
Analysing and Improving Shard Allocation
Protocols for Sharded Blockchains

Runchao Han∗†, Jiangshan Yu∗¶, Ren Zhang‡
∗Monash University, {runchao.han, jiangshan.yu}@monash.edu

†CSIRO-Data61
‡Nervos Foundation, ren@nervos.org

Abstract— Sharding is a promising approach to scale permis-
sionless blockchains. In a sharded blockchain, participants are
split into groups, called shards, and each shard only executes
part of the workloads. Despite its wide adoption in permissioned
systems, transferring such success to permissionless blockchains
is still an open problem. In permissionless networks, participants
may join and leave the system at any time, making load balancing
challenging. In addition, the adversary in such networks can
launch the single-shard takeover attack by compromising a single
shard’s consensus. To address these issues, participants should
be securely and dynamically allocated into different shards.
However, the protocol capturing such functionality – which we
call shard allocation – is overlooked.

In this paper, we study shard allocation protocols for per-
missionless blockchains. We formally define the shard allocation
protocol and propose an evaluation framework. We apply the
framework to evaluate the shard allocation subprotocols of seven
state-of-the-art sharded blockchains, and show that none of them
is fully correct or achieves satisfactory performance. We attribute
these deficiencies to their redundant security assumptions that
limit their performance, and their extreme choices between two
performance metrics: self-balance and operability. We observe
and prove the fundamental trade-off between these two metrics,
and identify a new property memory-dependency that enables
parametrisation over this trade-off. Based on these insights, we
propose WORMHOLE, a correct and efficient shard allocation
protocol with minimal security assumptions and parametrisable
self-balance and operability. We implement WORMHOLE and
evaluate its overhead and performance metrics in a network with
128 shards and 32768 nodes. The results show that WORMHOLE
introduces little overhead, achieves consistent self-balance and
operability with our theoretical analysis, and allows the system
to recover quickly from load imbalance.

I. INTRODUCTION

Sharding is a common approach to scale distributed systems.
It partitions nodes in a system into groups, called shards.
Nodes in different shards work concurrently, so the system
scales horizontally with the increasing number of shards.
Sharding has been widely adopted for scaling permissioned
systems, in which the set of nodes are fixed and predefined,
such as databases [1], file systems [2], and permissioned
blockchains [3].

Given the success of permissioned sharded systems, shard-
ing is regarded as a promising technique for scaling per-
missionless blockchains, where nodes can join and leave
the system at any time. However, permissionless systems
need to tolerate Byzantine nodes that may attack the system,

¶ Corresponding author.

whereas traditional sharded systems [4]–[8] only need to
tolerate crash faults. In sharded blockchains, the adversary
can launch single-shard takeover attacks (aka 1% attacks) [9],
[10] by gathering its nodes to a single shard and compromise
a shard’s consensus. As voting power is split among shards,
launching such attacks requires much fewer nodes compared to
51% attacks in non-sharded blockchains. To resist single-shard
takeover attacks, sharded blockchains should prevent nodes
from choosing shards freely. Without a global view of the
network and centralised membership management, a common
solution is to randomly allocate nodes into shards.

Achieving the optimal resistance against single-shard
takeover attacks requires load balance, so that each shard
contains a comparable number of nodes. Otherwise, shards
with few nodes are likely to be compromised. Meanwhile,
permissionless systems suffer from node churn [11]: nodes
may join or leave the system at any time. To achieve load
balance under node churn, permissionless sharding protocols
need to adaptively re-balance nodes over time. An intuitive
solution is to randomly shuffle all nodes for every epoch.
However, when a node moves to a new shard, it needs to
synchronise the new shard’s ledger and find new peers, which
introduces non-negligible overhead and makes the node tem-
porarily unavailable. The blockchain community recognises
this issue as the reshuffling problem [12], [13].

To address the above issues, sharded blockchains should
employ a mechanism that allocates nodes into shards se-
curely, randomly, and dynamically. Existing works on design-
ing [14]–[20] and analysing [21]–[23] sharded permissionless
blockchains focus on cross-shard communication and intra-
shard consensus. A systematic study on this core component,
which we call shard allocation, is still missing. Figure 1
provides an example of shard allocation. Five nodes are
allocated in shard #3 and four of them later left the system.
To prevent the only node in shard #3 from becoming a single
point of failure, the system has to allocate some nodes to shard
#3 to re-balance the shards.

Contributions. This paper provides the first study on shard
allocation, the overlooked core component for shared per-
missionless blockchains. In particular, we formalise the shard
allocation protocol, evaluate the shard allocation protocols of
existing blockchain sharding protocols, observe insights and
propose WORMHOLE, a correct and efficient shard allocation

Shard 3

Shard 2

Shard 4

Shard 1

Shard 3

Shard 2

Shard 4

Shard 1

shard
allocation

node
churn

Joining
nodes

Leaving
nodes

rebalance

Shard 3

Shard 2

Shard 4

Shard 1

Moving
nodes

Fig. 1: An example of shard allocation. New nodes (in blue) may join the system and existing nodes (in red) may leave the system. After
a state update, a subset of nodes (in yellow) may be relocated.

protocol for permissionless blockchains. Our contributions are
summarised as follows.

1) We provide the first study on formalising the shard
allocation protocol for permissionless blockchains
(§II). The formalisation includes the syntax, correctness
properties and performance metrics, and can be used as
a framework for evaluating shard allocation protocols.

2) Based on our framework, we evaluate the shard allo-
cation subprotocols of seven state-of-the-art permis-
sionless sharded blockchains (§III), including five aca-
demic proposals Elastico [14] (CCS’16), Omniledger [15]
(S&P’18), RapidChain [16] (CCS’19), Chainspace [17]
(NDSS’19), and Monoxide [18] (NSDI’19), and two
industry projects Zilliqa [19] and Ethereum 2.0 [24]. Our
results show that none of these protocols is fully correct
or achieves satisfactory performance.

3) We observe and prove the impossibility of simulta-
neously achieving optimal self-balance and operability
(§IV-A). Self-balance represents the ability to re-balance
the number of nodes in different shards; and operability
represents the system performance w.r.t. the cost of re-
allocating nodes to a different shard. While this im-
possibility has been conjectured [12], [13] and studied
informally [15], we formally prove it is impossible to
achieve optimal values on both, and quantify the trade-off
between them. All existing sharded blockchains except
for Omniledger make extreme choices on either self-
balance or operability, leading to serious security or
performance issues.

4) We identify and define a property memory-dependency
that is necessary for shard allocation protocols to sup-
port parametrisation over the trade-off between self-
balance and operability (§IV-B). Memory-dependency
(aka non-memorylessness in signal processing litera-
tures [25]) specifies that the shard allocation relies
on both the current and previous system states. The
parametrisation support opens a new in-between design
space and makes the system configurable for different
application scenarios. We formally prove the necessity of
memory-dependency for supporting such parametrisation.

5) We propose WORMHOLE, a correct and efficient shard
allocation protocol (§V), and analyse how to inte-
grate WORMHOLE into sharded blockchains (§VI).
We formally prove that WORMHOLE achieves all cor-

rectness properties, and supports parametrisation of self-
balance and operability. We also classify existing sharded
blockchains, and analyse how to integrate WORMHOLE
into each type of them.

6) We implement WORMHOLE, and evaluate its overhead
and performance metrics in realistic settings (§VII).
We implement WORMHOLE as a prototype in Rust, and
evaluate the overhead of integrating WORMHOLE into
different designs of sharded blockchains. We simulate
WORMHOLE in a sharded blockchain with 128 shards and
32768 nodes, and evaluate the dynamic load balance and
operability under different churn conditions. The results
show that WORMHOLE achieves consistent load balance
and operability with our theoretical analysis, and can
recover quickly from load imbalance.

II. FORMALISING SHARD ALLOCATION

In this section, we formalise the shard allocation protocol
ΠShardAlloc, including its system model, syntax, correctness
properties, and performance metrics.

A. Overview of a sharded blockchain

A sharded blockchain consists of a fixed number of m
shards, each of which maintains a ledger (organised as a
chain of blocks) and processes transactions concurrently. The
sharded blockchain proceeds in epochs, whose definition dif-
fers according to the underlying system. Generally speaking,
an epoch t begins when a new global and unique system
state stt is available. Given the new system state stt as input,
new nodes and existing nodes execute the shard allocation
protocol to obtain a new shard membership w.r.t. stt. Then,
nodes find peers in the same shard by exchanging shard
memberships/proofs if necessary, and execute the consensus
protocol to agree on new blocks. Each block includes the
block proposer’s shard membership and proof, apart from other
data common in blockchains. Node churn [11] happens at
any point of the protocol execution: some new nodes join
and some existing nodes leave the sharded blockchain. As we
study shard allocation across epochs, we consider node churn
happens at the end of each epoch for simplicity.

Epoch and global system state. Most sharded blockchains
demand that the system state can be accessed by nodes
securely and synchronously. How and when a system state
is generated depends on the concrete protocol design. For

2

example, Elastico [14], Omniledger [15], RapidChain [16] and
Ethereum 2.0 [24] use a decentralised randomness beacon
(DRB) protocol to generate random outputs as system states;
Zilliqa [19] merges blocks from all shards in an epoch to a
single one, then extracts a global system state from the merged
block.

Sybil resistance. To defend against Sybil attacks, where
the adversary spawns numerous nodes to compromise the
shard’s consensus, permissionless sharded blockchains must
employ Sybil-resistant mechanisms. For example, Elastico,
RapidChain, and Zilliqa require nodes to solve PoW puzzles
to obtain shard memberships; Monoxide and Ethereum 2.0
employ Sybil-resistant consensus protocols; and Omniledger
employs an identity authority to manage nodes.

B. System model

In a sharded blockchain with m shards, each node i has a
pair of secret key ski and public key pki, and is identified
by pki. Let ntk be the number of nodes in shard k ∈ [m]
and nt =

∑m
k=1 n

t
k be the total number of nodes in epoch t,

where [m] = {1, 2, . . . ,m}. To focus on analysing the shard
allocation protocol ΠShardAlloc, we assume the system state
generation protocols are secure, and the sharded blockchain
has employed a Sybil-resistant mechanism so that the number
of nodes controlled by the adversary is bounded. In line with
existing proposals, nodes are assumed to have secure and
synchronous access to the latest system state. The system
model consists of the four following aspects.

Node churn. Let αt ≥ 0 and βt ∈ [0, 1] be the fraction of
nodes joining and leaving at the end of epoch t, respectively.
For two consecutive epochs t and t+1, nt+1 = (1−βt+αt)nt.
Network model. The network model concerns the timing
guarantee of delivering messages. Depending on different
proposals’ settings, the network model is either synchrony,
partial synchrony [26], or asynchrony. A network is syn-
chronous if messages are delivered within a known finite
time-bound; partially synchronous if messages are delivered
within a known finite time-bound after an unknown Global
Stabilisation Time (GST); or asynchronous if messages are
delivered with an unknown time-bound possibly determined
by the adversary.

Adversary’s capacity. Let φ be the fault tolerance capacity
of ΠShardAlloc, where φ is no bigger than the consensus
protocol’s fault tolerance capacity Ψ. Otherwise, even when
the adversary’s nodes are evenly distributed among shards,
the adversary can compromise every shard. The adversary
is adaptive: at any time, it can corrupt any φnt nodes, i.e.,
make these nodes Byzantine, where t is the epoch number.
The adversary can read internal states of corrupted nodes,
and direct corrupted nodes to arbitrarily forge, modify, delay,
and/or drop messages from them. The adversary can read
and/or delay messages from correct nodes. The delay period
is subjected to the network model (e.g., synchrony, partial
synchrony, or asynchrony) assumed by the sharded blockchain.

Adversary’s goal. The adversary aims at breaking some of
ΠShardAlloc’s correctness properties that we will define later in
§II-D. To compromise ΠShardAlloc’s safety, the adversary has
to launch the single-shard takeover attack by gathering more
than Ψntk corrupted nodes into a certain shard. To compromise
shard allocation’s liveness, the adversary has to prevent correct
nodes from determining their shards.

To compromise safety, here are some typical attacking
strategies: 1) the adversary biases the shard allocation and
gather its nodes to a single shard; 2) the adversary predicts
the shard allocation results, then chooses key pairs that make
nodes to be allocated to the same shard; 3) for probabilistic
shard allocation protocols, the adversary can launch the join-
leave attack [27], i.e., enforce corrupted nodes to keep joining
and leaving the blockchain until allocated to the targeted
shard. To compromise liveness, if ΠShardAlloc requires nodes
to interact with each other, then the adversary can refuse to
collaborate and stall the protocol execution.

C. Syntax

We formally define the shard allocation protocol ΠShardAlloc

as follows.

Definition 1 (Shard allocation ΠShardAlloc). A shard allocation
protocol ΠShardAlloc is a tuple of polynomial time algorithms

ΠShardAlloc = (Setup, Join,Update,Verify)

Setup(λ)→ pp : On input the security parameter λ, outputs
the public parameter pp.

Join(pp, ski, stt)→ (k, πi,stt,k) : On input secret key ski,
public parameter pp and state stt, outputs the ID k of the
shard assigned for node i, the proof πi,stt,k of assigning
i to k at stt. The input may also be public key pki of
node i, depending on concrete constructions. This also
applies to Update(·).

Update(pp, ski, stt, k, πi,stt,k, stt+1)→ (k′, πi,stt+1,k′) : On
input the public parameter pp, secret key ski, state stt,
shard index k, proof πi,stt,k and the next state stt+1,
outputs the identity k′ of the newly assigned shard for i,
a shard assignment proof πi,stt+1,k′ .

Verify(pp, pki, stt, k, πi,stt,k)→ {0, 1} : Deterministic. On
input public parameter pp, i’s public key pki, system state
stt, shard index k and shard assignment proof πi,stt,k,
outputs 0 (false) or 1 (true).

Algorithm 1 describes the typical execution of ΠShardAlloc

in a sharded blockchain, from a node i’s perspective.
ΠShardAlloc.Setup(λ) is executed once at the beginning of the
protocol execution. When node i joins the system in epoch
t, it executes ΠShardAlloc.Join(·) to obtain a shard membership
k∗ and the associated membership proof πi,st∗,k∗ . Afterwards,
the node executes consensus with peers in shard k∗. Upon
a new epoch t + 1, node i executes ΠShardAlloc.Update(·) to
update its shard membership and the membership proof, and
executes consensus accordingly. Given a shard k, public key
pki and a membership proof πi,stt,kt , anyone can execute

3

ΠShardAlloc.Verify(·) to verify whether node i is allocated into
shard k in epoch t.

Algorithm 1: Typical execution of shard allocation protocol
ΠShardAlloc in a sharded blockchain, from node i’s perspective.

// Join in epoch t
(kt, πi,stt,kt)← ΠShardAlloc.Join(pp, ski, stt)
// State, shard and proof in epoch t
st∗, k∗, π∗ ← stt, kt, πi,stt,kt
repeat

Wait for a new state st+
// Update shard membership and proof

(k∗, πi,st∗,k∗)←
ΠShardAlloc.Update(pp, ski, st∗, k∗, πi,st∗,k∗ , st+)
st∗ ← st+
// Messages may attach k∗ and πi,st∗,k∗

Execute consensus with peers in shard k∗
until node i leaves the system

D. Correctness properties

Based on the system model, we consider three correct-
ness properties for ΠShardAlloc, namely liveness, allocation-
randomness, and unbiasibility. We additionally consider
allocation-privacy as an optional property.

Liveness. This property ensures that correct nodes can obtain
valid shard memberships timely: given a system state, all
correct nodes will finish computing Update(·) (or Join(·) if the
node newly joins the system) before the next epoch. Otherwise,
nodes cannot find their shards or participate in consensus, and
consequently, the block producing is stalled.

Definition 2 (Liveness). A shard allocation protocol
ΠShardAlloc satisfies liveness iff for every epoch
t, every correct node i will finish computing
ΠShardAlloc.Update(pp, ski, stt−1, kt−1, πi,stt−1,kt−1

, stt)
(or ΠShardAlloc.Join(pp, ski, stt) if t = 1) before epoch t + 1
such that ΠShardAlloc.Verify(pp, pk,+i, stt, kt, πi,stt,kt) = 1,
where pp is the public parameter, ski is node i’s secret
key, (stt−1, kt−1, πi,stt−1,kt−1

) and (stt, kt, πi,stt,kt) are the
system state, node i’s allocated shard and node i’s shard
membership proof in epoch t− 1 and t, respectively.

Allocation-randomness. This property ensures that each node
is allocated to a random shard deterministically [14], [15],
[19]. Otherwise, if the adversary can predict shard allocation
results, then it can launch the single-shard takeover attack
by corrupting nodes that will be allocated to a specific shard.
We consider two parts of allocation-randomness, namely join-
randomness and update-randomness. Join-randomness speci-
fies that the newly joined nodes join each shard with equal
probability.

Definition 3 (Join-randomness). A shard allocation protocol
ΠShardAlloc with m shards satisfies join-randomness iff for
any secret key ski, public parameter pp and state stt, the
probability that node i joining a shard k is

Pr
[
k = k′

(k′, πi,stt,k′)←
ΠShardAlloc.Join(pp, ski, stt)

]
=

1

m
± ε

where k, k′ ∈ [m], and ε is a negligible value.

...

Fig. 2: Update-randomness. After executing ΠShardAlloc.Update(·),
the probability that a node stays in its shard (say shard 1) is γ, and
the probability of moving to each other shard is 1−γ

m−1
.

Update-randomness specifies the probability distribution of
existing nodes’ shard allocation. To remain balanced under
churn, existing nodes may need to move to other shards upon
state update. Moving to a new shard is computationally and
communicationally intensive, as a node needs to synchronise
and verify the new shard’s ledger, which can take hundreds of
Gigabytes [15], [28]–[30]. If a large portion of nodes move
to other shards upon each state update, then this introduces
non-negligible overhead and may make the system unavailable
for a long time. To avoid this, only a small subset of nodes
should be moved within each state update. We define γ as the
probability that a node stays in the same shard after a state
update. We define update-randomness as follows.

Definition 4 (Update-randomness). A shard allocation proto-
col ΠShardAlloc with m shards satisfies update-randomness iff
there exists γ ∈ [0, 1) such that for any k ∈ [m], secret key ski
and public parameter pp, the probability that node i updates
its shard from k at state stt to k′ at state stt+1 is

Pr
[
k = k′

(k′, πi,stt+1,k′)←
ΠShardAlloc.Update(pp, ski, stt, k, πi,stt,k, stt+1)

]
={

γ ± ε if k′ = k
1−γ
m−1 ± ε otherwise

where k′ ∈ [m], and ε is a negligible value.

When γ = 1
m , ΠShardAlloc achieves optimal update-

randomness, as all nodes are shuffled randomly under uniform
distribution. This definition is intuitively depicted in Figure 2.

Definition 5 (Allocation-randomness). A shard allocation
protocol satisfies allocation-randomness if it satisfies join-
randomness and update-randomness.

Unbiasibility. This property ensures that the adversary cannot
manipulate the shard allocation results. While allocation-
randomness defines the probability distribution of shard al-
location, unbiasibility rules out attacks on manipulating the
probability distribution, e.g., the join-leave attack [27], [31].

Definition 6 (Unbiasibility). A shard allocation protocol
ΠShardAlloc satisfies unbiasibility iff given a system state, no
node can manipulate the probability distribution of the result-
ing shard of ΠShardAlloc.Join(·) or ΠShardAlloc.Update(·), except
with negligible probability.

4

Allocation-privacy. This property ensures that no one can
learn a node’s shard membership without the node pro-
viding them by itself. Compared to allocation-randomness,
allocation-privacy further prevents the adversary from com-
puting a node’s membership if the adversary has no access
to the node’s secret key. We consider allocation-privacy to
be optional, as it has both advantages and disadvantages.
On the positive side, allocation-privacy is necessary for the
sharded blockchain to resist against the adaptive adversary: if
the adversary cannot learn others’ shard memberships, then it
cannot corrupt nodes in a specific shard, but only a random
set of nodes scattered across shards. On the negative side,
allocation-privacy makes nodes difficult to find peers in the
same shard. If the sharded blockchain employs a consensus
protocol that requires broadcasting operations, then nodes have
to execute an extra peer finding protocol [14], [19] before ex-
ecuting consensus, introducing non-negligible communication
overhead. Thus, if the sharded blockchain is not required to
resist against an adaptive adversary, then ΠShardAlloc does not
need to achieve allocation-privacy.

Definition 7 (Join-privacy). A shard allocation protocol
ΠShardAlloc with m shards provides join-privacy iff for any
secret key ski, public parameter pp, and state stt, without
the knowledge of πi,stt,k and ski, the probability of making a
correct guess k′ on k is

Pr
[
k′ = k

(k, πi,stt,k)←
ΠShardAlloc.Join(pp, ski, stt)

]
=

1

m
± ε

where k, k′ ∈ [m], and ε is a negligible value.

Definition 8 (Update-privacy). A shard allocation protocol
ΠShardAlloc with m shards provides update-privacy iff for some
γ ∈ [0, 1), any k ∈ [1,m], secret key ski, public parameter
pp, and two consecutive states stt and stt+1, without the
knowledge of πi,stt+1,k′ and ski, the probability of making
a correct guess k′′ on k′ is

Pr
[
k′′ = k′

(k′, πi,stt+1,k′)←
ΠShardAlloc.Update(pp, ski, stt, k, πi,stt,k, stt+1)

]
={

γ ± ε if k′′ = k
1−γ
m−1 ± ε otherwise

where k′, k′′ ∈ [m], and ε is a negligible value.

Definition 9 (Allocation-privacy). A shard allocation protocol
ΠShardAlloc satisfies allocation-privacy iff it satisfies both join-
privacy and update-privacy.

E. Performance metrics

While correctness properties are required for the shard
allocation protocol ΠShardAlloc, performance metrics are used
for quantitatively measuring the protocol’s effectiveness. We
consider three performance metrics as follows.

Communication complexity. Communication complexity is
the amount of communication (measured by the number of
messages) required to complete a protocol [32]. For shard
allocation, we consider the communication complexity of all

correct nodes obtaining shard memberships when joining,
and updating shard memberships upon a new epoch. The
communication of synchronising new shards is omitted.

Self-balance. Nodes should be uniformly distributed among
shards. Otherwise, the fault tolerance threshold of shards with
fewer nodes and the performance of shards with more nodes
may be reduced [18], [33]. Due to node churn and lack of
a global view, reaching global load balance is impossible for
permissionless networks. Instead, the randomised self-balance
approach – where a subset of nodes move to other shards
randomly – provides the optimal load balance guarantee. We
quantify the self-balance as the ability that ΠShardAlloc recovers
from load imbalance.

Definition 10 (Self-balance). When executing ΠShardAlloc on m
equal-sized shards in epoch t (i.e., nti = ntj for all i, j ∈ [m]),
ΠShardAlloc is µ-self-balanced iff

µ = 1− max
∀i,j∈[m]

|nt+1
i − nt+1

j |
nt

Value µ measures the level of imbalance among shards
after an epoch. When µ = 1, ΠShardAlloc achieves the optimal
self-balance: regardless of how many nodes join or leave the
system during the last epoch, the system can balance itself
within an epoch.

Operability. To balance shards, ΠShardAlloc should move some
nodes to other shards upon each state update. As mentioned,
moving nodes to other shards introduces non-negligible over-
head and may make the system unavailable for a long time.
Operability was introduced to measure the cost of moving
nodes [15]. We define operability as the probability that a node
stays at its shard upon a state update. Operability is straightfor-
ward to compute for protocols satisfying update-randomness
(Definition 4): if ΠShardAlloc satisfies update-randomness with γ
(Definition 4), then its operability is γ, i.e., γ-operable. When
γ = 1, ΠShardAlloc is most operable: nodes will never move
after joining the network.

III. EVALUATING SHARD ALLOCATION PROTOCOLS

In this section, we model shard allocation protocols of
seven state-of-the-art sharded blockchains and evaluate them
based on our framework. Our evaluation (summarised in
Table I) shows that none of them is fully correct or achieves
satisfactory performance.

A. Evaluation criteria

The evaluation framework includes the system model, cor-
rectness properties (§II-D), and performance metrics (§II-E).
The system model concerns the network model and fault
tolerance capacity mentioned in §II-B, plus the trusted com-
ponents that some proposals assume in order to guarantee the
correctness. The node churn and adversary’s goal mentioned
in §II-B are common in all proposals, and thus are omitted.

As the evaluation framework focuses on shard allocation,
other subprotocols in sharded blockchains – e.g., system state

5

TABLE I: Evaluation of seven permissionless shard allocation protocols. Red indicates strong assumptions, unsatisfied correctness properties,
and relatively weaker performance. Yellow indicates unspecified assumptions, partly satisfied correctness properties, and unspecified
performance metrics. Green indicates weak assumptions, satisfied correctness properties, and better performance.

System model Correctness Performance metrics

State update Netw
or

k
mod

el

Tru
ste

d
co

mpon
en

ts

Fau
lt

tol
era

nce

Public
ve

rifi
ab

ilit
y

Live
ness

Allo
ca

tio
n-ra

nd.

Unbias
ibilit

y

Priv
ac

yo

Jo
in

co
mm. co

mpl.

Update
co

mm. co
mpl.

Self
-bala

nce

Opera
bilit

y

Elastico New block Sync. - 1
3

3 3 3 7 3 O(nf) O(nf) 1 1
m

Omniledger Identity
authority

Part. sync. Identity
authority

1
3

3 3 3 3 7 O(n) O(n) ∼ O(n3) 1− (2m−3)βt
3m−3

2
3

RapidChain Nodes joining Sync. - 0 7 3 3 3 7 O(n2) O(n2) 1− βt max(1− καtn, 0)
Chainspace - Async. Smart

contracts
1 3 3 7 7 7 - O(n) 1− βt -

Monoxide - Async. - 1 3 3 7 3 7 0 0 1− βt 1

Zilliqa New block Async. - 1 3 3 3 7 3 O(n) O(n) 1 1
m

Ethereum 2.0 - Async. - 1 3 3 7 3 7 0 0 1− βt 1

WORMHOLE (Our
proposal in §V)

New rand. Async. Rand.
Beacon∗

1 3 3 3 3 3 O(n) O(n) 1− βt + βt
2op

1− m−1
m·2op

o Optional. ∗ WORMHOLE can rely on an external randomness beacon, or allow a group of nodes to run a decentralised randomness beacon protocol similar to Elastico,
Omniledger, RapidChain and Ethereum 2.0.

generation, consensus and cross-shard communication – are
assumed to be secure.

Remark on fault tolerance capacity. We define the fault
tolerance capacity only for shard allocation rather than the
sharded blockchain, where other subprotocols may tolerate
fewer faulty nodes. For example, if a shard allocation protocol
totally relies on a trusted third party, then we consider its
fault tolerance capacity to be 1, as it satisfies all correctness
properties even when all nodes are Byzantine.

B. Overview of evaluated proposals

We choose seven state-of-the-art sharded blockchains,
including five academic proposals Elastico [14], Om-
niledger [15], Chainspace [17], RapidChain [16], and Monox-
ide [18], and two industry projects Zilliqa [19] and Ethereum
2.0 [24]. We briefly describe their shard allocation protocols
below, and defer their details to Appendix D.

Elastico, Omniledger and RapidChain rely on distributed
randomness generation (DRG) protocols for shard allocation.
In Elastico, nodes in a special shard called final committee run
a commit-and-reveal DRG protocol [34] to produce a random
output. Each node then solves a PoW puzzle derived from
the random output and its identity, and will be assigned to
a shard according to its PoW solution. Omniledger uses the
RandHound [35] DRG protocol, and relies on a trusted identity
authority who samples pending nodes (who wait to join the
system) and shuffles existing nodes. As RandHound is leader-
based, nodes need to run a leader election before RandHound.
If the leader election fails for five times, then nodes fallback
to run an asynchronous DRG protocol [36]. Given the latest
random output, the identity authority samples a subset of
pending nodes to join the system, and shuffles 1

3 existing nodes
in the network to different shards. In RapidChain, each node
solves a PoW puzzle before joining the system. To prevent pre-
computing PoW puzzles, the PoW puzzle’s input includes a
random output, which is generated by a Feldman Verifiable
Secret Sharing (VSS) [37]-based DRG protocol. A special
shard called reference committee allocates joined nodes into

different shards following the Commensal Cuckoo rule [38]:
each node is mapped to an ID x ∈ [0, 1), and when a new
node joins with ID x, the reference committee moves nodes
with IDs close to x to other shards randomly.

Chainspace, Monoxide, Zilliqa and Ethereum 2.0 do not
rely on DRG protocols for shard allocation. In Chainspace,
a node can apply to move to another shard at any time,
and other nodes vote to decide on the applications. The
voting works over a special smart contract ManageShards,
whose execution is assumed to be correct and trustworthy.
Monoxide and Ethereum 2.0 allocate nodes into different
shards according to their addresses’ prefixes. Zilliqa is built
upon Elastico, but it uses the last block’s hash value as the
current epoch’s random output.

C. System model

Network model. A protocol is synchronous if its safety is
broken when the adversary can delay messages more than
the upper bound ∆. Therefore, Elastico and RapidChain are
synchronous, as they employ the synchronous DRG proto-
cols [34], [37]. A protocol is partially synchronous if such > ∆
delay only affect liveness but not safety, and liveness can be
resumed once the network becomes synchronous. Therefore,
Omniledger assumes partially synchronous networks, as it
employs the partially synchronousRandHound DRG protocol.
A protocol is asynchronous if such > ∆ delay only affect live-
ness but not safety, and liveness can be resumed once certain
messages are delivered. Chainspace, Monoxide, Zilliqa and
Ethereum 2.0 assume asynchronous networks: in Chainspace,
a node submits a smart contract transaction to obtain or update
a shard membership, and the liveness is achieved once the
transaction is received by the smart contract; Monoxide and
Ethereum 2.0 allow nodes to calculate shards locally without
communicating with others; and Zilliqa replaces the DRG [34]
in Elastico by using block hashes as system states that can
be accessed synchronously by assumption, and nodes can
calculate their shards locally given the system states.

6

Trusted components. Omniledger and Chainspace rely on
a trusted identity authority and smart contracts for shard
allocation, respectively. Other protocols assume no trusted
components.

Fault tolerance capacity. Elastico and Omniledger achieve
the fault tolerance capacity of φ = 1

3 , which is inherited from
their DRG protocols. RapidChain cannot tolerate any faults,
as one faulty node can make the Feldman VSS lose live-
ness by withholding shares. Chainspace, Monoxide, Zilliqa,
and Ethereum 2.0 can tolerate any fraction of Byzantine
nodes. For Monoxide and Ethereum 2.0, computing shards
is offline. Chainspace assumes trusted smart contracts. For
Zilliqa, blocks are produced correctly by assumption and shard
computation is offline.

D. Correctness properties

Public verifiability. All of these shard allocation protocols
achieve public verifiability except for RapidChain. Rapid-
Chain’s shard allocation is not publicly verifiable, as the de-
ployed Commensal Cuckoo protocol is not publicly verifiable.

Liveness. All shard allocation protocols satisfy liveness.

Allocation-randomness. Elastico, Omniledger, RapidChain,
and Zilliqa satisfy allocation-randomness, as all nodes
are shuffled for each epoch. Chainspace does not satisfy
allocation-randomness, as nodes can choose which shard to
join. Monoxide and Ethereum 2.0 do not satisfy allocation-
randomness, as nodes can choose their preferred shards by
choosing addresses.

Unbiasibility. Elastico and Zilliqa do not fully achieve
unbiasibility. Compared to the PoW puzzles in Bitcoin-like
systems, the PoW puzzles in Elastico and Zilliqa are less
challenging to solve, allowing the adversary to solve multiple
puzzles within an epoch and choose a preferred shard to join.
Chainspace does not achieve unbiasibility, as it does not satisfy
allocation-randomness and nodes are free to choose shards.

Allocation-privacy. Elastico and Zilliqa satisfy allocation-
privacy, as the allocated shard remains secret if the node does
not reveal its PoW solution. Therefore, Elastico and Zilliqa
employ an extra peer finding mechanism called “overlay
setup”, where a special shard called “directory committee”
collects and announces nodes’ allocated shards. Omniledger,
RapidChain, and Chainspace do not satisfy allocation-privacy
as memberships can be queried at the identity blockchain,
the reference committee and the ManageShards smart con-
tract, respectively. Monoxide and Ethereum 2.0 do not satisfy
allocation-privacy, as nodes’ addresses are publicly known.

E. Performance metrics

Communication complexity. Elastico’s shard allocation re-
quires O(nf) messages per epoch, where n and f are the
number of nodes and faulty nodes, respectively. For each
epoch, the final committee needs to run the DRG protocol,
which consists of a vector consensus [39] with commu-
nication complexity O(nf). Ideally, the final committee in

Elastico has n
m nodes, and the communication complexity is

O(nm
f
m) = O(nf) (m is constant). For Omniledger, Join(·)

requires O(n) communication, as each node requests to the
identity authority for joining the system. The communication
complexity of Update(·) is O(n) or O(n3): the best case of
Update(·) is that the leader election and RandHound are both
successful, leading to O(n) messages; and the worst case is
that nodes fallback to run the asynchronous DRG [36] with
communication complexity O(n3). RapidChain’s shard allo-
cation requires O(n2) messages per epoch, which is inherited
from Feldman VSS [37]. Monoxide and Ethereum 2.0 requires
no communication for shard allocation, as nodes decide their
shards locally. Zilliqa requires O(n) messages per epoch as
each node needs to retrieve the latest block.

Self-balance. The self-balance of Elastico and Zilliqa is 1,
as all nodes are shuffled for each epoch. In Omniledger, 1

3
nodes are shuffled for each epoch, leading to operability γ =
2
3 . According to Lemma 1 (which will be introduced later in
§IV-A), Omniledger’s self-balance µ = 1− (2m−3)βt

3m−3 . The self-
balance of RapidChain, Chainspace, Monoxide and Ethereum
2.0 is 1 − βt. In the worst case where no nodes newly join
the system and βnt nodes in the same shard leave the system,
self-balance becomes n−βtn

n = 1− βt.
Operability. The operability of Elastico and Zilliqa are 1

m , as
all nodes are shuffled for each new epoch. The operability of
Omniledger is γ = 2

3 , as 1
3 nodes are shuffled for each epoch.

The operability of RapidChain is max(1 − καtn, 0), where
κ ∈ [0, 1] is the size of the interval in which nodes should
move to other shards, and αt is the join churn rate in epoch
t. In epoch t, there are αtn nodes joining the network, and
each newly joined node causes the reallocation of κn other
nodes. The operability then becomes 1− αtn·κn

n = 1− καtn.
As operability cannot be smaller than 0 in reality, operability
is max(1− καtn, 0). We cannot determine the operability of
Chainspace, as Chainspace does not specify how many nodes
can propose to change their shards. Monoxide and Ethereum
2.0 have the operability of 1, as nodes in Monoxide and
Ethereum 2.0 never move to other shards.

IV. OBSERVATION AND INSIGHTS

Table I shows that no shard allocation protocols achieves
optimal self-balance and operability simultaneously. We for-
mally prove that it is impossible to achieve optimal values
on both simultaneously. We then identify a new property
memory-dependency that enables parametrisation of the trade-
off between them. The parametrisation provides a new in-
between design space, and can make shard allocation protocols
configurable for different application scenarios.

A. Impossibility and trade-off

According to Table I, except for Omniledger and Rapid-
Chain, self-balance µ is either 1 − βt or 1, and operability
γ is either 1 or 1

m . This shows that achieving optimal self-
balance and operability simultaneously still remains as an
open problem. Its possibility has also been discussed in the

7

0.0 0.2 0.4 0.6 0.8 1.0
Operability

0.995

0.996

0.997

0.998

0.999

1.000

S
el

f-b
al

an
ce

Optimal, (1, 1)

(1, 1 t)

(1
m , 1)

(0, 1 t
m 1)

Impossible to achieve

Fig. 3: Relationship between operability and self-balance. We pick
m = 10 and βt = 0.005 as an example. No shard allocation protocol
can go above the blue line to reach the orange area.

blockchain community [12], [13]. We prove that, however,
this is impossible for any correct shard allocation protocol.
The proof starts from analysing the relationship between self-
balance µ and operability γ.

Lemma 1. If a correct shard allocation protocol ΠShardAlloc

with m shards satisfies update-randomness with γ, the self-
balance of ΠShardAlloc is µ = 1−

∣∣∣ (γm−1)βt

m−1

∣∣∣ , where βt is the
percentage of nodes leaving the network in epoch t.

Appendix A provides the proof of Lemma 1. Figure 3 vi-
sualises the relationship between self-balance and operability
revealed by Lemma 1. The line never reaches the point (1, 1),
indicating that ΠShardAlloc can never achieve both optimal self-
balance and optimal operability. With operability increasing,
the self-balance increases to 1 when γ ≤ 1

m , then decreases
when γ ≥ 1

m . When γ = 0, self-balance becomes 1 − βt

m−1 .
This is because when γ = 0, all nodes are mandatory to
change their shards. As shard k has fewer nodes, during
ΠShardAlloc.Update(·) it loses fewer nodes but receives more
nodes from other shards. When γ = 1

m , self-balance becomes
1, i.e., optimal.

Therefore, it is impossible to achieve optimal values for
both self-balance and operability simultaneously. Theorem 1
formally states the impossibility, and Appendix A provides the
full proof of Theorem 1.

Theorem 1. Let βt be the percentage of nodes leaving the
network in epoch t. It is impossible for a correct shard allo-
cation protocol ΠShardAlloc with m shards to achieve optimal
self-balance and operability simultaneously for any βt > 0
and m > 1.

B. Parametrising the trade-off

As shown in Figure 3, (1, 1 − βt) and (1
m , 1) are two

extreme cases in the trade-off between self-balance and op-
erability. shard allocation protocols lying at these two points
are impractical. In addition, none of our evaluated proto-
cols allows parametrising the trade-off between self-balance
and operability. We prove that, to parametrise this trade-off,
sharding protocols should be memory-dependent, where the
shard allocation result does not only depend on the current

system state, but also the previous ones. In signal processing
literatures, this property is also known as non-memorylessness,
where the output signal does not only depend on the current
input, but also some previous inputs [25]. Formally, memory-
dependency is defined as follows.

Definition 11 (Memory-dependency). A shard allocation
protocol ΠShardAlloc is memory-dependent iff for any secret
key ski, public parameter pp, and shard k, the output
of ΠShardAlloc.Update(pp.ski, stt, k, πi,stt,k, stt+1) depends on
system states earlier than stt.

By Definition 4, both self-balance and operability are re-
lated to the probability γ of nodes staying at the same shard.
To parametrise self-balance and operability, a shard allocation
protocol should incorporate shard allocation results of previous
epochs. To summarise, when γ ∈ (1

m , 1), the probability
distribution of allocation-randomness is non-uniform, and the
membership proof of each epoch t depends on that in the
previous epoch t − 1. As the membership proof of epoch
t − 1 also depends on that of epoch t − 2, recursively,
each membership proof depends on all historical membership
proofs. Appendix A provides the proof of Theorem 2.

Theorem 2. If a correct shard allocation protocol ΠShardAlloc

is µ-self-balanced and γ-operable where µ ∈ (0, 1− βt) and
γ ∈ (1

m , 1), then ΠShardAlloc is memory-dependent.

V. WORMHOLE: MEMORY-DEPENDENT SHARD
ALLOCATION

Based on the gained insights, we propose WORMHOLE, a
correct and efficient shard allocation protocol. WORMHOLE
relies on a randomness beacon (RB) to generate the system
states, and a verifiable random function (VRF) (e.g., [40]–[42])
to guide the nodes in computing their shards. As WORM-
HOLE does not require nodes to interact with each other,
it works correctly regardless of the network environment or
the portion of Byzantine nodes. By being memory-dependent,
WORMHOLE supports parametrisation of self-balance and
operability. We formally analyse WORMHOLE’s correctness,
and its communication and computational complexity.

A. Primitives: RB and VRF

Randomness beacon. Similar to existing sharded blockchains
such as Elastico, Omniledger, and Zilliqa, WORMHOLE allo-
cates nodes based on some randomness. RB [43] is a service
that periodically generates random outputs. The RB can be
instantiated by either an external party or by a group of nodes
via a decentralised randomness beacon (DRB) protocol. RB
satisfies the following properties [44]:

• RB-Availability: No node can prevent the protocol from
making progress.

• RB-Unpredictability: No node can know the value of the
random output before it is produced.

• RB-Unbiasibility: No node can influence the value of the
random output to its advantage.

8

• RB-Public-Verifiability: Everyone can verify the correct-
ness of the random output.

RB schemes are both readily available and widely used.
Public external RBs are maintained by countries such as the
US [43], Chile [45], and Brazil [46], as well as reputable
institutions such as Cloudflare [47], EPFL [48], and League of
Entropy [49]. DRB protocols can be constructed from Publicly
Verifiable Secret Sharing (PVSS) [35], [44], [50], Verifiable
Delay Functions [51], [52], Nakamoto consensus [53], and
real-world entropy [54], [55]. Several sharded blockchains,
including Elastico, Omniledger, and RapidChain, employ DRB
to produce the system states already; Ethereum 2.0 uses DRB
for its consensus; emerging projects such as Filecoin [56] rely
on an external RB for its consensus.

Verifiable random function. A VRF [40] is a public-key
version of a hash function, which computes an output and a
proof from an input string and a secret key. Anyone with the
associated public key and the proof can verify 1) whether the
output is from the input, and 2) whether the output is generated
by the owner of the secret key. Some VRFs support batch
verification [57], [58], i.e., verifying multiple VRF outputs at
the same time, which is faster than verifying VRF outputs
one-by-one. Formally, a VRF is a tuple of four algorithms:
• VRFKeyGen(λ) → (sk, pk): On input a security param-

eter λ, outputs the secret/public key pair (sk, pk).
• VRFEval(sk,m)→ (h, π): On input sk and an arbitrary-

length string m, outputs a fixed-length random output h
and proof π.

• VRFVerify(pk,m, h, π)→ {0, 1}: On input pk, m, h, π,
outputs the verification result 0 or 1.

• (Optional) VRFBatchVerify(pk, ~m, ~h, ~π) → {0, 1}: On
input pk, a series of strings ~m = (m1, . . . ,mn), outputs
~h = (h1, . . . , hn), and proofs ~π = (π1, . . . , πn), outputs
the verification result 0 or 1.

VRF should satisfy the following three properties [59].
• VRF-Uniqueness: Given a secret key sk and an input m,
VRFEval(sk,m) produces a unique valid output.

• VRF-Collision-Resistance: It is computationally hard to
find two inputs m and m′ such that h = h′ where (h, ·)←
VRFEval(sk,m) and (h′, ·)← VRFEval(sk,m′).

• VRF-Pseudorandomness: It is computationally hard to
distinguish the random output of VRFEval(·) from a ran-
dom string without the knowledge of the corresponding
public key and the proof.

B. Protocol design

Key challenge and strawman designs. The key challenge
in designing a memory-dependent shard allocation protocol is
the recursive dependency problem: to verify a node’s shard
membership in epoch t, the node needs to prove its shard
membership in epoch t − 1 (i.e., “the memory”); however,
verifying the shard membership in epoch t − 1 requires to
verify that in epoch t − 2, and so on. Therefore, an extra
mechanism is necessary to bound the number of history proofs.

xxxxxxxxxdabc dabcxxxxx0456

=

Action of
the node

Join shard
#abc+1

Move to
shard #456+1

1111xxxxxxxxx

Stay at shard
#456+1

0456xxxxx1234

Move to
shard #234+1

=

Randomness
Beacon

Fig. 4: Intuition of WORMHOLE ΠWH
ShardAlloc. All numbers are in

hexadecimal. We use op = 4 and m = 163 as an example, and
assume epoch 0 is the last non-memory-dependent epoch.

A strawman design is to prescribe a fixed number of
history proofs, so that all shard allocations but the earliest
one is verifiable. However, this approach allows an attacker to
enumerate all the shards as the earliest shard, and only releases
one that leads them to the target shard, similar to a well-known
grinding attack against proof-of-stake protocols.

Another strawman design is to periodically abandon
memory-dependency, so that nodes only need to provide
history proofs up to the last non-memory-dependent epoch.
Specifically, we define each w-epoch unit as an era, which
begins when t mod w = 0 and ends when t mod w = t−1,
where t is the epoch number. At each era’s beginning, every
node reshuffules its shard, and the first shard membership is
non-memory-dependent, i.e., deterministic with its secret key
and the system state. However, simultaneous global reshuffling
temporarily lowers the operability, as all nodes have to find
new peers in their new shards and synchronize the ledgers.

Our basic idea. WORMHOLE addresses the above challenge
by (1) prescribing a non-memory-dependent shard allocation
per node per era and (2) randomising this special reallocation
epoch for each node, so that the number of history proofs in a
membership proof is bounded and all nodes are not reshuffled
simultaneously.

The non-memory-dependent shard allocation epoch and
the target shard are computed as follows. When an era
starts at epoch t (when t mod w = 0), node i calculates
VRFEval(ski, stt) → (gi,t, πi,t), where stt is RB’s output,
i.e., the system state, in epoch t. The node will then move
to shard (gi,t mod m) + 1 at epoch t+ (gi,t mod w). Note
that both the reallocation epoch and the target shard are non-
memory-dependent, and this happens exactly once per era.

Shard allocation in the other w − 1 epochs are memory-
dependent. At epoch t, node i computes VRFEval(ski, stt)→
(hi,t, πi,t). A parameter op is used for balancing operability
and self-balance. The node determines whether it needs to
move to another shard by comparing op least significant bits
(LSB) of hi,t−1 and op most significant bits (MSB) of hi,t:
when LSB(op, hi,t−1) 6= MSB(op, hi,t), the node stays in
the same shard, i.e., ki,t = ki,t−1; otherwise ki,t = (hi,t
mod m) + 1. Increasing op improves operability but reduces
self-balance, and vice versa. Figure 4 illustrates this idea.

A membership proof includes the gi values of the current
and previous eras’ non-memory-dependent epochs, and all hi

9

values since the last non-memory-dependent epoch, as well as
their corresponding proofs.

Detailed process. Algorithm 2 provides the full construction
of WORMHOLE. When node i joins the system, it exe-
cutes Join(·): it calculates VRF outputs and proofs since the
last non-memory-dependent epoch, and executes calcShard(·)
to calculate its allocated shard ID k. The shard member-
ship proof πi,stt,k includes a sequence of VRF outputs
(hlast, . . . , ht) and their VRF proofs (πlast, . . . , πt), where
last is the last non-memory-dependent epoch calculated from
calcNMDEpoch(·).

Upon epoch t + 1, node i executes Update(·) as follows.
It first calculates one more VRF output of stt+1. If epoch
t + 1 is memory-dependent, then calcShard(·) only needs to
check if MSB(op, ht+1) = LSB(op, hidx) and compute idx
and shard id accordingly, where hidx is cached from epoch t.
If epoch t + 1 is non-memory-dependent, then the previous
proofs are discarded and the shard ID is (ht+1 mod m) + 1.

To verify a membership proof πi,stt,k, Verify(·) verifies the
correctness of the last non-memory-dependent epoch number,
executes VRFBatchVerify(·) to verify all VRF outputs, and
executes calcShard(·) over these VRF outputs to verify its
output against k. Previous verification results can be cached
and reused: upon an updated membership proof πi,stt+1,k′ ,
the verifier can reuse most of the computation in verifying
πi,stt,k, including verification results of previous VRF outputs
and calcShard(·).

Construction without allocation-privacy. As mentioned in
§II-D, allocation-privacy is not always a desired property. To
remove allocation-privacy from ΠWH

ShardAlloc, one can replace
VRFEval(ski, stt) with H(pki||stt), where ski and pki are
key pairs of node i, stt is the system state, and H(·) is a
cryptographic hash function.

C. Theoretical analysis

Correctness. Appendix B provides the full security proofs,
and we summarise them below. WORMHOLE satisfies liveness
as a node can compute Join(·) and Update(·) locally. WORM-
HOLE satisfies unbiasibility, as VRFEval(·) and calcShard(·)
are deterministic functions, and system states are unbiasible,
guaranteed by RB. WORMHOLE satisfies join-randomness,
as VRF produces uniformly distributed outputs. When the
epoch is a memory-dependent epoch, the probability that
two random outputs share the same op-bit substring is 1

2op .
Within the probability 1

2op , the probability that two random
outputs result in the same shard is 1

m . This leads to γ =
1 − 1

2op ·
m−1
m = 1 − m−1

m·2op . When the epoch is a non-
memory-dependent epoch, the node will be shuffled, leading to
γ = 1

m . Thus, WORMHOLE satisfies allocation-randomness.
WORMHOLE satisfies allocation-privacy, as one cannot com-
pute Join(·) or Update(·) for a node without knowing its secret
key. The probability of guessing shard allocation follows the
proof of allocation-randomness.

Performance metrics. The communication complexity of
Join(·) and Update(·) of ΠWH

ShardAlloc are O(n) where n is the

number of nodes, as each node needs to receive a constant
number of system states for executing Join(·) and Update(·).
A ΠWH

ShardAlloc proof contains [3, 2w + 2) VRF outputs/proofs,
where w is the era length. Join(·) invokes VRFEval(·) for
[1, 2w) times, leading to computational complexity O(w).
Update(·) invokes VRFEval(·) for once, leading to computa-
tional complexity O(1). Verify(·) invokes VRFBatchVerify(·)
over [1, 2w) VRF outputs/proofs, or VRFVerify(·) for once if
the verification results are cached, leading to computational
complexity O(w) or O(1), respectively.

As analysed in the proof of Lemma 6, ΠWH
ShardAlloc’s oper-

ability γ = 1 − m−1
m · 1

2op = 1 − m−1
m·2op . By Definition 1,

ΠWH
ShardAlloc’s self-balance µ = 1−

∣∣∣ (γm−1)βt

m−1

∣∣∣ = 1− βt + βt

2op .

D. Comparison with existing shard allocation protocols

Table I summarises the comparison result. It shows that
WORMHOLE is the only shard allocation protocol that is
fully correct and achieves satisfactory performance, without
relying on strong assumptions. To make a fair comparison,
we also evaluate shard allocation protocols while assuming
RB, and the evaluation results are summarised in Table II.
Chainspace, Monoxide and Ethereum 2.0 are omitted as their
shard allocation protocols do not rely on randomness.

According to Table II, these shard allocation protocols
improve much in terms of the system model and communi-
cation complexity. However, they still suffer from some prob-
lems they originally have, and WORMHOLE still outperforms
them. For example, RapidChain still lacks public verifiability;
Elastico and Zilliqa are still partially biasible; Omniledger
and RapidChain still do not satisfy allocation-privacy. In
addition, Omniledger should still assume an identity authority
for approving nodes to join the system. Moreover, all of them
still suffer from weak operability except for Omniledger.

VI. INTEGRATION OF WORMHOLE

Given the different architectures, sharded blockchains differ
in when and where a shard membership is stored and verified,
and thus differ in integrating WORMHOLE. In this section, we
analyse how to integrate WORMHOLE into different types of
sharded blockchains.

A. Design choices related to WORMHOLE

The overhead introduced by WORMHOLE can be affected
by two design choices of the sharded blockchain, namely
the existence of identity registry and the choice of consensus
protocol.
Existence of identity registry. Some sharded blockchains
employ an identity registry that tracks identities of nodes in the
system. For example, Elastico, RapidChain and Zilliqa allow
a special shard to be the identity registry; Omniledger relies
on a trusted identity authority; and Chainspace allows nodes
to maintain a special smart contract managing identities.

The existence of identity registry decides where a shard
membership is verified and stored. If the sharded blockchain
employs an identity registry, then the identity registry can
maintain and verify all shard memberships and proofs, and

10

Algorithm 2: Full construction of WORMHOLE ΠWH
ShardAlloc.

Algorithm calcShard(m, op, hx, hx+1, . . . , hy):
idx← x
for j ∈ [x+ 1, y] do

if MSB(op, hj) = LSB(op, hidx) then
idx← j // Can be cached

shard id← (hidx mod m) + 1
return shard id

Algorithm calcNMDEpoch(w, ski, stt):
// Get last non-memory-dependent (nmd) epoch
tprev era ← t− w − (t mod w)

g−i,t, π
−
i,t ← VRFEval(ski, stprev era)

t−nmd ← tprev era + (g−i,t mod w)

tera ← t− (t mod w)
gi,t, πi,t ← VRFEval(ski, stera)
tnmd ← tera + (gi,t mod w)

last← t−nmd < t < tnmd ? t−nmd : tnmd
return (last, (g−i,t, π

−
i,t, gi,t, πi,t))

Algorithm Setup(λ):
m, op,w ← λ
return (m, op,w)

Algorithm Join(pp, ski, stt):
m, op,w ← pp
(last, πrange)← calcNMDEpoch(w, ski, stt)
for j ∈ [last, t] do

hj , πj ← VRFEval(ski, stj)

k ← calcShard(m, op, hlast, . . . , ht)
πi,stt,k ← (last, πrange, hlast, . . . , ht, πlast, . . . , πt)
Store πi,stt,k in memory
return k, πi,stt,k

Algorithm Update(pp, ski, stt, k, πi,stt,k, stt+1):
m, op,w ← pp
(last, πrange, hlast, . . . , ht, πlast, . . . , πt)← πi,stt,k
(last+, π+

range)← calcNMDEpoch(w, ski, stt+1)
Remove (hj , πj) from memory for j ∈ [last, last+)
ht+1, πt+1 ← VRFEval(ski, stt+1)
k′ ← calcShard(m, op, hlast+ , . . . , ht+1)

πi,stt+1,k′ ← (last+, π+
range, hlast+ , . . . , ht+1, πlast+ , . . . , πt+1)

Store πi,stt+1,k′ in memory
return k′, πi,stt+1,k′

Algorithm Verify(pp, pki, stt, k, πi,stt,k):
m, op,w ← pp
(last, πrange, hlast, . . . , ht, πlast, . . . , πt)← πi,stt,k
(g−i,t, π

−
i,t, gi,t, πi,t)← πrange

tprev era, tera ← t− w − (t mod w), t− (t mod w)

t−nmd, tnmd ← tprev era + (g−i,t mod w), tera + (gi,t mod w)

// Verify memory range

if

t−nmd < t < tnmd ∧ last 6= t−nmd ∨
tnmd < t ∧ last 6= tnmd ∨
VRFVerify(pki, stprev era, g

−
i,t, π

−
i,t) = 0 ∨

VRFVerify(pki, stera, gi,t, πi,t) = 0

then

return 0

~st, ~h, ~π ← (stlast, . . . , stt), (hlast, . . . , ht), (πlast, . . . , πt)

if VRFBatchVerify(pki, ~st, ~h, ~π) = 0 then
return 0 // Can be cached

if k 6= calcShard(m, op, hlast, . . . , ht) then
return 0

return 1

TABLE II: Evaluation of shard allocation protocols that replace DRG with a randomness beacon. Meanings of colours are same as Table I.
F means the metric is improved by replacing DRG with a randomness beacon.

System model Correctness Performance metrics

State update
Netw

or
k

mod
el

Tru
ste

d
co

mpon
en

ts

Fau
lt

tol
era

nce

Public
ve

rifi
ab

ilit
y

Live
ness

Allo
ca

tio
n-ra

nd.

Unbias
ibilit

y

Priv
ac

yo

Jo
in

co
mm. co

mpl.

Update
co

mm. co
mpl.

Self
-bala

nce

Opera
bilit

y

Elastico New block Async.F Rand. Beacon∗ 1F 3 3 3 7 3 O(n)F O(n)F 1 1
m

Omniledger Identity
authority

Async.F Identity auth.
Rand. Beacon∗

1F 3 3F 3 3 7 O(n) O(n)F 1− (2m−3)βt
3m−3

2
3

RapidChain Nodes joining Async.F Rand. Beacon∗ 1F 7 3 3 3 7 O(n)F O(n)F 1− βt max(1− καtn, 0)

Zilliqa New block Async.F Rand. Beacon∗ 1 3 3 3 7 3 O(n) O(n) 1 1
m

WORMHOLE (Our
proposal in §V)

New rand. Async. Rand. Beacon∗ 1 3 3 3 3 3 O(n) O(n) 1− βt + βt
2op

1− m−1
m·2op

o Optional. ∗ Shard allocation protocols can rely on an external randomness beacon, or allow a group of nodes to run a decentralised randomness beacon protocol.

a node can query other nodes’ shard memberships over the
identity registry rather than verifying it. Otherwise, a node has
to receive and verify other nodes’ shard memberships when
executing other subprotocols (e.g., consensus).

Choice of consensus protocol. Existing research [60], [61]
suggests to classify consensus protocols into two types, namely
BFT-style consensus and Nakamoto-style consensus. In BFT-
style consensus, given the latest blockchain, nodes propose
blocks, vote to agree on a unique block, and append the agreed
block to the blockchain. In Nakamoto-style consensus, given
the latest blockchain, nodes compete to solve a cryptographic
puzzle. If a node solves a puzzle, then it can append a new
block associated to the puzzle solution to the blockchain.

Nodes follow a chain selection rule to decide the main chain
among all forks, and eventually the main chains of different
nodes converge to the same one.

The choice of consensus protocol decides when a shard
membership is queried or verified. If the sharded blockchain
employs BFT-style consensus, then for each block, a node has
to additionally verify a quorum of nodes’ shard memberships.
If the sharded blockchain employs Nakamoto-style consensus,
then for each block, a node has to additionally verify the block
proposer’s shard membership.

Classification of sharded blockchains. Among our evalu-
ated sharded blockchains, Elastico, Omniledger, Chainspace,
Zilliqa and Ethereum 2.0 employ an identity registry and

11

BFT-style consensus, while Monoxide employs Nakamoto-
style consensus without an identity registry. There exists no
sharded blockchains that employ BFT-style consensus with-
out an identity registry, or employ an identity registry and
Nakamoto-style consensus simultaneously.

B. Integration analysis

We then analyse how to integrate WORMHOLE into the
above two cases, namely Nakamoto-style sharded blockchains
without identity registry and BFT-style sharded blockchains
with identity registry.

With identity registry, BFT-style consensus. In this case,
every node executes WORMHOLE to obtain a shard member-
ship with proof and submits them to the identity registry for
verification. For each new epoch, a node needs to compute a
VRF output with proof and send them to the identity registry.
The identity registry needs to send each node the set of all
peers’ identities and the shard size. Every node then executes
BFT-style consensus with peers to agree on blocks. For each
vote, a node looks up the the voter node’s identity within the
set. A block needs to obtain a quorum of votes to be valid. The
identity set can be replaced with a cryptographic accumulator
(e.g., bloom filter), where the size and the lookup complexity
can be independent with the set size. The identity registry also
manages nodes’ identities and handles Sybil attacks.

Thus, the identity registry needs to additionally receive,
store and verify shard memberships and proofs for all nodes.
For each new epoch, each node needs to additionally submit a
VRF output and proof to the identity registry and receive the
set of identities and an integer, while the identity registry needs
to verify a VRF output and update the shard membership. For
each block, each node needs to look up a quorum of nodes’
shard memberships within the set.

No identity registry, Nakamoto-style consensus. In this
case, every node executes WORMHOLE to obtain a shard
membership with proof, and keeps solving puzzles to propose
blocks over the main chain decided by the chain selection rule.
Each block additionally attaches the miner’s shard membership
and proof. Upon receiving a block, the node additionally
verifies the miner’s shard membership. Similar to Elastico,
Chainspace, Zilliqa and Ethereum 2.0, a node has to solve
a cryptographic puzzle in order to obtain an identity in
the system. To support permissionless settings, the puzzle’s
difficulty is controlled by a difficulty adjustment mechanism.

Thus, for every block, a node needs to additionally receive,
store and verify a shard membership and proof.

VII. EXPERIMENTAL EVALUATION OF WORMHOLE

In this section, we implement WORMHOLE (§VII-A) and
evaluate its overhead introduced in sharded blockchains
(§VII-B) and performance metrics achieved in the wild
(§VII-C). The evaluation results show that WORMHOLE in-
troduces little overhead and achieves performance metrics
consistent with the theoretical values.

A. Implementation and experimental setup

We implement WORMHOLE in Rust. We use rug [62]
for large integer arithmetic and bitvec [63] for bit-level
operations. We use w3f/schnorrkel [64], which imple-
ments the standardised VRF [42] over the Curve25519 elliptic
curve with Ristretto [65] compressed points. The VRF batch
verification is based on the Schnorr-style aggregatable discrete
log equivalence proofs (DLEQs) [58]. The size of keys, VRF
outputs and proofs are 32, 32 and 96 Bytes, respectively.
System states are simulated by rand [66]. We write the bench-
marks using cargo-bench [67] and criterion [68].
We specify the O3-level optimisation for compilation, and
sample 20 executions for each unique group of parameters.
All experiments were conducted on a MacBook Pro with a
2.2 GHz 6-Core Intel i7 processor and a 16 GB RAM.

B. Overhead analysis

10
3

10
4

of VRF outputs

0

1000

2000

3000

Ti
m
e
(m

s)

JoinShard(⋅) VerifyShard(⋅)

(a) Newly joined nodes.

10
3

10
4

of VRF outputs

0.13

0.14

0.15

Ti
m
e
(m

s)

(b) Existing nodes.

Fig. 5: Evaluation of WORMHOLE.

We benchmark Join(·), Update(·) and Verify(·) for WORM-
HOLE. Recall that with era length w, a node reaches a non-
memory-dependent epoch for every w epochs on average. We
choose w ranging from 256 to 10192 epochs. In Bitcoin’s
setting where a block is generated for every ten minutes, 256
and 10192 epochs take about 4 and 142 days, respectively.

Figure 5 shows the results. For newly joined nodes, the
execution time of Join(·) and Verify(·) increases linearly with
the number of random outputs. With 256 random outputs,
Join(·) and Verify(·) take 39 and 12 ms, respectively. With
20384 random outputs, Join(·) and Verify(·) take 3000 and 800
ms, respectively. For existing nodes, Update(·) and Verify(·)
take about 0.15 and 0.13 ms, respectively. A shard membership
takes at most 4 Bytes, which can support 24∗8 shards. When
VRF outputs and proofs are 32 and 96 Bytes, a membership
proof takes (32 + 96) ∗ 2w = 256w. The proof size Sπ is
64 and 2548 KB with w = 256 and 10192, respectively; and
updating a proof takes 128 Bytes.

We analyse the concrete overhead that a node takes for
executing WORMHOLE for two cases in §VI-B separately.
With identity registry, BFT-style consensus. In this case,
the identity registry needs to receive, store and verify shard
memberships and proofs. This incurs one-time overhead of
Sπ ∗ n KB on storage and communication, and n non-cached
Verify(·) invocations. For each epoch, each node sends a VRF
output and proof to the identity registry, the identity registry
verifies it, and sends back the set of identities and the shard
size. This incurs the overhead of 32 ∗ n

m + 128 Bytes on

12

communication, and a cached Verify(·) invocations for each
node. If replacing the set with a constant-size accumulator
of s Bytes, then the per-node communication overhead can
be reduced to s + 128 Bytes. For each block, each node has
to look up a quorum of nodes’ identities, which introduces
computation overhead of n

m lookup operations.

No identity registry, Nakamoto-style consensus. In this
case, for each block, a node needs to additionally receive,
store and verify a shard membership and proof. This incurs the
overhead of Sπ KB for each node, and a non-cached Verify(·)
invocation.

C. Simulation

While we define self-balance and operability metrics for
shard allocation in §II-E, we simulate WORMHOLE in a
network with 128 shards and 32768 nodes, and perform exper-
imental analysis to confirm the theoretical results on WORM-
HOLE’s self-balance and operability guarantees in §V-C.

Observed load balance. Following existing distributed sys-
tems research [69], the observed load balance is quantified as
the coefficient of variation (CV), namely the ratio between the
standard deviation std(·) and the mean value mean(·) of the
node distribution across shards. Specifically, the observed load
balance in epoch t is std(N t)

mean(N t) , where N t = {ntk}k∈[m] is the
number ntk of nodes in every shard k in epoch t. When CV
is zero, then the system achieves optimal load balance, where
every shard contains the same number of nodes. When CV is
smaller than 1, then it means the distribution is low-variance
and the system achieves satisfactory load balance.

Observed operability. The observed operability is quantified
as the ratio between the number of moved nodes and the num-
ber of existing nodes. Specifically, the observed operability
in epoch t is 1 − nt

moved
nt , where nt and ntmoved are the total

number of nodes and the number of moved nodes in epoch t,
respectively.

Simulation setup. We simulate WORMHOLE with m = 128
shards, w = 10192, and operability parameter γ = 0.95. There
are n = 128∗256 = 32768 nodes at the beginning. The system
executes for 500 epochs with variant churn rate. Figure 6(a)
outlines the simulated maximum join and leave rate (α, β)
over 500 epochs. As our analysis in §V-C shows that leave
churn rate incurs more impact on the performance metrics,
we test more volatile β (ranging from 0.03 to 0.15) compared
to α (ranging from 0.03 to 0.06). The churn rate (αt, βt) in
each epoch t are uniformly random over interval [0, α] and
[0, β], respectively.

Simulation results (Figure 6). While Figure 6 (b) sum-
marises the execution results, Figure 6 (c) and (d) outline
the observed self-balance and operability over the 500 epochs,
respectively.

Figure 6(c) shows the observed load balance. We simulate
both best-case and worst-case execution. In the best-case
execution, a random set of nodes leave the network, and
each shard is likely to lose a similar number of nodes. In

0 100 200 300 400 500

0.05

0.10

0.15

C
hu

rn
 ra

te

(a) Churn rate

Join rate
Leave rate

0 100 200 300 400 500

10
2

10
4

10
6

of

 n
od

es

(b) Distribution of nodes
Static
Moved

New
Left

0 100 200 300 400 500
0.0

0.5

1.0

Lo
ad

 b
al

an
ce

(c) Observed load balance

Best case
Worst case

Optimal

0 100 200 300 400 500
Epoch

0.94

0.95

0.96

O
pe

ra
bi

lit
y

(d) Observed operability

Observed Expected

Fig. 6: Simulation results of executing WORMHOLE for 500 epochs in
different churn conditions. (a) Simulated maximum churn rate (α, β)
over epochs. (b) The distribution of nodes over epochs. A node is
static if it stays in the same shard compared to the last epoch; is
moved if it moves to another shard compared to the last epoch; is
new if it newly join the system in this epoch; and is left if it leaves the
system in this epoch. (c) The observed load balance in the best-case
and worst-case execution. In the best case, a random set of nodes
leave the system, while in the worst case nodes in the same shard
leave the system. (d) The observed operability, compared with the
expected one.

the worst-case execution, nodes in the same shard leave the
network, making the shards less balanced. We observe that
when β = 0.03, the observed load balance is about 0.07 and
0.3 in the best-case and worst-case execution, respectively.
When β gradually increases to 0.15, the observed load balance
increases to 0.3 and 1.1 in the best-case and worst-case
execution, respectively. The observed load balance is less
than 1 in most cases, meaning that WORMHOLE achieves
satisfactory load balance guarantee under high leave rate. In
addition, in the worst-case execution, when β recovers from
0.15 to 0.01, the observed load balance reduces from 1.1 to
0.5 monotonically within about 25 epochs. This shows that
WORMHOLE can recover from temporary load imbalance in a
short time period.

Figure 6(d) shows the observed operability. We observe that
while the expected operability is 0.95, the observed operability
is 0.95 ± 0.015, meaning that WORMHOLE can achieve the
parametrised operability with little bias. In addition, when β
recovers from 0.15 to 0.01, the maximum bias remains stable.

13

This is because the number of nodes has been reduced, making
the statistical results more volatile.

VIII. CONCLUSION

Designing permissionless sharded blockchains remains as
an open challenge, and one of the key reasons is the over-
looked shard allocation protocol. In this paper, we filled this
gap by formally defining the permissionless shard allocation
protocol, evaluating existing shard allocation protocols, ob-
serving trade-offs, and constructing a new shard allocation
protocol WORMHOLE. Theoretical analysis and experimental
evaluation show that WORMHOLE is secure and efficient.

REFERENCES

[1] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proceedings of the nineteenth ACM symposium on Operating
systems principles, 2003, pp. 29–43.

[3] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,”
in 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, 2016.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[6] D. Didona and W. Zwaenepoel, “Size-aware sharding for improving tail
latencies in in-memory key-value stores,” in 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), 2019,
pp. 79–94.

[7] B. Augustin, T. Friedman, and R. Teixeira, “Measuring load-balanced
paths in the Internet,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, 2007, pp. 149–160.

[8] M. Annamalai, K. Ravichandran, H. Srinivas, I. Zinkovsky, L. Pan,
T. Savor, D. Nagle, and M. Stumm, “Sharding the shards: managing
datastore locality at scale with Akkio,” in 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), 2018,
pp. 445–460.

[9] “The zilliqa design story piece by piece: Part 1 (network sharding),”
2020, https : / /blog .zilliqa .com/https- blog- zilliqa- com- the- zilliqa-
design-story-piece-by-piece-part1-d9cb32ea1e65.

[10] “Ethereum sharding: Overview and finality,” 2020, https : / /medium.
com/@icebearhww/ethereum-sharding-and-finality-65248951f649.

[11] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, ACM, 2006.

[12] V. Buterin. (2020). Serenity design rationale. https://notes.ethereum.
org/@vbuterin/rkhCgQteN?type=view.

[13] (2020). On sharding blockchains faqs. https : / / eth . wiki / sharding /
Sharding-FAQs.

[14] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ACM, 2016, pp. 17–30.

[15] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP),
IEEE, 2018, pp. 583–598.

[16] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ACM, 2018,
pp. 931–948.

[17] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” in 25th Annual
Network and Distributed System Security Symposium, NDSS 2018,
2018.

[18] J. Wang and H. Wang, “Monoxide: Scale out Blockchains with
Asynchronous Consensus Zones,” in 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), 2019.

[19] Z. Team et al., “The ZILLIQA Technical Whitepaper,” Retrieved
September, 2017.

[20] (2020). Ethereum/eth2.0-specs. https://github.com/ethereum/eth2.0-
specs.

[21] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on
blockchain,” in Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, AFT 2019, 2019.

[22] G. Avarikioti, E. Kokoris-Kogias, and R. Wattenhofer, “Divide and
Scale: Formalization of Distributed Ledger Sharding Protocols,” arXiv
preprint arXiv:1910.10434, 2019.

[23] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P.
Moreno-Sanchez, A. Kiayias, and W. J. Knottenbelt, “Sok: Commu-
nication across distributed ledgers,” IACR Cryptology ePrint Archive,
2019: 1128, Tech. Rep., 2019.

[24] (2020). Ethereum/wiki. https://eth.wiki/sharding/.
[25] A. V. Oppenheim, Discrete-time signal processing. Pearson Education,

1999.
[26] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence

of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2,
pp. 288–323, 1988.

[27] J. Dinger and H. Hartenstein, “Defending the sybil attack in p2p net-
works: Taxonomy, challenges, and a proposal for self-registration,” in
First International Conference on Availability, Reliability and Security
(ARES’06), IEEE, 2006, 8–pp.

[28] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in IEEE P2P 2013 Proceedings, IEEE, 2013, pp. 1–10.

[29] X. Qian, “Improved authenticated data structures for blockchain syn-
chronization,” PhD thesis, 2018.

[30] (2020). Warp sync - wiki parity tech documentation. https : / / wiki .
parity.io/Warp-Sync.

[31] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems, Springer, 2002.

[32] A. C.-C. Yao, “Some complexity questions related to distributive
computing (preliminary report),” in Proceedings of the eleventh annual
ACM symposium on Theory of computing, 1979, pp. 209–213.

[33] J. Zhao, J. Yu, and J. K. Liu, “Consolidating Hash Power in Blockchain
Shards with a Forest,” in International Conference on Information
Security and Cryptology, Springer, 2019, pp. 309–322.

[34] B. Awerbuch and C. Scheideler, “Robust random number generation
for peer-to-peer systems,” in International Conference On Principles
Of Distributed Systems, Springer, 2006.

[35] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford, “Scalable bias-resistant distributed ran-
domness,” in 2017 IEEE Symposium on Security and Privacy (SP),
2017.

[36] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Con-
stantinople: Practical asynchronous Byzantine agreement using cryp-
tography,” Journal of Cryptology, vol. 18, no. 3, pp. 219–246, 2005.

[37] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer
Science (FOCS 1987), 1987.

[38] S. Sen and M. J. Freedman, “Commensal cuckoo: Secure group
partitioning for large-scale services,” ACM SIGOPS Operating Systems
Review, vol. 46, no. 1, pp. 33–39, 2012.

[39] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM (JACM), vol. 27, no. 2,
pp. 228–234, 1980.

[40] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
40th Annual Symposium on Foundations of Computer Science, IEEE,
1999.

[41] Y. Dodis, “Efficient construction of (distributed) verifiable random
functions,” in International Workshop on Public Key Cryptography,
Springer, 2003, pp. 1–17.

[42] S. Goldberg, J. Vcelak, D. Papadopoulos, and L. Reyzin, “Verifiable
random functions (VRFs),” 2018.

[43] J. Kelsey, L. T. Brandão, R. Peralta, and H. Booth, “A reference for
randomness beacons: Format and protocol version 2,” National Institute
of Standards and Technology, Tech. Rep., 2019.

[44] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “HydRand: Effi-
cient Continuous Distributed Randomness,” in 2020 IEEE Symposium
on Security and Privacy (SP), pp. 32–48.

14

https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65
https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649
https://notes.ethereum.org/@vbuterin/rkhCgQteN?type=view
https://notes.ethereum.org/@vbuterin/rkhCgQteN?type=view
https://eth.wiki/sharding/Sharding-FAQs
https://eth.wiki/sharding/Sharding-FAQs
https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/eth2.0-specs
https://eth.wiki/sharding/
https://wiki.parity.io/Warp-Sync
https://wiki.parity.io/Warp-Sync

[45] (2020). Random uchile - random uchile. https://beacon.clcert.cl/en/.
[46] (2020). Brazilian beacon. https://beacon.inmetro.gov.br/.
[47] (2020). Distributed randomness beacon — cloudflare. https : / /www.

cloudflare.com/leagueofentropy/.
[48] (2020). Unicorn beacon by lacal. http://trx.epfl.ch/beacon/index.php.
[49] (2020). Drand - distributed randomness beacon. https://drand.love/.
[50] I. Cascudo and B. David, “Albatross: Publicly attestable batched

randomness based on secret sharing,”
[51] A. K. Lenstra and B. Wesolowski, “A random zoo: Sloth, unicorn, and

trx,” IACR Cryptol. ePrint Arch., vol. 2015, p. 366, 2015.
[52] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass, “Continuous

verifiable delay functions,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Springer, 2020,
pp. 125–154.

[53] R. Han, J. Yu, and H. Lin, “Randchain: Decentralised randomness
beacon from sequential proof-of-work,” IACR Cryptol. ePrint Arch.,
2020.

[54] J. Bonneau, J. Clark, and S. Goldfeder, “On Bitcoin as a public
randomness source.,” IACR Cryptology ePrint Archive, vol. 2015,
p. 1015, 2015.

[55] J. Clark and U. Hengartner, “On the use of financial data as a random
beacon.,” EVT/WOTE, vol. 89, 2010.

[56] J. Benet and N. Greco, “Filecoin: A decentralized storage network,”
Protoc. Labs, pp. 1–36, 2018.

[57] S. Hohenberger and B. Waters, “Constructing verifiable random func-
tions with large input spaces,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Springer,
2010, pp. 656–672.

[58] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Val-
sorda, “Privacy pass: Bypassing internet challenges anonymously,”
Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 3,
pp. 164–180, 2018.

[59] S Goldberg, D Papadopoulos, and J Vcelak, draft-goldbe-vrf: Verifiable
Random Functions.(2017), 2017.

[60] J. Neu, E. N. Tas, and D. Tse, “Ebb-and-flow protocols: A resolution
of the availability-finality dilemma,” arXiv preprint arXiv:2009.04987,
2020.

[61] S. Sankagiri, X. Wang, S. Kannan, and P. Viswanath, “Blockchain cap
theorem allows user-dependent adaptivity and finality,” arXiv preprint
arXiv:2010.13711, 2020.

[62] “Crates/rug,” 2020, https://crates.io/crates/rug.
[63] “Crates/bitvec,” 2020, https://crates.io/crates/bitvec.
[64] “Schnorr vrfs and signatures on the ristretto group,” 2020, https : / /

github.com/w3f/schnorrkel.
[65] “The ristretto group,” 2020, https://ristretto.group/.
[66] “Crates/rand,” 2020, https://crates.io/crates/rand.
[67] “Cargo-bench,” 2020, https://doc.rust-lang.org/cargo/commands/cargo-

bench.html.
[68] “Criterion.rs,” 2020, https://github.com/bheisler/criterion.rs.
[69] V. Ramasubramanian and E. G. Sirer, “The design and implementation

of a next generation name service for the internet,” ACM SIGCOMM
Computer Communication Review, vol. 34, no. 4, pp. 331–342, 2004.

[70] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
“PNUTS: Yahoo!’s hosted data serving platform,” Proceedings of the
VLDB Endowment, vol. 1, no. 2, pp. 1277–1288, 2008.

[71] S. Che, G. Rodgers, B. Beckmann, and S. Reinhardt, “Graph coloring
on the GPU and some techniques to improve load imbalance,” in 2015
IEEE International Parallel and Distributed Processing Symposium
Workshop, IEEE, 2015, pp. 610–617.

[72] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The bittorrent
p2p file-sharing system: Measurements and analysis,” in International
Workshop on Peer-to-Peer Systems, Springer, 2005, pp. 205–216.

[73] Y. Kulbak, D. Bickson, et al., “The eMule protocol specification,”
eMule project, http://sourceforge. net, 2005.

[74] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols
for computer communications, 2001, pp. 161–172.

[75] C. Lin, Y. Jiang, X. Chu, H. Yang, et al., “An effective early warning
scheme against pollution dissemination for BitTorrent,” in GLOBE-
COM 2009-2009 IEEE Global Telecommunications Conference, IEEE,
2009, pp. 1–7.

[76] X. Lou and K. Hwang, “Collusive piracy prevention in P2P content
delivery networks,” IEEE Transactions on Computers, vol. 58, no. 7,
pp. 970–983, 2009.

[77] P. Dhungel, D. W. 0001, B. Schonhorst, and K. W. Ross, “A measure-
ment study of attacks on BitTorrent leechers.,” in IPTPS, vol. 8, 2008,
pp. 7–7.

[78] M. Jelasity and A.-M. Kermarrec, “Ordered slicing of very large-scale
overlay networks,” in Sixth IEEE International Conference on Peer-to-
Peer Computing (P2P’06), IEEE, 2006, pp. 117–124.

[79] A. Fernández, V. Gramoli, E. Jiménez, A.-M. Kermarrec, and M.
Raynal, “Distributed slicing in dynamic systems,” in 27th International
Conference on Distributed Computing Systems (ICDCS’07), IEEE,
2007, pp. 66–66.

[80] V. Gramoli, Y. Vigfusson, K. Birman, A.-M. Kermarrec, and R.
van Renesse, “A fast distributed slicing algorithm,” in Proceedings
of the twenty-seventh ACM symposium on Principles of distributed
computing, 2008, pp. 427–427.

[81] F. Maia, M. Matos, R. Oliveira, and E. Riviere, “Slicing as a dis-
tributed systems primitive,” in 2013 Sixth Latin-American Symposium
on Dependable Computing, IEEE, 2013, pp. 124–133.

[82] D. J. DeWitt, J. F. Naughton, and D. F. Schneider, “Parallel sorting on
a shared-nothing architecture using probabilistic splitting,” University
of Wisconsin-Madison Department of Computer Sciences, Tech. Rep.,
1991.

[83] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone proto-
col: Analysis and applications,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Springer,
2015.

[84] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic voting,” in Annual International
Cryptology Conference, Springer, 1999, pp. 148–164.

[85] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities” honest or bust”
with decentralized witness cosigning,” in 2016 IEEE Symposium on
Security and Privacy (SP), IEEE, 2016.

[86] (2020). Zilliqa - the next generation, high throughput blockchain
platform. https://zilliqa.com/.

[87] (2020). Zilliqa developer portal · technical and api documentation for
participating in the zilliqa network. https://dev.zilliqa.com/.

[88] (2020). Zilliqa/zilliqa at v5.0.1. https://github.com/Zilliqa/Zilliqa/tree/
v5.0.1.

[89] (2020). Randao: A dao working as rng of ethereum. https: / /github.
com/randao/randao.

APPENDIX

A. Proofs of impossibility and memory-dependency

Lemma 2. If a correct shard allocation protocol ΠShardAlloc

with m shards satisfies update-randomness with γ, the self-
balance µ of ΠShardAlloc is

µ = 1−
∣∣∣∣ (γm− 1)βt

m− 1

∣∣∣∣
where βt is the percentage of nodes leaving the network in
epoch t.

Proof. By Definition 10, in epoch t, the number ntk of nodes
in any shard k is nt

m . By join-randomness, newly joined nodes
will be uniformly allocated into shards. Thus, without the loss
of generality, we assume at the end of epoch t, no node joins
the network (α = 0) and βtn

t nodes leave the network. Let
∆ntk be the number of leaving nodes in shard k ∈ [m] in
epoch t, we have

∑m
k=1 ∆ntk = βtn

t. Upon the next system
state stt+1, each node executes ΠShardAlloc.Update(·), and its
resulting shard complies with the probability distribution in
Definition 4. After executing ΠShardAlloc.Update(·), there are
some nodes in shard k moving to other shards, and there are
some nodes from other shards moving to shard k as well.

15

https://beacon.clcert.cl/en/
https://beacon.inmetro.gov.br/
https://www.cloudflare.com/leagueofentropy/
https://www.cloudflare.com/leagueofentropy/
http://trx.epfl.ch/beacon/index.php
https://drand.love/
https://crates.io/crates/rug
https://crates.io/crates/bitvec
https://github.com/w3f/schnorrkel
https://github.com/w3f/schnorrkel
https://ristretto.group/
https://crates.io/crates/rand
https://doc.rust-lang.org/cargo/commands/cargo-bench.html
https://doc.rust-lang.org/cargo/commands/cargo-bench.html
https://github.com/bheisler/criterion.rs
https://zilliqa.com/
https://dev.zilliqa.com/
https://github.com/Zilliqa/Zilliqa/tree/v5.0.1
https://github.com/Zilliqa/Zilliqa/tree/v5.0.1
https://github.com/randao/randao
https://github.com/randao/randao

By the definition of operability, there are γ(ntk − ∆ntk)
nodes in shard k that do not move to other shards. There are

(1− βt)nt − (ntk −∆ntk)

nodes that do not belong to shard k. By Definition 4, there
are

1− γ
m− 1

[(1− βt)nt − (ntk −∆ntk)]

nodes moving to shard k. Thus, the number nt+1
k of nodes in

shard k in epoch t+ 1 is

nt+1
k = γ(ntk −∆ntk) +

1− γ
m− 1

[(1− βt)nt − (ntk −∆ntk)]

=
γm− 1

m− 1
(ntk −∆ntk) +

(1− γ)(1− βt)
m− 1

nt

By Definition 10, to find µ, we should find the largest
|nt+1

i −nt+1
j |

nt , which can be calculated as

|nt+1
i − nt+1

j |
nt

=
|γm−1m−1 (nti −∆nti)−

γm−1
m−1 (ntj −∆ntj)|

nt

=
|γm−1m−1 (∆nti −∆ntj)|

nt

Thus, when (∆nti−∆ntj) is maximal,
|nt+1

i −nt+1
j |

nt is maxi-
mal, and µ can be calculated. As there are βtnt nodes leaving
the network in total, the maximal value of (∆nti − ∆ntj) is
βtn

t. Therefore, µ can be calculated as

µ = 1− max
∀i,j∈[m]

|nt+1
i − nt+1

j |
nt

= 1− max
∀i,j∈[m]

|γm−1m−1 (∆nti −∆ntj)|
nt

= 1−
|γm−1m−1 βtn

t|
nt

= 1−
∣∣∣∣ (γm− 1)βt

m− 1

∣∣∣∣
Theorem 3. Let βt be the percentage of nodes leaving the
network in epoch t. It is impossible for a correct shard allo-
cation protocol ΠShardAlloc with m shards to achieve optimal
self-balance and operability simultaneously for any βt 6= 0
and m > 1.

Proof. We prove this by contradiction. Assuming self-balance
µ = 1 and operability γ = 1. According to Lemma 1, µ = 1
only when either βt = 0 or γm = 1. As γ = 1 and m > 1,
γm > 1. Thus, ΠShardAlloc can achieve µ = 1 and γ = 1
simultaneously only when βt = 0. However, βt > 0, which
leads to a contradiction.

Theorem 4. If a correct shard allocation protocol ΠShardAlloc

is µ-self-balanced and γ-operable where µ ∈ (0, 1− βt) and
γ ∈ (1

m , 1), then ΠShardAlloc is memory-dependent.

Proof. We prove this by contradiction. Assuming
ΠShardAlloc is memoryless, i.e., the output of
ΠShardAlloc.Update(pp.ski, stt, k, πi,stt,k, stt+1) only depends
on stt and stt+1. This means there exists no δ ≥ 1 such that
πi,stt,k involves any information of stt−δ .

When γ ∈ (1
m , 1), the distribution of the result-

ing shard of ΠShardAlloc.Update(·) is non-uniform, given
the update-randomness property. In this case, executing
ΠShardAlloc.Update(·) requires the knowledge of k – index of
the shard that i locates at state stt. Thus, πi,stt+1,k′ – one of
the output of ΠShardAlloc.Update(·) – should enable verifiers
to verify node i is at shard k in epoch t.

Verifying node i is at shard k in epoch t is achieved
by verifying πi,stt,k. Thus, πi,stt+1,k′ depends on stt and
πi,stt,k. Similarly, πi,stt,k depends on stt−1 and πi,stt−1,k, and
πi,stt−1,k depends on stt−2 and πi,stt−2,k. Recursively, πi,stt,k
depends on all historical system states. Thus, if the assumption
holds, then this contradicts update-randomness.

Remark 1. When γ = 1
m or 1, ΠShardAlloc.Update(·) does not

rely on any prior system state. When γ = 1
m , the resulting

shard of ΠShardAlloc.Update(·) is uniformly distributed, so
ΠShardAlloc.Update(·) can just assign nodes randomly accord-
ing to the incoming system state. When γ = 1, the resulting
shard of ΠShardAlloc.Update(·) is certain. All of our evaluated
shard allocation protocols choose γ = 1

m or 1, except
for RapidChain using Commensal Cuckoo and Chainspace
allowing nodes to choose shards upon requests.

B. Proofs of WORMHOLE ΠWH
ShardAlloc

Lemma 3. ΠWH
ShardAlloc satisfies liveness.

Proof. By RB-Availability, the RB is always producing ran-
dom outputs, and therefore new system states regularly.
Given a new system state, any honest node can execute
ΠWH

ShardAlloc.Update(·) (or ΠWH
ShardAlloc.Join(·) for newly joined

nodes). As both ΠWH
ShardAlloc.Join(·) and ΠWH

ShardAlloc.Update(·)
can be computed locally without interacting with other nodes,
the execution of them will eventually terminate.

Lemma 4. ΠWH
ShardAlloc satisfies unbiasibility.

Proof. We prove this by contradiction. Assuming that
ΠWH

ShardAlloc does not satisfy unbiasibility: given a system state,
an adversary can manipulate the probability distribution of
the output shard of ΠWH

ShardAlloc.Join(·) or ΠWH
ShardAlloc.Update(·)

with non-negligible probability. This consists of three attack
vectors: 1) the adversary can manipulate the system state;
2) when ΠWH

ShardAlloc.Join(·) or ΠWH
ShardAlloc.Update(·) are proba-

bilistic, the adversary can keep generating memberships until
outputting a membership of its preferred shard; and 3) the
adversary can forge proofs of memberships of arbitrary shards.

By RB-Unbiasibility, the randomness produced by RB is
unbiasible, so the system state of ΠWH

ShardAlloc is unbiasible.
By VRF-Uniqueness, given a secret key, the VRF output
of the system state is unique, which eliminates the last
two attack vectors. In addition, the uniqueness of the VRF
output of the unbiasible system state indicates that the VRF
output is unbiasible. The output shard of ΠWH

ShardAlloc.Join(·) or
ΠWH

ShardAlloc.Update(·) is a modulus of the VRF output, which
is also unbiasible. This eliminates the first attack vector. Thus,
if ΠWH

ShardAlloc does not resist against the first attack vector, then

16

this contradicts RB-Unbiasibility; and if ΠWH
ShardAlloc does not

resist against the second and/or the last attack vectors, then
this contradicts VRF-Uniqueness.

Lemma 5. ΠWH
ShardAlloc satisfies join-randomness.

Proof. We prove this by contradiction. Assuming that
ΠWH

ShardAlloc does not satisfy join-randomness, i.e., the prob-
abilistic of a node joining a shard k ∈ [m] is 1

m + ε for
some k and non-negligible ε. Running Join(·) requires the
execution of VRFEval(·) over a series of system states. By
VRF-Pseudorandomness, VRF outputs of system states are
pseudorandom. As a modulo of a VRF output, the output shard
of ΠWH

ShardAlloc.Join(·) is also pseudorandom. Thus, if ΠWH
ShardAlloc

does not satisfy join-randomness, then this contradicts VRF-
Pseudorandomness.

Lemma 6. ΠWH
ShardAlloc satisfies update-randomness.

Proof. We prove this by contradiction. Assuming that
ΠWH

ShardAlloc does not satisfy update-randomness, i.e., with non-
negligible probability, there is no γ such that the probability
of a node joining a shard k complies with the distribution
in Definition 4. When epoch t is a non-memory-dependent
epoch, the node will be shuffled. By VRF-Pseudorandomness,
the probability of moving to each shard is same. Thus, there is
a γ = 1

m that makes the output shard of Update(·) to comply
with the distribution in Definition 4.

When t is a memory-dependent epoch, the last VRF output
remains unchanged. In ΠWH

ShardAlloc.Update(·), given the last
VRF output, the probability that the op MSBs of the new
VRF output equal to op LSBs of the last VRF output is 1

2op .
By VRF-Pseudorandomness, the probability of moving to each
other shard is same. Thus, there is a γ = 1 − 1

2op ·
m−1
m =

1− m−1
m·2op that makes the output shard of Update(·) to comply

with the distribution in Definition 4.
Thus, if ΠWH

ShardAlloc does not satisfy update-randomness, then
this contradicts VRF-Pseudorandomness.

Lemma 7. ΠWH
ShardAlloc satisfies allocation-privacy.

Proof. This follows proofs of Lemma 5 and 6.

C. Related work

We briefly review existing research on sharding distributed
systems and compare our contributions with two studies sys-
tematising blockchain sharding protocols.
Sharding for CFT distributed systems. Sharding has been
widely deployed in crash fault tolerant (CFT) systems to
raise their throughput. Allocating nodes to shards in a CFT
system is straightforward, as there is no Byzantine adversaries
in the system, and the total number of nodes is fixed and
known to everyone [1], [4], [70]. The main challenge is to
balance the computation, communication, and storage work-
load among shards. Despite a large number of load-balancing
algorithms [5]–[8], [71], none of them is applicable in the
permissionless setting as they do not tolerate Byzantine faults.
Distributed Hash Tables. Many peer-to-peer (P2P) storage
services [72], [73] employ Distributed Hash Tables (DHT) [74]

to assign file metadata, i.e., a list of keys, to their responsible
nodes. In a DHT, nodes share the same ID space with the keys;
a file’s metadata is stored at the nodes whose IDs are closest
to the keys. Although designed to function in a permissionless
environment, DHTs are vulnerable to several attacks [75]–[77],
therefore are not suitable for blockchains, which demands
strong consistency on financial data.
Distributed Slicing. Distributed Slicing [78] aims at grouping
nodes with heterogeneous computing and storage capacities
in a P2P network to optimise resource utilisation. In line
with CFT systems, these algorithms [79]–[82] require nodes
to honestly report their computing and storage capacities,
therefore are not suitable in a Byzantine environment.
Evaluation of sharded blockchains. Wang et al. [21] propose
an evaluation framework based on Elastico’s architecture;
Avarikioti et al. [22] formalise sharded blockchains by ex-
tending the model of Garay et al. [83]. Both of them aim at
evaluating the entire sharded designs, and put most efforts on
DRG or cross-shard communication, neglecting the security
and performance challenges of shard allocation.

D. Details of evaluated shard allocation protocols

1) Elastico: In Elastico, a new block will trigger the shard
allocation protocol. In Elastico’s shard allocation protocol,
all nodes in a special shard called final committee exe-
cute a commit-then-reveal Distributed Randomness Generation
(DRG) protocol [34] to produce a random output. With a the
random output as input, a node derives a PoW puzzle, and
needs to solve it to obtain a valid shard membership. The
prefix of a valid PoW solution is ID of the allocated shard.

The DRG protocol [34] works as follows. Let ns = n
m

and fs = f
m be the number of nodes and faulty nodes

in the final committee, respectively. First, each node in the
final committee chooses a random string, then broadcasts its
hash to others. Nodes receiving ≥ 2

3ns hashes will execute a
vector consensus [39] to agree on a set of hashes. The vector
consensus works under synchronous networks, and has the
communication complexity of O(ns

fs). After the consensus,
each node broadcasts its original random string to other nodes.
Each node can XOR arbitrary 1

2ns+1 received strings to obtain
a valid random output.

2) Omniledger: Similar to Elastico, Omniledger’s shard
allocation protocol is also constructed from DRG. In Om-
niledger, all nodes in the network jointly execute Rand-
Hound [35] - a leader-based DRG protocol tolerating 1

3 faulty
nodes - to generate random outputs. RandHound adapts Pub-
licly Verifiable Secret Sharing (PVSS) [84] to make random
outputs publicly verifiable, and CoSi [85] to improve the
communication and space complexity of generating multi-
signatures. RandHound has the communication complexity of
O(n), works under asynchronous network, and tolerates 1

3
faulty nodes [35].

As RandHound is leader-based, nodes should elect a leader
before running RandHound. To elect a leader, nodes run a ver-
ifiable random function (VRF) [40]-based cryptographic sorti-
tion, which works as follows. Each node first obtains the whole

17

list of peers from the identity authority. Then, each node com-
putes a ticket by running VRFEval(ski, ”leader”||peers||v),
where ski is its secret key, peers is the list of peers, and v is
a view counter starting from zero. Each node then broadcasts
its ticket, and waits for a timeout ∆. After ∆, each node takes
the one with smallest ticket as the leader. If the leader does
not start executing RandHound after another ∆, nodes will
increase the view counter by 1, compute another ticket and
broadcast it again.

Omniledger assumes the leader election is highly possible
to succeed. If the sortition fails for five times, nodes quit the
leader election and RandHound, and instead execute an asyn-
chronous coin-tossing protocol [36] to generate the random
output. The coin-tossing protocol [36] guarantees safety under
asynchronous networks, but suffers from the communication
complexity of O(n3).

After generating a random output, for each shard, the cen-
tralised identity authority will randomly select ≤ n

m pending
nodes and allow them to join the shard. In addition, 1

3 existing
nodes will be shuffled across shards. Given a new random
output and the list of nodes queried from the identity authority,
each node can permute an order of nodes. Compared to the
previous epoch’s permutation, 1

3 nodes will be in different slots
and moved to random shards.

3) RapidChain: In RapidChain, a node has to solve a
PoW puzzle to obtain a shard membership. The PoW puzzle
is derived from the random output produced by a DRG
protocol. The DRG prevents the long range attack, where one
pre-computes PoW solutions in order to take advantage of
consensus in the future. The DRG is executed by nodes in a
special shard called reference committee. The DRG protocol
works as follows. First, each node chooses a random string
and shares it to others using Feldman Verifiable Secret Sharing
(VSS) [37]. Second, each node adds received shares together
to a single string, then broadcasts it. Last, each node calculates
the final randomness using Lagrange interpolation on received
strings. Feldman VSS assumes a synchronous network and
cannot tolerate any faults, as any node failing to broadcast
shares to all other nodes will make the protocol to restart,
breaking the liveness.

After solving a PoW puzzle, a node applies the Commensal
Cuckoo rule [38] to obtain a shard membership. Each node is
pseudorandomly mapped to a number in [0, 1). The interval
is then divided into smaller segments, and nodes within the
same segment belong to the same shard. When a node joins
the network, it will “push forward” nodes in a constant-size
interval surrounding itself to other shards.

As Feldman VSS assumes synchrony, RapidChain’s shard
allocation protocol should assume synchrony to remain cor-
rect. Commensal Cuckoo assumes crash faults only, as the

shard membership is not publicly verifiable, and a Byzantine
node can deviate from the protocol and stay in any shard. With
only crash faults, the load across shards is balanced adaptively
with new nodes joining.

4) Chainspace: Chainspace uses a smart contract called
ManageShards to manage nodes’ membership. Nodes can
request to move to other shards by invoking transactions
of ManageShards. Note that ManageShards runs upon
Chainspace itself. While the security of ManageShards
relies on the whole system’s security, the system’s security
relies on nodes. Meanwhile, nodes’ membership rely on
ManageShards, which leads to a chicken-and-egg problem.
To avoid this chicken-and-egg problem, Chainspace assumes
ManageShards executes correctly.

5) Monoxide: Monoxide’s identity system is similar to
Bitcoin. Nodes are free to create identities, and nodes are
assigned to different shards according to their addresses’ most
significant bits (MSBs). Unlike other protocols, Monoxide’s
shard allocation protocol does not seek to solve all problems
in our formalisation. Instead, it solves these problems by
employing PoW-based consensus upon the shard allocation
protocol.

6) Zilliqa: Zilliqa [86] is a permissionless sharded
blockchain that claims to achieve the throughput of over 2,828
transactions per second. It follows the design of Elastico [14],
but with several optimisations. Our evaluation is based on
Zilliqa’s whitepaper [19], Zilliqa’s developer page [87], and
Zilliqa’s source code (the latest stable release v5.0.1) [88].

Different from Elastico which runs a DRG, Zilliqa simply
uses the SHA2 hash of the latest block as randomness. Taking
the randomness as input, each node generates two valid PoW
solutions. Each node should solve two PoW puzzles within
a time window of 60 seconds, otherwise it cannot join any
shard for this epoch. This means propagating PoW solutions
should finish within a time bound, which implicitly assumes
synchronous network. The first PoW is used for selecting
nodes to form the final committee, and the second PoW is used
for distributing the rest nodes to other committees. The final
committee is responsible for collecting nodes in the network
and helping nodes find their peers in the same shards.

7) Ethereum 2.0: In Ethereum 2.0 [20], each account
has a unique ID, and accounts are assigned to different
shards according to their IDs. More specifically, Ethereum
2.0 employs Proof-of-Stake (PoS)-based consensus, where the
voting power is proportional to the cryptocurrency deposits
a.k.a. staking power. Note that Ethereum 2.0 also employs
a DRG protocol (i.e., RANDAO [89]), which is used for
sampling block producers (aka validators) rather than shard
allocation.

18

	Introduction
	Formalising shard allocation
	Overview of a sharded blockchain
	System model
	Syntax
	Correctness properties
	Performance metrics

	Evaluating shard allocation protocols
	Evaluation criteria
	Overview of evaluated proposals
	System model
	Correctness properties
	Performance metrics

	Observation and insights
	Impossibility and trade-off
	Parametrising the trade-off

	Wormhole: Memory-dependent shard allocation
	Primitives: RB and VRF
	Protocol design
	Theoretical analysis
	Comparison with existing shard allocation protocols

	Integration of Wormhole
	Design choices related to Wormhole
	Integration analysis

	Experimental evaluation of Wormhole
	Implementation and experimental setup
	Overhead analysis
	Simulation

	Conclusion
	Appendix
	Proofs of impossibility and memory-dependency
	Proofs of WormholeShardAllocWH
	Related work
	Details of evaluated shard allocation protocols
	Elastico
	Omniledger
	RapidChain
	Chainspace
	Monoxide
	Zilliqa
	Ethereum 2.0

