with the result could cause 1’st order
hamming-distance leakage.

If the destination GPR has a corresponding mask register, share 0 is stored in the GPRs
and share 1 in the MRF. If the destination GPR does not map to a mask register, the
result is written to the GPR unmasked. This means that in the final encrypt/decrypt
round, we can optionally obtain the unmasked results without having to store the shares
to memory, load them back and unmask them.

5.2 Implementation

We used the SCARV core as the basis for our side-channel secure implementation of
V3. Figure 24 shows a block diagram of the modifications made to the core, and which
data-paths carry masked data. To avoid accidental unmasking of the two shares, Share
1 is stored in bit-reversed form in the MRF and pipeline registers. This means that
any accidental multiplexing between pipeline operand registers causes toggles between
non-corresponding bits of each share. Share 1 is only un-reversed immediately prior to
entering the AES functional unit, and is re-reversed before exiting it. Bit-reversal has zero
logic gate cost and some minor routing complexity.

6 In this case, destructive could mean set to zero (which could leak the hamming weight of the mask)
or randomising its value.
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While the architectural state stores a 2-share representation of the secret material, we
use a 3-share implementation of the AES S-box. This was driven by experiments showing
leakage from a 2-share design in our FPGA platform. The additional share is generated by
a simple 32-bit LFSR and added dynamically by the hardware, and is never visible to the
programmer. This is suitable for a proof of concept (evident in the experimental results)
but would need to be used in conjunction with a true random number source (e.g., a set
of ring-oscillators) in a deployed system. Only the S-box is implemented using 3-shares.
Subsequent MixColumns logic is only implemented using 2 shares.

5.3 Evaluation

The modified SCARV core was implemented on a Sasebo GIII [HKSS12] side-channel anal-
ysis platform, containing two Xilinx FPGAs: a Kintex-7 (model xc7k160tfbg676) target
and a supporting Spartan-6 (model xc6s1x45). Only the Kintex-7 was used. The design
was synthesised using Xilinx Vivado 2019.2 with default synthesis and implementation
strategies. The Kintex-7 FPGA uses a 200MHz differential external clock source, which is
transformed into a 50MHz internal clock used by the entire design.

Trace capture uses a standard pipeline of components: a MiniCircuits BLK+89 D/C
blocker, an Agilent 8447D amplifier (with a 100kHz to 1.3 GHz range, and 25 dB gain),
and a PicoScope 5000 series oscilloscope using a 250 MHz sample rate, with a 12-bit
resolution.

We performed a generic randomised plaintext Test Vector Leakage Assessment (TVLA)
[CDGT13] flow to evaluate the effectiveness of the side-channel hardened implementation,
using the AES-128 block encrypt function as the target operation. The unprotected and
protected implementation results are shown in Figure 2a and Figure 2b respectively. The
protected implementation is effective at removing 1st order side-channel leakage up to
100K traces. The peaks at the beginning and end of Figure 2b are caused by the unmasked
block input and output data being loaded/stored.

Table 8 shows the hardware and software overheads. The ISE Size/Circuit Depth
rows are inclusive of the S-box Size/Circuit Depth rows. Likewise, the CPU Size rows are
inclusive of the ISE Size rows. The static code size and instruction count overheads are
~ 20%: considerably less than a non-ISE-based software masking approach. The hardware
overheads are dominated by the increased size of the S-box (owing to the 3-share design),
and the MRF. Although the overhead to the dedicated ISE logic is 4z, this drops to
1.2 when the entire CPU sub-system is considered. Measured against an entire SoC, the
overheads are modest.

6 Conclusion

Although differing in nature, both AES and RISC-V represent important standards. In
this paper, we have addressed the challenge of secure, efficient implementation of AES on
RISC-V: our approach harnesses the modularity afforded by RISC-V, through a focus on
the use of ISEs.

Specifically, and motivated by ongoing efforts to standardise support for AES in RISC-
V, we have implemented and evaluated five ISE designs on two different RISC-V compliant
base micro-architectures. Our conclusion is that 1) V5 is the best option for AES on 32-bit
cores, 2) V, is the best option for AES on 64-bit cores, and 3) the standard B [RV:19a,
Section 17] extension can combine with either option to support AES-GCM. Furthermore,
we demonstrated that, with reasonable alterations to the base micro-architecture, our
implementation of Vs can be hardened (via masking) to prevent 1lst order DPA-style
attacks.
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Table 8: Software and hardware overheads for the protected ISE implementation of AES-
128 block encryption. The “ISE Size” row does not include the cost of the mask register
file for the protected implementation; this is included in the CPU size measurements, since
the exact method of mask delivery and storage is an implementation option.

Tstatistic

Tstatistic

] Metric \ Unprotected \ Protected \ Overhead ‘
Static Code Size (Bytes) 290 358 1.23x
Instructions Executed 238 287 1.21x
CPU Clock Cycles 291 331 1.14x
S-box Size (NAND2 Equivalent) 554 3245 5.86 %
S-box Circuit Depth 19 22 1.16x
ISE Size (NAND2 Equivalent) 1157 4616 3.99%
ISE Circuit Depth 30 37 1.23x
CPU Size (NAND2 Equivalent) 38610 45141 1.16x%
CPU Size LUTs 4017 4956 1.23x
CPU Size FFs 2078 2420 1.16%
FPGA Timing Slack @50MHz 8.12ns 7.05ns 0.87x

TTest Results
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(a) Un-protected implementation TVLA results after 10K traces.
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(b) Side-channel protected implementation TVLA results after 100K traces.

Figure 2: TVLA results for the baseline and protected implementations. The blue trace
is the absolute result of the TVLA evaluation, the green trace is the average power
consumption for each TVLA trace set.
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A V;: additional technical detail

W N =

saes.vl.encs rd, rsl : vl.SubBytes(rd, rsil, fwd=1)
saes.vl.decs rd, rsl : vl.SubBytes(rd, rsil, fwd=0)
saes.vl.encm rd, rsl : v1.MixColumn(rd, rsil, fwd=1)
saes.vl.decm rd, rsl : v1.MixColumn(rd, rsl, fwd=0)

Figure 3: Instruction mnemonics, and their mapping onto pseudo-code functions, for V.

NO Ut W

vl.SubByte(rd, rsil, fwd):
rd.8[i] = AESSBox[rs1.8[i]] if fwd else AESInbSBox[rs1.8[il]] for i=0..3

v1l.MixColumn (rd, rsi, fwd)
for i=0..3:
tmp.32 = ROTL32(rs1.32, 8%i)
rd.8[i] = AESMixColumn (tmp.32) if fwd else AESInvMixColumn (tmp.32)

Figure 4: Instruction pseudo-code functions for V;.
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1w a0, 0(a4) // Load Round Key
1w al, 4(a4d)
1w a2, 8(a4)
1w a3, 12(a4d)
xor a4, a4, a0 // Add Round Key
Xxor ab, ab, al
Xor a6, a6, a2
xor a7, a7, a3
saes.vl.encs a0, a4 // SubBytes
saes.vl.encs al, ab
saes.vl.encs a2, a6
saes.vl.encs a3, a7

// Shift Rouws
and a4, t0, t6 ; and ab, tl, t6
and a6, t2, t6 ; and a7, t3, té6
s1lli t4, t6, 0x8 ; and t5, t0, t4
or a7, a7, tb ; and t5, t3, t4
or a6, a6, tb ; and t5, t2, t4
or ab, ab, tb ; and t5, t1, t4
or ad, a4, tb ; slli  t4, t4, 0x8
and t5, t2, t4 ; or a4, a4, tb
and t5, t3, t4 ; or ab, ab, tb
and t5, tO0, t4 ; or a6, a6, tb
and ts, t1, t4 ; or a7, a7, tb
s1lli t4, t4, 0x8 ; and t5, t3, t4
or a4, a4, tb ; and t5, tO, t4
or ab, ab, tb ; and t5, t1, t4
or a6, a6, tb ; and t5, t2, t4
or a7, a7, tb
saes.vl.encm t0O, a4 // MizColumns
saes.vl.encm t1, ab
saes.vl.encm t2, a6
saes.vl.encm t3, a7

Figure 5: An

AES encryption round implemented using V.
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Figure 6: A diagrammatic description of the functional unit required to support V;.
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26 The design of scalar AES Instruction Set Extensions for RISC-V

B V,: additional technical detail

saes.v2.encs rd, rsl, rs2 : v2.SubBytes(rd, rsl, rs2, fwd=1)
saes.v2.decs rd, rsl, rs2 : v2.SubBytes(rd, rsl, rs2, fwd=0)
saes.v2.encm rd, rsl, rs2 : v2.MixColumns(rd, rsil, rs2, fwd=1)
saes.v2.decm rd, rsl, rs2 : v2.MixColumns(rd, rsil, rs2, fwd=0)

Figure 7: Instruction mnemonics, and their mapping onto pseudo-code functions, for Vs.

v2.SubBytes(rd, rsl, rs2, fwd):
t1.32 = {rs1.8[0], rs2.8[1], rs1.8([2], rs2.8[3]}
rd.8[i]l= AESSBox[t1.8[i]] if fwd else AESInvSBox[t1.8[i]] for i=0..3

v2.MixColumns (rd, rsil, rs2, fwd):
t1.32 = {rs1.8[0], rs1.8[1], rs2.8[2], rs2.8[3]1}
for i=0..3:
tmp .32 = ROTL32(rs1.32, 8%i)
rd.8[i]= AESMixColumn(tmp.32) if fwd else AESInvMixColumn (tmp.32)

Figure 8: Instruction pseudo-code functions for Vs.

1w a0, 0(a4) // Load Round Key

1w al, 4(a4d)

1w a2, 8(a4d)

1w a3, 12(a4)

xor t0, t0, a0 // Add Round Key

Xxor t1, t1, ail

xor t2, t2, a2

Xxor t3, t3, a3

saes.v2.sub.enc a0, t0, ti // SubBytes / ShiftRouws

saes.v2.sub.enc al, t2, t3
saes.v2.sub.enc a2, tl1, t2
saes.v2.sub.enc a3, t3, tO
saes.v2.mix.enc t0, a0, al // ShiftRows / MizColumns
saes.v2.mix.enc t1, a2, a3
saes.v2.mix.enc t2, al, a0
saes.v2.mix.enc t3, a3, a2

Figure 9: An AES encryption round implemented using Vs.
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Figure 10: A diagrammatic description of the functional unit required to support Vs.
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28 The design of scalar AES Instruction Set Extensions for RISC-V

C Vjs: additional technical detail

saes.v3.encs rd, rsl, rs2, bs : v3.Proc(rd, rsil, rs2, bs, fwd=1, mix=0)
saes.v3.encsm rd, rsl, rs2, bs : v3.Proc(rd, rsl, rs2, bs, fwd=1, mix=1)
saes.v3.decs rd, rsl, rs2, bs : v3.Proc(rd, rsl, rs2, bs, fwd=0, mix=0)
saes.v3.decsm rd, rsl, rs2, bs : v3.Proc(rd, rsl, rs2, bs, fwd=0, mix=1)

Figure 11: Instruction mnemonics, and their mapping onto pseudo-code functions, for Vs.

v3.Proc(rd, rsl, rs2, bs, fwd, mix):

X = AESSBox[rs2.8[bs]] if fwd else AESInvSBox[rs2.8[bs]]

if mix and fwd: t1.32 = {GFMUL(x, 3), b s x ,GFMUL (x, 2)}
elif mix and !fwd: t1.32 = {GFMUL(x,11),GFMUL(x,13),GFMUL(x,9),GFMUL(x,14)}
else : t1.32 = {0, 0, O, x%}

rd.32 = ROTL32(t1.32, 8%bs) ~ rsi

Figure 12: Instruction pseudo-code functions for Vs.

1w a0, 16(RK) // Load Round Key

1w a1, 20(RK)

1w a2, 24(RK)

1w a3, 28(RK) // tO,t1,t2,t3 contains current round state.
saes.v3.encsm a0, a0, t0, O // Nexzt state for column O
saes.v3.encsm a0, a0, t1, 1 // Current column 0 in tO.
saes.v3.encsm a0, a0, t2, 2 // Nezt column 0 accumulates in a0
saes.v3.encsm a0, a0, t3, 3

saes.v3.encsm al, al, t1, O // Nezt state for column 1.
saes.v3.encsm al, al, t2, 1

saes.v3.encsm al, al, t3, 2

saes.v3.encsm al, al, t0, 3

saes.v3.encsm a2, a2, t2, 0 // Nezt state for column 2.
saes.v3.encsm a2, a2, t3, 1

saes.v3.encsm a2, a2, t0, 2

saes.v3.encsm a2, a2, ti, 3

saes.v3.encsm a3, a3, t3, 0 // Nezt state for column 3.
saes.v3.encsm a3, a3, to, 1

saes.v3.encsm a3, a3, ti, 2

saes.v3.encsm a3, a3, t2, 3 // a0,al,a2,a3 contains new round state

Figure 13: An AES encryption round implemented using Vs.
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Figure 14: A diagrammatic description of the functional unit required to support Vs.
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30 The design of scalar AES Instruction Set Extensions for RISC-V

D V,: additional technical detail

saes.v4.ksl rd rsl rcon : v4.ksi(rd, rsil, rcon)
saes.v4.ks2 rd rsl rs2 : v4.ks2(rd, rsil, rs2 )
saes.v4.imix rd rsi : v4.InvMix(rd, rsil)
saes.v4.encsm rd rs1 rs2 : v4.Enc(rd, rsl, rs2, mix=1)
saes.v4.encs rd rsl rs2 : v4.Enc(rd, rsl, rs2, mix=0)
saes.v4.decsm rd rsl rs2 : v4.Dec(rd, rsil, rs2, mix=1)
saes.v4.decs rd rsl rs2 : v4.Dec(rd, rsl, rs2, mix=0)

Figure 15: Instruction mnemonics, and their mapping onto pseudo-code functions, for V.

v4.ksl(rd, rsl, enc_rcon): // KeySchedule: SubBytes, Rotate, Round Const
temp .32 = rs1.32[1]
rcon = 0x0
if (enc_rcon !'= OxA):
temp.32 = ROTR32(temp.32, 8)
rcon = RoundConstants.8[enc_rcon]

temp.8[i] = AESSBox[temp.8[i]] for i=0..3
temp.8[0] = temp.8[0] ~ rcon

rd.64 = {temp.32, temp.32}
v4.ks2(rd, rsl, rs2): // KeySchedule: XOR
rd.32[0] = rs1.32[1] -~ rs2.32[0]
rd.32[1] = rs1.32[1] ~ rs2.32[0] ~ rs2.32[1]
v4.Enc(rd, rsl, rs2, mix): // SubBytes, ShiftRows, MizColumns
t1.128 = ShiftRows ({rs2, rsi})
t2.64 = t1.64[0]
t3.8[1i] = AESSBox[t2.8[i]] for i=0..7
rd.32[i] = AESMixColumn(t3.32[i]) if mix else t3.32[i] for i=0..1

v4.Dec(rd, rsl, rs2, mix, hi): // InvSubBytes, InvShiftRows, InuvMizColumns

t1.128 = InvShiftRows(rs2 || rsi1)

t2.64 = t1.64[0]

t3.8[1] = AESInvSBox[t2.8[i]] for i=0..7

rd.32[i] = AESInvMixColumn(t3.32[i]) if mix else t3.32[i] for i=0..1
v4.InvMix(rd, rsil): // Inverse MizColumns

rd.32[i] = AESInvMixColumn(rs1.32[i]) for i=0..1

Figure 16: Instruction pseudo-code functions for V.

1d a0, 0(a4) // Load round key as double words.

1d al, 8(a4)

xor t0, tO0, a0 // Add round key for 2 columns at a time.
xor t1, t1, ail

aes.vb.encsm t2, t0, t1 // Nezt round state: columns 0, 1
aes.vb.encsm t3, t1, t0 // columns 2, 3 - Note swapped rsl/rs2

Figure 17: An AES encryption round implemented using V.
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Figure 18: A diagrammatic description of the functional unit required to support the V,
round instructions.
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The design of scalar AES Instruction Set Extensions for RISC-V

E Vs: additional technical detail

saes.
saes.
saes.

saes

saes.
saes.
saes.

v5.
v5.
v5.
.vh.
v5.
v5.
v5.

esrsub.
esrsub.
dsrsub.
dsrsub.
emix
dmix
sub

lo
hi
lo
hi

rd,
rd,
rd,
rd,
rd,
rd,
rd,

rsi,
rsi,
rsl,
rsi,
rsi,
rsi,
rsi

rs2
rs2
rs2
rs2
rs2
rs2

rd =
rd =
rd =
rd =
rd =

rd =

v5.
v5.
v5.

vb

Srs
Srs
Srs

Mix
Mix

ub(rs1, rs2, fwd=1,
ub(rs1, rs2, fwd=1,
ub(rsl, rs2, fwd=0,

.8rSub(rsl, rs2, fwd=0,
vb5.
v5.

(rs1, rs2, fwd=1)
(rs1, rs2, fwd=0)

SubBytes (rs1.8[il])

hi=0)
hi=1)
hi=0)
hi=1)

for i=0..3

Figure 19: Instruction mnemonics, and their mapping onto pseudo-code functions, for Vs.

v5.SrSub(rd, rs

if (fwd):
if hi: tmp.
else tmp .
tmp.8[i]
else:
if hi: tmp.
else tmp .
tmp.8[i]
if (hi): rd.32
else rd.32

1,
32
32

32
32

rs2, fwd, hi):

= {rs1.8[3], rs2.8[0],
= {rs2.8[3], rsi1.8[1],
= AESSBox [tmp.8[1]]
= {rs2.8[3], rs2.8[0],
= {rs1.8[3], rs2.8[1],

= InvAESSBox [tmp.8[i

{tmp.8[2],tmp.8[3],tmp.
{tmp.8[1] ,tmp.8[3], tmp.

1]

rs2
rsi
for

rsi
rsi
for

.8[1], rs2.8[2]}
.8[0], rs1.8[2]}
i=0..3

.8[1], rs2.8[2]}
.8[0], rs1.8[2]}
i=0..3

8[0],tmp.8[1]1}
8[0],tmp.8[2]%}

v5.mix(rd, rsil, rs2, fwd):
c0l10.32 = {rs1.8[2], rs1.8[3], rs2.8[2], rs2.8[3]}
coll.32 = {rs1.8[0], rs1.8[1], rs2.8[0], rs2.8[1]1}
n0.8 = AESMixColumn ( col0 ) if fwd else AESInvMixColumn ( )
nl.8 = AESMixColumn (ROTL32(c0l10,8)) if fwd else AESInvMixColumn (ROTL32(co0l0,8))
n2.8 = AESMixColumn ( colil ) if fwd else AESInvMixColumn ( )
n3.8 = AESMixColumn (ROTL32(col1,8)) if fwd else AESInvMixColumn(ROTL32(col1,8))
rd.32 = {n2, n3, n0, nil}

Figure 20: Instruction pseudo-code functions for Vs.

1w a0, 0(a4) // Load Round Key

1w al, 4(ad)

1w a2, 8(a4)

1w a3, 12(a4d)

xor t0, t0, a0 // Add Round Key

xor tl1, t1, ail

Xor t2, t2, a2

Xor t3, t3, a3

saes.v5.esrsub.lo a0, t0, ti1 // Quad 0: SubBytes / ShiftRows

saes.v5.esrsub.lo al, ti1, tO // Quad 1

saes.v5.esrsub.hi a2, t2, t3 // Quad 2

saes.v5.esrsub.hi a3, t3, t2 // Quad 3

saes.v5.emix t0, a0, a2 // Quad O0: ShiftRows / MizColumns

saes.v5.emix t1, al, a3 // Quad 1

saes.v5.emix t2, a2, a0 // Quad 2

saes.v5.emix t3, a3, ail // Quad 3

Figure 21: An AES encryption round implemented using Vs.
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Figure 22: A diagrammatic description of the functional unit required to support Vs.
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F SCARV core
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Figure 23: SCARV core: vanilla micro-architecture.
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Figure 24: SCARV core: hardened micro-architecture, extending Vs for improved security

against side-channel attack. Connections coloured red are security-critical, in the sense

they relate to masks.
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G Rocket core: additional technical detail

class
new
new
new
new
new
new
new
new

AESVanilla32 extends

freechips
freechips
freechips
freechips
freechips
freechips
freechips
freechips

.rocketchip.
.rocketchip.
.rocketchip.
.rocketchip.
.rocketchip.
.rocketchip.
.rocketchip.
.rocketchip.

Config (

subsystem.
subsystem.
subsystem.
subsystem.
subsystem.
subsystem.
subsystem.

WithNoMMIOPort ++
WithNoSlavePort ++
WithInclusiveCache ++
WithRV32 ++
WithNExtTopInterrupts (0) ++
WithNBigCores (1) ++
WithoutFPU ++

system.BaseConfig

Figure 25: 32-bit Rocket core configuration.

class
new
new
new
new
new
new
new

AESVanilla64 extends

freechips
freechips
freechips
freechips
freechips
freechips
freechips

.rocketchip.
.rocketchip.
.rocketchip.
.rocketchip.
.rocketchip.
.rocketchip.
.rocketchip.

Config(

subsystem.
subsystem.
subsystem.
subsystem.
subsystem.
subsystem.

WithNoMMIOPort ++
WithNoSlavePort ++
WithInclusiveCache ++
WithNExtTopInterrupts (0) ++
WithNBigCores (1) ++
WithoutFPU ++

system.BaseConfig

Figure 26: 64-bit Rocket core configuration.
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