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Abstract

We show two new results about instantiability of the classical random-oracle-model encryption transforms
for upgrading “weak” trapdoor permutations and encryption to “strong” chosen-ciphertext (CCA) secure
encryption, namely the OAEP trapdoor permutation based (Bellare and Rogaway, EUROCRYPT 1994) and
Fujasaki Okamoto (FO) hybrid-encryption (EUROCRYPT 1998) transforms:

• First, we propose a slight tweak to FO so that achieves the same goal in the RO model, but it is not
“admissible” in the sense of Brzuska et al. (TCC 2015) and thus their uninstantiability result does not
apply. We then show this modified transform is fully instantiable using extractable hash functions.

• Second, we show that OAEP is partially instantiable using extractability assumptions on the round
function when trapdoor permutation is partially one-way. This improves the prior work by Cao et al.
(PKC 2020) who showed weaker results. This shed light on “why” RSA-OAEP may be secure whereas
there exists one-way trapdoor permutations for which the OAEP transform fails (Shoup, J. Cryptology
2002).
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1 Introduction

In this paper, we show new partial and full instantiations under chosen-ciphertext attack (CCA) for the Fujasaki-
Okamoto [22] and OAEP [6] transforms. This helps explain why there are no attacks on these transforms despite
the existence of “uninstantiable” RO model schemes. We now discuss some background and motivation before
an overview of our results.

1.1 Background and Goal

The random oracle (RO) model [5] is a popular paradigm for designing practical cryptographic schemes. In this
model, we design and analysis the security of scheme assuming all parties have access to one or more oracles that
implement independent random functions (called the ROs). We then “instantiate” these ROs using cryptographic
hash functions. The hope is that the instantiated scheme remains secure. However, Canetti et al. [16] show that
this is false in a strong sense. In their work, they give schemes that are secure in the RO model but are insecure
when instantiated with any real-world functions. We call these schemes, “uninstantiable.”

RO model Transforms. Questions of uninstantiability are particularly concern the use of transforms (compilers
that take one or more “base schemes” and output a “target scheme” that uses ROs) in the RO model. We refer
to a transform as uninstantiable if for any standard-model hash functions replacing the ROs there exist secure
base schemes such that the corresponding target scheme is insecure.

In this paper, we are concerned with instantiability of RO model transforms that output a (public-key)
encryption scheme, particularly the classical Fujasaki-Okamoto (FO) hybrid-encryption transform [22] and OAEP
trapdoor-permutation-based transform [6]. We start by recalling recall about how these two classical encryption
scheme transforms work and what is known about them.

Fujasaki-Okamoto. This transform takes a public-key encryption scheme and a symmetric-key encryption
scheme, and produces a new public-key encryption scheme as follow:

Ehypk(m; r) = Easypk (r;H(r))‖E syK(m) where K = G(r) .

Hofheinz et al. [27] show that the resulting public-key encryption scheme Ehy is IND-CCA secure for public-
key schemes Easy that are one-way CPA and IND-CCA symmetric-key encryption schemes E sy when H,G are
ROs. Unfortunately, FO was shown uninstantiable by Brzuska et al. [11]. They showed uninstantiability of
all “admissible” such encryption transforms and that FO is admissible regardless of the class of symmetric-key
schemes considered.

OAEP. This transform takes a trapdoor permutation (TDP) F and produces a public-key encryption scheme
whose public key is an instance f of the TDP. More specifically, the resulting transform is as follow:

EOAEP
f (m; r) = f(s||t) where s = G(r)⊕m‖0ζ and t = H(s)⊕r .

Shoup [31] showed that it cannot be secure for every one-way trapdoor permutation. But this result does
not apply to practical TDPs, let alone the commonly used RSA TDP. Further, there are black-box impossibility
results imply that one either has to use non-blackbox assumptions on the hash functions or on the TDP [29].
Moreover, Cao et al. [18] show partial instantiation result for OAEP transform under mild assumptions on G,H
when TDP satisfies the notions of “second-input extractability” (SIE) and “common-input extractability” (CIE).
Barthe et al. [2] show that these extractability assumptions hold for small-exponent RSA (e = 3).

The main question that left open by prior work is that; Are there standard model hash functions that suffice
to instantiate OAEP and FO (under IND-CCA2) for classes of “practical” base schemes? This main question is
the starting point for our work.

1.2 High-Level Approach

The high level idea is replacing ROs with extractable functions to instantiate FO and OAEP transforms. Ex-
tractable functions are first introduced in [14, 15, 20, 8]. Later, Cao et al. [18] introduced a hierarchy of ex-
tractability notions, called EXT-RO, EXT0, EXT1, EXT2. Intuitively, extractability of a function formalizes the
idea that an adversary that produces a point in the image must “know” a corresponding preimage, as there being
a non-blackbox extractor that produces one.
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Previously, Cao et al. [18] show how to use extractable functions to fully instantiate the variants of RSA-OAEP.
We built on their work and show instantiation results on FO and OAEP transforms.

1.3 Our Results

Results on Fujasaki-Okamoto. The Fujasaki-Okamoto transform takes a chosen plaintext attack secure
public-key encryption scheme and lifts it to chosen ciphertext security by using it in a hybrid construction with
a symmetric. We consider a slightly modified FO transform.

Ehypk(m; r) = Easypk (f(r);H(r))‖E syK(m) where K = G(r) ,

where f is a trapdoor permutation. Observe that compare to original FO, we encrypt f(r) instead of r. We show
this modified transform is fully instantiable under suitable assumptions. We assume the public-key encryption
scheme is uniquely randomness recovering and the symmetric-key encryption is AE. Then to instantiate H,G
we use extractable functions and one-wayness extractor. Note that we we remove the OW-CPA assumption on
public-key encryption since we encrypt f(r) instead of r.

We sketch the proof that the instantiated scheme is IND-CCA secure. Let c∗ = (c∗1, c
∗
2) be the challenge

ciphertext and c = (c1, c2) be the decryption query made by IND-CCA adversary. We first show that if H is
suitably extractable then there is an extractor that on input c1 = Easypk (f(r);H(r)) can simply recover r. We then

use r to decrypt c2 = E syK(m) and recover m. We use this extractor to answer to the decryption queries made by
IND-CCA adversary. We note that the extractor fails to recover r if c1 = c∗1. However, for this to happens we
show that adversary needs to come up with c2 = E syK(m) where m 6= m∗. This happens with negligible probability
since symmetric-key encryption is AE. Next we show that (c1, c2) looks random since G is one-wayness extractor
and symmetric-key encryption is AE.

Results on OAEP. We show that OAEP is partially instantiable under suitable assumptions. Cao et. al [18]
show how to partially instantiate either G or H for RSA-OAEP under IND-CCA. Their results require RSA to
be second input and common input extractable. These algebraic properties proven to hold for RSA with small
exponent (i.e. e = 3). However in practice RSA is used with much larger exponent. We show how to trade the
extractability assumption on RSA with extractability assumption on round function G to partially instantiate
RSA-OAEP even for the large exponent e. In particular, we show RSA-OAEP is partially instantiable when G is
extractable, collision resistance pseudorandom generator while H is a RO. Note that we only require RSA to be
partially one-way.

We sketch the proof that the instantiated scheme is IND-CCA secure. Let c∗ be the challenge ciphertext and
c be the decryption query made by IND-CCA adversary. We first show that if G is suitably extractable then
there is an extractor that can recover m. We use this extractor to answer to the decryption queries made by
IND-CCA adversary. We note that the extractor fails to recover m if the most significant bits of preimage c and
c∗ are equal. However, for this to happens we show that adversary needs to create a collision on G. Thus, this
happens with negligible probability since G is collision resistance. Next we show that c looks random since G is
PRG and RSA is partially one-way.

1.4 Further Related Work

There are several candidates proposed to replace ROs including correlation intractability [16, 13], perfect one-
wayness [12, 17, 21], non-malleability [9, 1], seed incompressibility [26], and universal computational extraction
(UCE) [3, 10, 4].

2 Preliminaries

We overview notations and definitions we use that are mostly from prior work.

2.1 Notation and Conventions

For a probabilistic algorithm A, by y←$A(x) we mean that A is executed on input x and the output is assigned
to y. We sometimes use y ← A(x; r) to make A’s random coins explicit. We denote by Pr [A(x) = y : x←$X ]
the probability that A outputs y on input x when x is sampled according to X. We denote by [A(x)] the set of
possible outputs of A when run on input x. The security parameter is denoted k ∈ N. Unless otherwise specified,
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Game IND-CCAA
SE(k)

b←$ {0, 1} ; K←$K(1k)

(M0,M1, state)←$A
DK(·)
1 (1k)

mb←$Mb(1
k)

c←$ EK(mb)

d←$A
DK(·)
2 (c, state)

Return (b = d)

Figure 1: Game to define IND-CCA security for private-key encryption.

Game INT-CTXTASE(k)

K←$K(1k)

c∗←$AEK(·)(1k)

If DK(c∗) 6= ⊥ then return 1

Return 0

Figure 2: Game to define INT-CTXT security for private-key encryption.

all algorithms must run in probabilistic polynomial-time (PPT) in k, and an algorithm’s running-time includes
that of any overlying experiment as well as the size of its code. Integer parameters often implicitly depend on
k. The length of a string s is denoted |s|. We denote by s|` the ` least significant bits (LSB) of s and s|` the
` most significant bits (MSB) of s, for 1 ≤ ` ≤ |s|. Vectors are denoted in boldface, for example x. If x is a
vector then |x| denotes the number of components of x and x[i] denotes its i-th component, for 1 ≤ i ≤ |x|. For
convenience, we extend algorithmic notation to operate on each vector of inputs component-wise. For example,
if A is an algorithm and x,y are vectors then z←$A(x,y) denotes that z[i]←$A(x[i],y[i]) for all 1 ≤ i ≤ |x|.

Unpredictable distribution. We call distribution ensemble D = {Dk}k∈N, on pairs of strings (Zk, Xk),
unpredictable if for every PPT algorithm A, we have

Pr
[
A(1k, z) = x : (x, z)←$Dk

]
,

is negligible in k.

2.2 Encryption Schemes and Their Security

Private-key encryption. A private-key encryption scheme SE with message space Msg is a tuple of algorithms
(K, E ,D). The key-generation algorithm K on input 1k outputs a private key K. The encryption algorithm E
on inputs K and a message m ∈ Msg(1k) outputs a ciphertext c ∈ Ctxt(1k). The deterministic decryption
algorithm D on inputs K and ciphertext c outputs a message m or ⊥. We require that for all K ∈ [K(1k)] and
all m ∈ Msg(1k), DK((EK(m)) = m with probability 1.

Security of private-key encryption. Let SE = (K, E ,D) be a private key encryption scheme and A =
(A1, A2) be an adversary. Let M be a PPT algorithm that takes inputs 1k to return a message m ∈ Msg(1k).
We associate the experiment in Figure 1 for every k ∈ N. Define the ind-cca advantage of A against SE as

Advind-cca
SE,A (k) = 2 · Pr

[
IND-CCAA

SE(k)⇒ 1
]
− 1 .

We note that A2 is not allowed to ask D to decrypt c. We say SE is secure under chosen-ciphertext attack
(IND-CCA) if Advind-cca

SE,A (k) is negligible in k for all PPT A.

Integrity of private-key encryption. Let SE = (K, E ,D) be a private key encryption scheme, and A be an
adversary. We associate the experiment in Figure 2 for every k ∈ N. Define the int-ctxt advantage of A against
SE as

Advint-ctxt
SE,A (k) = Pr

[
INT-CTXTASE(k)⇒ 1

]
.

We say that SE is secure under INT-CTXT, if Advint-ctxt
SE,A (k) is negligible in k for all PPT A.

Public-key encryption. A public-key encryption scheme PKE with message space Msg is a tuple of algorithms
(Kg,Enc,Dec). The key-generation algorithm Kg on input 1k outputs a public key pk and matching secret
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Game IND-ATKA
PKE(k)

b←$ {0, 1} ; (pk , sk)←$ Kg(1k)

(M0,M1, state)←$A
O(·)
1 (1k, pk)

mb←$Mb(1
k, pk)

c←$ Enc(pk ,mb)

d←$A
O(·)
2 (pk , c, state)

Return (b = d)

Figure 3: Game to define IND-ATK security for public-key encryption.

key sk . The encryption algorithm Enc on inputs pk and a message m ∈ Msg(1k) outputs a ciphertext c. The
deterministic decryption algorithm Dec on inputs sk and ciphertext c outputs a message m or ⊥. We require that
for all (pk , sk) ∈ [Kg(1k)] and all m ∈ Msg(1k), Dec(sk , (Enc(pk ,m)) = m with probability 1.

Security of public-key encryption [25, 30]. Let PKE = (Kg,Enc,Dec) be a public key encryption scheme
and A = (A1, A2) be an adversary. LetM be a PPT algorithm that takes inputs 1k and a public key pk to return
a message m ∈ Msg(1k). For ATK ∈ {CPA, CCA} we associate the experiment in Figure 3 for every k ∈ N.
Define the ind-atk advantage of A against PKE as

Advind-atk
PKE,A (k) = 2 · Pr

[
IND-ATKA

PKE(k)⇒ 1
]
− 1 .

If atk = cpa, then O(·) = ε. We say PKE is secure under chosen-plaintext attack (IND-CPA) if Advind-cpa
PKE,A (k) is

negligible in k for all PPT A.
Similarly, if atk = cca, then O(·) = Dec(sk , ·). Note that adversary A2 is not allowed to ask O to decrypt c. We
say that PKE is secure under adaptive chosen-ciphertext attack or IND-CCA, if Advind-cca

PKE,A (k) is negligible in k
for all PPT A.

Randomness recovery [19]. Let PKE = (Kg,Enc,Dec) be a public key encryption. We say PKE is uniquely
randomness recovering if there exist a PT randomness recovery algorithm Rec such that on input a secret key sk
and ciphertext c outputs a randomness r. We require that for all (pk , sk) ∈ [Kg(1k)], all randomness r and all
m ∈ Msg(1k), Rec(sk , (Enc(pk ,m; r)) = r with probability 1.

2.3 Trapdoor Permutations and Their Security

Trapdoor permutations. A trapdoor permutation family with domain TDom is a tuple of algorithms F =
(Kg,Eval, Inv) that work as follows. Algorithm Kg on input a unary encoding of the security parameter 1k outputs
a pair (f, f−1), where f : TDom(k)→ TDom(k). Algorithm Eval on inputs a function f and x ∈ TDom(k) outputs
y ∈ TDom(k). We often write f(x) instead of Eval(f, x). Algorithm Inv on inputs a function f−1 and y ∈ TDom(k)
outputs x ∈ TDom(k). We often write f−1(y) instead of Inv(f−1, y). We require that for any (f, f−1) ∈ [Kg(1k)]
and any x ∈ TDom(k), f−1(f(x)) = x.

One-wayness. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain TDom. We say F is
one-way if for every PPT inverter I:

Advowf
F,I(k) = Pr

(f,f−1)←$ Kg(1k)
x←$ TDom(k)

[
x′ ← I(f, f(x))

x′ = x

]
,

is negligible in k.

Partial one-wayness. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain TDom. We say
F is partial one-way with respect to `-most significant bits of the challenge input (`-POW) if for every PPT
inverter I:

Advpow
F,I (k) = Pr

(f,f−1)←$ Kg(1k)
x←$ TDom(k)

[
x′ ← I(f, f(x))

x′ = x|`
]
,

is negligible in k. It is shown in [23] that for RSA one-wayness implies partial one-wayness but the reduction is
lossy.
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Game EXT2A,Ext,zF,D (KF , r)

i← 1 ; j ← 1

state ← ε

x← ε ; y← ε

f ← ε ; hint← ε

Run AO(·),I(·)(KF , z; r)

Return (x,y)

Procedure O(y)

If y ∈ f then return ⊥
(state, x)← Ext(state,KF , z, f ,hint, y; r)

x[i]← x ; y[i]← y ; i← i+ 1

Return x

Procedure I(1k)

(hint, v)←$D(1k) ; f ← F (KF , v)

f [j]← f ; hint[j]← hint ; j ← j + 1

Return (f, hint)

Figure 4: Game to define EXT2 security.

2.4 Function Families and Associated Security Notions

Function families. A function family with domain F.Dom and range F.Rng is a tuple of algorithms F = (KF , F )
that work as follows. Algorithm KF on input a unary encoding of the security parameter 1k outputs a key KF .
Deterministic algorithm F on inputs KF and x ∈ F.Dom(k) outputs y ∈ F.Rng(k). We alternatively write F as
a function F : KF × F.Dom→ F.Rng.

Collision resistance. Let F : KF ×F.Dom→ F.Rng be a function family. We say F is collision resistant (CR)
if for any PPT adversary A:

Advcr
F,A(k) = Pr

KF ←$KF (1k)

[
(x1, x2)← A(KF )
x1, x2 ∈ F.Dom(k)

∧ F (KH , x1) = F (KH , x2)
x1 6= x2

]
,

is negligible in k.

Near-collision resistance. Let F : KF × F.Dom → F.Rng be a function family. For ` ∈ N, we say F is
near-collision resistant with respect to `-most significant bits of the outputs (`-NCR) if for any PPT adversary
A:

Advn-cr
F,A(k) = Pr

KF ←$KF (1k)

[
(x1, x2)← A(KF )
x1, x2 ∈ F.Dom(k)

∧ F (KF , x1)|` = F (KF , x2)|`
x1 6= x2

]
,

is negligible in k.

Hardcore functions. We recall a notion of hardcore functions in [24]. Let F = (Kg,Eval, Inv) be a one-way
trapdoor permutation family with domain TDom. Let H : KH × TDom → HRng be a function family. We say
that H is a hardcore function for the trapdoor permutation family F if for every PPT adversary A,

Advhcf
F,H,A(k) = Pr [A(KH , f, f(x), H(KH , x)) = 1 ]− Pr [A(KH , f, f(x), U) = 1 ] ,

is negligible in k, where KH ←$KH(1k), f ←$ Kg(1k), x is chosen uniformly random from domain TDom(k), and
U ←$ HRng(k).

Pseudorandom generators. Let F : KF × F.Dom→ F.Rng be a function family. We say that F is a pseudo-
random generator (PRG) if for every PPT adversary A,

Advprg
F,A(k) = Pr [A(KF , F (KF , x)) = 1 ]− Pr [A(KF , U) = 1 ] .

is negligible in k, where KF ←$KF (1k), x←$ F.Dom(k), and U ←$ F.Rng(k).

One-wayness extractors. Let F : KF × F.Dom → F.Rng be a function family. We say F is a one-wayness
extractor [28] if for any PPT adversary A and any unpredictable distribution D we have

Advcdist
F,A,D = Pr [A(KF , z, F (KF , x)) = 1 ]− Pr [A(KF , z, U) = 1 ] ,

is negligible in k, where KF ←$KF (1k), (z, x)←$Dk, and U ←$ F.Rng(k).

Extractable functions. Intuitively, extractability of a function families formalizes the idea that an adversary
that produces an image point must “know” a corresponding preimage, as there being a non-blackbox extractor
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Kg(1k)

(π, π̂)←$ Π

(f, f−1)←$ Kg(1k)

pk ← (π, f)

sk ← (π̂, f−1)

Return (pk , sk)

Enc(pk ,m||r)
(π, f)← pk

y←$ π(m||r)
c← f(y)

Return c

Dec(sk , c)

(π̂, f−1)← pk

y ← f−1(c)

m← π̂(y)

Return m

Figure 5: Padding based encryption scheme PAD[F ] = (Kg,Enc,Dec).

Algorithm OAEP(KG,KH )(m‖r)
s← (0ζ‖m)⊕G(KG, r)

t← r⊕H(KH , s)

x← s‖t
Return x

Algorithm OAEP−1
(KG,KH )(x)

s‖t← x

r ← t⊕H(KH , s)

m′ ← s⊕G(KG, r)

If m′|ζ = 0ζ return m′|µ
Else return ⊥

Figure 6: OAEP padding scheme OAEP[G,H].

that recovers the preimage. Cao et al. in [18], defined a hierarchy of EXT for function families, namely EXT0,
EXT1, and EXT2, which shown to be useful for instantiating RSA-OAEP. Here we recall the EXT2 notion.

Let η be integer parameters. Let F : KF × F.Dom → F.Rng be a hash function family and D = {Dk}k∈N be
an unpredictable distribution on domain F.Dom. To adversary A and extractor Ext, we associate the experiment
in Figure 4, for every k ∈ N. We say F is η-EXT2 if for any PPT adversary A with coin space Coins, and any
unpredictable distribution D, there exists a stateful extractor Ext such that, for any key independent auxiliary
input z ∈ {0, 1}η:

Advη-ext2F,D,A,Ext,z(k) = Pr
KF ←$KF (1k)
r←$ Coins(k)

[
(x,y)← EXT2A,Ext,zF,D (KF , r)

∃i,∃x : F (KF , x) = y[i] ∧ F (KF ,x[i]) 6= y[i]

]
,

is negligible in k. The adversary is not allowed to query y ∈ f for extract oracle O. We define advantage of A to
be Advη-ext2F,D,A,Ext(k) = maxz∈{0,1}η Advη-ext2F,D,A,Ext,z(k).

We also extend the EXT2 notion to the case where the adversary only outputs ζ-bits of the image. We often
write (η, ζ)-EXT2 for the function families that are extractable for such adversaries.

2.5 The OAEP Framework

Padding scheme. We define a general notion of padding scheme following [6, 29]. For ν, ρ, µ ∈ N, the associated
padding scheme is a triple of deterministic algorithms PAD = (Π,PAD,PAD−1) defined as follows. Algorithm Π
on input a unary encoding of the security parameter 1k outputs a pair (π, π̂) where π : {0, 1}µ+ρ → {0, 1}ν and
π̂ : {0, 1}ν → {0, 1}µ∪{⊥} such that π is injective and for all m ∈ {0, 1}µ and r ∈ {0, 1}ρ we have π̂(π(m‖r)) = m.
Algorithm PAD on inputs π and m ∈ {0, 1}µ outputs y ∈ {0, 1}ν . Algorithm PAD−1 on inputs a mapping π̂ and
y ∈ {0, 1}ν outputs m ∈ {0, 1}µ or ⊥.

Padding-based encryption. Let F be a TDP with domain {0, 1}ν . Let PAD be a padding transform from
domain {0, 1}µ+ρ to range {0, 1}ν . The associated padding-based encryption scheme is a triple of algorithms
PAD[F ] = (Kg,Enc,Dec) defined in Figure 5.

OAEP padding scheme. We recall the OAEP padding scheme [6]. Let message length µ, randomness length
ρ, and redundancy length ζ be integer parameters, and ν = µ + ρ + ζ. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ
and H : KH × {0, 1}µ+ζ → {0, 1}ρ be function families. The associated OAEP padding scheme is a triple of
algorithms OAEP[G,H] = (KOAEP,OAEP,OAEP

−1) defined as follows. On input 1k, KOAEP returns (KG,KH)
where KG←$KG(1k), KH ←$KH(1k), and OAEP,OAEP−1 are as defined in Figure 6.

OAEP encryption scheme. We denote by OAEP[G,H,F ] the OAEP-based encryption scheme F-OAEP with
n = ν. We typically think of F as RSA, and all our results apply to this case under suitable assumptions.

8



FO.Kg(1k)

(pk′, sk′)←$ Kg(1k)

KH ←$KH(1k)

KG←$KG(1k)

pk ← (pk′,KH ,KG)

sk ← (sk′,KH ,KG)

Return (pk , sk)

FO.Enc(pk ,m; r)

y ← H(KH , r)

c1 ← Enc(pk′, r; y)

K ← G(KG, r)

c2 ← EK(m)

c← (c1, c2)

Return c

FO.Dec(sk , c)

r ← Dec(sk′, c1)

K ← G(KG, r)

m← DK(c2)

Return m

Figure 7: FO transform FOH,G [PKE,SE] = (FO.Kg,FO.Enc,FO.Dec).

FO.Kg(1k)

(pk′, sk′)←$ Kg(1k)

(f, f−1)←$ Kg(1k)

KH ←$KH(1k)

KG←$KG(1k)

pk ← (pk′, f,KH ,KG)

sk ← (sk′, f−1,KH ,KG)

Return (pk , sk)

FO.Enc(pk ,m; r)

h← H(KH , r)

c1 ← Enc(pk′, f(r);h)

K ← G(KG, r)

c2 ← EK(m)

c← (c1, c2)

Return c

FO.Dec(sk , c)

y ← Dec(sk′, c1)

r ← f−1(y)

K ← G(KG, r)

m← DK(c2)

Return m

Figure 8: Our new transform FOF,H,G [PKE,SE] = (FO.Dec,FO.Enc,FO.Dec).

2.6 The Fujisaki-Okamoto Transform

The Fujisaki-Okamoto (FO) transformation [22] is a technique to convert weak public key encryption schemes,
e.g., IND-CPA secure into strong ones which resist chosen ciphertext attacks (i.e., IND-CCA secure). Let SE =
(K, E ,D) be a private-key encryption and PKE = (Kg,Enc,Dec) be a public-key encryption schemes. Moreover,
let H : KH × HDom → HRng and G : KG × GDom → GRng be function families. We define FO transform
FOH,G [PKE,SE] = (FO.Kg,FO.Enc,FO.Dec) in Figure 7.

3 Fujisaki-Okamoto Transform Instantiation

In this section, we slightly change the original FO transform and give a new transform which we call FO. Next
we instantiate the new transform FO using extractable functions. Let SE = (K, E ,D) be a private-key encryption,
PKE = (Kg,Enc,Dec) be a public-key encryption schemes, and F = (Kg,Eval, Inv) be a trapdoor permutation
family. Moreover, let H : KH × HDom → HRng and G : KG × GDom → GRng be function families. We define
FOF,H,G [PKE,SE] = (FO.Dec,FO.Enc,FO.Dec) in Figure 8.

Theorem 3.1 Assuming F is a one-way trapdoor permutation family, H is a hardcore function for F and η-
EXT2, and G is one-wayness extractor. Moreover, assuming PKE is uniquely randomness recovering, and SE is
IND-CPA and INT-CTXT secure. Then FO defined as above is IND-CCA secure.

Proof: We prove security through a sequence of games. Consider games G1–G3 in Figure 9. We now explain the
game chain.

Game G1: Game G1 is the standard indistinguishability chosen ciphertext (IND-CCA) game. Thus, we have
that Advind-cca

FO,A
(k) = 2 · Pr [G1 ⇒ 1 ]− 1 for any PPT adversary A.

Game G2: Game G2 is similar to game G1 except that we change the decryption oracle as follows. We first run
randomness recovery algorithm Rec on inputs c1 and secret key sk′ to obtain h. Then we use the extractor
for the hash function family H to extract the randomness r and decrypt c2 using symmetric key G(KG, r).
Consider EXT2 adversary B in Figure 10. Let Ext be an extractor for adversary B. We note that hint given
to adversary B by image oracle I is uninvertible, since G is a one-wayness extractor and F is one-way.

Let ci = (ci,1, ci,2) be the i-th decryption query that adversary A makes, where ci,1 = Enc(pk′, f(ri);hi) and
ci,2 = EG(KG,ri)(m). Note that for all queries ci 6= c∗ if we have hi = h∗ then extractor Ext fails. Otherwise
extractor Ext can successfully extract ri. Thus, we need to bound the probability of hi = h∗ for any i ∈ [p]
where p is the number of decryption queries that adversary A makes. Note that we have

Pr [hi = h∗ ] = Pr [hi = h∗ ∧ f(ri) = f(r∗) ] + Pr [hi = h∗ ∧ f(ri) 6= f(r∗) ]
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Games G1(k)

(pk′, sk′)←$ Kg(1k) ; (f, f−1)←$ Kg(1k)

KH ←$KH(1k) ; KG←$KG(1k)

pk ← (pk′, f,KH ,KG)

(M0,M1, st)←$A
Dec(·)
1 (1k, pk)

b←$ {0, 1} ; mb←$Mb(1
k, pk)

r∗←$ HDom(k) ; c∗1 ← Enc(pk′, f(r∗);h∗)

K∗ ← G(KG, r
∗) ; c∗2←$ EK∗(mb)

d←$A
Dec(·)
2 (st, (c∗1, c

∗
2))

Return (b = d)

Games G2(k), G3(k)

(pk′, sk′)←$ Kg(1k) ; (f, f−1)←$ Kg(1k)

KH ←$KH(1k) ; KG←$KG(1k)

pk ← (pk′, f,KH ,KG) ; coin←$ Coins

(M0,M1, st)← A
Dec(·)
1 (1k, pk; coin)

b←$ {0, 1} ; mb ←Mb(1
k, pk; coin)

r∗←$ HDom(k) ; c∗1 ← Enc(pk′, f(r∗);h∗)

K∗ ← G(KG, r
∗) ; K∗←$ GRng(k)

c∗2←$ EK∗(mb); d← A
Dec(·)
2 (st, (c∗1, c

∗
2); coin)

Return (b = d)

Procedure Dec(c) // of games G2, G3

hint← (f,KG, f(r∗),K∗) ; aux ← (b, pk′, sk′)

(c1, c2)← c ; h← Rec(sk′, c1)

r ← Ext(KH , aux , coin, hint, h
∗, h)

K ← G(KG, r) ; m← DK(c2)

Return m

Figure 9: Games G1–G3 in the proof of Theorem 3.1.

Adversary BO,I(KH , aux ; coin)

(b, pk′, sk′)← aux ; (hint, h∗)←$ I(1k)

(f,KG, f(r∗), G(KG, r
∗))← hint

pk ← (pk′, f,KH ,KG)

(M0,M1, st)← A
Dec(·)
1 (pk; coin)

mb ←Mb(1
k, pk; coin)

c∗1 ← Enc(pk′, f(r∗);h∗)

K∗ ← G(KG, r
∗) ; c∗2←$ EK∗(mb)

Run A
Dec(·)
2 (st, (c∗1, c

∗
2); coin)

Procedure Dec(c)

(c1, c2)← c

h← Rec(sk′, c1)

r ← O(h)

K ← G(KG, r)

m← DK(c2)

Return m

Figure 10: Adversary B in the proof of Theorem 3.1.

Observe that when adversary A makes a decryption query ci 6= c∗ such that hi = h∗ and f(ri) = f(r∗), we
are able to construct INT-CTXT adversary B1 attacking symmetric key encryption SE. Thus, we obtain
Pr [hi = h∗ ∧ f(ri) = f(r∗) ] ≤ p ·Advint-ctxt

SE,B1
(k). On the other hand, when adversary A makes a decryption

query ci 6= c∗ such that hi = h∗ and f(ri) 6= f(r∗), we are able to construct adversary B2 attacking
function family H that can successfully find collisions. Hence, we obtain that Pr [hi = h∗ ∧ f(ri) 6= f(r∗) ] ≤
Advcr

H,B2
(k). Summing up, we obtain that Pr [G1 ⇒ 1 ]−Pr [G2 ⇒ 1 ] ≤ p ·Advint-ctxt

SE,B1
(k)+Advcr

H,B2
(k)+

Advext2
H,B,Ext(k).

Game G3: Game G3 is similar to game G2 except that K∗ is chosen at random in GRng(k). Consider distribution
D1 = {D1

k}k∈N such that D1
k outputs (z, r∗) where r∗ is chosen uniformly random from domain GDom(k)

and z = (f,KH , f(r∗), h∗) for f ←$ Kg(1k), KH ←$KH(1k), and h∗ = H(KH , r
∗). We note that D1 is

unpredictable since F is one-way and H is a hardcore function for F . Now, consider adversary C attacking
one-wayness extractor G in Figure 11. Then, we obtain that Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ] ≤ Advcdist

G,C,D1 .

Next, we give an adversary attacking SE to bound the probability of game G3 outputs 1. Consider IND-CPA
adversary D attacking SE in Figure 12. Then, we have Advind-cpa

SE,D (k) = 2 · Pr [G3 ⇒ 1 ]− 1. Summing up,

Advind-cca
FO,A

(k) ≤ 2p ·Advint-ctxt
SE,B1

(k) + 2 ·Advcr
H,B2

(k) + 2 ·Advext2
H,B,Ext(k) + 2 ·Advcdist

G,C,D1 + Advind-cpa
SE,D (k) .

This completes the proof of Theorem 3.1.

10



Adversary C(KG, z,K
∗)

(f,KH , f(r∗), h∗)← z ; coin←$ Coins(k)

(pk′, sk′)←$ Kg(1k) ; pk ← (pk′, f,KH ,KG)

hint← (f,KG, f(r∗),K∗) ; aux ← (b, pk′, sk′)

(M0,M1, st)← A
Dec(·)
1 (pk; coin)

b←$ {0, 1} ; mb ←Mb(1
k, pk; coin)

c∗1 ← Enc(pk′, f(r∗);h∗) ; c∗2←$ EK∗(mb)

d← A
Dec(·)
2 (st, (c∗1, c

∗
2); coin)

Return (b = d)

Procedure Dec(c)

(c1, c2)← c

h← Rec(sk′, c1)

r ← Ext(KH , aux , coin, hint, h
∗, h)

K ← G(KG, r) ; m← DK(c2)

Return m

Figure 11: Adversary C in the proof of Theorem 3.1.

Adversary DEK∗ (1k)

KH ←$KH(1k) ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; (pk′, sk′)←$ Kg(1k)

pk ← (pk′, f,KH ,KG) ; sk ← (sk′, f−1,KH ,KG)

(M0,M1, st)←$A
Dec(·)
1 (pk) ; r∗←$ HDom(k)

h∗ ← H(KH , r
∗) ; c∗1 ← Enc(pk′, f(r∗);h∗)

c∗2 ← EK∗(M0,M1) ; d←$A
Dec(·)
2 (st, (c∗1, c

∗
2))

Return (b = d)

Procedure Dec(c)

(c1, c2)← c

(f(r), h)← Dec(sk′, c1)

r ← f−1(f(r))

K ← G(KG, r)

m← DK(c2)

Return m

Figure 12: Adversary D in the proof of Theorem 3.1.

4 RSA-OAEP Instantiation

In this section, we partially instantiate RSA-OAEP using extractable functions. Our result uses extractability
assumption on G while modeling H as random oracle.

Theorem 4.1 Let n, µ, ζ, ρ, η be integer parameters. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ be a hash function family
and H : {0, 1}µ+ζ → {0, 1}ρ be a RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
n = µ+ζ+ρ. Suppose G is PRG, (η, ζ)-EXT2 and ζ-NCR. Moreover, suppose F is ζ-POW. Then OAEP[G,H,F ]
is IND-CCA secure.

Proof: We prove security through a sequence of games. Consider games G1–G5 in Figure 13. Each game
maintains two independent random oracles RO and RO. Procedure RO maintains a local array H as follows:

Procedure RO(v)
If H[v] = ⊥ then H[v]←$ {0, 1}ρ
Return H[v]

For simplicity, we omit the code of RO,RO in the games. In each game, we use RO1 to denote the oracle interface
of adversary A1 and message samplers M0,M1 and we use RO2 to denote the oracle interface of adversary A2.

Game G1: Game G1 is the standard indistinguishability chosen ciphertext (IND-CCA) game. Thus, we have
that Advind-cca

OAEP,A(k) = 2 · Pr [G1 ⇒ 1 ]− 1 for any PPT adversary A.

Game G2: Game G2 is similar to game G1 except in the encryption of message mb, if either adversary A1 or
message samplerMb queried s∗ to their random oracle RO1, then it chooses a fresh random value for H[s∗].
Games G1 and G2 are identical-until-bad1 and thus from the Fundamental Lemma of Game-playing [7],

Pr [G1(k)⇒ 1 ]− Pr [G2(k)⇒ 1 ] ≤ Pr [G2(k) sets bad1 ] .

Now consider adversary D1 attacking pseudorandom generator G in Figure 14. We know that Advprg
G,D1

(k) =

2·Pr
[

PRG-DISTD1

G (k)⇒ 1
]
−1. Let PRG-REALD1

G be the game identical to game PRG-DISTD1

G condition

on b = 1 and PRG-RANDD1

G be the game identical to game PRG-DISTD1

G condition on b = 0. Then,

Advprg
G,D1

(k) = Pr
[

PRG-REALD1

G ⇒ 1
]
− Pr

[
PRG-RANDD1

G ⇒ 1
]
.
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Games G1(k), G2(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
RO1(·),Dec(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk) ; r∗←$ {0, 1}ρ

x∗ ← G(KG, r
∗) ; s∗ ← x∗⊕(0ζ ||mb)

If H[s∗] 6= ⊥ then

bad1 ← true ; H[s∗]←$ {0, 1}ρ

Else H[s∗]←$ {0, 1}ρ

z∗ ← H[s∗] ; t∗ ← z∗⊕r∗ ; c∗ ← f(s∗||t∗)
d←$A

RO2(·),Dec(·)
2 (c∗, state)

Return (b = d)

Games G3(k), G4(k), G5(k)

coin←$ Coins ; b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
RO1(·),Dec(·)
1 (1k, pk ; coin)

mb←$MRO1(·)
b (1k, pk ; coin) ; r∗←$ {0, 1}ρ

x∗ ← G(KG, r
∗) ; x∗←$ {0, 1}µ+ζ

s∗ ← x∗⊕(0ζ ||mb) ; t∗←$ {0, 1}ρ

z∗ ← t∗⊕r∗ ; H[s∗]← z∗ ; c∗ ← f(s∗||t∗)
d←$A

RO2(·),Dec(·)
2 (c∗, state; coin)

Return (b = d)

Procedure RO1(s) // of games G1, G2

Return RO(s)

Procedure RO2(s) // of games G1, G2

Return RO(s)

Procedure RO2(s) // of games G3,

G4, G5

s← s ∪ s ; z← RO(s) ∪ z

If s = s∗ then

bad2 ← true ; return RO(s)

Return RO(s)

Procedure Dec(c) // of games G3–G5

For all s ∈ s do

r ← Ext(KG, z, b, f, t
∗, coin, x∗, s|ζ)

m← G(KG, r)|µ⊕s|µ
If Enc(pk,m; r) = c then return m

Return ⊥

Procedure RO1(s) // of games G3–G5

s← s ∪ s ; z← RO(s) ∪ z

Return RO(s)

Figure 13: Games G1–G5 in the proof of Theorem 4.1.

Adversary D1(KG, x
∗)

(f, f−1)←$ Kg(1k) ; out← 0

pk ← (KG, f) ; sk ← (KG, f
−1) ; b←$ {0, 1}

(M0,M1, state)←$A
ROSim1(·),Dec(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

s∗ ← x∗⊕(0ζ‖mb)

If H[s∗] 6= ⊥ then out← 1

Return out

Procedure Dec(c)

m← Dec(sk, c)

Return m

Procedure ROSim1(s)

If H[s] = ⊥ then

H[s]←$ {0, 1}ρ

Return H[s]

Figure 14: Adversary D1 in the proof of Theorem 4.1.

Note that Pr
[

PRG-REALD1

G ⇒ 1
]

= Pr [G2(k) sets bad1 ]. Moreover, observe that in the PRG-RANDD1

G ,

the probability adversary A queries for s∗ is uniformly random. Multiplying for q random-oracle queries we
have Pr[PRG-RANDD1

G ⇒ 1] ≤ q/2µ+ζ . Thus, we have Pr [G2(k) sets bad1 ] ≤ Advprg
G,D1

(k) + q/2µ+ζ .

Game G3: Game G3 is similar to game G2 except that we made two changes. First, we reorder the code of
game G2 in producing t∗. The change is conservative and won’t effect probability of game G3 outputting
1 compare to game G2. Second, we change the decryption oracle as follows. Let s be the array of random
oracle queries made by adversary A. For each RO query s ∈ s, we run the extractor for hash function family
G on ζ-most significant bits of s to extract randomness r and then compute message m. Consider EXT2
adversary B in Figure 15. Let Ext be an extractor for adversary B. We note that adversary B gets no hints
from image oracle I. We define F to be the event where algorithm Dec fails to successfully decrypt on at
least one challenge ciphertext. Then, we have Pr [G2(k)⇒ 1 ]− Pr [G3(k)⇒ 1 ] ≤ Pr [F ].

Let ci be the i-th decryption query that adversary A makes, ri be the corresponding randomness and si be
the µ+ζ-most significant bits of f−1(ci). For all i ∈ [q] we define E1,i to be the event where si /∈ s. Moreover,
we define E2 to be the event where there exists at least one decryption query ci such that si = s∗. Observe
that since ci 6= c∗ it implies that ri 6= r∗. Therefore if E2 happens then there is the NCR adversary C that
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Adversary BO,I(KG, aux ; coin)

i← 0 ; s← ⊥ ; (z, b, f, t∗)← aux

(M0,M1, state)←$A
ROSim(·),Dec(·)
1 (1k, pk ; coin)

mb←$MROSim(·)
b (1k, pk ; coin)

x∗←$ I(1k) ; s∗ ← x∗⊕(0ζ‖mb) ; c∗ ← f(s∗‖t∗)
Run A

ROSim(·),Dec(·)
2 (c∗, state; coin)

Procedure ROSim(s)

If s = s∗ then Halt

i← i+ 1 ; s← s ∪ s

Return z[i]

Procedure Dec(c)

For all s ∈ s do

r ← O(s|ζ) ; m← G(KG, r)|µ⊕s|µ
If Enc(pk,m; r) = c then return m

Return ⊥

Figure 15: Adversary B in the proof of Theorem 4.1.

Adversary D2(KG, x
∗)

For i ∈ [q] do z[i]←$ {0, 1}ρ

(f, f−1)←$ Kg(1k) ; out← 0 ; i← 0

pk ← (KG, f) ; b←$ {0, 1} ; t∗←$ {0, 1}ρ

coin←$ Coins ; aux ← (z, b, f, t∗)

(M0,M1, state)←$A
ROSim1(·),Dec(·)
1 (1k, pk; coin)

mb←$MROSim1(·)
b (1k, pk)

s∗ ← x∗⊕(0ζ‖mb) ; c∗ ← f(s∗‖t∗)
Run A

ROSim2(·),Dec(·)
2 (c∗, state; coin)

Return out

Procedure ROSim1(s)

If H[s] = ⊥ then

i← i+ 1 ; s[i]← s ; H[s]← z[i]

Return H[s]

Procedure ROSim2(s)

If s = s∗ then

out← 1 ; Halt run of A2

If H[s] = ⊥ then

i← i+ 1 ; s[i]← s ; H[s]← z[i]

Return H[s]

Procedure Dec(c)

For all s ∈ s do

r ← Ext(KG, aux , coin, x
∗, s|ζ)

m← G(KG, r)|µ⊕s|µ
If Enc(pk,m; r) = c then return m

Return ⊥

Figure 16: Adversary D2 in the proof of Theorem 4.1.

finds collision. Thus, we have Pr [E2 ] ≤ Advn-cr
G,C (k). On the other hand, when E1,i happens algorithm

Dec outputs ⊥. Let E1 = ∪i=1E1,i. We have from [18, Theorem 3.4] that when E1 and E2 happens the
ciphertext ci is a valid ciphertext at most with probability 1/2ζ . Then we have

Pr [F ∧ E1 ] ≤ Pr [F ∧ E1 ∧ E2 ] + Pr
[
F ∧ E1 ∧ E2

]
≤ Advn-cr

G,C (k) + q/2ζ .

We now define E3 to be the event where there exists at least one decryption query ci such that si|ζ = s∗|ζ .
Observe that if E1 and E3 happens then there is the POW adversary I1 attacking the TDP. Thus, we have
Pr
[
E1 ∧ E3

]
≤ q · Advpow

F,I1(k). Note that for all decryption query ci where si ∈ s and si|ζ 6= s∗|ζ , the
extractor Ext can successfully extract ri with high probability. Then we have

Pr
[
F ∧ E1

]
≤ Pr

[
E1 ∧ E3

]
+ Pr

[
F ∧ E1 ∧ E3

]
≤ q ·Advpow

F,I1(k) + Advext2
G,B,Ext(k) .

Game G4: Game G4 is similar to game G3 except in procedure RO2, if adversary A2 make a query for s∗, then the
oracle lies, calling RO instead. Game G3 and game G4 are identical-until-bad2, and based on Fundamental
Lemma of Game-playing [7], we have Pr [G3(k)⇒ 1 ]−Pr [G4(k)⇒ 1 ] ≤ Pr [G4(k) sets bad2 ]. Consider ad-
versary D2 attacking the pseudorandom generator G in Figure 16. Let PRG-REALD2

G be the game identical

to game PRG-DISTD2

G condition on b = 1, and PRG-RANDD2

G be the game identical to game PRG-DISTD2

G

condition on b = 0. Then, Advprg
G,D2

(k) = Pr
[

PRG-REALD2

G ⇒ 1
]
− Pr

[
PRG-RANDD2

G ⇒ 1
]
. Note that

Pr
[

PRG-REALD2

G ⇒ 1
]

= Pr [G4(k) sets bad2 ].

To bound the probability of game PRG-RANDD2

G outputs 1, we construct inverter I2 attacking the family
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Inverter I2(f, c∗)

For i ∈ [q] do z[i]←$ {0, 1}ρ

b←$ {0, 1} ; i← 0 ; out← ⊥ ; j←$ [q]

KG←$KG(1k) ; pk ← (KG, f)

coin←$ Coins ; aux ← (z, b, f, c∗)

(M0,M1, state)←$A
ROSim1(·),Dec(·)
1 (1k, pk; coin)

mb←$MROSim1(·)
b (1k, pk ; coin)

Run A
ROSim2(·),Dec(·)
2 (c∗, state; coin)

Return out

Procedure ROSim1(s)

If H[s] = ⊥ then

i← i+ 1 ; s[i]← s ; H[s]← z[i]

Return H[s]

Procedure ROSim2(s)

If H[s] = ⊥ then

i← i+ 1 ; s[i]← s ; H[s]← z[i]

If i = j then

out← s|ζ ; Halt run of A2

Return H[s]

Procedure Dec(c)

For all s ∈ s do

r ← Ext(KG, aux , coin, s|ζ)
m← G(KG, r)|µ⊕s|µ
If Enc(pk,m; r) = c then return m

Return ⊥

Figure 17: Inverter I2 in the proof of Theorem 4.1.

of partial one-way trapdoor permutation F in Figure 17. We note that in the game PRG-RANDD2

G , the
challenge c∗ is independent of KG thus in the decryption oracle it is suffices to use the EXT1 extractor
where c∗ is an auxiliary information. The EXT1 adversary and extractor are similar to the one given in
game G3. Observe that if adversary A2 queries for s∗ then inverter I could partially invert challenge c∗.

Hence, Pr
[

PRG-RANDD2

G ⇒ 1
]
≤ q ·Advpow

F,I2(k). Thus,

Pr [G4(k) sets bad2 ] ≤ Advprg
G,D2

(k) + q ·Advpow
F,I2(k) .

Game G5: Game G5 is similar to game G4 except except we are using completely random x∗ in the encryption
phase instead of using the pseudorandom value G(KG, r

∗). Consider adversary D3 attacking the pseudo-
random generator G similar to D2. Then

Pr[G4(k)⇒ 1]− Pr[G5(k)⇒ 1] ≤ Advprg
G,D3

(k) .

Note that Pr[G5(k)⇒ 1] = 1/2, since the distribution of ciphertexts is completely independent of bit b. Summing
up,

Advind-cca
OAEP,A(k) ≤ 4q ·Advpow

F,I (k) + 6 ·Advprg
G,D(k) + 2 ·Advn-cr

G,C (k) + 2 ·Advext2
G,B,Ext(k) +

2q

2µ+ζ
+

2q

2ζ
.

This completes the proof.
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