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Abstract. Grover’s search algorithm allows a quantum adversary to
find a k-bit secret key of a block cipher by making O(2k/2) block cipher
queries. Resistance of a block cipher to such an attack is evaluated by
quantum resources required to implement Grover’s oracle for the target
cipher. The quantum resources are typically estimated by the T -depth
of its circuit implementation and the number of qubits used by the cir-
cuit (width).
Since the AES S-box is the only component which requires T -gates in
a quantum implementation of AES, recent research has put its focus
on efficient implementation of the AES S-box. However, any efficient
implementation with low T -depth will not be practical in the real world
without considering qubit consumption of the implementation.
In this work, we propose four methods of trade-off between time and
space for the quantum implementation of the AES S-box. In particular,
one of our methods turns out to use the smallest number of qubits among
the existing methods, significantly reducing its T -depth.

Keywords: Quantum implementation, quantum cryptanalysis, Grover’s algo-
rithm, AES, multiplicative inversion.

1 Introduction

Most cryptographic primitives are under new threats with the advent of quan-
tum computers. Public key cryptosystems such as RSA, ECDSA, and ECDH will
be completely broken by Shor’s algorithm [16], a quantum algorithm that solves
the order finding problem in polynomial time. When it comes to symmetric key
cryptography, exhaustive key search using Grover’s algorithm [8] is becoming
a new threat. For example, Grover’s search algorithm allows a quantum adver-
sary to find a k-bit secret key of a block cipher by making O(2k/2) block cipher
queries. Resistance of a block cipher to such an attack is evaluated by quan-
tum resources required to implement Grover’s oracle for the target cipher. The
quantum resources are typically estimated by the circuit depth of the circuit
implementation and the number of qubits used by the circuit (width) [7, 10, 13].
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Quantum circuits involve error-prone qubits, and fault-tolerant quantum
computation (FTQC) is made possible by using error correcting codes, where
the surface code is one of the most feasible candidates for this purpose. Since
T -gates are exceptionally expensive in the implementation of the surface code,
T-depth, counting the number of sequential T -gates, dominates the overall effi-
ciency of the quantum circuit in terms of the processing time [2]. For this reason,
T -depth is widely used as a metric to estimate the time complexity of a quantum
circuit.

The only component of AES that requires T -gates for its quantum implemen-
tation is the multiplicative inversion used in the AES S-box. Therefore, recent
research [7, 10, 12, 13] has put its main focus on lightweight implementation
of the multiplicative inversion, using tower field constructions of the underly-
ing finite field GF(28). However, any efficient implementation with low T -depth
will not be practical in the real world without considering its qubit consumption
since qubits are arguably considered as the most valuable resources in quantum
computation.

A classical implementation of the AES S-box based on a tower-field construc-
tion of GF(28) consists of XOR and AND gates. An XOR gate in a classical
circuit can be converted to a CNOT gate in the corresponding quantum cir-
cuit, while an AND gate is converted to a Toffoli gate or a quantum AND gate.
Since both gates are built on T -gates, the T -depth of the quantum circuit is
determined by the AND-depth of the classical circuit.

1.1 Our Contribution

In this work, we propose four methods of trade-off between T -depth (time) and
width (space) for the quantum implementation of the AES S-box. In particu-
lar, one of our methods turns out to use the smallest number of qubits among
the existing methods, significantly reducing its T -depth. Precisely, it uses 32
qubits in a quantum circuit of T -depth 36. We note that the implementation by
Langenberg et al. [13] uses the same number of qubits, while its T -depth is 120.

Two of our methods, balancing depth and width in their quantum imple-
mentation, improve on the “balanced” method proposed by Jaques et al. [10] in
terms of both depth and width.

The key idea behind our methods is to adopt efficient tower-field construc-
tions studied in [11] to reduce the AND-depth of multiplicative inversion over
GF(28) from 6 (as proposed by Boyar et al. [3]) to 4 in a classical implemen-
tation. In order to further optimize the T -depth of the corresponding quantum
implementation, we decomposed the 8-bit inversion into three 4-bit multipli-
cations, one 4-bit inversion and other minor operations; we applied a different
quantum implementation to each subfield operation, carefully recycling ancilla
qubits, and hence reducing the overall depth-width of the resulting circuit. The
cost of our methods is summarized in Table 1.
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method type width T -depth # CNOT # 1qCliff # T # M

Grassl et al. [7] 44 217 8683 1028 3584 0
Langenberg et al. [13] 32 120 314 4 385 0

Jaques et al. [10] balanced 41 35 818 264 164 41
minimum depth 137 6 654 184 136 34

this work

minimum width 32 36 974 366 268 40
balanced 1 34 31 1016 408 232 46
balanced 2 36 30 1001 390 241 43

minimum depth 54 20 1032 408 232 46
Table 1: Comparison of our methods with the existing ones.

1.2 Related Work

Quantum implementation of AES was first proposed by Grassl et al. [7]. They
showed that every AES operation except S-box can be implemented by using
Clifford gates only, and then evaluated the T -depth of the multiplicative in-
version in the AES S-box. Later, Kim et al. improved on Grassl et al’s work
by reducing the T -depth of the multiplicative inversion [12]. Based on classi-
cal implementations of AES with low depths of AND gates as studied in [3, 4],
Langenberg et al. significantly reduced T -depth in its corresponding quantum
implementation [13].

An AND gate is converted into a Toffoli gate in its quantum implementation.
So far, the most shallow implementation of a Toffoli gate was known to have T -
depth 3 [1]. In [10], they proposed to convert an AND gate into a quantum AND
gate; a Toffoli gate is of T -depth 3, while a quantum AND gate is of T -depth
1 [6, 10]. By taking advantage of this property, Jaques et al. further improved
on Langenberg et al.’s implementation in terms of T -depth. Specifically, they
proposed two quantum circuits with different cost advantages. The first one,
based on [3], reduces T -depth balancing time and space, while the other, based
on [4], minimizes the depth of the circuit without considering space limit.

2 Preliminaries

2.1 S-box of AES

The AES S-box is a 8-bit permutation used in the nonlinear confusion layer of
AES, where the set of 8-bit strings is identified with a finite field GF(28) =
GF(2)[x]/(x8 +x4 +x3 +x+ 1). This permutation can also be represented by a
polynomial over GF(2); the input to this S-box is mapped to its multiplicative
inverse in GF(28) (with zero mapped to itself by definition), followed by an
affine transformation. Precisely, the S-box can be defined in the matrix form as
follow:
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

s0
s1
s2
s3
s4
s5
s6
s7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b0
b1
b2
b3
b4
b5
b6
b7


+



1
1
0
0
0
1
1
0


where

[
s7, ..., s0

]
is the output of S-box and

[
b7, ..., b0

]
is the multiplicative in-

version of the input of S-Box as a vector.
In classical computing environment, an 8-bit to 8-bit lookup table is generally

used for S-box in most of software implementation of AES. However, in quantum
computing environment, it is efficient to perform the multiplicative inversion
and the affine transformation due to the limited number of qubits. The affine
transformation which follows the multiplicative inversion can be computed in-
place with only X - and CNOT gates. So, it does not consume additional T -depth
and qubits.

For this reason, the main issue in implementing AES S-box quantum circuit
is how to implement multiplicative inversion efficiently. The following explains a
technique of tower-field construction to perform this operation efficiently.

2.2 Tower-field construction

A tower of fields is an extension sequence of some fields, F. The tower-field
construction for the implementation of the AES S-box is representing the oper-
ations over F22k with operations over F2k recursively. The computational cost
of AES operations that are performed on GF(28) can be reduced by using iso-
morphic composite fields which generated by the tower-field construction. When
using subfield arithmetic, it is costly to convert the original into the isomorphic
composite field and vice-versa. Such conversion and re-conversion can be imple-
mented with only CNOT gates in quantum circuits by using PLU decomposition.
One of the known tower-field representations is as follows [3]:

GF(22) by adjoining a root W of x2 + x+ 1 over GF(2)
GF(24) by adjoining a root Z of x2 + x+W 2 over GF(22)
GF(28) by adjoining a root Y of x2 + x+WZ over GF(24).

In this paper, we will present our representation of tower-field construction
that is improved for lightweight quantum circuits of the multiplicative inversion
in AES S-box. This tower-field construction reduces AND-depth, imposing a
dominant effect on the execution time of a quantum circuit.
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2.3 Grover’s algorithm

For a Boolean function f : {0, 1}k 7−→ {0, 1}, Grover’s algorithm takes a Grover’s
Oracle, Uf , that implements |x〉|y〉 → |x〉|y ⊕ f(x)〉, where x ∈ {0, 1}k and
y ∈ {0, 1}. Basically, Grover’s algorithm finds an element x0 such that f(x0) =
1 by repeatedly applying a Grover iteration defined below to the initial state
|ψ〉 = H⊗k|0〉.

Q = −H⊗k(I − 2|0〉〈0|)H⊗kUf

After applying bπ4
√

K
N c iterations on the initial state, a solution x0 will be found

with at least 1 − (N/K) probability by measuring the entire quantum register,
where K is the total number of candidates (K = 2k), and N is the number of
solutions (N = |{x : f(x) = 1}|).

In [5], the authors analyzed that rk = dk/128e known plaintext-ciphertext
pairs are sufficient to avoid false positives in an exhaustive key search for AES-k,
where k ∈ {128, 192, 256}. In order to build Uf , each plaintext-ciphertext pair
requires AES and its inverse. This gives us that the number of AES instances
should be twice as many as the number of plaintext-ciphertext pairs. For each
key size k, the number of Grover’s operations is then given by
– 2 AES instances for k = 128
– 4 AES instances for k = 192
– 4 AES instances for k = 256.

2.4 Quantum AND gate

In [10], the authors used a T -depth 1 circuit for an AND gate which is a com-
bination of Selinger [15], and Gidney [6], and that was designed by Mathias
Soeken.

This gate requires one more ancilla qubit, instead of reducing T -depth
compared to Toffoli gate. It has an assymetric relationship with its dagger gate.
Its dagger gate requires only 3 qubits same as Toffoli gate, but does not include
any T -depth.

The diagrams for the quantum AND gate and AND† gate are depicted in
Fig.1 and Fig.2.

•
•

=

|a〉 • T † • |a〉

|b〉 • T † • |b〉

|0〉 H • • T • • H S |a · b〉

|0〉 T |0〉

Fig. 1: Quantum AND gate.
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•
•

=

|a〉 S • • |a〉

|b〉 S S† |b〉

|a · b〉 H X |0〉

Fig. 2: Quantum AND† gate.

3 Improvement on tower-field construction

In this section, we improve the tower-field construction by using the following
representations of Galois fields:

GF(28) : x8 + x4 + x3 + x+ 1
GF(24) : x4 + x+ 1
GF(22) : x2 + x+ 1,

and we suggest the following composite fields GF((24)2) and GF((22)2):{
GF((24)2) : y2 + y + λ

GF((22)2) : z2 + z + φ,

where

– λ := ω11 = ω3 + ω2 + ω = {1110}2
– ω is a root of x4 + x+ 1
– φ = {10}2
– φ is a root of x2 + x+ 1.

3.1 Isomorphic mapping quantum circuit

The GF(28) of AES and other representations of GF(28) are isomorphic. The
matrix of mapping between GF(28) of AES and our representation of GF(28) =
GF((24)2), and its inverse mapping are defined as M and M−1:

M =



1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 1 1 1 0 0 0 1


, and M−1 =



1 0 1 1 0 1 0 0
1 0 0 1 1 1 1 0
0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 0
0 1 1 1 0 0 1 0
1 0 1 1 0 0 1 0
1 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1


.
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Next, the matrix of mapping between the proposed GF(24) and GF((22)2) rep-
resentations, and its inverse mapping are given by

M4 =


1 0 0 0
1 1 1 0
1 1 0 0
0 0 0 1

 , and M−1
4 =


1 0 0 0
1 0 1 0
0 1 1 0
0 0 0 1

 .
The matrix α of the isomorphic mapping from the input qubits for AES GF(28)
to our composite field is then obtained by the multiplication of the matrices
above:

α =
[
M4 0
0 M4

]
◦M =



1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
1 0 0 1 0 0 0 0
1 0 0 1 0 1 1 0
0 1 1 1 0 0 0 1


.

Here, α can be implemented with only CNOT gates in a quantum circuit by
using PLU decomposition. For example, α := P · L · U , where

P :=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


, L :=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
1 0 1 0 0 1 0 0
0 0 0 0 1 0 1 0
0 1 0 0 1 0 0 1


, U :=



1 0 1 0 0 0 0 0
0 1 1 1 1 1 1 0
0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

Based on the PLU decomposition above, the quantum circuit of the isomorphic
mapping, α := (a7, a6, a5, a4, a3, a2, a1, a0) 7→ ((bhh1, bhh0, bhl1, bhl0), (blh1, blh0, bll1, bll0))
is depicted as Fig. 3.

3.2 Inversion method with our composite field

The multiplicative inversion for composite fields GF((2n)m) can be computed
as a combination of operations in the sub-fields GF(2n) [14].

For P ∈ GF((2n)m) and r = 2nm−1
2n−1 , P−1 = (P r)−1P r−1 where P r ∈

GF(2n) [9]. Throughout this paper, the multiplicative inversion, P−1, is repre-
sented as P−1 = (P 17)−1 ·P 16 for n = 4 and m = 2. Then P−1 can be calculated
by the following four steps:



8

|a7〉 • • • |bhh1〉
|a6〉 • • |bhh0〉
|a5〉 • • • |bll1〉
|a4〉 • • |blh1〉
|a3〉 • • • |bhl0〉
|a2〉 • • • |bhl1〉
|a1〉 • • • |blh0〉
|a0〉 |bll0〉

Fig. 3: Quantum circuit of the isomorphic mapping α.

1. P r−1 = P 16

2. P r = (P 16) · P
3. Compute (P r)−1 in GF(24)
4. Compute (P r)−1 · P r−1 using GF((22)2) arithmetic

Step 1. First, we need to compute P 16.

For P = ((bhh1, bhh0, bhl1, bhl0), (blh1, blh0, bll1, bll0)) = bhy + bl,

P 16 = (bhy + bl)16 = bhy
16 + bl

y16 = y + 1

Thus, P 16 = bhy + (bh + bl).

Step 2. Then we need to compute P r = P 16·P . In here, λ = map4(λ) = {1100}2
in GF((22)2), z2 + z + φ, φ = {10}2

P = P 16 · P = (bhy + (bh + bl))(bhy + bl)
= b2

hy
2 + b2

hy + (bh + bl)bl
= b2

h(y + λ) + b2
hy + (bh + bl)bl

= b2
h × λ+ (bh + bl)bl.

Squaring, multiplication by λ, and multiplication in GF((22)2) in our composite
field should be implemented in quantum circuit to calculate above equations.
The squaring can be calculated as

(phz + pl)2 = (ph1x+ ph0)2z2 + (pl1x+ pl0)2

= (ph1x
2 + ph0)z2 + (pl1x2 + pl0)

:= (qh1 + qh0)z + (ql1 + ql0).



9

|ph1〉 • • |qh1〉
|ph0〉 • |qh0〉
|pl1〉 • |q11〉
|pl0〉 |ql0〉

Fig. 4: Quantum circuit of the squaring in GF((22)2).

The quantum circuit for the above formula, squaring, is shown as Fig. 4.
The multiplication by λ can be calculated as

(phz + pl)× λ = ((ph0 + pl0)x+ ph1 + ph0 + pl1 + pl0)z + ph1x+ ph0

:= (qh1 + qh0)z + (ql1 + ql0).

The quantum circuit for the above formula, multiplication by λ, is depicted as
Fig. 5. Both quantum circuits for squaring and multiplication by λ are imple-
mented using only CNOT gates and wiring. The rest of arithmetic operations in
GF((22)2) is multiplication which can be calculated as

|ph1〉 • |ql1〉
|ph0〉 • • |ql0〉
|pl1〉 |qh0〉
|pl0〉 • |qh1〉

Fig. 5: Quantum circuit of the multiplication by λ in GF((22)2).

(phz + pl)(qhz + ql) = ((ph + pl)(qh + ql) + plql)z + (phqhφ+ plql)
:= rhz + rl.

To minimize depth-width of the quantum circuit of multiplicative inversion
in GF(28), we adopt various implementation of quantum circuit for multiplica-
tion in GF((22)2). We present those quantum circuits in Section 4. To clarify
the concept of the multiplication in GF((22)2), we present the classical circuit
diagram in Fig. 6.

Step 3. We compute (P 16)−1 in GF((22)2), z2 + z + φ, φ = {00}2.

Given ph, pl, qh, ql ∈ GF(22) = GF(2)[x]/(x2 +x+1) and (phz+pl), (qhz+ql) ∈
GF((22)2), suppose that (phz + pl)−1 = (qhz + ql). Then, we have

(phz + pl)(qhz + ql) = ((ph + pl)(qh + ql) + plql)z + (phqhφ+ plql)
= 1,
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Fig. 6: Classical circuit of the multiplication in GF((22)2).

and this gives us (ph+ pl)qh+ phql = 0, and phqhφ+ plql = 1. Thus, it is easy to
know that qh = phd

−1 and ql = (ph + pl)d−1, where d = p2
hφ+ pl(ph + pl). The

classical circuit diagram for the multiplicative inversion on GF(22)2) designed
on the above formula is depicted in Fig. 7.
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Fig. 7: Circuit diagram of the multiplication inversion in GF((22)2).

Step 4. Finally, we compute (P r)−1 ·P 16 in GF((22)2), z2 + z + φ, φ = {00}2.

For p = (phz + pl) in GF((22)2), where ph, pl ∈ GF(22), x2 + x+ 1,
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p · P 16 = p · (bhy + (bh + bl)),
= p · bhy + p · (bh + bl),

because P 16 = bhy + (bh + bl) in Step 1.

Following Itoh and Tsujii’s inversion algorithm, p·P 16 is the multiplicative inver-
sion for the composite field, GF(28), which we suggested. The classical circuit
diagram for calculating p · P 16 is illustrated in Fig. 8. The square box written
× means a multiplication operation in GF(24), and the others x2, x−1, and ×λ
represent squaring, multiplicative inversion, and multiplication by λ in GF(24),
respectively.

× ���

��
⨁×

4

4
4

�	

�
�
⨁

×

×

Fig. 8: Circuit diagram of the multiplication inversion in GF(28).

Summary. A hardware implementation of Galois field operations generally uses
AND and XOR (some NOR) gates in classical computing. Among them, an XOR
gate can be converted into a quantum gate as a relatively inexpensive CNOT
gate. In the case of AND gate, it is converted to a Toffoli gate or a quantum AND
gate [10]. Currently, a Toffoli gate requires T -depth 3 [1] and a quantum AND
gate requires T -depth 1 [10]. Therefore, the AND-depth in a classical computing
environment decides the T -depth in a quantum computing environment, and a
hardware implementation with a low AND-depth will be preferred to reduce
operation time when converting to a quantum circuit.

Compared to prior work [3], our method reduces the AND-depth of the
multiplicative inversion from 6 to 4, which is about a 33% decreasement. Note
that we only modified the multiplicative inversion; the rest part for constructing
the S-box, including the isomorphic mapping, its inverse operation, and the affine
mapping, can be implemented with only XOR gates. Therefore, the AND-depth
of the S-box using the proposed multiplicative inversion remains the same, 4.
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4 Proposed Quantum Circuit

In order to build up a shallow implementation of multiplicative inversion in
GF(28), we should take into account depth-width trade-offs on the corresponding
quantum arithmetic circuits of GF(24) and GF(22). From now on, we propose
several low-cost quantum circuits of multiplication inversion in GF(28) with a
bottom-up approach. Meanwhile, we mainly focus on the optimal combinations
of quantum circuits for composite Galois field operations under consideration of
depth-width trade-offs.

4.1 GF(22) arithmetic quantum circuits

The operations in GF(22) are the basic operation in our scheme. We utilize
multiplication and its inverse (dagger) operation. For (a1x + a0), (b1x + b0) ∈
GF(22), x2 + x+ 1, the multiplication operation can be written as

(a1x+ a0)(b1x+ b0) = ((a1 + a0)(b1 + b0) + a0b0)x+ a1b1 + a0b0.

This equation can be implemented as a quantum circuit using CNOT, Toffoli and
quantum AND gates. A Toffoli gate performs CCNOT for either |0〉 or |1〉 to the
target register. In contrary, a quantum AND gate does CCNOT when the input
state |0〉 is given to the target register. Although a quantum AND gate uses one
more qubit temporarily, it reduces T -depth compared to Toffoli gate [10]. By
using these characteristics of Toffoli and quantum AND gates, quantum circuits
for multiplication in GF(22) of various depth-width can be designed.

We propose three types of quantum circuits for multiplication in GF(22)
and two types of quantum circuits for its dagger operation. The three types
of quantum circuits for multiplication are summarized in Table 2, and are illus-
trated in Fig. 9. In addition, the two types of quantum circuits for multiplication
dagger are summarized in Table 3, and are described in Fig. 10.

Notation Composition of gates

X(2),T 3 Toffoli × 3
X(2),A2 AND × 2, Toffoli × 1
X(2),A3 AND × 3, AND† × 1

Table 2: Three quantum circuits of multiplication in GF(22).

4.2 GF(24) arithmetic quantum circuits

The arithmetic in GF(24) is performed as GF((22)2) as explained in Section. 3.
We use constant(λ) multiplication, squaring, multiplication and multiplicative
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|a1〉 • • |a1〉
|a0〉 • • • |a0〉
|b1〉 • • |b1〉
|b0〉 • • • |b0〉
|0〉 |(a · b)1〉
|0〉 • |(a · b)0〉

(a) X(2),T 3.

|a1〉 • • |a1〉
|a0〉 • • • |a0〉
|b1〉 • • |b1〉
|b0〉 • • • |b0〉
|0〉 |(a · b)1〉
|0〉 • |(a · b)0〉
|0〉 |0〉

(b) X(2),A2.

|a1〉 • • • |a1〉
|a0〉 • • • |a0〉
|b1〉 • • • |b1〉
|b0〉 • • • |b0〉
|0〉 |(a · b)1〉
|0〉 • |(a · b)0〉
|0〉 • |0〉
|0〉 |0〉

(c) X(2),A3.

Fig. 9: Three quantum circuits for multiplication in GF(22).

inversion in GF(24). The quantum circuits of squaring and constant multipli-
cation were previously described in Fig. 4 and Fig. 5, respectively. Note that
those quantum circuits were implemented by using only Clifford gates. Now we
describe our improvement on the quantum circuits of multiplication and multi-
plicative inversion in GF(24).

Multiplication As depicted in Fig. 6, multiplication in GF(24) consists of ad-
dition, constant(φ) multiplication, and three times of multiplication in GF(22).
The quantum circuits for addition and constant multiplication in GF(22) can be
implemented with only CNOT gates. Three times of multiplication in GF(22)
can be performed either in parallel or in a combination of parallel and series,
depending on the available amount of qubits. Also, the arrangement of the quan-
tum circuits for multiplication in GF(22) introduced in Section 4.1 will have an
influence on depth-width trade-offs.

Hereafter, we analyze the number of multiplication in GF(22) that can be
performed in parallel, and the proper type of quantum circuits for the multipli-
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Notation Composition of gates

X†(2),A3 AND × 1, AND† × 3
X†(2),A2 Toffoli × 1, AND† × 2

Table 3: Two quantum circuits of multiplication dagger in GF(22).

|a1〉 • • • |a1〉
|a0〉 • • • |a0〉
|b1〉 • • • |b1〉
|b0〉 • • • |b0〉

|(a · b)1〉 |0〉
|(a · b)0〉 • |0〉

|0〉 • |0〉
|0〉 |0〉

(a) X†(2),A3.

|a1〉 • • |a1〉
|a0〉 • • • |a0〉
|b1〉 • • |b1〉
|b0〉 • • • |b0〉

|(a · b)1〉 |0〉
|(a · b)0〉 • |0〉

(b) X†(2),A2.

Fig. 10: Two quantum circuits of multiplication dagger in GF(22).

cation. These will have a significant effect on depth-width cost of the quantum
circuit for multiplication in GF(24).

We use four types of quantum circuits for multiplication in GF(24). We
denote each of them by X(4),T3, X(4),AA3, X(4),A2, and X(4),A3, and these are
shown in Fig. 11. Each name of the circuits characterizes the type of multiplica-
tion in GF(22) and the arrangement in the circuit.

On the other hand, we use only one type of quantum circuit for dagger
operation of multiplication in GF(22), X†(2),A3. Because the proposed quantum
circuits for multiplication in GF(24) have enough qubits to perform X†(2),A3 in
all circuit design, we use X†(2),A3 which has the smallest T -depth.

The three types of quantum circuit for multiplication in GF(22) are ar-
ranged to reduce the T -depth as much as possible within the available number of
qubits. The quantum circuits for multiplication in GF(22) arranged in the same
column represent parallel execution, and those arranged in different columns as
shown in Fig. 11b represent operations performed in series.
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|ph1〉 •

X(2),T 3

•

X†(2),A3

|ph1〉
|ph0〉 • • |ph0〉
|qh1〉 • • |qh1〉
|qh0〉 • • |qh0〉
|0〉 • • • |0〉
|0〉 • |0〉
|pl1〉 •

X(2),T 3

|0〉
|pl0〉 • |0〉
|ql1〉 • |0〉
|ql0〉 • |0〉
|0〉 |rh1〉
|0〉 |rh0〉
|0〉

X(2),T 3

• |pl1〉
|0〉 • |pl0〉
|0〉 • |ql1〉
|0〉 • |ql0〉
|0〉 • |rl1〉
|0〉 • |rl0〉

(a) X(4),T 3.

|ph1〉 •

X(2),A3

•

X†(2),A3

|ph1〉
|ph0〉 • • |ph0〉
|qh1〉 • • |qh1〉
|qh0〉 • • |qh0〉
|0〉 • • • |0〉
|0〉 • |0〉
|pl1〉 •

X(2),A3

|0〉
|pl0〉 • |0〉
|ql1〉 • |0〉
|ql0〉 • |0〉
|0〉 |rh1〉
|0〉 |rh0〉
|0〉

X(2),A3

• |pl1〉
|0〉 • |pl0〉
|0〉 • |ql1〉
|0〉 • |ql0〉
|0〉 • |rl1〉
|0〉 • |rl0〉|0〉 |0〉|0〉 |0〉

(b) X(4),AA3.

|ph1〉 •

X(2),A2

•

X†(2),A3

|ph1〉
|ph0〉 • • |ph0〉
|qh1〉 • • |qh1〉
|qh0〉 • • |qh0〉
|0〉 • • • |0〉
|0〉 • |0〉
|pl1〉 •

X(2),A2

|0〉
|pl0〉 • |0〉
|ql1〉 • |0〉
|ql0〉 • |0〉
|0〉 |rh1〉
|0〉 |rh0〉
|0〉

X(2),A2

• |pl1〉
|0〉 • |pl0〉
|0〉 • |ql1〉
|0〉 • |ql0〉
|0〉 • |rl1〉
|0〉 • |rl0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉

(c) X(4),A2.
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|ph1〉 •

X(2),A3

•

X†(2),A3

|ph1〉
|ph0〉 • • |ph0〉
|qh1〉 • • |qh1〉
|qh0〉 • • |qh0〉
|0〉 • • • |0〉
|0〉 • |0〉
|pl1〉 •

X(2),A3

|0〉
|pl0〉 • |0〉
|ql1〉 • |0〉
|ql0〉 • |0〉
|0〉 |rh1〉
|0〉 |rh0〉
|0〉

X(2),A3

• |pl1〉
|0〉 • |pl0〉
|0〉 • |ql1〉
|0〉 • |ql0〉
|0〉 • |rl1〉
|0〉 • |rl0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉

(d) X(4),A3.

Fig. 11: Four quantum circuits for multiplication in GF(24).

Multiplicative inversion The classical circuit diagram for multiplicative in-
version in GF(24) is depicted in Fig. 7. A multiplicative inversion in GF(24)
requires three quantum circuits for multiplication in GF(22) and two of three
can be executed parallel. This quantum circuit requires additional two qubits
for saving d−1 which is required during clean-up process of the multiplicative
inversion in GF(28).

Because the quantum circuit for multiplicative inversion in GF(28) has
sufficient number of available qubits, we use only X(2),A3 to build the quantum
circuit for multiplicative inversion in GF(24).

4.3 GF(28) multiplicative inversion quantum circuits

The multiplicative inversion in GF(28) consists of squaring, constant(λ) mul-
tiplication, multiplicative inversion, and multiplications in GF(24) as depicted
in Fig. 8. Squaring and constant multiplication can be implemented by CNOT
gates only.

The quantum circuit for multiplicative inversion in GF(28) requires clean-
up process. The clean-up process means to make the qubits that store the in-
termediate value generated during the calculation process into a specific state
(usually |0〉). This process is necessary to improve the reusability of quantum
resources such as qubits when the proposed quantum circuit is combined in other
quantum circuits such as AES S-box. The quantum circuit for clean-up process is
similar to that of the target operation in reverse, but it is not symmetric because
the result of the target operation must be maintained. Due to this reason, the
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suggested quantum circuit has a complicated structure compared to the circuit
diagram in Fig. 8.

As shown in Fig. 12 to Fig. 15, the quantum circuit can be largely divided
into two parts. Forward operation part calculates multiplicative inversion in
GF(28) and another part performs clean-up process. In the forward operation,
unlike the circuit diagram in Fig.8, one more GF(24) multiplication is included.
This is because keeping bh × bl reduces T -depth of the entire quantum circuit
which includes clean-up process.

What we mainly describe here are what kinds of quantum circuit for multi-
plication in GF(24) are used and how these are arranged in the quantum circuit
for multiplicative inversion in GF(28). These two factors have a significant effect
on the depth-width cost of the quantum circuit for multiplicative inversion in
GF(28).

We depict the minimum width quantum circuits in Fig.12. This is the
starting point for describing the four quantum circuits that we have presented;
minimum width, balanced 1, 2, and minimum depth. While designing quantum
circuits, blank squares and circles are used. Blank square means logical swap
which change the index of qubits conceptually to improve understanding. In
the actual quantum circuit implementations, such index change of qubits is not
mandatory. Blank circle represents ancilla qubits as in Fig.11a to Fig.11d.

In the figure, each horizontal line corresponds to two qubits and receives
corresponding bhh, bhl, blh, and bll as 8-bit input. These input are bhh to bll
from above. We denote as bh = bhh|bhl and bl = blh|bll for convenience. First, we
copied bh using two CNOT gates. Then we change state of the qubits from bh to
bh + bl with two CNOT gates. By applying X(4),A3 to the qubits corresponding
bh+bl and bl, (bh+bl)bl is calculated. We change the index of qubits by applying
logical swap; move bl to the top 2-qubits of the blank square, move bh+ bl to the
bottom 2-qubits of the blank square, and keep the index of (bh + bl)bl. Now, the
bhbl is calculated by applying X(4),A3 to the bh and bl. The qubits corresponding
to bl become 0 by applying four CNOT-gates. We generate (bh+bl)bl+b2

hλ using
squaring, constant(λ) multiplication, and two CNOT gates. Before applying (bh+
bl)bl + b2

hλ to x−1
(4),A3, we change index of these qubits to the bottom of blank

square. Then the output of x−1
(4),A3 to be d−1, q, and (bh + bl)bl + b2

hλ from
above. The qubits corresponding to (bh + bl)bl + b2

hλ become bl by applying
four CNOT gates and x−2. While perform such operation, b2

hλ becomes bh by
using the dagger of x2λ. Then we change bl to 0 by applying four CNOT gates.
Now we calculate rl which the lower 4-bit of the result of suggested GF(28)
multiplicative inversion. This value can be calculated by applying X(4),A2 to q
and bh + bl. Before applying X(4),A2, we swap the index of q and 0. Thus the
output of X(4),A2 to be rl, q, and bh + bl from above. At this point we apply a
complex logical swap, (bh, 0, 0, 0, 0, 0, rl, q, bh+bl) 7→ (0, 0, bh, q, 0, bh+bl, 0, 0, rl).
In here, bh, rl, q, bh + bl are 4-qubits and 0 is 2-qubits. By applying two CNOT
gates, bh + bl becomes bl. Finally, we compute rh which the higher 4-bit of the
result of suggested GF(28) multiplicative inversion by applying X(4),T3 to bh
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and q. In here, we have computed rh and rl which the upper and lower 4-bit of
the result, thus the forward operation is completed.

The rest of proposed quantum circuit is for clean-up process. By clean-up
process, we restore all of qubits except rh, rl, bh and bl to 0 for reusing. In here,
we regenerate (bh+bl)bl+b2

hλ by applying x2λ on bh, x2 on bl and add bhbl using
four CNOT gates. Then we swap this value with q and apply these to (x−1

(4),A3)†

with d−1. By applying (X−1
(4),A3)†, d−1 and q are restored as 0. The remaining

value, (bh+ bl)bl+ b2
hλ is changed to b2

l by using four CNOT gates. At this point
we return b2

hλ to bh by using (x2λ)† and b2
l to bl by using x−2. Finally, bhbl is the

only qubit to be cleaned-up. To clean-up this qubit, we change the indices thus
move rh to the top of blank square and move bhbl to the input of (X(4),A3)†.
Then bhbl is restored as 0, and the state of qubits are only rh, bh, bl, and rl
except 0s.

For the other two quantum circuits, balanced 1 and 2, the process is same
except that the GF(24) multipliers, which has smaller T -depth, are used as the
number of available qubits increases. For example, the quantum circuit requiring
34-qubits uses X(4),A3 and X(4),AA3 instead of X(4),A2 and X(4),T3 in the center
of the quantum circuit requiring 32-qubits. And the quantum circuit requiring
36-qubits uses X(4),A2 instead of X(4),AA3 in the quantum circuit requiring 34-
qubits.

On the other hand, the quantum circuit with minimum depth has a bigger
change. The two pairs of GF(24) multipliers are previously operated in sequen-
tial, but each pair of these is operated in parallel because sufficient number of
qubits are provided. This change occurs minor changes in other parts of the
circuit. For each GF(24) multiplier pairs, the values that used for both paral-
lel multipliers, such as bl and q, have to be copied before multiplications and
restored to 0 after multiplications. To do this, several CNOT gates are added.

In section 5, we analyze depth-width for four quantum circuits for mul-
tiplicative inversion in GF(28) which have significant improvement. Each is a
quantum circuit that minimizes qubit consumption, a quantum circuit that min-
imizes T -depth, and quantum circuits that balances width and T -depth.

4.4 Affine transformation quantum circuit

The affine transformation is expressed as the following equation.

{b} = M{b′} ⊕ {v}

whereM is the matrix below, {v} is a fixed vector and {b′} = (b′

0, b
′

1, b
′

2, b
′

3, b
′

4, b
′

5, b
′

6, b
′

7)
is the result of the multiplicative inversion for the input of AES S-box.
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M{b′} =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b
′

0
b

′

1
b

′

2
b

′

3
b

′

4
b

′

5
b

′

6
b

′

7


and {v} =



1
1
0
0
0
1
1
0


The matrix M can be decomposed into three matrices, P , L and U by PLU
decomposition. These matrices can be implemented in a quantum circuit with
only CNOT gates. On the other hand, the modular addition of {v} can be imple-
mented in a quantum circuit with only X -gates. In Fig. 16, we depict a quantum
circuit for affine transformation of AES S-box which combined the above two
operations.

P :=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0


, L :=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 1 1 1 0 0 1 0
0 0 1 1 1 0 0 1


, U :=



1 0 0 0 1 1 1 1
0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

∣∣∣b′
0

〉
• • • • X |b0〉∣∣∣b′

1

〉
• • • • X |b1〉∣∣∣b′

2

〉
• • • • |b2〉∣∣∣b′

3

〉
• • • • |b3〉∣∣∣b′

4

〉
• • • • |b4〉∣∣∣b′

5

〉
• • X |b6〉∣∣∣b′

6

〉
• • |b7〉∣∣∣b′

7

〉
• • X |b5〉

Fig. 16: Quantum circuit of the Affine transformation.

As shown in Fig.16, the quantum circuit of the affine transformation is
executable in-place and does not include T -gate. Therefore, the affine transfor-
mation does not occur additional T -depth or qubits.
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5 Evaluation

We evaluate our proposed method in terms of the number of qubits and T -depth.
To design a quantum circuit that calculates multiplicative inversion in GF(28),
we proposed quantum circuit designs with varying depth-width for smaller Galois
field, such as GF(24) and GF(22). By selecting the quantum circuit for the
smaller Galois field operation according to the situation, the depth-width of the
quantum circuit that calculates the multiplicative inversion in GF(28) can be
reduced in a trade-off manner.

5.1 Multiplication and dagger in GF(22)

Symbol # qubit T -depth Composition of gates

XT 3 6 9 Toffoli × 3
XA2 7 5 AND × 2, Toffoli × 1
XA3 8 3 AND × 3, AND† × 1
X†A3 10 1 AND × 1, AND† × 3
X†A2 6 3 Toffoli × 1, AND† × 2

Table 4: The number of qubits and T -depth of multiplication and its dagger in
GF(22).

As explained in Section 3, the multiplication operation quantum circuit
in GF(22) varies in depth-width according to the combination of AND gates
(and its dagger) and Toffoli gates. In the case of AND gate, compared to Toffoli
gate, qubit consumption is increased, but T -Depth is reduced. The summary of
multiplication operation in GF(22) used in our proposed scheme is depicted as
Table 4

5.2 Multiplication in GF(24)

The quantum circuits for multiplication in GF(24) have different depth-width.
The different is depending on which quantum circuit for multiplication in GF(22)
is used, and whether the quantum circuits are arranged in sequential or parallel.
The summary of multiplication operation in GF(22) used in our proposed scheme
is depicted as Table 5.

5.3 Multiplicative Inversion in GF(28)

The quantum circuit of multiplicative inversion in GF(28) has a more complex
structure than the quantum circuit of GF(24) and GF(22). However, the dom-
inant factor on its cost is which quantum circuits of GF(24) is used and how
they are arranged. The Table 6 summarizes the number of qubits and T -depth
of multiplicative inversion in GF(28) for each possible combination.
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Symbol # qubit T -depth Composition of gates

LXT 3 18 10 XT 3× 3, X†A3 × 1
LXAA3 20 7 XA3× 2, XA3× 1, X†A3 × 1
LXA2 21 6 XA2× 3, X†A3 × 1
LXA3 24 4 XA3× 3, X†A3 × 1
LX−1 18 6 XA3× 1, XA3 × 2

Table 5: The number of qubits and T -depth of multiplication and its dagger in
GF(24).

Scheme type # qubit T -depth # CNOT # 1qCliff # T # M

Grassl et al. 44 217 8683 1028 3584 0
Langenberg et al. 32 120 314 4 385 0

Jaques et al. [BP10] 41 35 818 264 164 41
[BP12] 137 6 654 184 136 34

Our scheme

minimum width 32 36 974 366 268 40
balanced 1 34 31 1016 408 232 46
balanced 2 36 30 1001 390 241 43

42 27 1020 408 232 46
46 25 1002 372 250 40
50 22 1002 372 250 40

minimum depth 54 20 1032 408 232 46
Table 6: Comparison of our methods with the existing ones.
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