
On the (in)security of ROS

Fabrice Benhamouda1, Tancrède Lepoint2, Julian Loss3, Michele Orrù4, and Mariana Raykova5

1 Algorand Foundation, New York, NY, USA fabrice.benhamouda@gmail.com
2 Independent researcher, New York, NY, USA, crypto@tancre.de

3 University of Maryland, College Park, MD, USA, lossjulian@gmail.com
4 UC Berkeley, Berkeley, CA, USA michele.orru@berkeley.edu

5 Google, New York, NY, USA marianar@google.com

Abstract. We present an algorithm solving the ROS (Random inhomogeneities in a Overdetermined
Solvable system of linear equations) problem mod p in polynomial time for ` > log p dimensions. Our
algorithm can be combined with Wagner’s attack, and leads to a sub-exponential solution for any
dimension ` with the best complexity known so far.
When concurrent executions are allowed, our algorithm leads to practical attacks against unforgeability
of blind signature schemes such as Schnorr and Okamoto–Schnorr blind signatures, threshold signatures
such as GJKR and the original version of FROST, multisignatures such as CoSI and the two-round
version of MuSig, partially blind signatures such as Abe–Okamoto, and conditional blind signatures
such as ZGP17. Schemes for e-cash (such as Brands’ signature) and anonymous credentials (such as
Anonymous Credentials Light) inspired from the above are also affected.

1 Introduction

One of the most fundamental concepts in cryptanalysis is the birthday paradox. Roughly, it states that among
O(
√
p) random elements from the range {0, . . . , p− 1} (where p is a prime), there exist two elements a and

b such that a = b, with high probability. In a seminal work, Wagner [Wag02] gave a generalization of the
birthday paradox to ` dimensions which asks to find xi ∈ Li, i ∈ [`] such that x1 + · · · + x` = 0 (mod p),
where Li are lists of random elements.

Wagner’s work also showed a simple and elegant algorithm to solve the problem in subexponential time
O((`+ 1) · 2dlog pe/(1+blog(`+1)c)) and explained how it could be applied to perform cryptanalysis on various
schemes. Among the most important applications of Wagner’s technique is a subexponential solution to the
ROS (Random inhomogeneities in a Overdetermined Solvable system of linear equations) problem [Sch01,
FPS20], which is defined as follows. Given a prime number p and access to a random oracle Hros with range
in Zp, the ROS problem (in dimension `) asks to find (` + 1) vectors ρ̂i ∈ Z`p for i ∈ [`+ 1], and a vector
c = (c1, . . . , c`) such that:

Hros(ρ̂i) = 〈ρ̂i, c〉 for all i ∈ [`+ 1].

This problem was originally studied by Schnorr [Sch01] in the context of blind signature schemes. Using a
solver for the ROS problem, Wagner showed that the unforgeability of the Schnorr and Okamoto–Schnorr
blind signature schemes can be attacked in subexponential time whenever more than polylog(λ) signatures
are issued concurrently. In this work, we revisit the ROS problem and its applications. We make the following
contributions.

– We give the first polynomial time solution to the ROS problem for ` > log p dimensions.
– We show how the above solution can be combined with Wagner’s techniques to yield an improved

subexponential algorithm for dimensions lower than log p. The resulting algorithm offers a smooth trade-
off between the work and the dimension needed to solve the ROS problem. It outperforms the runtime
of Wagner’s algorithm for a broad range of dimensions.

– Finally, we describe how to apply our new attack to an extensive list of schemes. These include: blind
signatures [PS00, Sch01], threshold signatures [GJKR07, KG20a], multisignatures [STV+16, MPSW18a],
partially blind signatures [AO00], conditionally blind signatures [ZGP17, GPZZ19], and anonymous

50 100 150 200 250
22

219

236

253

270

287

Open sessions (`)

A
tt

a
ck

co
st

This work (Section 4)

Wagner [Wag02]

Fig. 1. Concrete cost of our combined attack compared to Wagner’s [Wag02] for λ = 256 and ` < 256. The color
key indicates the different values of w used to estimate the cost. For ` ≥ 256, the attack of Section 3 applies.

credentials [BL13, Bra94], in a concurrent setting with ` > log p parallel executions. While our attacks
do not contradict the security arguments of those schemes (which are restricted only to sequential or
bounded number of executions), they prove that these schemes are unpractical for some real-world
applications (cf. Section 7).

1.1 Technical overview

Let Pgen(1λ) be a parameter generation algorithm that given as input the security parameter λ in unary
form, outputs an odd prime p of length λ = dlog pe. In this work, we prove the following main theorem:

Theorem 1 (ROS attack). If ` ≥ λ, then there exists an adversary that runs in polynomial time and
solves the ROS problem relative to Pgen with dimension `.

Let us first introduce some notation. Given a polynomial ρ = ρ0 + ρ1x1 + · · · + ρ`x` ∈ Zp[x1, . . . , x`]
of total degree 1, we denote with ρ̂ the vector in Z`p having at the i-th position the coefficient of xi. It
is always possible to find ` (out of ` + 1) “partial solutions” to the ROS problem: define the polynomials
ρi(x) = xi in Zp[x1, . . . , x`]. Remark that the elements ρ̂i are the rows of the identity matrix of size `. Define
ci := Hros(ρ̂i), such that, for all i ∈ [`], it holds that

〈ρ̂i, (c1, . . . , c`)〉 = Hros(ρ̂i) .

In general, any list of ` polynomials of the form ρi = ρi,ixi for ρi,i ∈ Z×p (i ∈ [`]) is a valid partial solution, as

long as ci := ρ−1i,i Hros(ρ̂i). The supposedly computationally hard problem is to find the last partial solution,
that is, a non-trivial linear combination ρ̂`+1 of these values ci, that matches the hash image Hros(ρ̂`+1).
Wagner solves the problem in the following way. Fix ρ̂`+1 = (1, 1, . . . , 1), and build ` lists L1, . . . , L` such
that the i-th list is populated with polynomials of the form ρi = ρi,ixi for random ρi,i in Z×p . For every

element in the i-th list Li, consider its respective coefficient ci = ρ−1i,i Hros(ρ̂i). Build an efficient algorithm

2

that finds ci’s satisfying:

〈ρ̂`+1, (c1, . . . , c`)〉 = c1 + c2 + · · ·+ c` = Hros(ρ̂`+1).

Wagner shows in [Wag02] that the above problem (called the `-list birthday problem) can be solved in time
O((`+ 1) · 2dlog pe/(1+blog(`+1)c)).

However, the ROS problem itself allows for much more flexibility to the attacker: for instance, the attacker
can consider a subset of the ci’s (by setting some entries of ρ`+1 to zero), in which case we end up with a
subset-sum problem that is, in general, NP-hard. In Section 3, we manage to express the ROS problem as a
subset-sum of powers of two (modulo p), which can be solved in polynomial time.

Then, to circumvent the restriction ` ≥ λ = dlog pe, we prove a second theorem, under the same conjecture
that the Wagner’s algorithm is using (see Section 4.1 for details about the conjecture).

Conjecture 1 (Wagner [Wag02]). Let L,w ≥ 0 be integers, let p be a odd prime and let k = 2w. Then
Wagner’s algorithm on k lists of 2L uniformly random elements in Zp (as defined in Fig. 4) has constant
failure probability. In particular, when repeating this algorithm in case of failure, the resulting algorithm
outputs a solution to the k-list problem over Zp in expected time O(2w+L).

Theorem 2 (Generalized ROS attack). Let L,w ≥ 0 be integers. Under Wagner’s conjecture (Conjec-
ture 1), if ` ≥ max{2w − 1, d2w − 1 + λ− (w + 1) · Le}, then there exists an adversary that runs in expected
time O(2w+L) and solves the ROS problem relative to Pgen and dimension `.

The core idea behind the generalized ROS attack is to combine the technique from the attack from
Theorem 1 with the basic subexponential attack of Wagner. In the first attack, with a bird’s-eye view, the
reason why we need ` ≥ λ is to be able to write y = Hros(ρ̂`+1) in binary: each bit of the representation
corresponds to a power of two in a subset sum which is trivial to solve in polynomial time. However, to make
it go through, it uses one dimension (i.e., one ci) per bit, and y has λ = dlog pe bits.

In our generalized ROS attack, instead of writing y entirely in binary as above, which requires λ di-
mensions, we first find a sum s of 2w values which include y, but satisfies |s| ∈ [0, p

2(w+1)·L − 1] (mod p).
Note that s can then be represented with λ− (w+ 1) ·L many bits in binary representation. This approach
requires, in total, d2w + λ− (w+ 1) ·L− 1e dimensions and 2w+L overall work. As illustrated in Fig. 1, this
improves over Wagner’s attack as the dimension ` of the ROS problem increases. We remark that, while in
our first attack we give a concrete probability of failure, our second attack is based on the conjecture that
Wagner’s algorithm for Zp succeeds with constant probability. While we are not aware of any formal analysis
of Wagner’s algorithm over Zp, we remark that it is considered a standard cryptanalytic tool. Our attack can
be seen as strictly improving over its (conjectured) performance when applied to solve the ROS problem.

1.2 Impact of the attacks

Any cryptographic construction that bases its security guarantees on the hardness of the ROS problem is
potentially affected by our attacks.

Blind signatures. An immediate consequence of our findings is the first polynomial-time attack against
Schnorr blind signatures [Sch01] and Okamoto–Schnorr blind signatures [PS00] in the concurrent setting
with ` > log p parallel executions.1 Structurally, our attack builds on the one shown by Schnorr [Sch01], who
showed that a solver to the ROS problem can be turned into an attacker against one-more unforgeability
of blind Schnorr and Okamoto–Schnorr signatures. As a concrete example, we implemented in Appendix A
the attack of Section 5, illustrating how to break one-more unforgeability of blind Schnorr signatures over
256-bit elliptic curves in a few seconds (when implemented in Sage [S+20]), provided that the attacker can
open 256 concurrent sessions.

1 Okamoto–Schnorr signatures are proven secure only for ` parallel executions s.t. Q`/p� 1, where Q is the number
of queries to Hros. Our attack does not contradict their analysis as our attack requires ` > log2 p > logQ p.

3

Game ROSPgen,A,`(λ)

p← Pgen(1λ)(
(ρ̂i)i∈[`+1], c

)
← AH

ros(p)

return
(
∀i 6= j ∈ [`+ 1] : ρ̂i 6= ρ̂j ∧ 〈ρ̂i, c〉 = Hros(ρ̂i)

)
Fig. 2. The ROSPgen,A,`(λ) game. Hros is a random oracle with image in Zp.

Other affected constructions. Our attack can be adapted to an extensive list of schemes which in-
clude threshold signatures [GJKR07, KG20a], multisignatures [STV+16, MPSW18a], partially blind signa-
tures [AO00], conditionally blind signatures [ZGP17, GPZZ19], blind anonymous group signatures [CFLW04],
blind identity-based signcryption [YW05], and blind signature schemes from bilinear pairings [CHYC05]. We
note that some of the previous works claim security only for non-concurrent executions or with a bounded
number of executions; therefore, our attacks do not contradict their security claims but render these schemes
unsuitable for a broad range of real-world use cases.

Scope of our attacks and countermeasures. Our attacks do not extend to the modified-ROS [FPS20]
and the generalized-ROS [HKLN20] problems. The concrete hardness of both problems remains an intriguing
open question.

2 Preliminaries

In this work, we assume that logarithm is always base 2, and we use the usual Landau notation. Let Pgen(1λ)
be a parameter generation algorithm that given as input the security parameter λ in unary outputs an odd
prime p of length λ = dlog pe. For an integer q, we let [q] be the integer set {1, . . . , q}, and Zq be the ring of
integers modulo q. The ROS problem for ` dimensions, displayed in Fig. 2, is hard if no adversary can solve
the ROS problem in time polynomial in the security parameter λ, i.e.:

AdvrosPgen,A,`(λ) := Pr
[
ROSPgen,A,`(λ) = 1

]
= λ−ω(1).

Alternative formulations of ROS. Fuchsbauer, Plouviez, and Seurin [FPS20, Fig. 7] present a variant
of ROSPgen,A,`(λ) with an additional input aux ∈ {0, 1}∗, needed for including the message used in a Schnorr
blind signature. Hauck, Kiltz, and Loss [HKL19, Fig. 3] consider an adversary returning a pair (A, c) ∈
Z`+1×`+1
p × Z`+1

p such that Ac = 0, Ai 6= Aj ∀i 6= j ∈ [`+ 1], Hros(Ai,1, . . . , Ai,`) = Ai,`+1 and c`+1 = −1.
These formulations are all equivalent.

3 Attack

We introduce the following notation: for a polynomial ρ = ρ0 + ρ1x1 + ρ2x2 + · · ·+ ρ`x` ∈ Zp[x1, . . . , x`], we
set ρ̂ to be the vector containing at the i-th position the coefficient of xi, that is, ρ̂ = (ρ1, ρ2, . . . , ρ`). Note
that the constant term is not included.

Theorem 1 (ROS attack). If ` ≥ λ, then there exists an adversary that runs in polynomial time and
solves the ROS problem relative to Pgen with dimension `.

Proof. We construct an adversary for ROSPgen,A,`(λ), where ` > log p. The goal for the adversary A is to
output (ρ̂i)i∈[`+1] and c = (c1, . . . , c`) such that:

Hros(ρ̂i) = 〈ρ̂i, c〉 for i = 1, . . . , `+ 1.

4

Define:

ρ0
i := xi, ρ1

i := 2xi for i = 1, . . . , `,

and let cbi := 2−bHros(ρ̂
b
i), for b = 0 and b = 1. If there exists i∗ ∈ [`] such that c0i∗ = c1i∗ , then A stops

immediately and returns the ROS solution (ρ̂0
1, . . . , ρ̂

0
` , ρ̂

1
i∗) and (c01, . . . , c

0
`). Otherwise, if c0i 6= c1i for all

i ∈ [`], define the degree-1 polynomial:

fi(xi) :=
xi − c0i
c1i − c0i

.

We remark that, for b ∈ {0, 1}, fi(c
b
i) = b. Define ρ`+1 :=

∑`
i=1 2i−1fi, and note that ρ`+1 is a multivariate

polynomial of total degree 1, i.e., ρ`+1 = ρ`+1,0+ρ`+1,1x1+ρ`+1,2x2+· · ·+ρ`+1,`x`. Define y := Hros(ρ̂`+1)+
ρ`+1,0 = Hros((ρ`+1,1, ρ`+1,2, . . . , ρ`+1,`)) + ρ`+1,0. Finally, write y in binary as:

y =
∑̀
i=1

2i−1bi (mod p).

(As 2` > p, it is possible to write y this way, and this implicitly defines the bi’s.) The adversary A outputs
the solution (ρ̂b11 , . . . , ρ̂

b`
` , ρ̂`+1) and c := (cb11 , . . . , c

b`
`). We have indeed that, for i ∈ [`], 〈ρ̂bii , c〉 = 2bicbii =

Hros(ρ̂
bi
i) and:

〈ρ̂`+1, c〉 = ρ`+1(c)− ρ`+1,0 =
∑̀
i=1

2i−1fi(c
bi
i)− ρ`+1,0 =

∑̀
i=1

2i−1bi − ρ`+1,0 = Hros(ρ̂`+1) .

ut

Remark 1. Fuchsbauer, Plouviez, and Seurin [FPS20, Sec. 5] propose a variant of ROS, called modified ROS
(mROS). Tessaro and Zhu [TZ22] introduce a variant of ROS called weighted fractional ROS (WFROS).
The attack above does not apply to mROS and WFROS.

4 Generalized attack

We present a combination of Wagner’s subexponential k-list attack and the polynomial time attack from
Section 3. This combined attack yields a subexponentially efficient algorithm against ROS which requires
fewer dimensions than the attack in the previous section (i.e., less than λ = dlog pe). However, for some
practical cases, the attack significantly outperforms Wagner’s attack in terms of work, for the same number
of dimensions. The intuition behind our attack is as follows. We set k1 = 2w−1, k2 = max(0, dλ−(w+1)·Le),
and the dimension ` = k1 + k2, for some integer w and some real number L > 0.

First, we use a generalization of Wagner’s algorithm to find a “small” sum s = y∗k2 + · · · + y∗` of k1 + 1
values y∗i := Hros(ρ̂i), where the polynomials ρi(x1, . . . , x`) are chosen to make the second step of the attack
work.2 As we describe below, we can obtain that |s| < 2k2−1 using O(2w+L) hash queries and space O(w2L).
Then, we use the technique from the previous section in order to represent the sum s as a binary sum of at
most k2 terms. This solves the ROS problem. The attack runs in overall time O(2w+L), space O(w2L), and
requires ` = max(2w − 1, d2w − 1 + λ− (w + 1) · Le) dimensions.

We remark that the attack is a generalization of both Wagner’s attack and our polynomial-time attack
from Section 3. Wagner’s attack corresponds to the case where L = λ/(w + 1) and ` = 2w − 1. Our
polynomial-time attack corresponds to the case w = 0, L = 0, ` = λ.

2 In the actual attack, part of the second step is executed before to allow to choose these polynomials properly.

5

⊆ I0

⊆ I1

...

⊆ Iw−1

⊆ Iw = Zp

L0
1

./

L1
1 L1

2

./ ./
...

. . .
...

. . .
...

...
...

...

Lw−1
1 Lw−1

2
. . . Lw−1

2w−1

./ ./ ./

Lw1 Lw2 Lw3 Lw4 . . . Lw2w−1 Lw2w

Fig. 3. Tree of lists for the k-list algorithm (./ represents the join operation in the algorithm; the sets in the right
handside are the sets to which the elements of the lists of a given level belong).

Examples. For a prime p of λ = 256 bits, a concrete example yields w = 5, L = 15, i.e., ` = 32 + 256 −
6 · 15 − 1 = 197 dimensions and time roughly 220 and space roughly 5 · 215 (elements of Zp). On the other

hand, Wagner’s algorithm for 197 dimensions requires time roughly 2blog 197c · 2
256

blog 197c+1 = 27 · 232 = 239 and

space roughly blog 197c · 2
256

blog 197c+1 = 7 · 232.
For a 512 bit modulus, a concrete example yields w = 6, L = 46, i.e., ` = 64 + 512 − 7 · 46 − 1 = 253

dimensions and time roughly 253 and space roughly 6 · 246. Wagner’s algorithm for 254 dimensions requires

time roughly 2blog 254c · 2
512

blog 254c+1 = 27 · 264 = 271 and space roughly blog 254c · 2
512

blog 254c+1 = 7 · 264.3

4.1 Generalized k-list algorithm

In this section, we write elements Zp as signed integers in [−p−12 , p−12]. Let w and L be two positive integers.
We define the following integer intervals:

Ii :=

[
−
⌊

p− 1

2(w−i)·L+1

⌋
,

⌊
p− 1

2(w−i)·L+1

⌋]
.

Remark that Zp = Iw.
We now describe the k-list algorithm, which is the core of Wagner’s algorithm. We generalize it to match

our needs and to output elements that sum to something in I−1 rather than to exactly 0. (This essentially
corresponds to executing Wagner’s attack as usual, but stopping early.) The algorithm is defined relative
to random oracles H1, . . .Hk (with input in Z∗p and output in Zp). It takes as input (w,L) and outputs

(ρ∗1, . . . , ρ
∗
k) ∈ (Z∗p)

k
with k = 2w such that:

s := y∗1 + · · ·+ y∗k ∈ I−1 where y∗i := Hi(ρ
∗
i) .

The high-level idea of the algorithm is to use 2w+1 − 1 lists of about 2L values organized as a tree, as
depicted in Fig. 3, and to ensure that lists Lwi at level i contains elements from the set Ii.

3 Indeed, when considering the exact values of the constants in the asymptotics, the actual complexity of Wagner’s

attack is 2blog(`+1)c · 2
λ

1+blog(`+1)c .

6

Algorithm k-listH1,...,Hk (w,L)

// Setup

for i ∈ [k], ρ ∈ [2L] : Lwi,j := Hi(ρ)

// Collisions

for i = w downto 1:

for j ∈ [2i−1] :

Li−1
j = {a+ b : a ∈ Li2j−1, b ∈ Li2j , a+ b ∈ Ii−1}

// Output

look for an element s = y∗1 + · · ·+ y∗k ∈ L0 ∩ I−1

if such an element does not exists then return ⊥
return (ρ∗1, . . . , ρ

∗
k) such that y∗i = Hi(ρ

∗
i)

Fig. 4. The k-list algorithm.

– Setup/Leaves: k-list fills the lists Lwi in the leaves with all 2L points of the form Hi(ρ) ∈ Iw = Zp,
where ρ ∈

{
1, 2, 3, ..., 2L

}
.

– Collisions/Join: The algorithm now proceeds to find collisions in levels from w to 1. At level i, process
the 2i−1 pairs of lists (Li1,L

i
2), . . . , (Li2i−1,L

i
2i) into 2i−1 lists Li−11 , . . . ,Li−12i−1 as follows:

Li−1j := {a+ b : a ∈ Li2j−1, b ∈ Li2j , a+ b ∈ Ii−1} .

(Remember that a, b ∈ Zp and a + b is computed modulo p.) Moreover, we implicitly assume that the
algorithm stores back pointers to a and b such that they can efficiently be recovered at a later point.

– Output: Let L0 = L0
1 denote the (only) list created at level 0. The algorithm finds an element s ∈ L0

such that s ∈ I−1. If no such element exists, it returns ⊥. Otherwise, it recovers k = 2w values ρ∗1, . . . , ρ
∗
k

such that y∗i = Hi(ρ̂
∗
i) ∈ Lwi and s = y∗1 + · · ·+ y∗k. It returns (ρ∗1, . . . , ρ

∗
k).

We formally write the algorithm k-list in Fig. 4.

Correctness. Our algorithm’s correctness follows directly from the correctness of Wagner’s original algo-
rithm. More precisely, our algorithm performs identical steps as Wagner’s, but stops upon finding a sum
of values with a suitably small absolute value, i.e., one that falls into I−1. On the other hand, Wagner’s
algorithm keeps continuing with more levels until it finds values who sum to 0.

We remark that we are not aware of a formal analysis of Wagner’s algorithm for values in Zp. The work
of Minder and Sinclair [MS09] analyses the case of finding a weighted sum of vectors of Zp values that sum to
zero in each component, but uses a different technique from the one presented in Wagner’s paper (and used
here). Our attack can be seen as working under the assumption that Wagner’s algorithm works correctly,
i.e., has constant failure probability. We can repeat the attack until it succeeds, which makes the resulting
algorithm expected polynomial time. Formally analyzing the failure probability of Wagner’s algorithm over
Zp remains an important open problem.

Complexity. Overall, the algorithm runs in time O(2w+L) and is conjectured to succeed with constant
probability. As described [Wag02], this running time is made possible using an optimized join operation such
as Hash Join or Merge Join. The algorithm uses space O(2w+L), but by evaluating the collisions/joins in
postfix order (in the tree), this can be reduced to O(w2L).

Concretely, we state the following conjecture:

Conjecture 1 (Wagner [Wag02]). Let L,w ≥ 0 be integers, let p be a odd prime and let k = 2w. Then
Wagner’s algorithm on k lists of 2L uniformly random elements in Zp (as defined in Fig. 4) has constant
failure probability. In particular, when repeating this algorithm in case of failure, the resulting algorithm
outputs a solution to the k-list problem over Zp in expected time O(2w+L).

7

4.2 Combined attack

Theorem 2 (Generalized ROS attack). Let L,w ≥ 0 be integers. Under Wagner’s conjecture (Conjec-
ture 1), if ` ≥ max{2w − 1, d2w − 1 + λ− (w + 1) · Le}, then there exists an adversary that runs in expected
time O(2w+L) and solves the ROS problem relative to Pgen and dimension `.

Proof. Recall that k1 = 2w − 1 and k2 = max(0, dλ− (w + 1) · Le). Set ` = k1 + k2. For all i ∈ [k2], define:

ρ0
i := xi ρ1

i := 2xi,

and define c0i := Hros(ρ̂
0
i) and c1i := 2−1Hros(ρ̂

1
i). If there exists i∗ ∈ [k2] such that c0i∗ = c1i∗ , then the

adversary already found a non-trivial ROS solution. Define, for i ∈ [k2 + 1, `], ρi := xi and ci := Hros(ρ̂i).
Output the ROS solution (ρ̂0

1, . . . , ρ̂
0
k2
, ρ̂k2+1, . . . , ρ̂`, ρ̂

1
i∗), and (c01, . . . , c

0
k2
, ck2+1, . . . , c`). Otherwise, let:

fi :=
xi − c0i
c1i − c0i

for all i ∈ [k2]. We remark that fi(c
b
i) = b (for b = 0, 1). Define:

ρ̄`+1(x1, . . . , x`) :=

k2∑
i=1

2i−1fi +

⌊
p− 1

2(w+1)·L+1

⌋
−

∑̀
i=k2+1

xi .

Run (ρ∗k2+1, . . . , ρ
∗
`+1) := k-listHk2+1,...,H`+1(w,L), where k = ` − k2 + 1 = k1 + 1 = 2w and the oracles are

defined as:

Hi(α) :=

 if i ∈ [k2 + 1, `] : let p = αxi return α−1Hros(p̂)

if i = `+ 1 : let p = αρ̄`+1 return α−1Hros(p̂) + ρ̄`+1,0

Define (similarly to the above):

ρ∗i := ρ∗i xi, y∗i := Hi(ρ
∗
i) = (ρ∗i)

−1Hros(ρ̂
∗
i) , for i ∈ [k2 + 1, `];

ρ∗`+1 := ρ∗`+1ρ̄`+1, y∗`+1 := H`+1(ρ∗`+1) = (ρ∗`+1)−1Hros(ρ̂
∗
`+1) + ρ̄`+1,0 . (1)

Set:

s :=

`+1∑
i=k2+1

y∗i ∈ I−1 =

[
−
⌊

p− 1

2(w+1)·L+1

⌋
,

⌊
p− 1

2(w+1)·L+1

⌋]
. (2)

Write s+ b(p− 1)/2(w+1)·L+1c in binary as:

s+

⌊
p− 1

2(w+1)·L+1

⌋
=

k2∑
i=1

2i−1bi ∈ [

⌊
p− 1

2(w+1)·L

⌋
] , (3)

which is possible since p < 2λ, k2 ≥ dλ− (w + 1) · Le, hence (p− 1)/2(w+1)·L < 2k2 . Define:

ρ̂i :=

{
ρ̂bii for i ∈ [1, k2] ,

ρ̂∗i for i ∈ [k2 + 1, `+ 1] .

and:

ci :=

{
cbii for i ∈ [1, k2] ,

y∗i for i ∈ [k2 + 1, `] .

A outputs (ρ̂1, . . . , ρ̂`+1) and c = (c1, . . . , c`).

8

We have indeed that for i ∈ [`]:

〈ρ̂i, c〉 =

{
ρbii (c)− ρbii,0 = ρbii (c) = 2−bici = Hros(ρ̂

bi
i) for i ∈ [1, k2] ,

ρ∗i (c)− ρ∗i,0 = ρ∗i (c) = ρ∗i y
∗
i = Hros(ρ̂i

∗) for i ∈ [k2 + 1, `] .

since ρbii,0 and ρ∗i,0 are the constant coefficients of the polynomials ρbii = 2bixi and ρ∗i = ρ∗i xi (respectively)
and hence are zero. For the case `+ 1:

〈ρ̂`+1, c〉 = ρ∗`+1(c)− ρ∗`+1,0 = ρ∗`+1 ·

(
k2∑
i=1

2i−1fi(c)−
⌊

p− 1

2(w+1)·L+1

⌋
−

∑̀
i=k2+1

ci − ρ̄`+1,0

)

= ρ∗`+1 ·

(
k2∑
i=1

2i−1bi −
⌊

p− 1

2(w+1)·L+1

⌋
−

∑̀
i=k2+1

y∗i − ρ̄`+1,0

)

= ρ∗`+1 ·

(
s−

∑̀
i=k2+1

y∗i − ρ̄`+1,0

)
= ρ∗`+1 ·

(
y∗`+1 − ρ̄`+1,0

)
= Hros(ρ̂`+1) .

where the second equality comes from Equation (1) (and hence the constant coefficient ρ∗`+1,0 = ρ∗`+1ρ̄`+1,0),
the fourth equality comes from Equation (3), the fifth equality comes from Equation (2), the last equality
comes from Equation (1). The attack requires k1 + k2 = max{2w − 1, d2w − 1 +λ− (w+ 1) ·Le} dimensions,
runs in time O(2w+L), and in space O(w2L). ut

5 Affected blind signatures

For simplicity and clarity of exposition, we explain how to instantiate the attack presented in Section 3 only.
Our attack can be easily adapted for the one presented in Section 4.

Throughout the remaining of this manuscript, we assume the existence of a group generator algorithm
GrGen(1λ) that, given as input the security parameter in unary form outputs the description Γ = (G, p,G)
of a group G of prime order p generated by G. Similarly to Section 2, we assume that the prime p is of length
λ. We use additive notation for the group law.

5.1 Schnorr blind signatures

In Schnorr blind signatures [Sch01, FPS20], a signing key x is a scalar sampled uniformly at random from
Zp, and its respective verification key is X = xG in the group G. A signature for a message m ∈ {0, 1}∗
consists of a pair (R, s) ∈ G×Zp such that sG− cX = R, where c := H(R,m). Fig. 5 depicts the protocol. A
formal description of the protocol can be found in [FPS20, Fig. 6], using the same notation employed here.

We construct a probabilistic polynomial-time adversary A that is able to produce (with overwhelming
probability) ` + 1 signatures after opening ` ≥ dlog pe = λ parallel sessions. A selects an arbitrary message
m` ∈ {0, 1}∗ for which a signature will be forged. It opens ` sessions, obtaining the first message from the
server and receiving R̄ = (R̄1, . . . , R̄`) ∈ G`. For i ∈ [`+ 1] and b ∈ {0, 1}, sample uniformly at random two
blinding factors (αi,b, βi,b)←$Z2

p, and define Ri,b := R̄+ αi,bG+ βi,bX. Let mi be an arbitrary message and

let cbi := H(Ri,b,mi) for i ∈ [`] and b ∈ {0, 1}. Assume c0i 6= c1i . Define the polynomial ρ ∈ Zp[x1, . . . , x`]:

ρ(x1, . . . , x`) :=
∑̀
i=1

2i−1 · xi − c
0
i

c1i − c0i
=
∑̀
i=1

ρixi + ρ0 . (4)

We recall that, from Theorem 1, the above polynomial is such that, for any (b1, . . . , b`) ∈ {0, 1}`, ρ(cb11 , . . . , c
b`
`) =∑

i 2i−1bi. Let R` :=
∑`
i=1 ρiR̄i (nota bene: the constant term ρ0 is not included), and select an arbitrary

9

User(X,m) Server(x)

r̄←$Zp
R̄ := rGR̄

α, β←$Zp
R := R̄+ αG+ βX

c := H(R,m)

c̄ := c+ β c̄

s̄ := c̄x+ r̄s̄

check s̄G
?
= c̄X + R̄

s := s̄+ α

return (R, s)

Fig. 5. The signing protocol of Schnorr blind signatures [Sch01].

message m`+1. Define c`+1 := H(R`+1,m`+1) and consider the binary decomposition of c`+1 + ρ0:

c`+1 + ρ0 =
∑̀
i=1

2i−1bi . (5)

Let c̄ = (cb11 +β1,b1 , . . . , c
b`
` +β`,b`). Complete the ` opened sessions with c̄: reply to the i-th open session with

c̄i, for i ∈ [`]. The adversary thus obtains responses s̄ := (s̄1, . . . , s̄`) ∈ Z`p, and defines s`+1 :=
∑`
i=1 ρis̄i.

Finally, the adversary proceeds unblinding the ` honest signatures by computing: s := (s̄1 + α1,b1 , . . . , s̄` +
α`,b`). The adversary output the `+ 1 forgeries

(
mi, (Ri, si)

)
i∈[`+1]

, that is:

(Ri, si) =

{
(R̄i + αi,biG+ βi,biX, s̄i + αi,bi) for i = 1, . . . , ` ,

(
∑`
i=1 ρiRi,

∑`
i=1 ρisi) for i = `+ 1 .

By perfect correctness, we have that the first ` signatures are valid. In fact, for i ∈ [`]:

Ri = R̄i + αi,biG+ βi,biX = s̄iG− c̄iX + αi,biG+ βi,biX = siG− cbii X ,

and cbii = H(Ri,mi). For the case (m`+1, (R`+1, s`+1)):

R`+1 =
∑̀
i=1

ρiR̄i =
∑̀
i=1

ρi(s̄iG− c̄bii X) = s`+1G− c`+1X,

where c`+1 = H(R`+1,m`+1) and the last equality come from:

∑̀
i=1

ρic̄
bi
i = ρ(cb11 , . . . , c

b`
`)− ρ0 =

∑̀
i=1

2i−1bi − ρ0 = c`+1

where the first equality come from Equation (4) last equality comes from Equation (5). We provide an
implementation of the attack in Appendix A using Sage [S+20].

10

5.2 Okamoto–Schnorr blind signatures

An Okamoto–Schnorr blind signature [PS00] for a message m consists of a tuple (R, s, t) ∈ G×Z2
p such that

sG + tH − cX = R, where c := H(R,m), and (G,H) are two generators of G whose discrete log relation is
unknown. The attack of the previous section directly extends to Okamoto–Schnorr signatures: A operates
exactly as before until Equation (4). Then, the forgery is constructed as:(

R` :=
∑`
i=1 ρiRi, s` :=

∑`
i=1 ρisi, t` :=

∑`
i=1 ρiti

)
.

We stress again that this does not contradict the security analysis of Stern and Pointcheval [PS00], whose
security was reduced to DLOGGrGen,A(λ) for a polylog(λ) number of queries.

6 Other constructions affected

In this section, we overview how the attacks presented in Sections 3 and 4 apply to a number of other
cryptographic primitives. To simplify exposition, we focus on adapting the attack of Section 3. We note that,
in some cases (e.g., multi-signatures), we break the security claims of the papers, while for other primitives
(e.g., threshold signatures), our attack illustrates the tightness of the security theorems, which assume either
non-concurrent setting, or up to a logarithmic number of concurrent executions.

For multi-signatures and threshold signatures, we show potential fixes that thwart the attack. Intuitively,
the idea of these countermeasures is to prevent the adversary from adaptively selecting its commitment rG
in the protocol from the honest parties’ commitments. The simplest solution is to add one initial round of
communication where each party sends a commitment to their commitment (e.g., H(rG) with H modeled
as a random oracle), and then reveal the original commitment rG in a second round. However, for blind
signatures and their variants, such a simple fix does not work, as the adversary’s forgery is made on a
commitment that the adversary does not need to reveal until the end of the security game (and hence cannot
be committed to).

6.1 Multi-signatures

A multi-signature scheme allows a group of signers S1, . . . , Sn, each having their own key pair (pkj , skj), to
collaboratively sign a message m. The resulting signature can be verified given the message and the set of
public keys of all signers.

6.1.1 CoSi

CoSi is a multi-signature scheme introduced by Syta et al. [STV+16] which features a two-round signing
protocol. The signers are organized in a tree structure, where S1 is the root of the tree. A signature for a
message m ∈ {0, 1}∗ consists of a pair (c, s) ∈ Z2

p such that c = H(sG− c · pk,m), where pk =
∑n
j=1 pkj ∈ G

is the aggregated verification key. A formal description of the protocol can be found in [DEF+19, Sec. 2.5];
we use the same notation, except that we employ additive notation xG instead of multiplicative notation gx.

Attack. We present an attack for a two-node tree where the attacker controls the root S1. The attack
can easily be extended to other settings, similarly to [DEF+19, Sec. 4.2]. Our attack allows the signer S1 to
forge one signature, for an arbitrary message m` ∈ {0, 1}∗, after performing ` > log p interactions with the
honest signer S2. Recall that pk = pk1 + pk2 where pki = skiG. The signing protocol proceeds as follows.
First, S1 obtains a commitment t2 = r2G from S2, and computes t̄ = t1 = r1G+ t2 for a random r1. Then,
S1 computes the challenge c = H(t̄, m), and sends (t̄, c) to S2. Next, S2 returns s2 := r2 + c · sk2. Finally, S1

computes s := s2 + r1 + c · sk1 and outputs the signature (c, s) for the message m.

The attack proceeds as follows. S1 opens ` parallel sessions with ` arbitrary distinct messages m1, . . . ,
m` ∈ {0, 1}∗. For each session, S1 gets the commitments ti = riG from S2 at the end of the first round

11

of signing. Now, it samples two random values ri,0, ri,1 for each i ∈ [`], and defines t̄0i = ri,0G + ti and
t̄1i = ri,1G + ti, and computes cbi = H(t̄bi ,mi). (As usual, if c0i = c1i , S1 samples again ri,0 and ri,1 until

c0i 6= c1i .) S1 then defines the polynomial ρ :=
∑`
i=1 2i−1xi/(c

1
i − c0i), computes t`+1 := ρ(t1, . . . , t`) and

c`+1 := H(t`+1,m`+1). S1 computes d`+1 = c`+1 − ρ(c01, . . . , c
0
`) and writes this value in binary as d`+1 =∑`

i=1 2i−1bi. It then closes the ` sessions by using t̄i = t̄bii and ci = cbii . At the last step of the signing
sessions, S1 obtains values si = ri + ci · sk2 from S2, and closes the sessions honestly using ri,bi . Finally, S1

concludes its forgery by defining s`+1 := ρ(s) + c`+1 · sk1: the pair (c`+1, s`+1) is a valid signature for m`+1.
In fact:

s`+1G− c`+1 · pk = (ρ(s) + c`+1 · sk1)G− c`+1 · pk

=
∑̀
i=1

2i−1si
c1i − c0i

G− c`+1 · pk2

=
∑̀
i=1

2i−1(ri + cbii · sk2)

c1i − c0i
G− c`+1 · pk2

=
∑̀
i=1

2i−1ri
c1i − c0i

G+

(∑̀
i=1

2i−1cbii
c1i − c0i

− c`

)
· pk2

=
∑̀
i=1

2i−1ti
c1i − c0i

+

(∑̀
i=1

2i−1bi +
∑̀
i=1

2i−1c0i
c1i − c0i

− c`

)
· pk2

=
∑̀
i=1

2i−1ti
c1i − c0i

+

(∑̀
i=1

2i−1bi + ρ(c01, . . . , c
0
`)− c`

)
︸ ︷︷ ︸

=d`−d`=0

·pk2

= ρ(t1, . . . , t`) = t`+1 ,

and c`+1 = H(t`+1,m`+1) by definition.

6.1.2 Two-Round MuSig

As in [DEF+19], the above technique (with some minor modifications) can be applied to the two-round
MuSig as initially proposed by Maxwell et al. [MPSW18a], as the main difference between CoSi and two-
round MuSig is in how the public key is aggregated in order to avoid rogue-key attacks.

6.1.3 Three-Round MuSig and fix

Our attack does not apply to the updated MuSig that uses a 3-round signing algorithm [MPSW18b]. The
fix in the 3-round MuSig follows the blueprint of the simple countermeasure we described at the beginning
of the section. What makes the above attack possible is that the adversary sees the commitment t2 = r2G of
the honest party S2 before choosing its own commitment r1G (which defines t̄ = r1G+ t2 and c = H(t̄, m)).
To prevent the attack, in 3-round MuSig, all parties Sj first commit to their commitment rjG, and then
reveal rjG in a second round. This additional first round of commitment of commitment ensures that S1

cannot choose its commitment r1G depending on S2’s commitment r2G, which thwarts the attack.

6.2 Threshold signatures

A (t, n)-threshold signature scheme assumes that the secret signing key is split among n parties P1, . . . ,Pn
in a way that allows any subset of at least t out of the n parties to produce a valid signature. As long as the
adversary corrupts less than the threshold number of parties, it is not possible to forge signatures or learn
any information about the signing key.

12

6.2.1 GJKR07

Gennaro, Jarecki, Krawczyk, Rabin proposed a threshold signature scheme based on Pedersen’s distributed
key generation (DKG) protocol in [GJKR07, Section 5.2]. At a very high level, Pedersen’s DKG protocol
allows to generate a random group element X = χG so that its discrete logarithm χ is shared both additively
and according to the Feldman secret sharing [Fel87] scheme, between a set of “qualified” parties. For the
attack we present below, all parties P1, . . . ,Pn (included the ones that are controlled by the adversary) will
remain qualified.4 We denote by χj the additive share of party Pj . We have χ =

∑n
j=1 χj . Importantly for

the attack, the adversary controlling for example P1, can see all the group elements χ2G, . . . , χnG and then
can choose its value χ1. This is due to the way the Feldman secret sharing is performed.

In the threshold signature scheme of Gennaro et al. [GJKR07], the parties execute a distributed key
generation procedure to produce a verification key pk := sk · G ∈ G, where the secret key sk is additively
shared between the parties: each party Pj has an additive share skj , so that sk =

∑n
j=1 skj . A signature

(R, s) for a message m ∈ {0, 1}∗ is generated as follows. The participants run once again the distributed key
generation protocol to produce a commitment t = rG ∈ G, where r is additively shared between the parties:
each party Pj has a share rj , so that r =

∑n
j=1 rj . Then, each party computes a share of the response:

sj = rj + c · skj , where c := H(t,m). (6)

Let s :=
∑n
j=1 sj . Then (c, s) is a valid signature on m. In fact:

sG =

n∑
j=1

rjG+ c ·
n∑
j=1

skj ·G = t+ c · pk, (7)

where c = H(t,m).

Concurrent setting insecurity. Gennaro et al. [GJKR07] proved the security of the scheme in a stand-
alone sequential setting, where no two instances of the protocol can be run in parallel. We remark that if an
adversary is allowed to start ` ≥ dlog pe sessions in parallel, the attack against CoSi in Section 6.1.1 can be
directly adapted to attack this threshold signature scheme for n = 2. The attack of both schemes use the
fact that the adversary P1 (or signer S1 in CoSi) can see the commitment t2 = r2G of the honest party P2

(or honest signed S2) and only then chooses r1 that defines the commitment t = r1G+ t2. The generalization
to any n ≥ 2 is straightforward.

Scope of the attack and potential fix. Our attack is an attack against the proposed threshold signature
scheme when instantiated with Pedersen’s DKG(and when considered in a concurrent setting, but not an
attack against Pedersen’s DKG itself (i.e., JF-DKG from [GJKR07, Fig. 1]). Actually, Gennaro et al. already
showed that the Pedersen DKG is not a secure DKG: an adversary can bias the output distribution. They
proved the security of their threshold signature scheme in a stand-alone sequential setting directly, without
relying on the security of the Pedersen’s DKG.

As for multi-signatures (in Section 6.1.3), adding one initial round of commitment to the commitments
rjG would immediately thwart the attack. Our attack also does not apply when Pedersen’s DKG is replaced
by the new DKG protocol from [GJKR07, Fig. 2]. Indeed, the intuition is as follows: this new DKG protocol
actually replaces the (Feldman) commitments rjG by Pedersen commitments5 rjG+ r′jH, with H a second
generator. Doing so hides the original commitments rjG and acts similarly as adding one initial round of
commitment to the commitments rjG (without actually requiring one additional round of communication).

4 We do not use the fact that only a threshold t+ 1 of the parties are required to sign in our attack. We assume that
all the parties come to sign, to simplify the description of the attack.

5 Pedersen commitments are unrelated to Pedersen’s DKG, apart from the fact that both were invented by Pedersen.

13

6.2.2 Original version of FROST

Komlo and Goldberg FROST [KG20a] proposed an extension of the above threshold signature scheme
that was similarly affected by the above concurrent attack. On 19 July 2020, they updated the signing
algorithm [KG20b] in a way that is no more susceptible to the above issue: each party now shares (Dj , Ej)
and the commitment is computed as R =

∑
j Dj + hjEj , where hj := H((Dj , Ej , j)j∈[t]). We direct the

reader to [KG20b, Fig. 3] for a more detailed illustration of the problem and the fix.

6.3 Partially blind signatures

Partially blind signatures [AO00] are an extension of blind signature schemes that allow the signer to include
some public metadata (e.g., expiration date, collateral conditions, server name, etc.) in the resulting signature.
The original construction [AO00], as well as schemes inspired from it, such as Anonymous Credentials
Light [BL13] and restrictive partially-blind signatures from bilinear pairings [CZMS06] could be vulnerable
to polynomial attacks in specific scenarios where the security of the protocol hinges on the ROS assumption.

6.3.1 Abe–Okamoto

Abe and Okamoto [AO00, Fig. 1] propose a partially blind signature scheme inspired from Schnorr blind
signatures. Given a verification key X := xG and some public information info that is hashed into the
group Z := H(info), a partially blind signature for the message m ∈ {0, 1}∗ is a tuple (r, c, s, d) ∈ Zp where
c+ d = H(rG+ cX, sG+ dZ, Z, m).

Attack. The security of the above partially blind signature is proved up to a poly-logarithmic number of
parallel open sessions in the security parameter [AO00]. We show that the security claim is tight by showing
that there exists a poly-time attacker against one-more unforgeability in the setting where the adversary can
have ` = O(λ) open sessions using the same metadata info. The attack follows essentially the same strategy
of Section 5.1. First, the attacker opens ` parallel sessions and obtains the commitments (Ai, Bi) ∈ G2 for
i ∈ [`]. It then constructs the polynomial ρ` as per Equation (4). The forged signature for an arbitrary
message m∗ is computed using the challenge:

e`+1 := H(ρ(A) + ρ0X, ρ(B) + ρ0Z, Z, m
∗)− ρ0

and closing the ` sessions as in Section 5.1, i.e., by using the challenges ebii where bi is the i-th bit of the

canonical representation of e`+1. Given the signatures (ri, c
bi
i , si, di) for i ∈ [`], the attacker can finally create

its forgery (ρ(r),ρ(c),ρ(s),ρ(d)). The forgery is indeed correct because:

ρ(c) + ρ(d) =
∑
i

ρi(c
bi
i + di) + 2ρ0

= ρ(eb11 , . . . , e
b`
`) + ρ0

= H(ρ(r)G+ ρ(c)X, ρ(s)G+ ρ(d)Z, Z, m∗) .

6.3.2 Anonymous credentials light

Inspired from Abe’s blind signature [Abe01], Baldimitsi and Lysyanskaya [BL13] developed anonymous
credentials light (ACL). The security proof of their scheme is under standard assumptions in the sequential
settings. The public parameters are a so-called real public key Y = xG and a tag public key Z = wG (using
the paper’s notation). During the signing protocol, the signer produces two shares Z1, Z2 of Z such that
Z1 + Z2 = Z, and proves either knowledge of Y (referred to as y-side), or of Z1, Z2 (so-called z-side). The
discrete log of Z1, Z2 is never known by the signer, and the z-branch is inherited by Abe’s blind signature
and is necessary for the proof of security.

The essential difference between ACL and Abe’s blind signature is the computation of Z1: while in
Abe’s scheme it is computed invoking the random oracle over a random string (so that neither the user

14

nor the signer know its discrete logarithm), in ACL it is computed starting from the user’s commitment
C =

∑n
i=1 liHi + rH (where l1, . . . , ln is the list of attributes) and the user might know a discrete-log

relation across multiple sessions. This difference is fatal in the concurrent settings.
For simplicity, we assume that no blinding is performed during issuance: µ is removed from the signature

and γ := 1. We stress that γ serves the sole purpose of re-randomizing the tag key for unlinkability, and
hence it is not relevant when studying unforgeability. Under the above premises, a valid ACL signature on a
message m, for a commitment C̃ on the set of attributes l1, . . . , ln is a tuple (Z, C̃, r, r′1, r

′
2, c, c

′) ∈ G2 × Z6
p

that satisfies:
c+ c′ = H(Z, C̃, rG+ cY︸ ︷︷ ︸

A

, r′1G+ c′C̃︸ ︷︷ ︸
A1

, r′2G+ c′(Z − C̃)︸ ︷︷ ︸
A2

,m)

(Note: C̃ = C + rnd · G is a re-randomization of C; A is the commitment relative to the y-side; A1, A2 are
the commitments relative to the z-side.)

Attack. The attacker A opens ` parallel sessions, all with the same commitment C, and will provide a
one-more forgery for an arbitrary message m∗ on the same commitment C.

After opening the ` concurrent sessions, the attacker proves in zero-knowledge (as per protocol issuance)
that the attributes required are valid, following the registration phase as prescribed in the protocol. Let
d1, . . . , d` denote the randomization key used by the server to re-randomize the commitment C (displayed
in [BL13, Fig. 1] as rnd) and sent to the user at the end of the registration phase. Upon receiving Ai ∈ G (the
commitment of the y-side) and A′1,i, A

′
2,i (the commitment of the z-side), for i ∈ [`], the attacker computes

the polynomial ρ defined in Section 3 (using the commitments and the message of the previous sessions),
and computes the commitment forgeries:

A`+1 := ρ(A0, . . . , A`) + ρ0Y

A1,`+1 := ρ(A′1,0, . . . , A
′
1,`−1) + ρ0C

A2,`+1 := ρ(A′2,0, . . . , A
′
2,`−1) + ρ0(Z − C)

A sends the challenges according to the bits of H(Z,C,A`+1, A1,`+1, A2,`+1,m
∗)−ρ0, similarly to Section 5,

and receives the responses (ci, ri, c
′
i, r
′
1,i, r

′
2,i) ∈ Z5

p, for i ∈ [`]. The adversary A computes the forged responses
for the y-side:

c`+1 := ρ(c) =
∑̀
i=1

ρici + ρ0

c′`+1 := ρ(c′) =
∑̀
i=1

ρic
′
i + ρ0

r`+1 := ρ(r) =
∑̀
i=1

ρiri + ρ0

r′1,`+1 := ρ(r′1 + c′ ◦ d) =
∑̀
i=1

ρi(r
′
1,i + c′idi) + ρ0

r′2,`+1 := ρ(r′2 − c′ ◦ d) =
∑̀
i=1

ρi(r
′
2,i − c′idi) + ρ0

In fact, it holds that:

r`+1G+ c`+1Y =
∑̀
i=1

ρi
(
riG+ ciY

)
+ ρ0(Y +G) = A`+1

15

r′1,`+1G+ c′`+1C =
∑̀
i=1

ρi
(
r′1,iG+ c′i(C + diG)

)
+ ρ0(C +G) =

∑̀
i=1

ρiA
′
1,i + ρ0(C +G) = A1,`+1

r′2,`+1G+ c′`+1(Z − C) =
∑̀
i=1

ρi
(
r′2,iG+ c′i(Z − C − diG)) + ρ0(Z − C) = A2,`+1

c`+1 + c′`+1 = ρ(c0 + c′0, . . . , c` + c′`) + ρ0 = H(Z,C,A`+1, A1,`+1, A2,`+1,m
∗)

6.4 Brands’ signature scheme and U-Prove

Brands [Bra94] designed credential-sharing system where, if the user spends twice the same credential, then
anyone can recover their key. The signatures inspired a various anonymous credentials systems such as
Microsoft’s U-Prove6 and credlib.7 In Brands’ blind signature scheme, a coin is a pair (A,B) ∈ G and a
Schnorr blind signature (X ′, R,R′, s) ∈ G3 × Zp. Roughly speaking, withdrawal and spending of a Brands
coin consists a Schnorr-type protocol where the user does an interactive Schnorr blind signature. The system’s
security hinges on the security of the security of blind Schnorr signatures (for which we illustrated an attack
in Section 5), and hence it presents the same pitfalls we illustrated in the concurrent setting. Unfortunately,
this attack extends also to the constructions inspired from it.

Attack. In this paragraph, we focus on the U-Prove cryptographic specification [PZ11, Fig. 8], as an
example for our attack. We illustrate how to produce `+ 1 different U-Prove tokens, after ` issuance sessions
for the same attribute information l1, . . . , ln ∈ Zp. We stress that the attack is limited to the same attribute
information, that is, the same commitment M = G0 +

∑n
i=1 xiGi will be used throughout the ` sessions.

Informally, a valid U-Prove token transcript for some prover information PI is of the form (H,Z,A,B, c, r) ∈
G4 × Z2

p, such that: A
B

 = s

G
H

− c
G0

Z

 ,
where c = H(PI,M,Z,A,B); G is the group generator, G0 = y0G is the public key from the server, H = αM
is a commitment to list of attributes l1, . . . , ln ∈ Zp (blinded by α), and Z = y0H.

We assume that the adversary A has access to ` parallel signing sessions, all for the same set of attributes.8

A opens ` parallel sessions, obtaining the commitments Ai, Bi ∈ G for i ∈ [`]. Let M denote the commitment
to the attributes, and Z = y0M the signature on them as provided by the server during the commitment
phase. A samples different αi for i ∈ [`], and two different prover information values PIbi ∈ {0, 1}∗, for
b ∈ {0, 1} and i ∈ [`] and computes the blinded group elements Hi := αiM , Zi := αiZ and stores internally
the challenges cbi := H(PIbi ,M,Z,Ai, Bi), without sending them. It computes:

A`+1 =
∑
i

ρiAi + ρ`(G−G0)

B`+1 =
∑
i

ρiα
−1
i Bi + ρ`(M − Z)

using ρ as defined in Equation (4). We let H` = M,Z` = y0M for simplicity. Z` can be obtained ei-
ther opening a new session (without completing it), or selecting the blinding factors αi (for i ∈ [`+ 1])
such that

∑
i αi = 1. Let PI∗ be some arbitrary prover information. A computes c`+1 := (b1, . . . , b`) :=

H(PI∗,M,Z,A`+1, B`+1) and closes the i-th session (for i ∈ [`]) using the challenge cbi previously computed.
Upon receiving the responses si ∈ Zp for i ∈ [`], let s`+1 := ρ(s1, . . . , s`). The `+ 1 forged token transcript
is (A`+1, B`+1, H`+1, Z`+1, c`+1, r`+1).

6 https://www.microsoft.com/en-us/research/project/u-prove/
7 http://www.cypherspace.org/credlib/
8 From the specification: Multiple U-Prove tokens generated using identical common inputs MAY be issued in parallel
[and the computation of M,Z] can be shared among all parallel protocol executions.

16

https://www.microsoft.com/en-us/research/project/u-prove/
http://www.cypherspace.org/credlib/

6.5 Conditional blind signatures

Conditional blind signatures (CBS), introduced by Grontas et al. [ZGP17], allow a user to request a blind
signature on messages of their choice, and the server has a secret boolean input which determines if it will
issue a valid signature or not. CBS only allow a designated verifier to check the validity of the signature;
the user will not able to distinguish between valid and invalid signatures. Conditional blind signature have
application in e-voting schemes [GPZZ19].

Zacharakis et al. [ZGP17] propose an instantiation of CBS as an extension of Okamoto–Schnorr blind
signatures, where the (designated) verifier holds a secret verification key k ∈ Zp and publishes K = kG
as public information. During the execution of Okamoto–Schnorr, one of the two responses (s, t) will be
computed in G rather than Zp, using K as a generator. Only the designated verifier, who knows the discrete
log of K can now check the verification equation.

The attack from Section 5.2 directly applies to their scheme, and leads to a poly-time adversary that
with λ queries to the signing oracle for the same bit b = 1 can produce one-more forgery with overwhelming
probability. This attack does not invalidate the security claims of [ZGP17], which are argued only for a
poly-logarithmic number of parallel open sessions.

6.6 Other schemes

The following papers rely on the hardness of the ROS problem for their security proofs, and henceforth may
not provide the expected security guarantees: blind anonymous group signatures [CFLW04]; blind identity-
based signcryption [YW05]; blind signature schemes from bilinear pairings [CHYC05].

7 Conclusions

Our work provides a polynomial attack against ROS`(λ) when ` > log p, and a sub-exponential attack
for ` ≤ log p. This impacts the one-more unforgeability property of Schnorr and Okamoto–Schnorr blind
signatures, plus a number of cryptographic schemes derived from them. Our attacks run in polynomial time
only in the concurrent setting, and only for ` > log p parallel signing sessions.

In practice, the cost of the attack and the number of sessions required are very small: for today’s security
parameters, the attack can be already mounted with ` = 9 parallel open sessions. As already pointed out
by [FPS20], even just ` = 16 open sessions could lead to a forgery in time roughly 255, for a 256-bit prime
p. For ` = 128, our attack of Section 4 leads to a forgery in time roughly 232. For ` = 256, our attack of
Section 3 produces a forgery in a matter of seconds on commodity hardware. Although 256 parallel signing
sessions might seem at first unrealistic, modern large-scale web servers must handle more than 10 million
concurrent sessions.9 Given our attack, the main takeaway of our work is that blind Schnorr signatures are
unsuitable for wide-scale deployments.

The easiest countermeasure to our attack could be to allow only for sequential signing sessions, as Schnorr
blind signatures are unforgeable in the algebraic group model for polynomially many sessions [KLRX20].
Another countermeasure to our attack could be to employ (much) larger security parameters, require the
signer to enforce strong ratio limits, and perform frequent key rotations, accepting the tradeoffs given by
our attacks. Finally, Fuchsbauer et al. [FPS20] recently introduced a variant of blind Schnorr signatures
(the clause version) which is unaffected by our attack. We caution that it relies on the conjectured hardness
of the so-called modified ROS problem, a new assumption which has not been subject to any significant
cryptanalysis.

To conclude, other blind signature schemes are to this day considered secure and can be considered as
alternatives: blind RSA [Cha82], blind BLS [Bol03], Abe’s blind signature scheme [Abe01, KLRX20], and
Tessaro-Zhu signatures [TZ22].

9 For further information, read the C10K problem (’99) and the C10M problem (’11).

17

References

Abe01. Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures. In Birgit
Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 136–151. Springer, Heidelberg,
May 2001.

AO00. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, Heidelberg, August 2000.

BL13. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 1087–1098. ACM Press, November 2013.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS,
pages 31–46. Springer, Heidelberg, January 2003.

Bra94. Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In Douglas R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 302–318. Springer, Heidelberg, August 1994.

CFLW04. Tony K. Chan, Karyin Fung, Joseph K. Liu, and Victor K. Wei. Blind spontaneous anonymous group
signatures for ad hoc groups. In ESAS, volume 3313 of Lecture Notes in Computer Science, pages 82–94.
Springer, 2004.

Cha82. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982.

CHYC05. Sherman S. M. Chow, Lucas Chi Kwong Hui, Siu-Ming Yiu, and K. P. Chow. Two improved partially
blind signature schemes from bilinear pairings. In Colin Boyd and Juan Manuel González Nieto, editors,
ACISP 05, volume 3574 of LNCS, pages 316–328. Springer, Heidelberg, July 2005.

CZMS06. Xiaofeng Chen, Fangguo Zhang, Yi Mu, and Willy Susilo. Efficient provably secure restrictive partially
blind signatures from bilinear pairings. In Giovanni Di Crescenzo and Avi Rubin, editors, FC 2006,
volume 4107 of LNCS, pages 251–265. Springer, Heidelberg, February / March 2006.

DEF+19. Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and Igors
Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE Symposium on Security and
Privacy, pages 1084–1101. IEEE Computer Society Press, May 2019.

Fel87. Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th FOCS, pages
427–437. IEEE Computer Society Press, October 1987.

FPS20. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed ElGamal
encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 63–95. Springer, Heidelberg, May 2020.

GJKR07. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation
for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, January 2007.

GPZZ19. Panagiotis Grontas, Aris Pagourtzis, Alexandros Zacharakis, and Bingsheng Zhang. Towards everlasting
privacy and efficient coercion resistance in remote electronic voting. In Aviv Zohar, Ittay Eyal, Vanessa
Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala, editors, FC 2018
Workshops, volume 10958 of LNCS, pages 210–231. Springer, Heidelberg, March 2019.

HKL19. Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from identification
schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of
LNCS, pages 345–375. Springer, Heidelberg, May 2019.

HKLN20. Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind signatures, revis-
ited. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of
LNCS, pages 500–529. Springer, Heidelberg, August 2020.

KG20a. Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold signatures,
2020. https://crysp.uwaterloo.ca/software/frost/frost-extabs.pdf; version from ”January 7,
2020”; accessed 2020-10-04.

KG20b. Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold signatures.
Cryptology ePrint Archive, Report 2020/852, 2020. https://eprint.iacr.org/2020/852.

KLRX20. Julia Kaster, Julian Loss, Michael Rosenberg, and Jiayu Xu. On pairing-free blind signature schemes in
the algebraic group model. Cryptology ePrint Archive, Report 2020/1071, 2020.

MPSW18a. Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple Schnorr multi-signature
with applications to Bitcoin. Cryptology ePrint Archive, Report 2018/068, Revision 20180118:124757,
2018. https://eprint.iacr.org/2018/068/20180118:124757.

MPSW18b. Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple Schnorr multi-signature
with applications to Bitcoin. Cryptology ePrint Archive, Report 2018/068, Revision 20180520:191909,
2018. https://eprint.iacr.org/2018/068/20180520:191909.

18

https://crysp.uwaterloo.ca/software/frost/frost-extabs.pdf
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2018/068/20180118:124757
https://eprint.iacr.org/2018/068/20180520:191909

MS09. Lorenz Minder and Alistair Sinclair. The extended k-tree algorithm. In Claire Mathieu, editor, 20th
SODA, pages 586–595. ACM-SIAM, January 2009.

PS00. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, June 2000.

PZ11. Christian Paquin and Greg Zaverucha. U-prove cryptographic specification v1. 1. Technical Report,
Microsoft Corporation, 2011.

S+20. W. A. Stein et al. Sage Mathematics Software (Version 9.1). The Sage Development Team, 2020.
http://www.sagemath.org.

Sch01. Claus-Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In Sihan Qing,
Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01, volume 2229 of LNCS, pages 1–12. Springer,
Heidelberg, November 2001.

STV+16. Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities “honest or bust” with decentralized witness
cosigning. In 2016 IEEE Symposium on Security and Privacy, pages 526–545. IEEE Computer Society
Press, May 2016.

TZ22. Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with exponential security. Cryp-
tology ePrint Archive, Report 2022/047, 2022. https://ia.cr/2022/047.

Wag02. David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002, volume 2442 of
LNCS, pages 288–303. Springer, Heidelberg, August 2002.

YW05. Tsz Hon Yuen and Victor K. Wei. Fast and proven secure blind identity-based signcryption from pairings.
In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 305–322. Springer, Heidelberg,
February 2005.

ZGP17. Alexandros Zacharakis, Panagiotis Grontas, and Aris Pagourtzis. Conditional blind signatures. Cryp-
tology ePrint Archive, Report 2017/682, 2017. http://eprint.iacr.org/2017/682.

19

https://ia.cr/2022/047
http://eprint.iacr.org/2017/682

A Code listing for Schnorr’s blind signature forgery

1 # public parameters: secp256k1
2 Zq = GF(0xfffefffffc2f)
3 E = EllipticCurve(Zq, [0, 7])
4 G = E.lift_x(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798)
5 p = G.order()
6 Zp = GF(p)
7

8 def random_oracle(hinput, _table=dict()):
9 if hinput not in _table:

10 _table[hinput] = Zp.random_element()
11 return _table[hinput]
12

13 def verify(message, K, e, s):
14 assert random_oracle((K, message)) == e, "random oracle fails"
15 assert G * int(s) + X * int(e) == K, "verification equation fails"
16 return True
17

18 def inner_product(coefficients, values):
19 return sum(y*int(x) for x, y in zip(coefficients, values))
20

21 # server: generate public key
22 x = Zp.random_element()
23 X = G * int(x)
24

25 # adversary: open ‘ell‘ sessions
26 ell = 256
27

28 # server: generate commitments
29 k = [Zp.random_element() for i in range(ell)]
30 K = [G * int(k_i) for k_i in k]
31

32 # adversary: generate challenges
33 e = [[random_oracle((K_i, b)) for b in range(2)] for K_i in K]
34 P = ([-sum([Zp(2)^i * e[i][0]/(e[i][1] - e[i][0]) for i in range(ell)])] +
35 [Zp(2)^i / (e[i][1] - e[i][0]) for i in range(ell)])
36

37 forged_K = inner_product(P, [G+X] + K)
38 forged_message = "message"
39 forged_e = random_oracle((forged_K, forged_message))
40 bits = [int(b) for b in bin(forged_e)[2:].rjust(256, ’0’)][::-1]
41 chosen_e = [e[i][b] for (i, b) in enumerate(bits)]
42

43 # server: generate the responses
44 s = [k[i] - chosen_e[i]*x for i in range(ell)]
45

46 # attacker: generate the forged response
47 forged_s = inner_product(P, [1] + s)
48

49 ## check all previous signatures were valid
50 print(all(
51 # l signatures generated honestly
52 [verify(m_i, K_i, e_i, s_i) for (m_i, K_i, e_i, s_i) in zip(bits, K, chosen_e, s)] +
53 # final signature
54 [verify(forged_message, forged_K, forged_e, forged_s)]
55))

20

	On the (in)security of ROS
	Introduction
	Technical overview
	Impact of the attacks

	Preliminaries
	Attack
	Generalized attack
	Generalized k-list algorithm
	Combined attack

	Affected blind signatures
	Schnorr blind signatures
	Okamoto–Schnorr blind signatures

	Other constructions affected
	Multi-signatures
	Threshold signatures
	Partially blind signatures
	Brands' signature scheme and U-Prove
	Conditional blind signatures
	Other schemes

	Conclusions
	Code listing for Schnorr's blind signature forgery

