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Abstract
Sharding is a promising approach to scale permissionless
blockchains. In a sharded blockchain, participants are split
into groups, called shards, and each shard only executes part of
the workloads. Despite its wide adoption in permissioned sys-
tems, transferring such success to permissionless blockchains
is still an open problem. In permissionless networks, partici-
pants may join and leave the system at any time, making load
balancing challenging. In addition, there exists Byzantine par-
ticipants, who may launch various attacks on the blockchain.
To address these issues, participants should be securely and
dynamically allocated into different shards uniformly. How-
ever, the protocol capturing such functionality – which we
call shard allocation – is overlooked.

In this paper, we study shard allocation protocols for per-
missionless blockchains. We formally define the shard alloca-
tion protocol and propose an evaluation framework. We then
apply the framework to evaluate the shard allocation subpro-
tocols of seven state-of-the-art sharded blockchains, and show
that none of them is fully correct or achieves satisfactory per-
formance. We attribute these deficiencies to their redundant
security assumptions and their extreme choices between two
performance metrics: self-balance and operability. We fur-
ther prove a fundamental trade-off between these two metrics,
and identify a fundamental property non-memorylessness that
enables parametrisation on this trade-off. Based on these in-
sights, we propose WORMHOLE, a correct and efficient shard
allocation protocol with minimal security assumptions and
parameterisable self-balance and operability.

1 Introduction

Sharding is a common approach to scale distributed systems.
It partitions nodes in a network into some groups, called
shards. Nodes in different shards work concurrently, so the
system scales horizontally with the increasing number of
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Figure 1: An example of shard allocation. New nodes (in
blue) may join the network and existing nodes (in red) may
leave the network. After a state update, a subset of nodes (in
yellow) may be relocated.

shards. Sharding has been widely adopted for scaling per-
missioned systems, in which the set of nodes are fixed and
predefined, such as databases [74], file systems [59], and per-
missioned blockchains [43].

Given the success of sharding permissioned systems, shard-
ing is regarded as a promising technique for scaling per-
missionless blockchains, where anyone can join and leave
the system at any time. However, sharding permissionless
blockchains faces two challenges. First, traditional sharding
protocols [27,28,39,45,49] are designed for systems concern-
ing crash faults where nodes may stop responding, whereas
permissionless blockchains concern Byzantine faults where
nodes may behave arbitrarily. With Byzantine faults, sharded
blockchains may suffer from single-shard takeover attacks
aka. 1% attacks [10, 23], where the adversary gathers nodes
to a single shard and compromise the shard’s consensus. As
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sharding divides nodes to different shards, the adversary needs
much fewer nodes for compromising a shard compared to
launching 51% attacks in non-sharded blockchains. Second,
as nodes in permissionless blockchains may join or leave at
any time, sharding protocols need to dynamically re-balance
the number of nodes in different shards. Figure 1 gives an
example of the shard allocation process. In this example, five
nodes are allocated in shard 3 and four of them left the net-
work. Without rebalancing, the only node in shard 3 will be a
single point of failure.

In order to address the above challenges, nodes should be
allocated into shards securely and dynamically. While ex-
isting works on designing [11, 26, 71, 78, 94, 96, 100] and
analysing [29, 95, 101] sharded permissionless blockchains
studied this core component implicitly, their main focus has
been on cross-shard communication and intra-shard consen-
sus. A systematic study on this core component, which we
call shard allocation, is still missing.
Contributions. This paper provides the first study on shard
allocation– the overlooked core component for shared per-
missionless blockchains. In particular, we formalise the shard
allocation protocol, evaluate the shard allocation protocols of
existing blockchain sharding protocols, observe insights and
propose WORMHOLE– a correct and efficient shard allocation
protocol for permissionless blockchains.

1. We provide the first study on formalising the shard
allocation protocol for permissionless blockchains. We
formally define the syntax, correctness properties and
performance metrics for shard allocation. This can be
used as a framework to assist in designing and analysing
permissionless blockchain sharding protocols.

2. Based on our framework, we evaluate the shard allo-
cation subprotocols of seven state-of-the-art permis-
sionless sharded blockchains, including five academic
proposals Elastico [78] (CCS’16), Omniledger [71]
(S&P’18), Chainspace [26] (CCS’19), RapidChain [100]
(NDSS’19), and Monoxide [96] (NSDI’19), and two in-
dustry projects Zilliqa [94] and Ethereum 2.0 [13]. Our
results show that none of these protocols is fully correct
or achieves satisfactory performance.

3. We observe and prove the impossibility of simulta-
neously achieving optimal self-balance and operabil-
ity. The former represents the ability to dynamically
re-balance the number of nodes in different shards; and
the latter represents the system performance w.r.t. the
cost of re-allocating nodes to a different shard. While
this impossibility has been conjectured and studied infor-
mally [71], we formally prove it’s impossible to achieve
optimal values on both, and identify the trade-off be-
tween them. All existing shard allocation protocols fall
into extreme values on either self-balance or operability,
leading to serious security or performance issues.

4. We formally prove that to parametrise the trade-
off between self-balance and operability, the shard
allocation protocol should be non-memoryless. Non-
memorylessness specifies that each shard allocation does
not only rely on the current and the incoming system
states, but also previous system states. This opens a new
in-between design space and makes the system config-
urable for different application scenarios.

5. We propose WORMHOLE, a correct and efficient
shard allocation protocol. With minimal security as-
sumption, i.e., a randomness beacon, WORMHOLE is
correct and achieves optimal performance. By being non-
memoryless, WORMHOLE supports parametrisation of
self-balance and operability. We formally prove WORM-
HOLE’s security and performance metrics. We also im-
plement WORMHOLE and show that WORMHOLE intro-
duces negligible overhead.

Paper organisation. Section 2 formalises shard allocation
protocols. Section 3 outlines the evaluation results on ex-
isting shard allocation protocols, leading to our insights in
Section 4. Section 5 describes our shard allocation protocol
WORMHOLE. Section 6 discusses extra concerns of WORM-
HOLE. Section 7 concludes this paper. Appendix A provides
full security proofs of WORMHOLE. Appendix B presents
related work. Appendix C provides details of our evaluated
shard allocation protocols.

2 Formalising shard allocation

In this section, we formalise the shard allocation protocol,
including its syntax, threat model, correctness properties and
performance metrics.

2.1 Definition

Table 1: Summary of notations.

Symbol Description
stt System state at round t
m Number of shards
nt Number of nodes in the network at round t
nt

k Number of nodes in shard k at round t
αt ,βt Average percentage of nodes joining and

leaving the system at round t, respectively.
(βt ∈ [0,1])

pp Public parameter
ski, pki Secret key and public key of node i
πi,stt ,k Proof that node i is in shard k at round t
γ Probability of a node to stay at its shard

after UpdateShard(·) (γ ∈ [0,1))
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System setting. We consider a permissionless sharded
blockchain with m shards. The blockchain executes in rounds.
Let stt be the blockchain’s system state at round t. Let nt

k
be the number of nodes in shard k ∈ [1,m], and nt = ∑

m
k=1 nt

k
be the total number of nodes at round t. We consider user
churn [91]: existing nodes may leave and new nodes may
join the system at any time. Let αt and βt be the average per-
centage of nodes joining and leaving the network at round t,
respectively, where βt ≤ 1. That is, for two consecutive rounds
t and t +1, nt+1 = (1+αt −βt)nt . Each node i has a pair of
secret key ski and public key pki, and is identified by pki in
the blockchain. In each round, nodes execute shard allocation
so that each node is allocated to a unique shard. After shard
allocation, nodes in each shard execute a consensus protocol
independently, and shards communicate with each other if
necessary. Table 1 summarises notations in this paper.
Syntax. We formally define shard allocation as follows.

Definition 1 (Shard allocation). A shard allocation protocol
SA is a tuple of polynomial time algorithms

SA = (Setup,JoinShard,VerifyShard,UpdateShard)

SA .Setup(λ)→ (pp) : On input the security parameter λ,
outputs the public parameter pp.

SA .JoinShard(ski, pp,stt)→ (k,πi,stt ,k) : On input a secret
key ski, the public parameter pp and state stt , outputs
the ID k of the shard assigned for node i, the proof πi,stt ,k
of assigning i to k at stt .

SA .UpdateShard(ski, pp,stt ,k,πi,stt ,k,stt+1)→ (k′,πi,stt+1,k′)
: On input a secret key ski, the public parameter pp,
state stt , the shard index k, proof πi,stt ,k and the next
state stt+1, outputs the identity k′ of the newly assigned
shard for i, a proof of shard assignment πi,stt+1,k′ .

SA .VerifyShard(pp, pki,stt ,k,πi,stt ,k)→ 0 or 1 : Determin-
istic. On input the public parameter pp, i’s public key
pki, a system state stt , the shard index k and a proof of
shard assignment πi,stt ,k, outputs 0 (false) or 1 (true).

When node i joins the system at round t, node i exe-
cutes SA .JoinShard(·) to be allocated to a shard. Upon a
new round t +1, it updates its allocated shard by executing
SA .UpdateShard(·). Given a shard k, public key pki and a
proof πi,stt ,k, anyone can execute SA .VerifyShard to verify
whether node i is allocated into shard k at round t. Algorithm 1
describes the typical process of shard allocation.
Threat model. We assume all nodes control the same amount
of voting power on the consensus. The consensus protocol
assumes that the portion of Byzantine nodes does not exceed
a certain threshold Ψ. We consider an adversary controlling
φnt nodes, where φ < Ψ.

Shard allocation’s safety is mainly threatened by the single-
shard takeover attack. To launch the single-shard takeover

Algorithm 1: The shard allocation process for node i.
// Join at round t

(kt ,πi,stt ,kt )← SA .JoinShard(ski, pp,stt)
// Current state, shard and proof

st∗,k∗,π∗← stt ,kt ,πi,stt ,kt

repeat
Wait for a new state st+
// Update shard allocation

(k∗,πi,st∗,k∗)←
SA .UpdateShard(ski, pp,st∗,k∗,πi,st∗,k∗ ,st+)
st∗← st+

until node i leaves the system

attack in shard k, the adversary should control more than Ψnt
k

nodes in it. The adversary has several strategies for this. First,
the adversary may bias the shard allocation and gather its
nodes to a single shard. In addition, if the adversary can pre-
dict the shard allocation results, then it may choose key pairs
that make nodes to be allocated to the same shard. Moreover,
for probabilistic shard allocation protocols, the adversary can
launch the join-leave attack [50], i.e., enforce each node to
keep joining and leaving the blockchain until allocated to the
targeted shard.

The adversary may also compromise shard allocation’s live-
ness. If the shard allocation protocol requires collaboration
between nodes, then the adversary may refuse to collaborate
and prevent shard allocation from terminating. In this way,
nodes can never decide their allocated shards.

2.2 Correctness properties

Based on the threat model, we consider three correctness
properties for shard allocation protocols, namely liveness,
allocation-randomness, and unbiasibility. We additionally
consider allocation-privacy as an optional property.

Liveness. A shard allocation protocol is live when nodes are
able to make progress in updating their shard membership.
This relies on the liveness of the underlying system, which
should always make progress in updating the system state.
We adapt the liveness definition by Garay et al. [57].

Definition 2 (Liveness). Parametrised by a growth factor τ∈
R+ and s ∈ N+. Shard allocation SA satisfies (τ,s)-liveness
iff there are at least bτ · sc new states for any s rounds.

Allocation-randomness. If the adversary can predict shard
allocation results, then it can launch the single-shard takeover
attack by choosing key pairs that make nodes to be allocated
to the same shard. To prevent such predicting behaviours,
Shard allocation should allocate each node to a random
shard deterministically [71, 78, 94]. We consider two parts of
allocation-randomness, namely join-randomness and update-
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randomness. Join-randomness specifies that the newly joined
nodes join each shard with equal probability. Formally,

Definition 3 (Join-randomness). A shard allocation protocol
SA with m shards satisfies join-randomness iff for any secret
key ski, public parameter pp and state stt , the probability of
node i joining a shard k is

Pr
[

k = k′
(k′,πi,stt ,k′)←

SA .JoinShard(ski, pp,stt)

]
=

1
m
± ε

where k,k′ ∈ [1,m], and ε is a negligible value.

...

Figure 2: Update-randomness. After executing
SA .UpdateShard(·), the probability that a node stays
in its shard (say shard 1) is γ, and the probability of moving
to each other shard is 1−γ

m−1 .

Update-randomness specifies the probability distribution
of existing nodes’ shard allocation. To remain balanced un-
der churn, existing nodes may need to move to other shards
upon state update. Moving to a new shard is computation and
communication-intensive, as a node needs to synchronise and
verify the new shard’s ledger, which can take hundreds of
Gigabytes [21, 46, 71, 85]. If a large portion of nodes move to
other shards upon each state update, then this introduces non-
negligible overhead and may make the system unavailable for
a long time. To avoid this, only a small subset of nodes should
move each state update. During a state update, we consider
that an existing node stays in the same shard with probability
γ. We define update-randomness as follows.

Definition 4 (Update-randomness). A shard allocation pro-
tocol SA with m shards satisfies update-randomness iff there
exists γ ∈ [0,1) such that for any k ∈ [1,m], secret key ski and
public parameter pp, the probability of node i updates its
shard from k at state stt to k′′ at state stt+1 is

Pr
[

k′′ = k′
(k′,πi,stt+1,k′)←

SA .UpdateShard(ski, pp,stt ,k,πi,stt ,k,stt+1)

]
=

{
γ± ε if k′ = k
1−γ

m−1 ± ε otherwise

where k′,k′′ ∈ [1,m], and ε is a negligible value.

When γ = 1
m , SA achieves optimal update-randomness.

Figure 2 represents an intuition behind the definition.

Definition 5 (Allocation-randomness). A shard allocation
protocol satisfies allocation-randomness if it satisfies join-
randomness and update-randomness.

Unbiasibility. The unbiasibility specifies the blockchain
should prevent a node from manipulating the shard allocation
results. While allocation-randomness defines the probability
distribution of shard allocation, unbiasibility considers the
possibility of Byzantine nodes manipulating the protocol.

Definition 6 (Unbiasibility). A shard allocation protocol SA
satisfies unbiasibility iff given a system state, no node can
manipulate the probability distribution of the resulting shard
of SA .JoinShard(·) or SA .UpdateShard(·), except with neg-
ligible probability.

Allocation-privacy. Allocation-privacy specifies that one
cannot know the allocated shard of a node before the node
reveals itself. We consider allocation-privacy is optional,
as it has both advantages and disadvantages. Allocation-
privacy can prevent the adversary from running JoinShard(·)
or UpdateShard(·) for other nodes and predicting the distri-
bution of nodes among shards. On the other side, allocation-
privacy makes nodes difficult to find peers in the same shard,
and the sharded blockchain should additionally employ a peer
finding protocol [78, 94], therefore compromise the sharded
blockchain’s performance.

Definition 7 (Join-privacy). A shard allocation protocol SA
with m shards provides join-privacy iff for any secret key ski,
public parameter pp, and state stt , without the knowledge of
πi,stt ,k and ski, the probability of making a correct guess k′ on
k is

Pr
[

k′ = k
(k,πi,stt ,k)←

SA .JoinShard(ski, pp,stt)

]
=

1
m
± ε

where k,k′ ∈ [1,m], and ε is a negligible value.

Definition 8 (Update-privacy). A shard allocation protocol
SA with m shards provides update-privacy iff for some γ ∈
[0,1), any k ∈ [1,m], secret key ski, public parameter pp, and
two consecutive states stt and stt+1, without the knowledge of
πi,stt+1,k′ and ski, the probability of making a correct guess k′′

on k′ is

Pr
[

k′′ = k′
(k′,πi,stt+1,k′)←

SA .UpdateShard(ski, pp,stt ,k,πi,stt ,k,stt+1)

]
=

{
γ± ε if k′′ = k
1−γ

m−1 ± ε otherwise

where k′,k′′ ∈ [1,m], and ε is a negligible value.

Definition 9 (Allocation-privacy). A shard allocation pro-
tocol SA satisfies allocation-privacy iff it satisfies both join-
privacy and update-privacy.
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2.3 Performance metrics
We consider four performance metrics, namely communica-
tion complexity, Sybil cost, self-balance, and operability.

Communication complexity. It is the amount of commu-
nication required to complete a protocol [98]. For a shard
allocation protocol, we consider the communication complex-
ity of a node joining a shard and recomputing its shard when
the system state is updated. This does not include communi-
cation of synchronising shards.

Sybil cost. Shard allocation protocols should prevent Sybil at-
tacks [52] where the adversary runs numerous nodes to spam
the network. To mitigate Sybil attacks, joining the system
should have a non-negligible cost. The cost can be diverse,
e.g., computing power in Proof-of-Work [66] and money de-
posit in Proof-of-Stake [70].

Self-balance. To maximise the fault tolerance capacity of
shards, nodes should be uniformly distributed among shards.
Otherwise, the fault tolerance threshold of shards with fewer
nodes and the performance of shards with more nodes may be
reduced [96, 102]. Due to user churn and lack of global view,
reaching global load balance is impossible for permissionless
networks. Instead, the randomised self-balance approach –
where a subset of nodes move to other shards randomly –
provides the optimal load balance guarantee. We quantify
the self-balance as the ability that a shard allocation protocol
recovers from load imbalance.

Definition 10 (Self-balance). A shard allocation protocol
with m shards is ω-self-balanced iff for the largest possible
ω ∈ [0,1], we have

ω≤ 1−
|nt+1

i −nt+1
j |

nt , ∀i, j ∈ [1,m]

When ω = 1, the shard allocation protocol achieves the
optimal self-balance: regardless how many nodes join or leave
the system during the last round, the system can balance itself
within a round.

Operability. To balance shards, the shard allocation protocol
should move some nodes to other shards upon each state up-
date. As mentioned, moving nodes to other shards introduces
non-negligible overhead and may make the system unavail-
able for a long time. Operability was introduced to measure
the cost of moving nodes [71]. We formally define operabil-
ity Γ as the probability that a node stays at its shard upon a
state update. Following update-randomness (Definition 4), if
a shard allocation protocol satisfies update-randomness with
γ, then its operability is Γ = γ, i.e., γ-operable.

When Γ= 1, the shard allocation protocol is most operable,
i.e., nodes will never move after joining the network. However,
in this case shards cannot keep balance in the presence of
user churn. Later in §4, we will formally prove a trade-off
between self-balance and operability that, no correct shard

allocation protocol can achieve both optimal self-balance of 1
and optimal operability of 1 simultaneously, and discuss how
to parametrise this trade-off.

3 Evaluating shard allocation protocols

In this section, we model shard allocation protocols of seven
state-of-the-art sharded blockchains and evaluate them based
on our framework. Our evaluation (summarised in Table 2)
shows that none of these shard allocation protocols is fully
correct or achieves satisfactory performance.

3.1 Evaluation criteria
Our evaluation considers three aspects, namely system mod-
els, correctness properties, and performance metrics. We con-
sider the standard system model common to all sharded
blockchains [71, 78, 94]. As our evaluation only focuses on
shard allocation, we assume other subprotocols in sharded
blockchains – e.g., consensus and cross-shard communication
– are secure. Section 2.2 and 2.3 define correctness properties
and performance metrics, respectively.
System model. The system model includes three aspects,
namely network models, trust assumptions, and fault toler-
ance capacity. Network model describes the timing guarantee
of message deliveries. We consider three common network
models, namely synchrony, partial synchrony [53], and asyn-
chrony. A network is synchronous if messages are delivered
within a known finite time-bound; is asynchronous if mes-
sages are delivered without a known time-bound; or is par-
tially synchronous if messages are delivered within a known
finite time-bound with some clock drift. Trust assumption
indicates the trustworthy components that the protocol should
assume to remain correct. Fault tolerance capacity indicates
the threshold of Byzantine nodes that shard allocation can tol-
erate while remaining correct. With nodes more than the fault
tolerance capacity, then the adversary can compromise some
correctness properties of shard allocation. We define the fault
tolerance capacity only for shard allocation rather than the
entire sharded blockchain, where consensus and cross-shard
communication protocols may tolerate fewer faulty nodes.
For example, if a shard allocation protocol totally relies on
a trusted third party, then we consider its fault tolerance ca-
pacity as 1, as it works correctly even when all nodes are
Byzantine.

3.2 Overview of evaluated proposals
We choose seven state-of-the-art sharded blockchains, includ-
ing five academic proposals Elastico [78], Omniledger [71],
Chainspace [26], RapidChain [100], and Monoxide [96], and
two industry projects Zilliqa [94] and Ethereum 2.0 (ETH
2.0) [13]. We briefly describe their shard allocation protocols
and defer their details to Appendix C.
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Table 2: Evaluation of seven permissionless shard allocation protocols. Red indicates strong assumptions, unsatisfied correctness
properties, and relatively poor performance. Yellow indicates unspecified assumptions, partly satisfied correctness properties, and
unspecified performance metrics. Green indicates weak assumptions, satisfied correctness properties, and better performance.
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nce
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y

Elastico New block Sync. - 1
3 3 3 3 7* 3 O(n f ) O(n f ) Comp. 1 1

m

Omniledger Identity
authority

Part. sync. Identity
authority

1
3 3 7 3 3 7 O(1) O(n)∼ O(n3) - 1 1

m

RapidChain Nodes
joining

Sync. - 0 7 3 3 3 7 O(n2) O(n2) Comp. 1−βt max(1−καtn,0)

Chainspace - Async. Smart
contracts

1 3 3 7 7 7 - O(1) - 1−βt -

Monoxide - Async. - 1 3 3 7 3 7 0 0 No** 1−βt 1

Zilliqa New block Async. - 1 3 3 3 7* 3 O(1) O(1) Comp. 1 1
m

ETH 2.0 - Async. - 1 3 3 7 3 7 0 0 No** 1−βt 1

WORMHOLE (Our
proposal in §5)

New rand. Async. Rand.
Beacon

1 3 3 3 3 3 O(1) O(1) Comp. 1−βt +
βt

2op 1− m−1
m·2op

o Optional. * Protected by PoW puzzles. ** Protected by Sybil-resistant consensus protocols.

Elastico, Omniledger, RapidChain, and Zilliqa rely on dis-
tributed randomness generation (DRG) protocols for shard
allocation. In Elstico [78], nodes in a special shard called fi-
nal committee run a commit-and-reveal DRG protocol [30] to
produce a random output. Then, with this random output and
its identity, each node solves a PoW puzzle, and will be as-
signed to a shard according to its PoW solution. Zilliqa [94] is
built upon Elastico with several optimisations. Most notably,
Zilliqa uses the last block’s hash value as the current round’s
random output. Omniledger [71] uses the RandHound [92]
DRG protocol, and relies on a trusted identity authority for
shard allocation. As RandHound is leader-based, nodes need
to run a leader election before RandHound. If the leader elec-
tion fails for five times, then nodes fallback to run an asyn-
chronous DRG protocol [37]. Given the latest random output,
the identity authority samples a subset of pending nodes and
approve them to join the system, and shuffles all existing
nodes in the network to different shards. In RapidChain [100],
each node solves an offline PoW puzzle before joining the
system. To prevent pre-computing PoW puzzles, RapidChain
employs a Feldman VSS [55]-based DRG protocol and uses
its random outputs as PoW puzzles’ inputs. A special shard
called reference committee allocates joined nodes into dif-
ferent shards following the Commensal Cuckoo rule [90]. In
Commensal Cuckoo, each node is mapped to an ID x ∈ [0,1).
Upon a new node with ID x, the reference committee moves
nodes with IDs close to x to other shards randomly.

The rest of sharded blockchains do not employ DRG
protocols. In Chainspace [26], nodes can apply to move
shards at any time, and other nodes decide on the applica-
tion by voting. The voting works over a special smart contract

ManageShards, which is assumed secure. Monoxide [96] and
Ethereum 2.0 [11] simply allocate nodes into different shards
according to prefixes of their addresses.

3.3 System model

Network model. Elastico and RapidChain assume syn-
chronous network models, as they rely on synchronous DRG
protocols [30,55]. Omniledger assumes partially synchronous
networks. In Omniledger, nodes start from running Rand-
Hound, which assumes partially synchronous networks. If
RandHound fails for five times, nodes will instead run the
asynchronous DRG [37]. All other proposals assume asyn-
chronous networks. Chainspace assigns nodes into different
shards using transactions on smart contracts, and transactions
are committed to the ledger asynchronously. Monoxide and
ETH 2.0 assign nodes into different shards simply by most
significant bits (MSBs) of addresses. Zilliqa replaces the DRG
by using block hashes, so no longer requires the synchronous
DRG protocol [30].

Trust assumption. Omniledger and Chainspace rely on a
trusted identity authority and smart contracts for shard allo-
cation, respectively. Other protocols assume no trustworthy
components.

Fault tolerance capacity. Elastico and Omniledger achieve
the fault tolerance capacity of 1

3 , which is inherited from
their DRG protocols. RapidChain cannot tolerate any faults,
as one faulty node can make the Feldman VSS-based DRG
lose liveness. Chainspace, Monoxide, Zilliqa, and ETH 2.0
can tolerate any fraction of adversaries. For Monoxide and
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ETH 2.0, computing shards is offline. Chainspace assumes
trustworthy smart contracts. For Zilliqa, we assume blocks
are produced correctly and shard computation is offline.

3.4 Correctness

Public verifiability. All of these shard allocation protocols
achieve public verifiability except for RapidChain. Rapid-
Chain’s shard allocation is not publicly verifiable, as the de-
ployed Commensal Cuckoo protocol is not publicly verifiable.
Elastico and Zilliqa achieve public verifiability by using PoW
puzzles; Omniledger achieves public verifiability as the iden-
tity blockchain is operated publicly; Chainspace achieves
public verifiability using smart contracts; Monoxide and ETH
2.0 achieve public verifiability as they simply use MSBs of
addresses to shard nodes.

Liveness. As papers describing these sharded blockchains
do not specify parameters, we cannot determine the actual τ

and s for their liveness. Thus, we consider a shard allocation
protocol does not satisfy liveness when there exists an attack
that can stop the protocol from producing new system states.
All shard allocation protocols satisfy liveness except for Om-
niledger. The Collective Signing protocol [93] in RandHound
may lose liveness under a single Byzantine node [99].

Allocation-randomness. Elastico, Omniledger, RapidChain,
and Zilliqa satisfy allocation-randomness, as for each new
round all nodes move to other shards randomly. Chainspace
satisfies neither join-randomness nor update-randomness, as
nodes can choose which shard to join. Monoxide and ETH 2.0
also satisfy neither of them, as nodes determine their shards
using prefixes of addresses and never move among shards.

Unbiasibility. Elastico and Zilliqa do not fully achieve unbia-
sibility. Compared to the PoW puzzles in Bitcoin-like systems,
the PoW puzzles in Elastico and Zilliqa are relatively easy to
solve and each node in Elastico and Zilliqa solves the PoW
puzzle at least once within each round. This allows nodes
to solve multiple puzzles within a round to be allocated to a
preferred shard. Chainspace does not achieve unbiasibility, as
it does not satisfy allocation-randomness and nodes are free
to choose shards. Omniledger, RapidChain, Monoxide and
ETH 2.0 satisfy unbiasibility.

Allocation-privacy. Only Elastico and Zilliqa satisfy
allocation-privacy. Given a new random number output, each
node should find a valid PoW solution, which is probabilistic.
Thus, without revealing the PoW solution, other nodes cannot
know which shard a node belongs to. Therefore, Elastico and
Zilliqa require an extra peer finding step. Elastico and Zilliqa
call this step “overlay setup”, and a special shard called “di-
rectory committee” is responsible for helping nodes to find
their peers. Omniledger, RapidChain, and Chainspace do not
satisfy allocation-privacy as memberships can be queried
at the identity blockchain, the reference committee and the
ManageShards smart contract, respectively. Monoxide and

ETH 2.0 do not satisfy allocation-privacy, as nodes determine
their shards using their addresses, which are publicly known.

3.5 Performance

Communication complexity. For Elastico, the communi-
cation complexity of JoinShard(·) and UpdateShard(·) are
O(n f ), where n and f are the number of nodes and faulty
nodes in the network, respectively. In JoinShard(·) and
UpdateShard(·), the final committee needs to run the DRG
protocol, which consists of a vector consensus [83] with com-
munication complexity of O(n f ). Ideally, the final committee

has n
m nodes, and the communication complexity is O( n

m

f
m ) =

O( n
m

f
m ) = O(n f ) (m is constant). For Omniledger, the com-

munication complexity of JoinShard(·) is O(1), as a node
only communicates with the identity authority for joining the
system. The communication complexity of UpdateShard(·)
is O(n) or O(n3). The best case of UpdateShard(·) is that
the VRF-based leader election and RandHound are both suc-
cessful. This leads to the communication complexity of O(n).
The worst case is that nodes fallback to run the asynchronous
DRG [37], whose communication complexity is O(n3). For
RapidChain, the communication complexity of JoinShard(·)
and UpdateShard(·) are O(n2), as the Feldman VSS has the
communication complexity of O(n2) [55]. Monoxide and
ETH2.0 requires no communication for shard allocation, as
a node decides its shard by its address. Zilliqa requires O(1)
communication complexity as a node as a node needs the
latest block to calculate its shard.

Sybil cost. The Sybil cost of Elastico, RapidChain, and
Zilliqa comes from the computational work of solving PoW
puzzles for joining shards. Monoxide and ETH 2.0 do not aim
at addressing Sybil attacks within the shard allocation compo-
nent. Instead, they address Sybil attacks using Sybil-resistant
consensus protocols. Omniledger relies on the identity author-
ity to issue Sybil-resistant memberships but does not provide
details on how to issue them. Chainspace does not provide
details on issuing memberships either.

Self-balance. The self-balance of Elastico, Omniledger,
Monoxide, Zilliqa and ETH 2.0 is 1. For Elastico, Omniledger,
and Zilliqa, all nodes are shuffled after each round. The self-
balance of RapidChain, Chainspace, Monoxide and ETH 2.0
is 1−βt . When Γ = 1, no nodes will newly join the system,
and no node will move to other shards. Thus, self-balance is
n−βt n

n = 1−βt .

Operability. The operability of Elastico, Omniledger and
Zilliqa are 1

m , as all nodes are forced to change their shards for
each new round. The operability of RapidChain is max(1−
καtn,0), where κ ∈ [0,1] is the size of the interval in which
nodes should move to other shards, and αt is the percentage of
nodes joining the network at round t. Consider there are αtn
nodes joining the network. Each newly joined node causes the
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reallocation of κn other nodes. The operability then becomes
1− αt n·κn

n = 1−καtn. As operability cannot be smaller than
0 in reality, operability is max(1−καtn,0). We cannot deter-
mine the operability of Chainspace, as Chainspace does not
specify how many nodes can propose to change their shards.
Monoxide and ETH 2.0 have the operability of 1, as nodes in
Monoxide and ETH 2.0 never move to other shards.

4 Observation and insights

We observe from Table 2 that the evaluated shard allocation
protocols cannot simultaneously achieve optimal self-balance
and operability. In particular, operability γ is either 1 or 1

m (ex-
cept for RapidChain), and self-balance ω is either 1−βt or 1.
We formally analyse this observation, and prove that it is im-
possible to achieve optimal operability and self-balance simul-
taneously. We then observe a property non-memorylessness
that enables parametrisation of the trade-off between operabil-
ity and self-balance. Given that shard allocation with γ = 1

m
or ω = 1−βt is impractical, making this trade-off parametris-
able opens a new in-between design space and makes shard
allocation practical.

4.1 Impossibility and trade-off

Intuitively, optimal self-balance requires all nodes to be relo-
cated at each new state, so that the number of nodes can be
distributed evenly into different shards. Meanwhile, optimal
operability requires all nodes to stay within the same shard
across upon a new state, as this saves the cost of relocating
nodes. We study their relation and prove that a correct shard
allocation protocol cannot achieve both optimal self-balance
and operability. We first analyse the relationship between self-
balance and γ (per Definition 4). Then we show that unless
βt = 0, i.e., no node leaves the system, optimal self-balance
and operability cannot be achieved simultaneously.

Lemma 1. If a correct shard allocation protocol SA with m
shards satisfies update-randomness with γ, the self-balance ω

of SA is

ω = 1−
∣∣∣∣ (γm−1)βt

m−1

∣∣∣∣
where βt is the percentage of nodes leaving the network at
round t.

Proof. By Definition 10, for all k, the number nt
k of nodes in

shard k at round t is nt

m . Assuming there are βtnt nodes leaving
the network at round t. Let ∆nt

k be the number of leaving
nodes in shard k ∈ [1,m] at round t, we have ∑

m
k=1 ∆nt

k =
βtnt . Upon the next system state stt+1, each node executes
SA .UpdateShard(·), and its resulting shard complies with
the probability distribution in Definition 4. After executing
SA .UpdateShard(·), there are some nodes in shard k moving

to other shards, and there are some nodes from other shards
moving to shard k as well.

By the definition of operability, there are γ(nt
k−∆nt

k) nodes
in shard k that do not move to other shards. There are

(1−βt)nt − (nt
k−∆nt

k)

nodes that do not belong to shard k. By Definition 4, there are

1− γ

m−1
[(1−βt)nt − (nt

k−∆nt
k)]

nodes moving to shard k. Thus, the number nt+1
k of nodes in

shard k at round t +1 is

nt+1
k = γ(nt

k−∆nt
k)+

1− γ

m−1
[(1−βt)nt − (nt

k−∆nt
k)] (1)

=
γm−1
m−1

(nt
k−∆nt

k)+
(1− γ)(1−βt)

m−1
nt (2)

By Definition 10, to find the largest ω, we should find the

largest
|nt+1

i −nt+1
j |

nt , which can be calculated as

|nt+1
i −nt+1

j |
nt =

| γm−1
m−1 (n

t
i−∆nt

i)−
γm−1
m−1 (n

t
j−∆nt

j)|
nt (3)

=
| γm−1

m−1 (∆nt
i−∆nt

j)|
nt (4)

Thus, when (∆nt
i−∆nt

j) is maximal,
|nt+1

i −nt+1
j |

nt is maximal,
and ω is also maximal. As there are βtnt nodes leaving the
network in total, the maximal value of (∆nt

i −∆nt
j) is βtnt .

When ∆nt
i−∆nt

j = βtnt ,

ω = 1−
|nt+1

i −nt+1
j |

nt (5)

= 1−
| γm−1

m−1 (∆nt
i−∆nt

j)|
nt (6)

= 1−
| γm−1

m−1 βtnt |
nt = 1−

∣∣∣∣ (γm−1)βt

m−1

∣∣∣∣ (7)

Figure 3 visualises the relationship between self-balance
and operability, according to Lemma 1. The line never reaches
the point (1,1), indicating that SA can never achieve both
optimal self-balance and optimal operability. In addition, the
self-balance decreases to zero then increases with operability
increasing. When γ = 1

m , self-balance becomes 1, i.e., opti-
mal. With γ smaller than 1

m , (γm−1)βt
m−1 becomes less than zero

and keeps decreasing, so its absolute value keeps increasing.
When γ = 0, self-balance becomes 1− βt

m−1 . This is because
when γ = 0, all nodes are mandatory to change their shards.
As shard k has fewer shards, during SA .UpdateShard(·) it
loses fewer nodes but receives more nodes from other shards.
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Figure 3: Relationship between operability and self-balance.
We pick m = 1000 and βt = 0.0005 as an example.

Theorem 1. Let βt be the percentage of nodes leaving the net-
work at round t. It is impossible for a correct shard allocation
protocol SA with m shards to achieve optimal self-balance
and operability simultaneously for any βt 6= 0 and m > 1.

Proof. We prove this by contradiction. Assuming self-
balance ω = 1 and operability γ = 1. According to Lemma 1,
ω = 1 only when either βt = 0 or γm = 1. As γ = 1 and m > 1,
γm > 1. Thus, SA can achieve ω = 1 and γ = 1 simultane-
ously only when βt = 0. However, βt > 0, which leads to a
contradiction.

4.2 Parameterising the trade-off
As shown in Figure 3, (1,1−βt) and ( 1

m ,1) are two extreme
points on the line of relationship between self-balance and
operability. Shard allocation protocols lying at these two
points are impractical. In addition, none of our evaluated
protocols allows parametrising the trade-off between self-
balance and operability. We observe that, to parametrise this
trade-off, sharding protocols should be non-memoryless. In
signal processing, a system is memoryless if the output signal
at each time depends only on the input at that time [82]. On
the contrary, non-memoryless means the output does not only
depend on the current input, but also some previous inputs.

Definition 11 (Non-memoryless). We say a shard allocation
protocol SA is non-memoryless iff for any secret key ski, pub-
lic parameter pp, and shard k, the output of

SA .UpdateShard(ski, pp,stt ,k,πi,stt ,k,stt+1)

depends on system states earlier than stt .

As both self-balance and operability are related to the prob-
ability γ (see Definition 4) of nodes staying at the same shard,
to be able to parametrise self-balance and operability, a shard
allocation protocol should have its memory on the shard allo-
cation in the previous states.

Theorem 2. If a correct shard allocation protocol SA is
ω-self-balanced and γ-operable where ω ∈ (0,1− βt) and
γ ∈ ( 1

m ,1), then SA is non-memoryless.

Proof. We prove this by contradiction. As-
suming SA is memoryless, i.e., the output of
SA .UpdateShard(ski, pp,stt ,k,πi,stt ,k,stt+1) only depends
on stt and stt+1. This means there exists no δ ≥ 1 such that
πi,stt ,k involves any information of stt−δ.

When γ ∈ ( 1
m ,1), the distribution of the resulting

shard of SA .UpdateShard(·) is non-uniform, given the
update-randomness property. In this case, executing
SA .UpdateShard(·) requires the knowledge of k – index of
the shard that i locates at state stt . Thus, πi,stt+1,k′ – one of
the output of SA .UpdateShard(·) – should enable verifiers
to verify node i is at shard k at state stt .

“Verify node i is at shard k at state stt” is achieved by ver-
ifying πi,stt ,k. This means πi,stt+1,k′ depends on stt and πi,stt ,k.
Similarly, πi,stt ,k depends on stt−1 and πi,stt−1,k, and πi,stt−1,k
depends on stt−2 and πi,stt−2,k. Recursively, πi,stt ,k depends on
all historical system states. Thus, if the assumption holds,
then this contradicts update-randomness.

Remark 1. When γ = 1
m or 1, SA .UpdateShard(·) does

not rely on any prior system state. When γ = 1
m , the result-

ing shard of SA .UpdateShard(·) is uniformly distributed, so
SA .UpdateShard(·) can just assign nodes randomly accord-
ing to the incoming system state. When γ = 1, the result-
ing shard of SA .UpdateShard(·) is certain. All of our eval-
uated shard allocation protocols choose γ = 1

m or 1, except
for RapidChain using Commensal Cuckoo and Chainspace
allowing nodes to choose shards upon requests.

5 WORMHOLE– Shard allocation from ran-
domness beacon and VRFs

Based on the gained insights, we propose WORMHOLE, a
correct and efficient permissionless shard allocation proto-
col. WORMHOLE is constructed from a randomness bea-
con (e.g. [34, 35, 88, 92]) and a verifiable random function
(VRF) (e.g., [51, 61, 80]). WORMHOLE works correctly re-
gardless of the network environment or the portion of Byzan-
tine nodes, and supports parametrisation on the trade-off be-
tween self-balance and operability in Figure 3. We formally
analyse WORMHOLE’s security and experimentally evaluates
its efficiency. The evaluation results show that WORMHOLE
achieves practical efficiency.

5.1 Primitives

Verifiable random function [80] is a public-key version
of hash functions. In addition to the input string, VRF also
requires a pair of secret and public keys. Given an input string
and a secret key, one can compute a hash and a proof. Anyone
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knowing the associated public key and the proof can verify
whether the hash is from the input and whether the hash is
generated by the owner of the secret key. Some VRFs support
batch verification [44,65], i.e., verifying multiple VRF hashes
at the same time, which is faster than verifying VRF hashes
one-by-one. Formally, a VRF is a tuple of five algorithms:

• VRFKeyGen(λ)→ (sk, pk): On input a security param-
eter λ, outputs the secret/public key pair (sk, pk).

• VRFHash(sk,m) → h: On input sk and an arbitrary-
length string m, outputs a fixed-length hash h.

• VRFProve(sk,m)→ π: On input sk and m, outputs the
proof π for h.

• VRFVerify(pk,m,h,π)→ {0,1}: On input pk, m, h, π,
outputs the verification result 0 or 1.

• VRFBatchVerify(pk,~m,~h,~π) → {0,1}: On input pk,
a series of strings ~m = (m1, . . . ,mn), outputs ~h =
(h1, . . . ,hn), and proofs~π = (π1, . . . ,πn), outputs the ver-
ification result 0 or 1.

VRF should satisfy the following three properties [60].

• VRF-Uniqueness: Given a secret key sk and an input m,
VRFHash(sk,m) produces a unique valid output.

• VRF-Collision-Resistance: It is computationally hard to
find two inputs m and m′ such that VRFHash(sk,m) =
VRFHash(sk,m′).

• VRF-Pseudorandomness: It is computationally hard to
distinguish the output of VRFHash(·) from a random
string without the knowledge of the corresponding public
key and proof.

Randomness beacon [69] aims at generating random out-
puts periodically, which are usually constructed from dis-
tributed randomness generation (DRG) protocols [31, 37, 58,
63, 68, 72, 81, 86, 92] – a family of protocols where nodes
jointly produce a random output. A randomness beacon
should satisfy the following properties [88]:

• RB-Availability: No node can prevent the protocol from
making progress.

• RB-Unpredictability: No node can know the value of the
random output before it is produced.

• RB-Unbiasibility: No node can influence the value of the
random output.

• RB-Public-Verifiability: Everyone can verify the correct-
ness of the random output.
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Figure 4: An intuition of WORMHOLE. All numbers are in
hexadecimal, op = 4 and m = 163.

5.2 Overall design
WORMHOLE relies on a correct randomness beacon R B .
Each random output from R B updates the system state. Ac-
cording to Theorem 2 and Remark 1, if operability γ ∈ ( 1

m ,1),
then each membership proof should carry information of all
historical system states. This keeps the size of membership
proofs growing as the system operates, making the shard al-
location practical. To limit the size of membership proofs,
we introduce a Sybil resistance parameter sr. In round t, a
node calculates its allocated shard using the latest `= sr+ t
mod sr ∈ [sr,2sr) system states, rather than all system states.
Thus, the membership proof size is bound by O(`) = O(sr),
and nodes can join the system by computing over only a lim-
ited number of system states. The Sybil resistance parameter
sr also controls the Sybil resistance degree. With a larger
sr, a node should iterate over more system states for joining
the system, and the adversary should do a huge amount of
computation for spawning Sybil nodes.

Algorithm 2: Calculating the shard with VRF hashes.

Algorithm calculateShard(m,op,ht−`+1, . . . ,ht):
idx← t− `+1
for j ∈ [t− `+2, t] do

if MSB(op,h j) = LSB(op,hidx) then
idx← j // Can be cached for reuse

shard_id← hidx mod m
return shard_id

Figure 4 and Algorithm 2 show the intuition and construc-
tion of calculateShard(·), the function that calculates the al-
located shard, respectively. It takes an operability parameter
op for controlling the probability that a node moves to a new
shard, and VRF hashes of ` system states as input. It iterates
over ` VRF outputs while tracking the index idx that decides
the allocated shard. Let MSB(z,str) and LSB(z,str) be the z
most and least significant bits of str, respectively. For each iter-
ation, say j-th iteration, if LSB(op,h j) =MSB(op,hidx), then
idx is updated to j, otherwise idx remains unchanged. The
allocated shard shard_id is calaculated as hidx mod sr. With
a large op, the probability of moving to a new shard is small.
The index idx can be cached. Upon a new VRF hash ht+1,
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if (t + 1) mod sr 6= 0, then computing calculateShard(·)
does not need to go through all iterations, but only needs
to check if MSB(op,ht+1) = LSB(op,hidx), and compute
idx and shard_id accordingly. If (t + 1) mod sr = 0, then
t− `+ 1 6= t− `+ 2, and calculateShard(·) should be com-
puted from scratch.

5.3 Detailed construction

System setup (Algorithm 3). The setup algorithm takes
security parameter λ as input, and outputs the number of
shards m, the Sybil resistance parameter sr, and operability
parameter op.

Algorithm 3: System setup.

Algorithm Setup(λ):
m,op,sr← λ

return (m,op,sr)

Joining a shard (Algorithm 4). A node i executes
JoinShard(ski, pp,stt) in order to obtain a membership of
a shard at round t. First, node i calculates VRF hashes and
proofs of the latest ` system states, where `= t mod sr+ sr.
Node i calculates the ID k of the shard it belongs to by
calculateShard(·). The proof πi,stt ,k that node i has a valid
membership in shard k at state st includes node i’s public key
pki, a sequence of VRF hashes ht−`+1,ht−`+2, . . . ,ht , together
with their proofs πt−`+1,πt−`+2, . . . ,πt .

Algorithm 4: Joining a shard.

Algorithm JoinShard(ski, pp,stt):
m,op,sr← pp
`← t mod sr+ sr
for j ∈ [t− `+1, t] do

h j← VRFHash(ski,st j)
π j← VRFProve(ski,st j)

k← calculateShard(m,op,ht−`+1, . . . ,ht)
πi,stt ,k← (pki,ht−`+1, . . . ,ht ,πt−`+1, . . . ,πt)
Store πi,stt ,k in memory
return k,πi,stt ,k

Updating shard membership (Algorithm 5). Updating
shard membership follows a process similar to joining a shard.
After joining the system at round t, in the next round t + 1
node i only needs to calculate one more VRF hash of stt+1
and repeats the process in Algorithm 4 over the last ` states.
When t mod sr 6= 0, only a small set of nodes move to other
shards upon a state update. When t mod sr = 0, all nodes
are shuffled. By specifying a large sr, such shuffling can be
infrequent and the resulting overhead can be acceptable.

Algorithm 5: Updating shard membership.

Algorithm UpdateShard(ski, pp,stt ,k,πi,stt ,k,stt+1):
m,op,sr← pp
`← t mod sr+ sr
(pki,ht−`+1, . . . ,ht ,πt−`+1, . . . ,πt)← πi,stt ,k
`+← (t +1) mod sr+ sr
for j ∈ [t− `+1, t− `++1] do

Remove h j and π j from memory

ht+1← VRFHash(ski,stt+1)
πt+1← VRFProve(ski,stt+1)
k′← calculateShard(m,op,ht−`++2, . . . ,ht+1)
πi,stt+1,k′ ←
(pki,ht−`++2, . . . ,ht+1,πt−`++2, . . . ,πt+1)

Store πi,stt+1,k′ in memory
return k′,πi,stt+1,k′

Verifying shard membership (Algorithm 6). To ver-
ify a membership proof πi,stt ,k, the verifier executes
VRFBatchVerify(·) to verify ` VRF hashes, and executes
calculateShard(·) over these VRF hashes to verify its output
against k. Note that verification results can be cached: upon
an updated membership proof πi,stt+1,k′ , the verifier can reuse
most of the computation in verifying πi,stt ,k, including verifi-
cation results of previous VRF hashes and calculateShard(·).

Algorithm 6: Verifying shard membership.

Algorithm VerifyShard(pp, pki,stt ,k,πi,stt ,k):
m,op,sr← pp
`← t mod sr+ sr
(pki,hlast , . . . ,ht ,πlast , . . . ,πt)← πi,stt ,k
if last 6= t− `+1 then

return 0

~st,~h,~π←
(stlast , . . . ,stt),(hlast , . . . ,ht),(πlast , . . . ,πt)
// Verification results be cached

if VRFBatchVerify(pki,~st,~h,~π) = 0 then
return 0

if k 6= calculateShard(m,op,ht−`+1, . . . ,ht) then
return 0

return 1

5.4 Theoretical analysis

Correctness. We defer full security proofs to Appendix A,
and summarise them as follows. As long as R B works
correctly, WORMHOLE satisfies liveness, as a node only
needs its key pair and system states for JoinShard(·)
and UpdateShard(·). WORMHOLE satisfies unbiasibility, as
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VRFHash(·) and calculateShard(·) are deterministic func-
tions, and system states are unbiasible, guaranteed by R B .
WORMHOLE satisfies join-randomness, as VRF produces
uniformly distributed outputs. WORMHOLE satisfies update-
randomness. When t 6= k · sr, the probability that two random
outputs share the same op-bit substring is 1

2op . Within the
probability 1

2op , the probability that two random outputs result
in the same shard is 1

m . This leads to γ = 1− 1
2op · m−1

m =

1− m−1
m·2op . When t = k · sr, all nodes will be shuffled, leading

to γ = 1
m . Thus, WORMHOLE satisfies allocation-randomness.

WORMHOLE satisfies allocation-privacy, as one cannot com-
pute JoinShard(·) or UpdateShard(·) for a node without
knowing its secret key. The probability of guessing shard
allocation follows the proof of allocation-randomness.

Performance metrics. The communication complexity of
JoinShard(·) and UpdateShard(·) of WORMHOLE are O(1),
as node only needs to receive a constant number of sys-
tem states for executing JoinShard(·) and UpdateShard(·).
WORMHOLE resists Sybil attacks using computation. To ex-
ecute JoinShard(·), a node should executes VRFHash for `
times, where ` = t mod sr+ sr. To increase the Sybil cost
without affecting verification overhead, one can incorporate
VRFs with time-asymmetric cryptographic primitives, such
as Verifiable Delay Functions [32] and PoW. WORMHOLE’s
operability γ = 1− m−1

m·2op . By Proof A,

γ = 1− m−1
m
· 1

2op = 1− m−1
m ·2op

WORMHOLE’s self-balance ω = 1−βt +
βt

2op . By Defini-
tion 1,

ω = 1−
∣∣∣∣ (γm−1)βt

m−1

∣∣∣∣ (8)

= 1− 1
m−1

· [(1− m−1
m ·2op )m−1]βt (9)

= 1− 1
m−1

· [(m−1)− m−1
2op ]βt (10)

= 1− (1− 1
2op )βt (11)

= 1−βt +
βt

2op (12)

5.5 Experimental evaluation
To demonstrate WORMHOLE’s efficiency, we implement and
benchmark WORMHOLE. Our evaluation shows that WORM-
HOLE introduces negligible overhead.

Implementation. We implement WORMHOLE in Rust
programming language. We use rug [6] for large integer
arithmetic and bitvec [4] for bit-level operations. We use
w3f/schnorrkel [19], which implements the standardised
VRF [61] with the Schnorr-style aggregatable discrete log
equivalence proofs (DLEQs) [44] based on the Ed25519 [9]

elliptic curve with Ristretto [18] compressed points. The size
of keys, VRF hashes and proofs are 32 Bytes, 32 Bytes and
96 Bytes, respectively. We use random strings using rand [5]
for simulating randomness beacon. We sample 20 executions
for each configuration, i.e., a function with a unique group of
parameters. We write the benchmarks using cargo-bench [3]
and criterion [7]. We specify the O3-level optimisation for
compilation, and conduct all experiments on a MacBook Pro
with a 2.2 GHz 6-Core Intel Core i7 Processor and a 16 GB
2400 MHz DDR4 RAM.
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Figure 5: Evaluation of WORMHOLE.

Computation overhead. We benchmark WORMHOLE’s
JoinShard(·), UpdateShard(·) and VerifyShard(·). For
VerifyShard(·), previous results can be cached. We test ` ∈
[256,512,1024,2048,5096,10192,20384]. Recall that ` ∈
[sr,2sr), when `= 20384, sr is at least 10192, i.e., all nodes
are shuffled for every 10192 new system states. In Bitcoin’s
setting where a block is generated for every ten minutes, it
takes 142 days for each global shuffling.

Figure 5 shows the evaluation results. For newly joined
nodes, the execution time of JoinShard(·) and VerifyShard(·)
increases linearly with `. When `= 20384, JoinShard(·) and
VerifyShard(·) take 3000 and 800 milliseconds, respectively.
For existing nodes, UpdateShard(·) and VerifyShard(·) take
approximately 0.15 and 0.13 millisecond regardless of `, re-
spectively. To increase Sybil cost, one can incorporate VRFs
with time-asymmetric primitives such as Verifiable Delay
Functions [32] and PoW.

Storage overhead. A membership proof includes a public
key, ` VRF hashes and ` VRF proofs. Thus, in our implemen-
tation, a membership proof takes 32+32`+96`= 32+128`
Bytes. When ` = 20384, each membership proof takes 2.5
MB. Consider Bitcoin’s setting that, each node maintains
persistent connections and synchronises states with at most
125 peers [1]. This takes at most 125 ∗ 2.5MB ≈ 312.5MB,
which is negligible compared to the ledger that can take hun-
dreds of Gigabytes. The proof size can be further optimised if
the VRF supports aggregation of signatures, and we consider
constructing such VRFs as future work.

Communication overhead. In WORMHOLE, each node ex-
ecutes JoinShard(·) or UpdateShard(·) locally to obtain its
shard membership. The only communication overhead in-

12



troduced by WORMHOLE is nodes exchanging membership
proofs. According to the storage overhead analysis, when
`= 20384, each node receives at most 312.5 MB at the time
of joining the network. Upon a new system state, each node
computes the VRF on it and broadcasts the VRF hash and
proof, which take 128 Bytes. Thus, upon each system state,
a node receives at most 125 ∗ 128Bytes ≈ 15.6KB. This is
negligible compared to exchanging blockchain transactions.

6 Discussions

Replacing DRG with randomness beacon. DRG usually
relies on strong assumptions and suffer from high communi-
cation complexity. Replacing them with a randomness beacon
can significantly simplify assumptions, improve security, and
reduce communication overhead of shard allocation proto-
cols. For a fairer comparison, we evaluate DRG-based shard
allocation protocols while replacing DRG protocols with an
external randomness beacon.

The evaluation results in Table 3 show that all protocols im-
prove much in terms of the system model and communication
complexity. However, these shard allocation protocols still
suffer from some problems they originally have, and WORM-
HOLE still outperforms them. For example, RapidChain still
lacks public verifiability; Elastico and Zilliqa are still partially
biasible; Omniledger and RapidChain still do not satisfy pri-
vacy. In addition, Omniledger should still assume an identity
authority for approving nodes to join the system. Moreover,
all of them still suffer from poor operability.
The randomness beacon assumption. We consider ran-
domness beacon as an acceptable assumption. First, random-
ness beacon is a weak trusted third party – weaker than the
identity authority and the smart contract in Omniledger and
Chainspace, respectively. In addition, assuming randomness
beacons has been accepted in some works [33]. Moreover,
there have been secure and practical randomness beacons
based on blockchains [34], Publicly Verifiable Secret Shar-
ing (PVSS) [38, 88, 92], Verifiable Delay Functions [54, 75],
Nakamoto consensus [64], and/or real-world entropy [34, 41].
Some countries [2,17,69] and organisations [8,20] also deploy
their own public randomness beacons.
Construction without allocation-privacy. As mentioned
in §2.2, allocation-privacy is not always a desired property.
To remove allocation-privacy from WORMHOLE, one can
replace VRFHash(ski,stt) with H(pki||stt), where ski and pki
are key pairs of node i, stt is the system state, and H(·) is a
cryptographic hash function.

7 Conclusion

Designing permissionless sharded blockchains remains as
an open challenge, and one of the key reasons is the over-
looked shard allocation protocol. In this paper, we fill this

gap by formally defining the permissionless shard allocation
protocol, evaluating existing shard allocation protocols, ob-
serving insights and constructing correct and efficient shard
allocation protocol WORMHOLE. In the future, we will keep
improving WORMHOLE, and propose concrete solutions on
integrating WORMHOLE into sharded blockchains and other
permissionless systems.
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A Security proofs of WORMHOLE

Lemma 2. If the deployed R B generates bτ · sc random out-
puts in any s round (where τ ∈R+ and s ∈N+), then WORM-
HOLE satisfies (τ,s)-liveness.

Proof. We prove this by contradiction. Assuming that
WORMHOLE does not satisfy (τ,s)-liveness, i.e., there ex-
ists a sequence of s rounds when the system generates less
than bτ · sc states. By RB-Availability, no node can prevent
R B from producing fresh randomness. Each new random out-
put updates the system state. If R B generates bτ · sc random
outputs in any s rounds, then R B updates the system state for
bτ ·sc times in any s rounds. Thus, if WORMHOLE does not sat-
isfy (τ,s)-liveness, then this contradicts RB-Availability.

Lemma 3. WORMHOLE satisfies unbiasibility.

Proof. We prove this by contradiction. Assuming that
WORMHOLE does not satisfy unbiasibility: given a system
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state, an adversary can manipulate the probability distribu-
tion of the output shard of JoinShard(·) or UpdateShard(·)
with non-negligible probability. This consists of three attack
vectors: 1) the adversary can manipulate the system state;
2) when SA .JoinShard(·) or SA .UpdateShard(·) are proba-
bilistic, the adversary can keep generating memberships until
outputting a membership of its preferred shard; and 3) the ad-
versary can forge proofs of memberships of arbitrary shards.

By RB-Unbiasibility, the randomness produced by R B is
unbiasible, so the system state of WORMHOLE is unbiasible.
By VRF-Uniqueness, given a secret key, the VRF hash of the
system state is unique, which eliminates the last two attack
vectors. In addition, the uniqueness of the VRF hash of the
unbiasible system state indicates that the VRF hash is unbi-
asible. The output shard of JoinShard(·) or UpdateShard(·)
is a modulus of the VRF hash, which is also unbiasible. This
eliminates the first attack vector. Thus, if WORMHOLE does
not resist against the first attack vector, then this contradicts
RB-Unbiasibility; and if WORMHOLE does not resist against
the second and/or the last attack vectors, then this contradicts
VRF-Uniqueness.

Lemma 4. WORMHOLE satisfies join-randomness.

Proof. We prove this by contradiction. Assuming that
WORMHOLE does not satisfy join-randomness, i.e., the prob-
abilistic of a node joining a shard k ∈ [1,m] is 1

m +ε for some
k and non-negligible ε. Running JoinShard(·) requires the
execution of VRFHash(·) over a series of system states. By
VRF-Pseudorandomness, VRF hashes of system states are
pseudorandom. As a modulo of a VRF hash, the output shard
of JoinShard(·) is also pseudorandom. Thus, if WORMHOLE
does not satisfy join-randomness, then this contradicts VRF-
Pseudorandomness.

Lemma 5. WORMHOLE satisfies update-randomness.

Proof. We prove this by contradiction. Assuming that
WORMHOLE does not satisfy update-randomness, i.e., with
non-negligible probability, there is no γ such that the probabil-
ity of a node joining a shard k complies with the distribution
in Definition 4. When t = k ·sr, the last VRF hash will change.
When this happens, all nodes will be shuffled. Note that this
is not frequent when sr is large. By VRF-Pseudorandomness,
the probability of moving to each shard is same. Thus, there
is a γ = 1

m that makes the output shard of UpdateShard(·) to
comply with the distribution in Definition 4.

When t 6= k · sr, the last VRF hash remains unchanged.
In UpdateShard(·), given the last VRF hash, the probability
that the op MSBs of the new VRF hash equal to op LSBs
of the last VRF hash is 1

2op . By VRF-Pseudorandomness,
the probability of moving to each other shard is same. Thus,
there is a γ = 1− 1

2op · m−1
m = 1− m−1

m·2op that makes the output
shard of UpdateShard(·) to comply with the distribution in
Definition 4.

Thus, if WORMHOLE does not satisfy update-randomness,
then this contradicts VRF-Pseudorandomness.

Lemma 6. WORMHOLE satisfies allocation-privacy.

Proof. This follows proofs of Lemma 4 and 5.

Theorem 3. WORMHOLE is a correct shard allocation pro-
tocol.

Proof. By Lemma 2-6, WORMHOLE is a correct shard allo-
cation protocol.

B Related work

We briefly review existing research on sharding distributed
systems and compare our contributions with two studies sys-
tematising blockchain sharding protocols.

Sharding for CFT distributed systems. Sharding has been
widely deployed in crash fault tolerance (CFT) systems to
raise their throughput. Allocating nodes to shards in a CFT
system is straightforward, as there is no Byzantine adver-
saries in the system, and the total number of nodes is fixed
and known to everyone [39, 42, 74]. The main challenge
is to balance the computation, communication, and storage
workload. Despite a large number of load-balancing algo-
rithms [27, 28, 40, 45, 49], none of them is applicable in the
permissionless setting as they do not tolerate Byzantine faults.

Distributed Hash Tables. Many peer-to-peer (P2P) storage
services [73, 84] employ Distributed Hash Tables (DHT) [87]
to assign file metadata, i.e., a list of keys, to their responsible
nodes. In a DHT, nodes share the same ID space with the keys;
a file’s metadata is stored at the nodes whose IDs are closest
to the keys. Although designed to function in a permissionless
environment, DHTs are vulnerable to several attacks [48, 76,
77], therefore are not suitable for blockchains, which demands
strong consistency on financial data.

Distributed Slicing. Distributed Slicing [67] aims at group-
ing nodes with heterogeneous computing and storage capaci-
ties in a P2P network to optimise resource utilisation. In line
with CFT systems, these algorithms [47, 56, 62, 79] require
nodes to honestly report their computing and storage capaci-
ties, therefore are not suitable in a Byzantine environment.

Evaluation of sharded blockchains. Wang et al. [95] pro-
pose an evaluation framework based on Elastico’s architec-
ture; Avarikioti et al. [29] formalise sharded blockchains by
extending the model of Garay et al. [57]. Both of them aim at
evaluating the entire sharded designs, and put most efforts on
DRG or cross-shard communication, neglecting the security
and performance challenges of shard allocation.
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C Details of evaluated shard allocation proto-
cols

We attach the pseudocode of our evaluated proposals. Algo-
rithm 7-10 are pseudocode of Elastico, Omniledger, Rapid-
Chain and Zilliqa, respectively. We do not present pseudocode
for Monoxide or ETH 2.0, as their shard allocation protocols
simply distribute nodes to shards according to their IDs’ pre-
fixes. We do not present pseudocode for Chainspace, as it
does not specify details on how nodes join the system and
nodes choose to move to other shards by themselves.

C.1 Modelling PoW.

PoW is frequently used in shard allocation protocols. We
model PoW as follows. PoW consists of two algorithms
(PoWWork,PoWVerify):

PoWWork(T, in)→ (nonce,out) : A probabilistic algorithm.
On input a difficulty parameter T and an input in, outputs
a string nonce and an output out.

PoWVerify(nonce,T, in)→{0/1} : A deterministic algo-
rithm. On input nonce, T and in, outputs 0 (false) or
1 (true).

C.2 Elastico

Algorithm 7 describes the process of Elastico’s shard alloca-
tion protocol. In Elastico, a new block will trigger the state
update, which triggers the shard allocation protocol. Elastico’s
shard allocation protocol employs a commit-then-reveal DRG
protocol to produce randomness, and PoW to assign nodes
to different shards. Elastico has a special shard called final
committee, which is responsible for executing the DRG proto-
col. With a valid randomness as input, a node needs to run a
PoW satisfying a specified difficulty parameter. The prefix of
a valid PoW solution is ID of the shard that the node should
join.

The DRG protocol works as follows. Let ns =
n
m and fs =

f
m

be the number of nodes and faulty nodes in the final com-
mittee, respectively. First, each node in the final committee
chooses a random string, then broadcasts its hash to others.
The protocol assumes each node will receive ≥ 2

3 ns hashes
after broadcasting. Second, nodes execute a vector consen-
sus [83] to agree on a set of hashes. The vector consensus
works under synchronous networks, and has the communi-
cation complexity of O(ns

fs). Third, each node broadcasts
its original random string to other nodes, and the protocol
assumes each node will have ≥ 2

3 ns signed string/hash pairs.
Last, each node can arbitrarily choose 1

2 ns +1 strings, then
XOR them to get a valid randomness.

C.3 Omniledger

Algorithm 8 describes the process of Omniledger’s shard al-
location protocol. Similar to Elastico, Omniledger’s shard
allocation protocol is also constructed from DRG. In Om-
niledger, all nodes in the network jointly run RandHound [92]
- a leader-based DRG protocol tolerating 1

3 faulty nodes - to
generate the randomness. RandHound adapts Publicly Veri-
fiable Secret Sharing (PVSS) [89] to make the randomness
publicly verifiable, and CoSi [93] to improve the communi-
cation and space complexity of generating multi-signatures.
It has the communication complexity of O(n), works under
asynchronous network, and tolerates 1

3 faulty nodes [92].
As RandHound is leader-based, nodes should elect a leader

before running RandHound. In Omniledger, nodes run a
VRF [80]-based cryptographic sortition to elect a leader. Each
node first obtains the whole list of peers from the identity
authority. Then, each node computes a ticket by running
VRFHash(ski,”leader”||peers||v), where ski is its secret key,
peers is the list of peers, and v is a view counter starting from
zero. Each node then broadcasts its ticket, and waits for a
timeout ∆. After ∆, each node takes the one with smallest
ticket as the leader, and the leader should start RandHound.
If the leader does not start RandHound after another ∆, nodes
will increase the view counter by 1, compute another ticket
and broadcast it again.

Omniledger assumes the leader election is highly possi-
ble to succeed. However, if the sortition fails for five times,
nodes quit the leader election as well as RandHound. Instead,
nodes produce the randomness using an asynchronous coin-
tossing protocol [37]. The coin-tossing protocol [37] does not
scale due to high communication complexity of O(n3), but
guarantees safety under asynchronous networks.

After generating a randomness, some new nodes can join
the system, and some existing nodes will change their shards.
Omniledger gradually swaps in newly joined nodes: for each
state update, each shard can only swap in ≤ n

m nodes from
pending nodes. Omniledger assumes a centralised identity
authority to manage pending nodes. Upon a new randomness,
the identity authority randomly selects some pending nodes
to join the system.

Similar with Elastico, Omniledger shuffles existing nodes
upon each randomness. From the identity authority, each node
knows all other nodes in the network. Upon a new random-
ness, each node can permute an order on the list of peers.
Each node then divides the permuted list of peers to equally
sized intervals, and nodes in an interval belong to a shard.

C.4 RapidChain

Algorithm 9 describes the process of RapidChain’s shard al-
location protocol. In RapidChain, a node is required to find a
valid PoW solution before joining a shard. RapidChain em-
ploys a DRG protocol only for preventing long range attacks,
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where one pre-computes PoW solutions in order to take ad-
vantage of consensus in the future. Nodes in a special shard
called reference committee executes DRG periodically. The
DRG protocol works as follows. First, each node in the ref-
erence committee chooses a random string and shares it to
others using Feldman Verifiable Secret Sharing (VSS) [55].
Second, each node adds received shares together to a single
string, then broadcasts it. Last, each node calculates the final
randomness using Lagrange interpolation on received strings.
Feldman VSS assumes a synchronous and complete network,
as the VSS-share step requires each node to receive all shares
from other nodes. Feldman VSS cannot tolerate any faults. If
there is a node who fails to send shares to all other nodes, the
protocol will restart. That is, a single faulty node can make
the protocol to lose liveness.

RapidChain’s shard allocation protocol employs the Com-
mensal Cuckoo rule [90] to partition nodes into different
shards. Each node is pseudorandomly mapped to a number
in [0,1). The interval is then divided into smaller segments,
and nodes within the same segment belong to the same shard.
When a node a joins the network, it will “push forward” nodes
in a constant-size interval surrounding a to other shards. This
guarantees the load is balanced adaptively with new nodes
joining.

Commensal Cuckoo works under asynchronous model.
However, as Feldman VSS assumes synchrony, RapidChain’s
shard allocation protocol should assume synchrony to remain
correct. Like Feldman VSS, Commensal Cuckoo assumes
crash faults. As Commensal Cuckoo does not provide pub-
licly verifiable membership, a Byzantine node can choose not
to obey the protocol and stay in any shard freely.

C.5 Chainspace
Chainspace uses a smart contract called ManageShards to
manage nodes’ membership. Nodes can request to move to
other shards by invoking transactions of ManageShards.

Note that ManageShards runs upon Chainspace itself.
While the security of ManageShards relies on the whole sys-
tem’s security, the system’s security relies on nodes. Mean-
while, nodes’ membership rely on ManageShards, which
leads to a chicken-and-egg problem. To avoid this chicken-
and-egg problem, Chainspace assumes ManageShards exe-
cutes correctly.

C.6 Monoxide
Monoxide’s identity system is similar to Bitcoin. Nodes are
free to create identities, and nodes are assigned to differ-
ent shards according to their addresses’ most significant bits
(MSBs).

Unlike other protocols, Monoxide’s shard allocation proto-
col does not seek to solve all problems in our formalisation.
Instead, it solves these problems by employing PoW-based

consensus upon the shard allocation protocol. In PoW-based
consensus, the voting power is decided by computing power
(a.k.a. mining power), and Sybil attacks can no longer be
profitable.

C.7 Zilliqa
Zilliqa [22] is a permissionless sharded blockchain that claims
to achieve the throughput of over 2,828 transactions per sec-
ond. It follows the design of Elastico [78], but with several
optimisations. Our evaluation is based on Zilliqa’s whitepa-
per [94], Zilliqa’s developer page [24], and Zilliqa’s source
code (the latest stable release v5.0.1) [25]. Algorithm 10 de-
scribes the process of Zilliqa’s shard allocation protocol.

Different from Elastico which runs a DRG, Zilliqa simply
uses the SHA2 hash of the latest block as randomness. Taking
the randomness as input, each node generates two valid PoW
solutions. Each node should solve two PoW puzzles within
a time window of 60 seconds, otherwise it cannot join any
shard for this epoch. This means propagating PoW solutions
should finish within a time bound, which implicitly assumes
synchronous network. The first PoW is used for selecting
nodes to form the final committee, and the second PoW is
used for distributing the rest nodes to other committees. The
final committee is responsible for collecting nodes in the
network and helping nodes find their peers in the same shards.

C.8 Ethereum 2.0
Ethereum 2.0 (ETH 2.0) is the next generation of
Ethereum [97]. ETH 2.0 aims at achieving better performance
by sharding, better privacy by using zkSNARKs, and better
energy efficiency by switching from PoW to PoS. There is
neither official whitepaper nor implementation for ETH 2.0.
Instead, ETH 2.0 is still under active development, and its
design is disaggregated in their wiki [13] and blogs [15, 36],
and the Ethereum community provides the specification [11]
without having a technical whitepaper first. Our analysis
is based on the latest (29/10/2019) public official materi-
als, including the sharding FAQ of Ethereum Wiki branch
6aee544ccc427490e443639ed29a1e4597cb898e [14] and the
ETH 2.0 specification v0.9.0 Tonkatsu [12].

Following ETH1.0, ETH 2.0 has two types of accounts:
externally-owned account for wallets and smart contract ac-
count for smart contracts. Each account has a unique ID, and
accounts are assigned to different shards according to their
IDs. A node should use an externally-owned account to mine
Ether, the native cryptocurrency of Ethereum.

Like Monoxide, ETH 2.0 addresses Sybil attacks and load
balance in the consensus layer. More specifically, ETH 2.0
plans to employ Proof-of-Stake (PoS)-based consensus. In
PoS-based consensus, the voting power is decided by cryp-
tocurrency deposits a.k.a. staking power. As holding cryp-
tocurrency deposits can be expensive, Sybil attacks can no
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longer be profitable.
Note that ETH 2.0 also employs a DRG protocol (called

RANDAO [16]), but it is used for sampling “validators” (a
subset of nodes that can produce blocks) rather than shard
allocation.

Algorithm 7: Elastico’s shard allocation protocol.
Preliminaries:

• State is the blockchain, and state update is triggered by
a new block.

• DRG is the commit-then-reveal DRG protocol.

• stt .T is the mining difficulty at state stt .

• t is the block template for the miner to mine.

Algorithm Setup(λ):
m← λ

return m,st0
Algorithm JoinShard(ski, pp,stt):

m← pp
if i is in final committee then

Run DRG with peers in final committee to get
a randomness as stt .R
Broadcast stt .R

else
Wait for a valid stt .R

nonce,out← PoWWork(stt .T,stt .R||t)
k← out mod m
π← (nonce,stt , t)
return k,π

Algorithm UpdateShard(ski, pp,stt ,k,πi,stt ,k,stt+1):
(k′,π,stt+1)← JoinShard(ski, pp,stt+1)
return k′,π

Algorithm VerifyShard(pki,stt ,k,πi,stt ,k):
m← pp
(nonce,stt+1, t)← πi,stt ,k
if stt+1 6= stt then

return 0
else if PoWVerify(nonce,stt .T,stt .R||t) == 0
then

return 0
else if k 6= out mod m then

return 0
return 1
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Algorithm 8: Omniledger’s shard allocation protocol.
Preliminaries:

• State is maintained and periodically updated by the
identity authority I.

• RandHound is the RandHound DRG protocol.

• CoinToss is the asynchronous Coin Toss protocol [37].

Algorithm Setup(λ):
m← λ

return m,st0
Algorithm JoinShard(ski, pp,stt):

Register pki on I
Get k, π from I
return k,π

Algorithm UpdateShard(ski, pp,stt ,k,πi,stt ,k,stt+1):
peers← all peers stored in I at stt
for v ∈ [0,5) do

ticketi← VRFHash(ski,“leader′′||peers||v)
Broadcast ticketi
Collect tickets until timer that timeouts in ∆

Find the smallest ticket as ticket j
if ticketi == ticket j then

πticket,i←
VRFProve(ski,“leader′′||peers||v)
Broadcast πticket,i
Start RandHound as a leader
generate the randomness from RandHound
as stt+1.R
break

else
Reset timer (still timeouts in ∆)
Wait for πticket, j within timer
Wait for pk j to start
stt+1.R← RandHound within timer
if Receive RandHound message from pk j
before ∆ then

Execute stt+1.R← RandHound(·)
break

v+= 1

if stt .R == None then
Run CoinToss with all peers to generate the
randomness as stt .R

Calculate a permutation p using stt .R
k′← p[pki]
return k′,⊥

Algorithm VerifyShard(pki,stt ,k,πi,stt ,k):
Calculate a permutation p using stt .R
return p[pki] == k

Algorithm 9: RapidChain’s shard allocation protocol.
Preliminaries:

• State is the blockchain, and state update is triggered by
a new block.

• stt .T is the mining difficulty at state stt .

• DRG is the Feldman VSS-based DRG protocol.

• Cr is the reference committee.

Algorithm Setup(λ):
m← λ

return m,st0
Algorithm JoinShard(ski, pp,stt):

nonce,out←
PoWWork(stt .T, timestamp||pki||stt .R)
Send nonce,out to Cr
Cr creates a list of all active nodes l at last state st−
Cr uses stt .R to randomly assign node i to a shard k
Cr enforces nodes near node i to move to other
shards
return k,⊥

Algorithm UpdateShard(ski, pp,stt ,k,πi,stt ,k,stt+1):
if Node i is in Cr then

Run DRG with peers in Cr to get a randomness
as stt+1.R

if Cr asks node i to move to another shard k′ then
Move to shard k′

else
k′ = k

return k′,⊥
Algorithm VerifyShard(pki,stt ,k,πi,stt ,k):

return 1
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Algorithm 10: Zilliqa’s shard allocation protocol.
Preliminaries:

• State is the blockchain, and state update is triggered by
a new block.

• stt .R and stt .T are the hash of the last block and the
mining difficulty at state stt , respectively.

• t is the block template for the miner to mine.

Algorithm Setup(λ):
m← λ

return m,st0
Algorithm JoinShard(ski, pp,stt):

m← pp
nonce,out← PoWWork(stt .T,stt .R||t)
k← out mod m
π← (nonce,stt , t)
return k,π

Algorithm UpdateShard(ski, pp,stt ,k,πi,stt ,k,stt+1):
(k′,π,stt+1)← JoinShard(ski, pp,stt+1)
return k′,π

Algorithm VerifyShard(pki,stt ,k,πi,stt ,k):
m← pp
(nonce,stt+1, t)← πi,stt ,k
if stt+1 6= stt then

return 0
else if PoWVerify(nonce,stt .T,stt .R||t) = 0 then

return 0
else if k 6= out mod m then

return 0
return 1
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