
DLDDO: Deep Learning to Detect Dummy
Operations ?

JongHyeok Lee1 and Dong-Guk Han1,2

1 Department of Financial Information Security, Kookmin University, Seoul, Korea
2 Department of Information Security, Cryptography, and Mathematics, Kookmin

University, Seoul, Korea
{n seeu,christa}@kookmin.ac.kr

Abstract. Recently, research on deep learning based side-channel analy-
sis (DLSCA) has received a lot of attention. Deep learning-based profiling
methods similar to template attacks as well as non-profiling-based meth-
ods similar to differential power analysis have been proposed. DLSCA
methods have been proposed for targets to which masking schemes or
jitter-based hiding schemes are applied. However, most of them are meth-
ods for finding the secret key, except for methods for preprocessing, and
there are no studies on the target to which the dummy-based hiding
schemes or shuffling schemes are applied. In this paper, we propose a
DLSCA for detecting dummy operations. In the previous study, dummy
operations were detected using the method called BCDC, but there is
a disadvantage in that it is impossible to detect dummy operations for
commercial devices such as an IC card. We consider the detection of
dummy operations as a multi-label classification problem and propose a
deep learning method based on CNN to solve it. As a result, it is possible
to successfully perform detection of dummy operations on an IC card,
which was not possible in the previous study.

Keywords: Hiding Countermeasure · Deep Learning · Multi-label clas-
sification · IC Card · Dummy Operation

1 Introduction

Electronic devices such as smart watches, air conditioners, and refrigerators used
to perform simple manipulations have recently begun to deal with personal data
by providing a variety of features, such as being able to make phone calls by
starting to be interconnected. Accordingly, the security of these devices must
be carefully considered. Side-Channel Analysis (SCA) is the most representative
of potential attacks, and it recovers secret information using physical properties
such as power consumption [7] or electromagnetic emissions [1].

? This work was supported as part of Military Crypto Research Center(UD170109ED)
funded by Defense Acquisition Program Administration(DAPA) and Agency for De-
fense Development(ADD).

2 JongHyeok Lee and Dong-Guk Han

Deep learning, which was not under consideration at the beginning of the
proposal, has seen rapid progress in recent years due to the advent of big data
and the gradual enhancement of computing power over the past decade. Re-
cently, deep learning has been used in various fields such as image recognition,
speech recognition, and natural language processing. In side-channel analysis,
deep learning will also come to play an important role. Beginning with the
case of leakage characterization using multi-layer perceptron (MLP) [19], deep
learning-based SCA (DLSCA) was conducted using convolutional neural net-
work (CNN), autoencoder, long short-term memory (LSTM), etc. [14]. Analysis
was also performed in the case of using a masking scheme and jitter-based hid-
ing schemes [11]. In addition, a DLSCA method based on non-profiling has been
proposed recently [18].

Of the various DLSCA methods that have been studied, the majority have
been for the purpose of revealing a secret key. In the end, they mention that
they succeeded in analyzing only those targets to which the jitter-based hiding
schemes, which have relatively weak strength, were applied. To the best of our
knowledge, we haven’t seen cases of successful secret key recovery with DLSCA
for targets with dummy-based hiding schemes or shuffling scheme. Designers
intend to increase attack complexity by simultaneously using the shuffling scheme
and the random insertion of dummy operation schemes. For example, if the
designer adds up to d dummy operations to n sbox operations and apply the
shuffling scheme, α × (n+ d)

2
traces are needed to recover a one-byte of secret

key. Here, α is the number of traces needed to recover the one-byte secret key
when hiding schemes are not applied. However, if the dummy operations are
filtered out, the number of required traces is reduced to α×n2. When n = d = 16,
the reduction rate is 75%, which is very dangerous. Therefore, even if the secret
key cannot be recovered from a target to which the shuffling scheme or dummy-
based hiding schemes are applied, there is a need for research on a method of
neutralizing them.

Our Contributions. In the previous work [10], they proposed a technique to
detect dummy operations using the method BCDC (Bounded Collision Detection
Criterion) [4]. However, in order to calculate BCDC values, it is necessary to
specify a suitable reference area, which is very empirical. So we were wondering
if there is a way to automatically distinguish dummy operations. Research has
already been conducted using CNN to detect fake face images, fake news, and
fake data transmission [15, 20, 16]. Inspired by these existing studies, we thought
that CNN could be used to detect dummy operations in side-channel traces.
In this paper, we propose a method of detecting dummy operations using deep
learning. The proposed method can detect dummy operations very well even
though it takes different devices for training and testing. In addition, this method
can detect dummy operations even for commercial devices such as an IC card,
which the previous method could not.

DLDDO: Deep Learning to Detect Dummy Operations 3

Outline. The rest of this paper is structured as follows. In Section 2, Deep
Learning and Deep Learning-based Side-Channel attacks are introduced. It also
discusses hiding schemes, one of the countermeasures against side-channel at-
tacks. Section3 covers the previous work and the proposed methodology to detect
dummy operations. We describe experiment results performed on an IC card in
Section 4 along with the experiment setup. Finally, in Section 5, we conclude
this paper and comment on future research.

2 Preliminaries

2.1 Deep Learning

Deep learning is a type of machine learning and makes computational models
consisting of multiple processing layers to learn representations of data with
multi-level abstraction [8]. Recent works have shown that deep learning success-
fully applied to many fields such as image recognition, speech recognition, and
natural language processing. In this chapter, we describe deep learning by taking
deep learning for data classification as an example. A neural network for data
classification is a function Net : RD → R|Z|. Net is trained to classify some data
x ∈ RD into their labels z (x) ∈ Z, where D is the dimension of the data and Z
is the set of labels.

Multilayer Perceptron A multilayer perceptron (MLP) is a kind of neural
network composed of several perceptron layers [2]. A perceptron P : RD → R
takes x ∈ RD as input and calculates the output as follows:

P (x) = A

(
b+

D∑
i=1

wixi

)

x1

x2

...

xD

y
(1)
1

y
(1)
2

...

y
(1)

m(1)

. . .

y
(L)
1

y
(L)
2

...

y
(L)

m(L)

z1

z2

...

z|Z|

input layer
1st hidden layer Lth hidden layer

output layer

Fig. 1. Multilayer perceptron of a (L+ 1)-layer perceptron with D input units and |Z|
output units. The lth hidden layer contains m(l) hidden units.

4 JongHyeok Lee and Dong-Guk Han

where A is an activation function, wi are weights, and b is the bias. The acti-
vation function serves to determine which neurons are triggered in each layer,
and sigmoid function, Rectified Linear function (relu), or Hyperbolic Tangent
function (tanh) are typically used.

A MLP is a neural network which is a combination of many perceptron units
organized in layers as shown in Figure 1. A MLP consists of an input layer,
intermediate layers called hidden layers and an output layer. The weights and
biases of the MLP are adjusted as learning progresses.

Convolutional Neural Network Convolutional Neural Networks (CNN) is
a type of neural network composed of a mixture of Convolutional layers and
Pooling layers [9].

input layer

Conv Pool Conv Pool Flatten Fully-
connected

output layer

Fig. 2. Convolutional neural networks architecture.

The general structure of CNN is shown in Figure 2. The CNN architecture is
composed of a mixture of convolutional layers and pooling layers, and then fully-
connected layers are attached. The convolutional layer slides a set of filters to
apply a convolution operation to the input. The pooling layers is a nonlinear layer
that slides a window over the input and outputs a local summary, such as the
average or maximum of the input. Due to the use of shared weights and pooling
operations applied to the space during convolution, the CNN architecture has a
natural translation-invariance property.

2.2 Profiled Deep Learning Side-Channel Attacks

In 2011, Yang et al. first used an MLP to characterize the leakage model [19].
Beginning with the proposition of a secret key recovery method using a neural
network by Martinasek et al. [14], research using machine learning for side-
channel analysis has exploded. In earlier works, various pre-processing methods
such as PCA, average trace reduction, and wavelet transformation were used
[13, 5, 17]. After that, Maghrebi et al. used a random forest, autoencoder, long
short-term memory (LSTM), MLP, and CNN to reveal the secret key of the
unprotected or first-order masked AES [11].

While an MLP pays attention to numerical values in traces, a CNN focuses
on the shape of traces. Therefore, it is mainly used for image recognition that

DLDDO: Deep Learning to Detect Dummy Operations 5

must be resistant to distortion. Cagli et al. first used a CNN to defeat jitter-
based hiding countermeasure [3]. However, as far as we know, no results have
been applied to hiding schemes using dummy operations.

2.3 Hiding Schemes

Traditional side-channel analysis methods such as differential power analysis or
template attacks are applied to aligned side-channel traces. Attackers must pro-
cess side-channel traces using pre-processing methods such as domain transfor-
mation to improve performance when the traces are not aligned. Hiding schemes
are used to artificially disrupt the alignment. Eventually, designers can break the
association between intermediate values and side-channel traces. Time-domain
de-synchronization and changing the vertical values are typical features of a hid-
ing scheme. When the time-domain de-synchronization is applied, it is difficult
for an attacker to identify when the target operations are performed.

Random insertion of dummy operations scheme is the first approach of the
time-domain de-synchronization. This approach randomly inserts dummy oper-
ations, which are meaningless operations that are not related to encryption and
decryption, into the middle of real operations. The second method is a shuffling
scheme that randomly reorganizes the order of operations. These two methods
make an attacker hard to detect when real operations are being performed.

3 Detection of Dummy Operations

In this section, we describe the previously proposed dummy operation detection
method [10] and the method we propose. Since our method is based on profiling-
based DLSCA, it explains how to make labels corresponding to profiling traces
and the model configuration used.

3.1 Detection of Dummy Operations using BCDC

In a previous study [10], they used the BCDC value [4] as a reference to detect
dummy operations. The BCDC is a measure of similarity between two groups
and is defined as follows:

BCDC (T1, T2) =
1√
2
×
σ(T1−T2)

σ(T1)

where T1 and T2 denote the reference area and the target area, respectively. σ(T1)

is the standard deviation of T1. If a BCDC value close to zero is calculated, it
means that the two groups are similar.

An attacker sets a part of the section as the reference area T1 to determine
whether it is a dummy operation or a real operation. It does not matter if it
is actually a dummy or real operation. Then, the BCDC value is calculated by
shifting the target area T2 of the same length as T1 by one point from the start
of the trace. The attacker sequentially acquires the desired number of sections

6 JongHyeok Lee and Dong-Guk Han

having the lowest value from the calculated BCDC values. The acquired sections
may be real operations or dummy operations. If these are dummy operations,
the attacker can take the sections that have not been acquired.

3.2 DLDDO

Label. For supervised learning, corresponding labels of an input trace are
needed. Models for revealing a secret key used labels as expected values such
as outputs of Sbox or its Hamming Weight values. However, the purpose of our
model is to determine if this is a real operation or a dummy operation. More-
over, there is not only one operation to judge. Therefore, we use a multi-label
classification problem. For example, if the following index of the real operations
were performed:

[2, 3, 5, 6, 8, 10, 14, 16, 17, 18, 19, 24, 26, 27, 30, 31] ,

we can construct the following 32 labels:

[0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0] .

Here, 0 means the dummy operation and 1 means the real operation.

Algorithm 1 Generate labels for dummy operation detection

Input: Index of real operations I = [i0, i1, . . . , i15] where ij ∈ {0, 1, . . . , 31}
Output: Label L = [l0, l1, . . . , l31] where lj ∈ {0, 1}
1: Initialize L to zero array . size of L = 31
2: for j ← 0 to 16 do
3: L [I [j]] = 1
4: return L

Algorithm 1 describes how to generate labels for dummy operation detection.
For each profiling trace, an attacker can generate corresponding labels using
Algorithm 1. Although we are going to experiment with the number of dummy
operations inserted set at 16 in Section 4, even if the number of inserted dummy
operations is variable, Algorithm 1 can be used through modification such as
setting the value of trailing labels, which are equal to the number of dummy
operations not inserted, to 0. If the number of dummy operations inserted is less
than the maximum value, we can determine whether the real Sbox operation
is performed on side-channel traces corresponding to ShiftRows or MixColumns
functions. Therefore, it makes sense to set the label value corresponding to the
ShiftRows and MixColumns part of the side-channel trace to 0 because the
ShiftRows and MixColumns part of the side-channel trace is not a real Sbox
operation, just like a dummy operation from the attacker’s perspective.

DLDDO: Deep Learning to Detect Dummy Operations 7

InputLayer
input: (None, 5000)

output: (None, 5000)
MaxPooling1D

input: (None, 2496, 32)

output: (None, 1248, 32)

Reshape
input: (None, 5000)

output: (None, 5000, 1)
Dropout

input: (None, 1248, 32)

output: (None, 1248, 32)

Conv1D
input: (None, 5000, 1)

output: (None, 4998, 16)
Conv1D

input: (None, 1248, 32)

output: (None, 1246, 64)

BatchNormalization
input: (None, 4998, 16)

output: (None, 4998, 16)
BatchNormalization

input: (None, 1246, 64)

output: (None, 1246, 64)

MaxPooling1D
input: (None, 4998, 16)

output: (None, 2499, 16)
Conv1D

input: (None, 1246, 64)

output: (None, 1244, 64)

Dropout
input: (None, 2499, 16)

output: (None, 2499, 16)
BatchNormalization

input: (None, 1244, 64)

output: (None, 1244, 64)

Conv1D
input: (None, 2499, 16)

output: (None, 2497, 32)
MaxPooling1D

input: (None, 1244, 64)

output: (None, 622, 64)

BatchNormalization
input: (None, 2497, 32)

output: (None, 2497, 32)
Flatten

input: (None, 622, 64)

output: (None, 39808)

Conv1D
input: (None, 2497, 32)

output: (None, 2496, 32)
Dense

input: (None, 39808)

output: (None, 32)

BatchNormalization
input: (None, 2496, 32)

output: (None, 2496, 32)

Fig. 3. CNN model for dummy operation detection

Deep Learning Model. We use a CNN model for dummy operation detection
due to the possibility of side-channel traces being shaken. Figure 3 shows the
full construction process for our model. All convolutional layers use small sized
kernels like 2 or 3 with a stride size 1 and ”valid” padding. In order to minimize
the number of trainable parameters, this model has been constructed by using a
lot of convolutional layers and one dense layer. As the activation function, relu
and sigmoid functions are used for convolutional layers and the dense layer, re-
spectively. The sigmoid function is used for binary classification and the softmax
function is used for multiple classification. In the multi-label classification used
in this model, since each label is used for binary classification, the activation
function of the output layer is used as the sigmoid function. The dropout ratio

8 JongHyeok Lee and Dong-Guk Han

is 0.25, and He initializer is used as a kernel initializer in the dense layer. This
model has 32 output nodes. To solve the multi-label classification problem, each
node puts out the probability that the corresponding Sbox operation is a real
operation. The optimizer used is Adam [6], the learning rate is 1e-3, and the
decay rate is 1e-4. Binary cross-entropy is used as the loss function. Note that
our model is not the optimal model for obtaining the highest test accuracy.

Using the label creation method and the deep learning model described
above, an attacker can obtain the indexes on which the real operations were
performed.

4 Experiments

Algorithm 2 Pseudo code for the AES algorithm’s SubBytes function with
dummy operations and shuffling scheme

Input: RL IN[16], DM IN[16], ORD[32]
Output: RL OUT[16], DM OUT[16]
1: for i← 0 to 31 do
2: switch (ORD[i])
3: case 0:
4: RL OUT[0] ← Sbox[RL IN[0]] . Real operation
5: break
6: case 1:
7: RL OUT[1] ← Sbox[RL IN[1]] . Real operation
8: break

...
9: case 16:

10: DM OUT[0] ← Sbox[DM IN[0]] . Dummy operation
11: break
12: case 17:
13: DM OUT[1] ← Sbox[DM IN[1]] . Dummy operation
14: break

...
15: end switch

In the previous work [10], we classified the implementation method of the hid-
ing scheme using one of four types of dummy operations according to the type
of variables used in the dummy operations. We named them local variable,
global variable, separate function argument, and combined function a-

rgument. We took the target algorithm using the switch-case statement as Al-
gorithm 2. The above four variable types were applied to DM IN and DM OUT.
In addition, the countermeasure was also presented in the previous paper. This
countermeasure is configured to select the variable index of the Sbox operation

DLDDO: Deep Learning to Detect Dummy Operations 9

Algorithm 3 Pseudo code for the countermeasure [10]

Input: IN[32], ORD[32]
Output: OUT[32]
1: for i← 0 to 31 do
2: OUT[ORD[i]] = Sbox[IN[ORD[i]]]

by referring to the ORD variable in which the shuffled operation order is stored
instead of using the switch-case statement as in Algorithm 3.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
18

19

20

21

Point

P
ow

er
co

n
su

m
p
ti

o
n

A
d
d
R
o
u
n
d
K
ey

S
u
b
B
y
te
s

S
h
if
tR

o
w
s

M
ix
C
o
lu
m
n
s

Fig. 4. A power consumption trace of an IC card

The model number of our target IC card is S3FJ9SK which is made by
Samsung. The number of dummy operations used is fixed at 16, and four imple-
mentation methods are pushed on the smart card. The power consumption trace
of the implementation using local variable is shown in Figure 4. The power
consumption traces for the other three implementations are similar to Figure 4.
After measuring the trace with 500M sampling, the trace was compressed us-
ing 50 units of Raw Integration method [12]. We used two IC cards of the same
model to apply to DLDDO, our proposed method. For training the deep learning
model, 10,000 traces were collected from the profile card and 1,000 traces were
collected from the other card for testing.

4.1 Using BCDC

We attempted to detect dummy operations by setting a portion of the first Sbox
operation area as reference area T1 in the trace in Figure 4. No matter how
much the reference area was changed, dummy operations could not be detected
with a high success rate. Figure 5 shows the result of one of the attempts to

10 JongHyeok Lee and Dong-Guk Han

1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,400
16

18

20

DR R R DDDD R RR D R R R DDDDD R DRDD R D R R D RR

Point

P
ow

er
co

n
su

m
p
ti

o
n

0

1

2

B
C

D
C

va
lu

e

Fig. 5. The power consumption trace of SubBytes function (above) and its BCDC
values (below).

10 20 30 40 50 60 70

0

0.5

1

Point

B
C

D
C

va
lu

e

Dummy

Real

Fig. 6. Blue lines are BCDC traces of real operations and red dashed lines are BCDC
traces of dummy operations.

distinguish dummy operations using BCDC. The above graph is the power con-
sumption trace of the SubBytes function and the graph below is the calculated
BCDC trace. For each of the 32 areas, each one is represented by R in case of
real operations and D in case of dummy operations. We set the reference area
for calculating BCDC values as part of the first dummy operation and compute
the BCDC trace. We splitted the BCDC trace into each operation, then ove-
lapped the pieces of operation as shown in Figure 6. However, we cannot set
any threshold to distinguish the dummy operations from the real operations. At
best, the success rate was only about 50%. The problem of determining whether
each Sbox is a real operation or a dummy operation is the same as the problem
of choosing the front or back of a coin. Therefore, if the method is not capable
of distinguishing dummy operations, the accuracy should be about 50%.

DLDDO: Deep Learning to Detect Dummy Operations 11

4.2 Using DLDDO

We used a profiling card to train the neural network and a test card to check
if we could extract dummy operations from other cards with the trained neural
network. Both cards use the same model IC chip. 10,000 power consumption
traces were collected from the profiling card, of which 9,000 were used for the
training phase and 1,000 were used for the validation phase.

1,000 power consumption traces were collected from the test card. Through
the trained neural network, the probabilities that each of the 32 Sbox operations
were real operations were calculated. The 16 indexes having the highest proba-
bility are judged to be the indexes on which the real operation was performed.
For example, the output values of the trained neural network are

[0.87, 0.53, 0.96, 0.97, 0.02, 0.89, 0.99, 0.32,

0.96, 0.20, 0.88, 0.02, 0.35, 0.52, 0.90, 0.19,

0.99, 0.99, 0.99, 0.91, 0.50, 0.50, 0.29, 0.01,

0.96, 0.09, 0.92, 0.94, 0.62, 0.29, 0.99, 0.95]

,

we judge indexes of real operations are

[2, 3, 5, 6, 8, 10, 14, 16, 17, 18, 19, 24, 26, 27, 30, 31] .

Table 1. Test accuracies according to variable types

Variable types Test accuracy

Local variables 95.4125%

Global variables 82.4375%

Separate function arguments 96.1875%

Combined function arguments 74.4375%

Countermeasure 50.0906%

As a result of estimating the real operation indexes of the test traces with
the trained neural networks, the accuracies are shown in Table 1. Using the
DLDDO method, we were able to detect dummy operations when targeting
dummy operations of power consumption traces collected from the IC card for all
four types of variables used for the dummy operations. It has been confirmed that
the dummy operations cannot be detected when the countermeasure proposed
in the previous paper is still applied.

For the BCDC value to convert to 0, the standard deviation of the point-
wise subtraction of the two areas must converge to 0. This means that the
two areas are well aligned and there is little variation due to noise. Therefore,
in the previous work [10], they succeeded in distinguishing dummy operations
using BCDC for the ChipWhisperer-Lite board which has low noise and good
alignment. However, the target white card in this paper is noisier and misaligned

12 JongHyeok Lee and Dong-Guk Han

than the ChipWhisperer-Lite board, and the time during which each operation
is performed can vary. It is obvious that it is impossible to distinguish dummy
operations of the white card using BCDC for these reasons. On the other hand,
our proposed DLDDO uses a convolutional network used in image recognition,
making it resistant to alignment and noise issues. The reason DLDDO can do
what BCDC cannot do is the same reason CNN does image recognition better
than MLP.

5 Conclusion

In this paper, we propose the deep learning method DLDDO for detecting
dummy operations. The previous work, which used BCDC to detect dummy op-
erations, has the disadvantage that empirical reference area setting is required.
Also, detection of dummy operations was possible only when the noise was rela-
tively small on the side-channel traces. We solved these drawbacks by applying
the CNN model and the multi-label classification problem. In addition, it was
possible to detect dummy operations even in a situation where a profile device
and a test device were used differently.

DLDDO is a supervised learning method for solving multi-label classifica-
tion problems. As a recent successful case of image classification problem solving
through unsupervised learning was proposed, it seems to be applicable to dummy
operation detection. We targeted a cryptographic algorithm that was applied by
combining a random dummy operation insertion scheme and a shuffling scheme.
On this target, we have succeeded in detecting dummy operations, but the shuf-
fling scheme has not been neutralized. There is also a need for research on how
to neutralize the shuffling technique using various deep learning algorithms.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The em side—channel (s).
In: International workshop on cryptographic hardware and embedded systems. pp.
29–45. Springer (2002)

2. Bishop, C.M., et al.: Neural networks for pattern recognition. Oxford university
press (1995)

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: International Conference on
Cryptographic Hardware and Embedded Systems. pp. 45–68. Springer (2017)

4. Diop, I., Liardet, P.Y., Linge, Y., Maurine, P.: Collision based attacks in prac-
tice. In: 2015 Euromicro Conference on Digital System Design. pp. 367–374. IEEE
(2015)

5. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of aes. In: 2015 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST). pp. 106–111. IEEE (2015)

6. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

DLDDO: Deep Learning to Detect Dummy Operations 13

7. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual International
Cryptology Conference. pp. 388–397. Springer (1999)

8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

9. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks 3361(10), 1995 (1995)

10. Lee, J., Han, D.G.: Security analysis on dummy based side-channel countermea-
sures—case study: Aes with dummy and shuffling. Applied Soft Computing 93,
106352 (2020). https://doi.org/doi.org/10.1016/j.asoc.2020.106352

11. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering. pp. 3–26. Springer (2016)

12. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: Revealing the secrets
of smart cards, vol. 31. Springer Science & Business Media (2008)

13. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neu-
ral network. In: International Conference on Smart Card Research and Advanced
Applications. pp. 94–107. Springer (2013)

14. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengi-
neering 22(2), 586–594 (2013)

15. Mo, H., Chen, B., Luo, W.: Fake faces identification via convolutional neural net-
work. In: Proceedings of the 6th ACM Workshop on Information Hiding and Mul-
timedia Security. pp. 43–47 (2018)

16. Pan, J., Liu, Y., Zhang, W.: Detection of dummy trajectories using convolutional
neural networks. Security and Communication Networks 2019 (2019)

17. Saravanan, P., Kalpana, P., Preethisri, V., Sneha, V.: Power analysis attack using
neural networks with wavelet transform as pre-processor. In: 18th International
Symposium on VLSI Design and Test. pp. 1–6. IEEE (2014)

18. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems
pp. 107–131 (2019)

19. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based
leakage characterization for practical security analysis of cryptographic implemen-
tations. In: International Conference on Information Security and Cryptology. pp.
169–185. Springer (2011)

20. Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., Yu, P.S.: Ti-cnn: Convolutional
neural networks for fake news detection. arXiv preprint arXiv:1806.00749 (2018)

