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Abstract

A report on the selection process of the STARK friendly hash (SFH) function for stan-
dardization by the Ethereum Foundation. The outcome of this process, described here, is our
recommendation to use the Rescue function over a prime field of size ≈ 261 in sponge mode with
12 field elements per state.

With an Appendix by Jean-Charles Faugère and Ludovic Perret of CryptoNext Security.

1 Executive Summary

On July 2, 2018, the Ethereum Foundation gave StarkWare a 2-year milestone-based grant to
select a STARK friendly hash (SFH) function, to be used in combination with transparent and
plausibly post-quantum secure proof systems within blockchains, and release an open source efficient
STARK system for it. Under the grant agreement, StarkWare committed to surveying and bench-
marking a shortlist of STARK-friendly hash function candidates (giving thorough consideration to
MiMC), discussing and getting feedback on the various candidates and deciding on a single STARK-
friendly hash function around which StarkWare will build optimized tooling. This report answers
this requirement.

Timeline A quick survey of pre-existing hash functions led to conclude that standard functions
like SHA2/3 will require exorbitant proving time and that new constructions should be solicited and
collected. A list of relatively new SFH candidates was collected including MiMC [AGRRT16] (which
existed prior to this grant), GMiMC [AGPRRRRS19], HadesMiMC [GKKRRS19] and MARVEL-
lous [AABDS19] – the latter two projects received funding from this grant. A set of specific members
for consideration was curated (see Section 3), and their STARK complexity and computational ef-
ficiency were measured (see Section 6). Simultaneously, these candidates were exposed to public
and scientific examination via three different efforts:

• A public SFH challenge for attacking candidate constructions at various security levels be-
tween 45 and 256 bits of security.

• Algebraic cryptanalysis was applied to all candidates by the CryptoNext Security (CNS)
team, arguably the world-wide leading experts in this area [FP19; Fau20].

• Symmetric cryptanalysis was applied to the constructions on two separate occasions by two
teams of expert cryptographers [Can+20; Bey+20; BCLNPPW20].
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Recommendations Based on the results of the security analysis described in Section 4 Stark-
Ware “pruned” the list of candidates, focusing on two of the original contenders: the MiMC con-
struction and the MARVELlous family. STARK arithmetization considerations led us to prefer
constructions over small prime fields rather than large fields and/or binary ones, as explained in
Section 5. Consequently, we recommend a particular version of the Rescue hash func-
tion – a member of the MARVELlous family – over a prime field of size ≈ 261 as
the SFH function for standardization by the Ethereum Foundation. This particular
version of Rescue is denoted as Rescue122 in Section 3.

We stress that like all new cryptographic constructions, the level of trust placed in the security
of Rescue122 and the amount of value that should be staked on its security should depend on its
tenure and ability to withhold further security scrutiny. Therefore, we recommend a moderated
pace of adoption and usage over the next 12 months, alongside continued support for researching
the security of this SFH function. Any party staking significant value on the security of Rescue122
must take into consideration the potential impact of security flaws in it that may be discovered
with time.

Our choice of Rescue122 is to a large extent the result of the short and aggressive timeline
decided upon for this project. Our choice does not imply that other SFH candidates and/or
members of the MiMC, GMiMC, HadesMiMC and MARVELlous are inadequate. Despite security
concerns regarding certain variants of the SFH candidates [ACGKLRS19; Bon19; EGLRSW20;
KR20; Bey+20], all of the families considered plausibly contain parameter settings that make them
secure hash functions, and some of these variants are more efficient computationally and have lower
(i.e., better) STARK complexity than Rescue122. However, suggesting such variants and studying
them properly would have exceeded the time given to the project.

Finally, we note that the aggressive timeline of the project was shorter than commonly rec-
ommend for soliciting and selecting new cryptographic primitives. Therefore, we hope that the
Ethereum Foundation and other blockchain and ZKP communities will view Rescue122 as a prelim-
inary time-limited SFH construction, one meant to serve until the community concludes a longer
process of selecting an SFH function that will improve on our current selection.

Overview of report Section 2 surveys the project timeline in detail. Section 3 describes the
shortlist of specific SFH candidates examined by the public and by expert cryptographers. Section 4
discusses the results of cryptanalytic efforts carried out on the SFH candidates and our pruning of
the list of candidates based on it. Section 5 explains how we decided on the field type and size for
the SFH recommendation. Section 6 surveys the STARK complexity and computational efficiency
of new and pre-existing hash functions. Finally, Section 7 integrates the information from previous
sections and explains our final recommendation.



2 SFH project timeline

We recount the evolution of the project over time, explaining how we reached our recommendation
(see Fig. 1).

Figure 1: Timeline of SFH project.

• July 2, 2018: The 2-year grant agreement between StarkWare and the Ethereum Foundation
is signed.

• Q3/2018: The Computer Security and Industrial Cryptography (COSIC) group at KU Leu-
ven is contracted to curate a list of existing SFH candidates. It is quickly realized that, with
the exclusion of MiMC [AGRRT16], the STARK complexity of existing hash functions (most
notably, standard ones like SHA2/3) is prohibitively large. An alternative approach is agreed
upon between StarkWare and the Ethereum Foundation: soliciting the construction of new
SFH candidates.

• Q3/2018–Q2/2019 New constructions of SFH candidates are collected. Several, like Ped-
ersen1 and MiMC, have existed before the project started. Others appeared independently
during this time, like GMiMC [AGPRRRRS19]. Finally, two separate teams received sup-
port under the Ethereum Foundation grant to speedily advance the design of new families of
primitives, leading to:

1. MARVELlous – a family which includes Jarvis and Vision (binary fields) and Pep-
per and Rescue (prime fields), designed by a team of researchers from COSIC [AD18;
AABDS19].

2. HadesMiMC – a family which includes Starkad (binary fields) and Poseidon (prime
fields), designed by a team of researchers from the IAIK (Institute for Applied Informa-
tion Processing and Communication at the Graz University of Technology) [GLRRS20;
GKKRRS19].

1The Pedersen hash is quantum-susceptible, thus unsuitable for the EF goals of post-quantum secure constructions.
However, it serves as a good benchmark for SFH functions.



• Q4/2018–Q4/2019 To further understand the algebraic security of the SFH candidates,
StarkWare contracted the CryptoNext Security (CNS) company led by Professors Jean-
Charles Faugère and Ludovic Perret, who are members of the POLSYS project-team (Solvers
for Algebraic Systems and Applications) of the Laboratoire d’Informatique de Paris 6 (LIP6),
headed by Prof. Faugère. They examined the algebraic security of the above mentioned
SFH candidates and submitted a series of reports to StarkWare and the Ethereum Founda-
tion [FP19; Fau20], attached as Appendices A and B at the end of this report.

• Q3/2019-Q1/2020 By the end of Q2/2019 it was clear that the list of SFH contenders should
include MiMC, GMiMC, the MARVELlous family and the HadesMiMC family. Dr. Tomer
Ashur from KU Leuven and Cryptomeria B.V. was contracted by StarkWare to help fix
specific parameters to all constructions in a manner that would be comparable among different
families and yet agreeable to the co-authors of those constructions. To foster examination of
the constructions, a set of public challenges has been posted online, engaging the public in
attempts to break the various candidates. A set of smart contracts have been deployed on
Ethereum that reward the first finder of a collision in one of the constructions. The challenges
cover several security levels – from 45 bits to 256 bits of security. At time of writing, a few of
the 45-bit challenges have been broken (as anticipated) but none of the challenges at higher
security levels (80-bits and above).

• Nov 2019 A STARK-friendly hash selection committee, led by Prof. Anne Canteaut of
INRIA Paris and including ten expert symmetric cryptographers convened in Paris for three
days (November 11-13, 2019) to conduct cryptanalysis to the SFH candidates. The report
submitted by this team [Can+20] (cf. [Bey+20]) recommended using the MARVELlous family,
pending (i) further algebraic cryptanalysis of a specific question – the constrained input,
constrained output (CICO) problem – and (ii) targeted cryptanalytic examination of Rescue.

• Q2/2020 The CryptoNext Security company was contracted again to perform the needed
algebraic analysis of the CICO problem for Rescue [Fau20] (cf. Appendix B). Additionally,
a dedicated cryptanalytic effort targeted at Rescue was performed by a team of experts
convened by the cryptosolutions company, led by Prof. Gregor Leander and Dr. Friedrich
Wiemer [BCLNPPW20]. Both reports reached favorable results regarding the security of
Rescue, leading to StarkWare recommending it for standardization as the SFH function for
the Ethereum Foundation.

3 Specific SFH candidates considered

We assume familiarity with the candidate SFH families – MiMC, GMiMC, HadesMiMC and MAR-
VELlous (see [Bey+20] for a concise description). Each of these can be instantiated in a variety
of ways, based on the security level, choice of field, capacity and rate of sponge constructions, etc.
For cryptanalytic purposes, all these parameters must be fixed. Dr. Tomer Ashur of Cryptomeria
B.V. curated a list of specific parameters that was agreeable to the authors of the various SFH can-
didates. This list was used in the public SFH challenge phase and in the algebraic and symmetric
cryptanalytic studies mentioned above. The specific candidates at the security level of ≈ 120 bits
were the following constructions:

https://starkware.co/hash-challenge/
https://starkware.co/hash-challenge/


• MiMC Instantiated as a sponge construction using the MiMC−2n/n Feistel construction
described in [AGRRT16, Section 2.1] over the prime field of size 2253 + 2199 + 1 with 320
rounds. We denote this specific construction by MiMC126 since its conjectured security is at
least 126 bits (subscripts reflect conjectured security also below).

• Other All other constructions were instantiated over fields of size ≈ 264: the binary field
used in Starkad and Vision was of size 263 (using a standard basis over GF(2), defined by the
irreducible polynomial x63+x+1) and the prime field used by GMiMC, Poseidon and Rescue
was of size p = 261 + 20×232 + 1; elements of this field require 62 bits to be written, but later
on, when considering security, we only assume the field size is at least 261. All constructions
were in sponge mode with a state of 12 field elements, with a capacity of 4 field elements and
rate of 8 field elements. Regarding the number of rounds:

– Starkad was instantiated over the binary field with 8 full rounds and 43 partial rounds
(total of 51 rounds). Denote this specific version by Starkad126.

– Poseidon was instantiated over the prime field with 8 full rounds and 40 partial rounds
(total of 48 rounds). Denote this specific version by Poseidon122.

– Vision was instantiated over the binary field with 10 rounds, denoted Vision126.

– Rescue was instantiated over the prime field with 10 rounds, denoted Rescue122.

– GMiMC using the expanding round function (erf) version described in [AGPRRRRS19,
Section 2.1.2] was instantiated with the prime field and 101 rounds. We denote this
version by GMiMC122.

4 Security

The confidence we have in the security of a symmetric cryptographic primitive scales (roughly)
as a function of the time that has lapsed since its invention, and the amount of usage it receives
and value it supports (the “Lindy Effect”) and the quantity of public scrutiny it has received from
cryptographers. According to these criteria, standard hash functions like SHA2, SHA3 and hash
functions derived securely from block-ciphers like AES/Rijndael are deemed most secure. Closely
following in terms of security are constructions that, though not selected as standards by national
and international bodies, have been reviewed publicly for a large duration of time, and have been
deployed in various settings. This family includes contenders for standardization like the SHA3
finalists, Blake, Grøstl, JH and Skein. (Jumping ahead, all of these constructions are extremely
efficient but have prohibitively large STARK complexity.)

Next, we summarize our understanding of the security of the new SFH candidates. Our anal-
ysis is based entirely on the external sources written by expert cryptographers, namely, Professors
Faugère and Perret for algebraic cryptanalysis [Appendices A and B], the reports of Prof. Canteaut’s
team [Can+20] and the cryptosolutions team [BCLNPPW20], and the published papers [ACGKLRS19;
Bon19; Bey+20; KR20; EGLRSW20].

MiMC126 Among the SFH candidates, MiMC has received the largest amount of scrutiny due to
its tenure and simplicity. To date, we are aware of two attacks on variants of it: the first, appearing
in [Bon19], applies only to block-ciphers using the Feistel construction, but not the hash version,
of which MiMC126 is a specific case. The second, recent, attack, applies to binary fields, and, to a
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lesser extent, to extension fields [EGLRSW20] but not to the large prime field underlying MiMC126.
Therefore, we consider MiMC126 to be secure enough for consideration as the EF SFH.

GMiMC122, Starkad126 and Poseidon122 To date, several papers have revealed weaknesses in certain
variants of the GMiMC family and the HadesMiMC family (to which Starkad126 and Poseidon122
belong) [Bon19; KR20; Bey+20]. The recent [Bey+20], which was written by the members of the
SFH cryptanalytic committee (and is in line with their report [Can+20]) concludes by saying:

Our analysis of STARK-friendly primitives clearly shows that the concrete instances of
GMiMC and HadesMiMC proposed in the StarkWare challenges present several major
weaknesses, independently from the choice of the underlying finite field. At a first glance,
the third contender involved in the challenges, namely Vision for the binary field and
Rescue for the prime fields, seems more resistant to the cryptanalytic techniques we
have used against the other two primitives. This seems rather expected since Vision and
Rescue follow a more classical substitution permutation network (SPN) construction
with full Sbox layers; for similar parameters, they include a larger number of Sboxes
which may prevent them from the unsuitable behaviors we have exhibited on the other
primitives. [Bey+20, Section 6]

Consequently, we removed GMiMC122,Starkad126 and Poseidon122 from further consid-
eration as the EF SFH. This does not mean the families GMiMC and HadesMiMC are insecure.
Rather, our removal only implies that given the short timeline of our project and the desire for
high security we would not feel comfortable recommending use of the very specific constructions
GMiMC122, Starkad126 and Poseidon122.

Vision126 and Rescue122 A precursor to Vision, named Jarvis, was shown to be insecure by both the
algebraic cryptanalysis report [FP19] and an external publication [ACGKLRS19], and this attack
line could also be mounted on the unpublished precursor to Rescue, named Pepper (see [AD20]
for a discussion of it). However, to date we are unaware of attacks on Vision126 and Rescue122 (as
echoed in the report cited above). Furthermore, the dedicated algebraic cryptanalysis applied to
the CICO problem for Rescue122 (see Appendix B) and the dedicated cryptanalytic effort targeted
at it led by the cryptosolutions team [BCLNPPW20] have not revealed any weaknesses in Rescue122.
To quote from the final report on Rescue by the latter team:

We considered several attack vectors and did not find attacks that pose a direct risk to
the current design. Time was limited and we cannot exclude that other attack vectors
or variants of the ones we considered lead to a full break of Rescue. [BCLNPPW20,
Section 1]

Based on this, we find Vision126 and Rescue122 to be secure enough for consideration
as the EF SFH, alongside MiMC126.



5 Choice of finite field

Our recommendation takes into account the (i) type of field – prime vs. binary and (ii) ease of
creating inputs to the hash function. Both aspects are discussed next.

Field type — binary vs. prime Binary fields have simpler arithmetic and are ideally suited
for mapping bit-strings to field elements. Prime fields require arithmetic that is slightly more
complicated and the mapping between bit strings and field elements is more problematic. However,
prime fields offer an advantage in the context of STARK constructions: The evaluation domain
of an algebraic execution trace can be picked to be a multiplicative subgroup of size precisely 2k

whereas no multiplicative sub-group of a binary field can be of such a size (but for the trivial
group, that contains only the identity element). This means that over certain prime fields one may
encode each column of the algebraic execution trace as a mapping from a group of size 2k to the
field, and then carry out quasi-linear time interpolation and multi-point evaluation via FFT and
iFFT algorithms. Furthermore, the Fast RS IOPP (FRI) protocol [BBHR18] underlying STARK
efficiency requires groups of size 2k, and the same group used for arithmetization and encoding
of the algebraic execution trace (AET), defined later in Definition 1, can be used in the FRI
protocol. In the case of binary fields, the FRI protocol is carried out over an additive subgroup
whereas the encoding of the AET is done over a subset that “embeds” a group of size 2k − 1 in
a manner that is not as clean from an algebraic viewpoint (see [BBHR19] for details). Due to
this consideration, we find constructions over prime fields to be more efficient and
focus our attention on these constructions2. Among the SFH contenders, the relevant ones
are MiMC126 and Rescue122 (GMiMC122 and Poseidon122 have been excluded from the discussion for
security reasons, as explained in Section 4).

Ease of creating inputs for the hash function Future uses of the SFH function will create
STARK proofs that involve claims of computational integrity in addition to assertions about the
correct invocation of the SFH. This is already the case for all instances of deployed ZKPs, like the
Sprout and Sapling circuits of Zcash and StarkWare’s StarkEx system. Natural encoding via R1CS
and AIR systems use elements of an ambient field to describe the computation whose integrity is
being proved. Moving from an encoding in one field to a different encoding is costly. In this respect,
MiMC126 with its state consisting of just two field elements suffers from a disatvantage with respect
to other constructions: it is not clear how to efficiently add new inputs to the hash function, since
the internal state of the hash is comprised of a small number of large field elements. In contrast,
all other SFH candidates are instantiated with a state comprised of many elements in smaller fields
and thus can incorporate new inputs without necessarily moving between field representations.

To summarize, sponge constructions using a state with several field elements from
a small field, like GMiMC122,Starkad126,Poseidon122,Vision126 and Rescue122, are better suited
to deal with general computational integrity statements than constructions, like MiMC126,
whose state holds a small number of large field elements.

2Another reason to prefer prime over binary fields is the current lack of native support in the Ethereum Virtual
Machine for binary field multiplication, which would entail high gas costs for operations over binary fields.

https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
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6 STARK complexity and hash function efficiency

In this section we compare the computational efficiency and the proving complexity of the different
SFH candidates (and pre-existing hash functions).

6.1 A simple STARK complexity measure

When discussing STARK complexity we focus on prover complexity because it is the major bot-
tleneck in this project, and also because verification time and proof size scale poly-logarithmically
with proof size and are thus less affected by the efficiency of different constructions. In particular,
verification time of under 10ms and a proof size of at most 200KB for STARK soundness error of at
most 2−80 — as defined in the grant agreement — are attainable for all hash functions mentioned
in this section.

We start by defining a simple metric to gauge the “STARK friendliness” of different crypto-
graphic primitives. Before reaching this metric in Definition 2 we need a preliminary definition.
Later on we shall use this metric to compare different SFH candidates (and other hash functions).
We limit ourselves to the minimal requirements and refer the interested reader to prior research
on post-quantum secure scalable and transparent proof systems in, e.g., [AHIV17; BBHR19; BCG-
GRS19; COS20].

Definition 1 (Constraint systems and satisfiability). Let F be a finite field and w, t, d be integers.
An (F,w, t, d)-constraint is a multivariate polynomial C of total degree d over variables X[i, j], i ∈
{1, . . . , t}, j ∈ {1, . . . ,w}.

An (F,w, t, d)-constraint system S is a set of (F,w, t, d′)-constraints for d′ ≤ d, where d, the
degree of S, is the maximal degree of a constraint in S.

An (F,w, t)-algebraic execution trace (AET) is an array A with t rows and w columns, each entry
of which is an element of F. The i-th row represents the state of a computation at time i and the
j-th column tracks the state of an algebraic register over time. We denote the i, j entry of an AET
A by A[i, j]. We say that A satisfies S if and only if for every constraint C(X[i1, ji], . . . , X[ik, jk])
in S we have C(A[i1, j1], . . . ,A[ik, jk]) = 0.

With this definition in hand we proceed to define STARK complexity for purposes of measuring
different SFH candidates.

Definition 2 (STARK complexity). Let f : Fm → Fn be a function. We say that an (F,w, t, d)-
constraint system S implements f if all of the following conditions hold:

• i/o mapping There exist n + m distinct indices I1, . . . , In, O1, . . . , Om ∈ [t] × [w] called the
input and output indices. Informally, we expect an (F, t,w)-AET A to contain the input and
output of f in these locations.

• completeness For every input x = (x1, . . . , xn) ∈ Fn and output y = (y1, . . . , ym) = f(x) ∈
Fm, there exists an (F, t,w)-AET Ax that satisfies S and furthermore Ax[Ii] = xi for all i ∈ [n]
and Ax[Oj ] = yj for all j ∈ [m].

• efficiency There exists an efficient algorithm that, given x ∈ Fn, will produce an AET Ax

that satisfies the completeness condition above.



• soundness Given A ∈ Ft×w denote x(A) = (A[I1], . . . ,A[In]) and y(A) = (A[O1], . . . ,A[Om]).
If y(A) 6= f(x(A)) then A does not satisfy S.

The STARK complexity of S is now defined as

c(S) := dlog2 |F|/64e2 · (d + w) · t log2 t (1)

and the STARK complexity of f , denoted c(f), is the minimal STARK complexity of S taken over
all S that implements f .

A few remarks are in place regarding the definition above.

• A trivial optimization is to convert a t×w table to a different one with t′ = 1 and w′ = t ·w.
While this slightly reduces the complexity measure in Eq. (1), it also increases verifier com-
plexity, not discussed here. The exact choices of t and w appearing in Table 1 reflect a setting
that we believe optimizes the tradeoff between proving and verification time (details omitted).
Readers interested in optimizing t and w in various settings are referred to [BBHR19], where
the tradeoff is explained.

• Practically speaking, for all but trivial functions we cannot determine c(f) exactly because
proving lower bounds on c(f) for nontrivial functions is beyond our reach. Thus, we can only
rely on ever decreasing upper bounds on c(f). Indeed, since we first examined the question of
STARK compelxity, a number of new techniques like holography [COS20; CHMMVW20] and
lookup tables [GW20] may lead to better (lower) complexity measures for various functions.
Relatedly, notice that determining the exact finite field over which to define the constraint
system could drastically affect complexity. For practical reasons we limited our attention to
a few “natural” candidates for the different hash functions.

• We intetionally left the notion of “efficiency” undefined in Definition 2. Asymptotically,
it could be defined in the usual way, as polynomial running time. Practically, the exact
polynomial time for this item did not enter our considerations and estimates

• The actual STARK proving time also depends on the rate chosen to encode the AET. Since
its effect on all hash functions is similar, for the sake of comparing SFH candidates it can be
omitted.

6.2 STARK complexity

Table 1 summarizes the STARK complexity of various hash functions according to Eq. (1) for the
statement requested by the Ethereum Foundation in the grant agreement. The statement refers to
a hash-chain of length 105, i.e., involving 105 invocations of the hash function, and colors reflect
STARK efficiency (green is good, red is bad).

Explanation of Table 1 The hash functions are sorted by families. We start with the standard
functions SHA2 and SHA3 which did not have STARK complexity as their design goal, leading
to large complexity measure c. The subscripts in all hash function names designate the number
of bits of security that they claim. For SHA2, the estimate over the 64-bit binary field is taken
from [BBHR19] and that paper also gives the estimates for the AES-based hash functions which are



Family Name F t / invocation w d c / 105 invocations

Standard
SHA2128

64-bit prime 1000 20 2 5.6× 1010

GF(264) 3762 56 11 7.2× 1011

SHA3128 GF(264) 1536 25 2 1.1× 1011

AES-DM
AES64 GF(264) 48 62 8 7.5× 109

Rijndael80 GF(264) 58 68 8 9.9× 109

Algebraic Sponge

Pedersen128 256-bit prime 128 16 2 8.7× 1010

MiMC126 253-bit prime 320 2 3 6.4× 1010

GMiMC122 61-bit prime 101 1 3 9.4× 108

Starkad126 GF(263) 10 14 3 3.4× 108

Poseidon122 61-bit prime 8 17 3 3.1× 108

Rescue122 61-bit prime 10 12 3 3× 108

Vision126 GF(263)
20 12 6 7.5× 108

40 12 4 1.4× 109

Table 1: The STARK complexity (c) of various hash functions for 100, 000 invocations, computed
according to Eq. (1). See Section 6.2 for explanations.

built using the Davies–Meyer (DM) construction; we denote this family by AES-DM (see [BBHR19,
Figure 4] for details). The family of algebraic functions, used in sponge mode, includes pre-existing
functions like Pedersen (which is not post-quantum secure) and MiMC as well as the new SFH
candidates. In the table, the third column (F) is the field over which the function is defined (notice
that for SHA2 we provide two options). The fourth column specifies the length of the AET for a
single invocation and the next column specifies the number of columns (see the discussion following
Definition 2 for potential tradeoffs between t and w). The final column gives the STARK complexity
c according to Eq. (1) for 100, 000 invocations of the hash function.

6.3 Efficiency as hash functions

One of the most important parameters in the selection of standard hash functions (like SHA2/3) is
their efficiency and speed. In the context of this project efficiency considerations take second place
compared with STARK complexity (c) and security but are nevertheless important to consider.
Table 2 approximate the efficiency of the various SFH candidates on current CPUs, using the num-
ber of 64-bit multiplication operations as a rough estimate. We stress that we have not dedicated
considerable efforts to optimizing any of these constructions. The number of rounds is denoted by
R; For the HadesMiMC members (Starkad126 and Poseidon122) we use Rf for full rounds and Rp

for partial rounds. We explain the formulas used in the fifth column below:

• Rescue122: Each round involves two steps. Each step involves a linear transformation, costing
m2 multiplications, one step requires a cubing operation (2 multiplications) per state variable
and the other step requires a single cube-root operation per state variable (involving 68
multiplications).

• MiMC126: We use the 2n/n Feistel construction described at the end of Section 2.1 of [AGRRT16].
This involves 320 rounds over a state of size 2. Each field multiplication over the large (≈ 256-
bit) field is approximated by 16 field operations over a 64-bit field.



SFH log |F| Rounds R State m # 64-bit multiplications Total

Rescue122 61 10 12 (2m2 + 70m)×R 11280

MiMC126 256 320 2 16× 2×R 10240

Vision126 63 10 12 (2m2 + 8m + 2(log |F|+ 3m))×R 5820

Starkad126 63 Rf = 8, Rp = 43 12 (m2 + 2m)×Rf + (2m + 2)×Rp 2462

Poseidon122 61 Rf = 8, Rp = 40 12 (m2 + 2m)×Rf + (2m + 2)×Rp 2384

GMiMC122 61 101 12 2×R 202

Table 2: The estimated efficiency of new SFH candidates, sorted in decreasing order (lower is
better). See Section 6.3 for explanations.

• Vision126: Each round of Vision involves two steps. In each step we apply inversion for
each state variable. However, using Montgomery inversion this amounts to a single inversion
(log |F | multiplications) and 3 additional multiplications per state variable. Additionally,
we need to apply a linear transformation (m2 multiplications per step) and a linearized
polynomial of degree 4 (4 multiplications per state variable), or its inverse, which we assume
amounts to 4 multiplications as well.

• Starkad126 and Poseidon122: Each full round requires one cubing per state variable (2 multi-
plicatoins) and one linear transformation on all m state variables (m2 multiplications). Each
partial round involves only cubing a single variable and adding a linear combination of other
state variables, totaling 2m + 2 multiplications per (partial) round.

• GMiMC122: Each round of GMiMC involves only a single cubing (2 multiplications), leading
to extreme efficiency (10× better than all other constructions discussed above).

7 Rescue122 as the recommended SFH for the EF

We end the report by summarizing the reasoning that led us to recommend Rescue122 as the SFH
candidate for standartization by the Ethereum Foundation.

Previous standard constructions like SHA2/3 have exhorbitant STARK complexity (see Ta-
ble 1). Among newer constructions, we focus on constructions over prime fields, as explained in
Section 5. While the MiMC hash family is simplest and oldest, the reliance of MiMC126 on a large
prime field makes its STARK complexity worse than other candidates and its ability to incorporate
new inputs in an efficient algebraic manner makes it unsuitable for standartization. The security
analysis described in Section 4 suggests avoiding GMiMC122 and Poseidon122. This leaves us with
Rescue122 as the only remaining choice, by way of elimination.

Rescue is a new construction and thus has not received as much scrutiny as MiMC. However, its
similarity to the familiar SPN construction (used by AES) and the preliminary algebraic and sym-
metric cryptanalysis results indicate it seems suitable for use. In terms of efficiency, Rescue122 lags
behind Poseidon122 but not by a large factor, and when considering STARK complexity, Rescue122
is slightly better (i.e., has smaller c) than Poseidon122.

We close by pointing out that like all new cryptographic constructions, more scrutiny is essential
for improving confidence in the security of Rescue122. We therefore strongly recommend to the



Ethereum Foundation to consider further funding of public challenges and cryptanalytic research
focused on Rescue122, as well as on the large families of GMiMC, HadesMiMC and MARVELlous.
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Abstract. This report presents a security analysis of the so-called STARK-friendly ciphers :
Jarvis, MiMC, Pepper, Vision, Rescue, Poseidon and Starkad. These primitives are currently
candidates for being the default cipher in STARK applications. The goal of this report is to
asses the security of these primitives with respect to some algebraic attacks. This report has
been prepared at the demand of Starkware Industries. The analysis has been performed during
two periods : from November 2018 to September 2020 and in February 2020 (for an additional
assessment on Rescue).
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2.1 Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Zero-Dimensional Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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1 Introduction

The rise of practical applications of advanced cryptographic protocols such as homomorphic
encryption, Multi-Party Computation (MPC) or Zero-Knowledge (ZK) proof system emphasized
the needs to design symmetric primitives that are optimized with respect to specific metrics
related to the applications considered.

In particular, the ZK-STARK proof system [10] offers zero-knowledge proofs in which verification
scales exponentially faster than data size. ZK-STARK proposed then a viable solution to the
scalability problem in cryptocurrencies. In particular, the ZK-STARK technology is expected to
be deployed on top of the Ethereum1 blockchain in 2020.

The security and efficiency of ZK-STARK proof systems rely, in particular but crucially, on the
security of a hash function. However, it turns that standard constructions – such as SHA2
[42] or the Davies–Meyer hash function based on Rijndael [20] – are too costly for the ZK-
STARK technology. Regarding the potential applications of the such technology, it is of primary
importance to design secure hash functions optimized for this ZK-proof system.

As formalized in [5], this leads to revisit the classical design rationale of block ciphers and
hash functions based on such block ciphers. Following the terminology of [5], we shall call
Arithmetization-Oriented (AO) ciphers this new design paradigm. In contrast to traditional
block ciphers design, the main attacks to consider for AO ciphers are not of statistical nature
but of algebraic nature.

The goal of this report is to investigate the security of STARK-friendly ([2,5,3,32]) primitives
against algebraic attacks. More precisely, we have considered :

Jarvis [5] The first generation of block cipher optimized for STARK-proofs

MiMC [2] A lightweight block cipher well suited for the STARK technology

Pepper/Rescue/ Second generation of AO ciphers that fix some weaknesses of
Vision [3] Jarvis

Poseidon/Starkad [32] Latest design of STARK-friendly hash functions

Table 1. List of STARK-friendly primitives considered in this report.

1.1 Overview of the Results

This report presents a security analysis of AO ciphers listed in Table 1 against algebraic attacks.
An algebraic attack has typically two steps :

– modelling the cipher as a set of algebraic equations and,
– solving the non-linear equations to recover a secret of the cipher (secret-key or pre-image

in our context). In this document, we use a Gröbner basis [14,13] (Section 2.1) for the
solving step.

It is well known that algebraic attacks against modern block ciphers have had – so far –
a limited impact on the security. This can be explained by at least two facts. First, it is
challenging to perform practical experiments on sufficiently relevant reduced version of the

1https://medium.com/starkware/stark-friendly-hash-tire-kicking-8087e8d9a246
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ciphers [18]. Secondly, it is difficult to derive precise complexity bounds on the complexity of
such attacks [6]; in particular on the solving step.

However, as emphasised in [5], the issue is central for STARK-friendly ciphers:

“Consequently, the question of security against Gröbner basis attacks is the crucial
concern raised by arithmetization-oriented ciphers, and no such proposal is complete
without explicitly addressing it”.

In this report, we present new results on the algebraic cryptanalysis of STARK-friendly ciphers
(those listed in Table 1). We emphasize that a follow-up report considered [23] a broader set
of attacks against AO ciphers; including the ciphers listed in Table 1.

1.1.1 Methodology. Starkware Industries provided a description and a Sage ([43]) ref-
erence code of the primitive to analyse. We then implemented the primitive in Magma [12]
an/or Maple [39] and always compared the output of the function with the reference Sage
implementation.
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Sage (ref) 8 8 8 8 8 8 8 8

Maple 8 8 8 8 8 8 8

Magma 8 8 8 8 8 8 8

Table 2. Summary of the codes developed.

In addition, we developed a new dedicated C program to attack some of the primitives.

1.1.2 How to Fix the Number of Rounds. Given a security level s, the main question
addressed in this work is to derive a minimal condition on the number N of rounds of STARK-
friendly ciphers to reach a security of s bits. To do so, we developed a common methodology
to attack STARK-friendly ciphers.

Let D(N) be the the number of solutions of the algebraic system modelling a STARK-friendly
cipher with N rounds. We present an algebraic attack whose complexity is polynomial in the
number of solutions, i.e.

O
(
D(N)ω

)
,where ω is 1 or 2.

This leads to the following methodology for deriving the minimal number of rounds.

1. Estimate the number D(N) of solutions. To do so, we performed practical exper-
iments and used theoretical bounds such as the Bézout bound (Definition 1) and the
so-called multi-homogeneous Bézout bound (Definition 2, [35,38,22]). The former bound
is especially interesting since it takes advantage of the structure and leads to tighter
complexity results. To our knowledge, this is the first time that such multi-homogeneous
Bézout bounds are used cryptography.
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2. Choose N such that :
D(N)ω > 2s.

Thanks to fast linear algebra techniques (Section 2.2.2, [25,24]), we can always assume
that ω = 2. We will see that for some primitives ω can be even chosen equal 1.

In the following tables, we summarize the value of D(N) for STARK-friendly ciphers, the
number of rounds N initially suggested by the designers to reach a security level of 128 bits
and the number of rounds N? derived from our new attacks.

1.2 Algebraic Key-Recovery

Here, we provide the results obtained for an algebraic key-recovery against various AO block
ciphers.
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Field F2n F2n F2n Fp Fp Fp

D 3N (N + 1)4N (5N + 3)4N−2 4N 3N−1 3N+1 3(N+1)m

N 82 10 10 32

N∗ ≥ 81 ≥ 62 ≥ 62 ≥ 77 ≥ 80 ≥ 20(m = 2)

Table 3. Minimal number of rounds for MiMC, Jarvis, Pepper and Rescue.

Vision

Field F2n

m 2 3 4

D ≈ 15
256

26N ≈ 4615N
589824

(26 32)N ≈ 0.0022(21032)N

N? 12 ≥ 8 ≥ 6

Table 4. Minimal number of rounds for Vision.

1.3 Algebraic Pre-Image

Here, we describe the results obtained for an algebraic pre-image on the permutation induced
by AO ciphers. In this context, we consider the so-called Constrained-Input Constrained-Output
(CICO) problem introduced in [32]. The CICO problem is then capturing a pre-image attack
against the permutation defining a sponge hash function [11].

Let perm : Km −→ Km be a permutation. The CICO problem considered here is defined as
follows:
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CICO(k)
Find (xk+1, . . . , xt) ∈ Km−k such that

x = (0, . . . , 0, xk+1, . . . , xt) ∈ Km // Constrained input
y = permHades(x)
y1 = · · · = yk = 0 // Constrained output

Fig. 1. The CICO problem.

CICO Problem on Poseidon and Starkad. The results are summarized in Table 5.

Name Security level [32] Field n RF RP t Complexity of our attack Cost

Poseidon-256 2128 Fp 256 8 84 6 3RF+RP−1 2144.2

Starkad-252 2126 F263 63 12 39 24 32(4RF+RP−8)+2 2253.6

Table 5. Complexity of our attack against Poseidon and Starkad. n is the bit size of the field, RF (resp.
RP ) refers to to the numbers of full (resp. plain) rounds and t is the number of field elements (parameters of
Poseidon and Starkad defined in Section 4.4).

CICO Problem on Rescue. In the particular case of Rescue, we considered algebraic key-
recovery on the block cipher (Table 3) as well as algebraic pre-image against the Rescue

permutation (Table 6).

k 1 2 > 2

Complexity for Rescue 3(N−1)m+k 3(N−1)m+k 32
(
(N−1)m+k

)

Table 6. Complexity of our attack against Rescue. k is the CICO parameter, N is the number of rounds and
m is the number of field elements (parameters of Rescue are defined in Section 4.3.2).

This yields, in particular, for the 128-bit challenge parameters defined for the STARK-Friendly
Hash (SFH) Challenge2:

Name Field n = log2(p) N m Exhaustive search Algebraic attack

Rescue128a Fp 125 16 4 2250 298.3

Rescue128b Fp 253 22 12 2253 2401.3

Rescue128c Fp 125 10 12 2250 2174.3

Rescue128d Fp 61 10 12 2244 2355

Rescue128e Fp 253 10 11 2253 2158.5

Table 7. Challenge parameters for the Rescue-based hash function.

2https://starkware.co/hash-challenge/
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1.4 Organisation of the Report

After this introduction, the paper is organized as follows. In Section 2, we introduce the
algebraic tools used to analyse STARK-friendly ciphers such as Gröbner bases (Section 2.1)
and multi-homogeneous systems (Section 2.3). In Section 3, we briefly review known results
in the algebraic cryptanalysis of block ciphers. Section 4 describes the primitives analysed
in this report (the ciphers listed in Table 1). We then describe key-recovery attacks against
Jarvis (Section 5), MiMC (Section 6), Pepper (Section 7), Rescue (Section 8) and Vision

(Section 9). Finally, we present pre-image attacks in Section 10 : against Starkad/Poseidon
(Section 10.1) and Rescue (Section 10.2).

This report has been prepared at the demand of Starkware Industries. The analysis has been
performed during two periods (see Section 11 an history of the document) : from November
2018 to September 2019 and then in March 2020

(
the latest period was dedicated to investigate

the CICO problem on Rescue(Section 10.2)
)
. This final document is a compilation of several

intermediate reports. The goal of this final report is to present the complexity of our attacks
and to detail the main ideas. On the other hand, some proofs are only sketched and few
technical details are omitted.

2 Polynomial System System Solving and Gröbner Bases

A central task in the algebraic cryptanalysis of STARK-friendly primitives is to solve a system
of non-linear equations over a finite field Fq (with q = ps, p prime and s > 0). This classical
NP-hard problem [31] is defined as follows:

Polynomial System Solving over a Finite Field (PoSSoq)
Input. p1(x1, . . . , xn), . . . , pm(x1, . . . , xn) ∈ Fq[x1, . . . , xn].
Goal. Find – if any – a vector (z1, . . . , zn) ∈ Fnq such that:

p1(z1, . . . , zn) = 0, . . . , pm(z1, . . . , zn) = 0.

In this work, we will use Gröbner bases [14,13] for solving the instances of PoSSoq arising in
our algebraic attacks. The rational is that we have efficient algorithms, such as the F4 and F5

algorithms [26,27]), as well as software (typically, Magma and Fgb [12,28]) to compute these
bases and perform large scale experiments. In addition, a rich set of tools from computer
algebra/algebraic geometry allow to understand the complexity of computing such bases.
Finally, Gröbner bases algorithms turn to be quite flexible for taking advantage of structured
systems that naturally appear in algebraic cryptanalysis. All these features will be illustrated
in this report.

Before that, we briefly review some basic facts about Gröbner bases, recall basic complexity
results and finally introduce the concept of multi-homogeneous systems.

2.1 Gröbner Bases

A monomial in Fq[x1, . . . , xn] is a power product of the variables, i.e. an element of the form
xα1
1 · · ·xαn

n . The leading monomial of p ∈ Fq[x1, . . . , xn] – denoted by LM(g,≺) – is the largest
monomial w.r.t. some admissible monomial ordering ≺ among the monomials of f .

Remark 1. LEX and DRL are two widely used examples of monomial orderings. Given α =
(α1, . . . , αn) and β = (β1, . . . , βn) ∈ Nn, they are defined as follows:
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– xα1
1 · · ·xαn

n ≺LEX x
β1
1 · · ·xβnn if the first left-most non-zero entry of β − α is positive.

– xα1
1 · · ·xαn

n ≺DRL x
β1
1 · · ·xβnn if

∑n
i=1 αi <

∑n
i=1 βi, or

∑n
i=1 αi =

∑n
i=1 βi and the right-

most non-zero entry of β − α is negative.

We can now define Gröbner basis [14,13].

Definition 2.1 (Gröbner basis). Let I = 〈p1, . . . , pm〉 ⊂ Fq[x1, . . . , xn] be a polynomial
ideal. A subset G ⊂ I is a Gröbner basis – w.r.t. an admissible monomial ordering ≺ – of I
if:

∀p ∈ I, there exists g ∈ G such that LM(g,≺) divides LM(p,≺).

It is clear from Definition 2.1, that the notion of Gröbner bases depends on a admissible
monomial ordering. Gröbner bases have different computational and algorithmic properties
with respect to the monomial ordering considered. Typically, LEX-Gröbner bases (i.e. Gröbner
bases w.r.t. the lexicographical ordering) allow to eliminate variables whilst DRL is a more
computational-friendly ordering as we will see.

In algebraic cryptanalysis, we are usually not interested in the Gröbner basis itself but rather
in the set of solutions, or variety.

Definition 2.2 (Variety). Let Fq ⊂ L and I = 〈p1, . . . , pm〉 ⊂ Fq[x1, . . . , xn] be an ideal.
We denote by

VL(I) = VL(p1, . . . , pm) =
{
z = (z1, . . . , zn) ∈ Ln | pi(z) = 0,∀i, 1 ≤ i ≤ m

}
,

the L-variety associated to I, i.e. the common zeroes over Ln of p1, . . . , pm. When L = Fq,
we simply denote V (I) = VFq

(I). We shall say that the ideal I ⊂ Fq[x1, . . . , xn] is zero-

dimensional if | V (I) |<∞.

Let I ⊂ Fq[x1, . . . , xn] be an ideal. A Gröbner basis allows to explicitly compute in the quotient
space Fq[x1, . . . , xn]/I. In the zero-dimensional case, this quotient is a finitely generated
vector-space.

Proposition 1. Let I = 〈p1, . . . , pm〉 ⊂ Fq[x1, . . . , xn] be a zero-dimensional ideal and G ⊂ I
be a Gröbner basis of I w.r.t. an admissible monomial ordering ≺. Fq[x1, . . . , xn]/I is a
finite-dimensional vector space generated by :

{
xα = xα1

1 · · ·xαn
n | xα 6∈

〈
LM(g,≺) | g ∈ G

〉}
.

A LEX-Gröbner basis permits to eliminate variables.

Theorem 1 (Elimination theorem). Let I = 〈p1, . . . , pm〉 ⊂ Fq[x1, . . . , xn] be a polyno-
mial ideal and G ⊂ I be a LEX-Gröbner basis of I. It holds that:

∀`, 0 ≤ ` < n,G` = G ∩ Fq[x`+1, . . . , xn],

is a LEX-Gröbner basis of I ∩ Fq[x`+1, . . . , xn].

In the zero-dimensional case, the variety can be then easily computed from a LEX-Gröbner
basis. Indeed, we can deduce from the elimination property (Theorem 1) that a LEX-Gröbner
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basis of a zero-dimensional ideal has always the following triangular shape:





hn(xn)

h
(1)
n−1(xn, xn−1)

. . .

h
(k1)
n−1(xn, xn−1)

h
(1)
n−2(xn, xn−1, xn−2)

...

To compute the variety from a LEX-Gröbner basis, we then simply have to successively elim-
inate variables by computing zeroes of univariate polynomials and back-substituting the re-
sults.

2.2 Zero-Dimensional Solving

From a practical point of view, computing (directly) a LEX-Gröbner basis is usually slower
that computing a Gröbner basis w.r.t. another monomial ordering. On the other hand, it is
known that computing Gröbner bases w.r.t. to a degree reverse lexicographical (DRL-Gröbner
bases) is much faster in practice.

The FLGM algorithm [29] permits – in the zero-dimensional case – to efficiently solve this
issue. This algorithm use the knowledge of a Gröbner basis computed for a given order to
construct a Gröbner for another order. The complexity of FGLM is polynomial in the number
of solutions of the considered ideal. This suggests the following strategy for computing the
solutions of a zero-dimensional system p1 = 0, . . . , pm = 0.

1. Compute a DRL-Gröbner basis GDRL of I = 〈p1, . . . , pm〉 ⊂ Fq[x1, . . . , xn].
2. Compute a LEX-Gröbner basis of I using FGLM on GDRL.

Fig. 2. Zero-dim solving steps.

This is for instance the default strategy used in the Magma computer algebra system. We
detail now the complexity of each part.

2.2.1 Complexity of Computing a DRL-Gröbner Bases. The complexity of computing
a DRL-Gröbner bases will be related to the quantity defined below.

Definition 2.3 (Degree of regularity). Let p1, . . . , pm ∈ Fq[x1, . . . , xn] be homogeneous
polynomials. We shall call degree of regularity of p1, . . . , pm, denoted by Dreg(p1, . . . , pm), the
smallest integer D0 ≥ 0 such that the polynomials of degree D0 in I = 〈p1, . . . , pm〉 generate –
as a Fq vector space – the set Monomialsq(n,D0) of all monomials of degree D0 in n variables
over Fq, i.e.

Dreg(p1, . . . , pm) = min
{
D0 ≥ 0 | dimFq

({
p ∈ I | deg(p) = D0

})
= #Monomialsq(n,D0)

}
.
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Remark 2. The degree of regularity can be generalized to non-homogeneous polynomials p =
(p1, . . . , pm) ∈ Fq[x1, . . . , xn]m by considering the degree of regularity of the homogeneous
components of highest degrees pH = (pH1 , . . . , p

H
m) ∈ Fq[x1, . . . , xn]m. Namely :

Dreg(p1, . . . , pm) = Dreg(pH1 , . . . , p
H
m).

Once this notion fixed, we can rather easily establish an upper bound on the cost of computing
a DRL-Gröbner basis [37,33,6,9,8].

Theorem 2. Let ω, 2 ≤ ω ≤ 3 be the linear algebra constant and p1, . . . , pm ∈ Fq[x1, . . . , xn]
such that pH = (pH1 , . . . , p

H
m) is a zero-dimensional system. Let then Dreg = Dreg(p1, . . . , pm)

and ≺ be a total degree monomial ordering. We can compute a Gröbner basis of 〈p1, . . . , pm〉
with respect to ≺ in

O

(
m ·

(
n+Dreg

Dreg

)ω)
arithmetic operations over Fq. (1)

with 2 ≤ ω < 2.3728639 the linear algebra constant [44,30].

The complexity of computing a DRL-Gröbner basis is then exponential in the degree of reg-
ularity. Unfortunately, this degree of regularity is difficult to compute in general; as difficult
as computing the Gröbner basis. Fortunately, there is a particular class of systems for which
this degree can be computed efficiently : (regular and) semi-regular sequences.

The notion of regular sequences is classical [37,36] but holds only for m ≤ n. Semi-regular
sequences, that we recall below, have been introduced in [6,9] for over-defined systems. In
essence, the algebraic systems encountered in the cryptographic context are naturally over-
defined due to the field equations motivating then such a notion.

Definition 2.4. We assume that m > n and q > 2. Let p1, . . . , pm ∈ Fq[x1, . . . , xn] be
homogeneous polynomials of degrees d1, . . . , dm respectively. This sequence is semi-regular if:

1. 〈p1, . . . , pm〉 6= Fq[x1, . . . , xn],

2. for all i, 1 ≤ i ≤ m and g ∈ Fq[x1, . . . , xn]:

deg(g · pi) < Dreg(p1, . . . , pm) and g · pi ∈ 〈p1, . . . , pi−1〉 ⇒ g ∈ 〈p1, . . . , pi−1〉.

Now, let p1, . . . , pm ∈ Fq[x1, . . . , xn] be polynomials of degrees d1, . . . , dm respectively. We shall
say that the sequence p1, . . . , pm is semi-regular if the sequence pH1 , . . . , p

H
m is semi-regular.

Regular sequences are defined almost as in Definition 2.4. The only difference is that m ≤ n
and the second condition is simply: g · pi ∈ 〈p1, . . . , pi−1〉 ⇒ g ∈ 〈p1, . . . , pi−1〉. Defini-
tion 2.4 of semi-regular sequences requires to be adapted for the Boolean polynomial ring
F2[x1, . . . , xn]/〈x2i − xi〉1≤i≤n [6,9] to take into account the field equations.

Remark 3. Note that semi-regular sequences can be also defined from a more algorithmic point
of view. Semi-regular sequences can be defined as the sequences for which all the matrices
generated during a Gröbner basis computation with F5 are of maximal possible rank [27].

The degree of regularity can be computed explicitly for semi-regular sequences [6,7]. It is
derived from a particular coefficient in a power series.



12

Definition 2.5. Let S(z) =
∑

k≥0 ckz
k ∈ N[[z]] be a formal power series. We define the index

Ind(S) as the first k such that ck ≤ 0 (if no such k exist, then Ind(S) =∞). We denote by:

[S(z)]+ =

Ind(S)−1∑

k=0

ckz
k, the series truncated at Ind(S).

We have then:

Property 1. A sequence p1, . . . , pm ∈ Fq[x1, . . . , xn] of respective degrees d1, . . . , dm is semi-
regular if and only if its Hilbert series is given by:

HSq(t) =

[∏m
i=1(1− zdi)
(1− z)n

]

+

, if m > n and q > 2, and HS2(t) =

[
(1 + z)n∏m
i=1(1 + zdi)

]

+

, if q = 2.

The degree of regularity of a semi-regular sequence p1, . . . , pm ∈ Fq[x1, . . . , xn] is given by
1 + deg

(
HSq(t)

)
.

Remark 4 (Macaulay bound). For regular sequences (m ≤ n), the degree of regularity is given
by the so-called Macaulay bound [37,33]:

m∑

i=1

(di − 1) + 1. (2)

For quadratic polynomials, the bound is n+ 1.

2.2.2 Change of Ordering. We now consider the last step in the zero-dim solving process.
To date, FLGM [29] is the fastest technique for the change of ordering. We recall below the
complexity of the initial FLGM.

Theorem 3. Let I ⊂ Fq[x1, . . . , xn] be a zero-dimensional ideal and G≺old
be a G≺old

-
Gröbner basis of I (w.r.t. to an admissible monomial ordering ≺old). FGLM [29] permits
to compute a ≺old-Gröbner basis G≺new of I knowing G≺old

in

O(n ·D3),

with D being the dimension of the Fq-vector space Fq[x1, . . . , xn]/I (which is equivalent to the
number of zeroes of I counted with their multiplicities).

The complexity of the version described in [29] can be improved using fast linear algebra
techniques [25,24]. These lead to a version of FGLM whose complexity is :

O(n ·Dω),with 2 ≤ ω < 2.3728639.

In this report, we can always assume that ω is at most two. For some STARK-friendly primitives,
the cost of the change of ordering can be further reduced to:

O(n ·D).

This is linear in the number of solutions.

In any case, it is clear that the value of D is crucial for the complexity of FGLM and solving
PoSSoq. We recall below a classical bound, known as Bézout bound, on the number of solutions.
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Definition 1 (Bézout bound). Let I = 〈p1, . . . , pn〉 ⊂ Fq[x1, . . . , xn] be a zero-dimensional
ideal and d1, . . . , dn be the degrees of p1, . . . , pm respectively. We have :

#V (I) ≤
n∏

i=1

di.

In the case of STARK-friendly primitives, the change of ordering is the dominant part of the
solving process. It is then of primary importance to find tighter bounds on the number of
solutions.

2.3 Multi-Homogeneous Systems

The systems arising in algebraic cryptanalysis behave usually differently than semi-regular
systems (Definition 2.4). In this report, we shall see that the systems derived from many
STARK-friendly ciphers have a multi-homogeneous structure [35,38,22].

Definition 2.6. Let p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m be homogeneous polynomials. We
consider a partition {X(1), . . . ,X(`)} of the variables X = {x1, . . . , xn}.
– We shall say that p is multi-homogeneous if the polynomials pi are homogeneous w.r.t.

the X(j)’s.
– The finite sequence, denoted by mdeg(f), of degrees with respect to each block is called the

multi-degree of f .
– Let f ∈ K[X(1), . . . ,X(`)] be a multi-homogeneous polynomial of multi-degree (d1, . . . , d`).

It holds that:

∀(α1, . . . , α`) ∈ (F∗q)` = f
(
α1X

(1), . . . , α`X
(`)
)

=

(∏̀

i=1

αdii

)
f
(
X(1), . . . ,X(`)

)
.

In the case of multi-homogeneous systems, we have a dedicated version of the Bézout bound
(Definition 1).

Definition 2 (Multi-homogeneous Bézout bound). Let p = (p1, . . . , pn) ∈ Fq[X(1), . . . ,X(`)]n

be a set of multi-homogeneous polynomials of multi-degrees mdeg(fi) = (di,1, . . . , di,`). Then,

the number of zeroes of p is bounded from above by the coefficient of α
|X(1)|
1 ·α|X

(2)|
2 · · · ·α|X

(`)|
`

in the polynomial :
n∏

i=1

(di,1 + di,2 + · · ·+ di,`) .

The multi-homogeneous Bézout bound is a central tool that will be used to derive tighter
complexity bounds of our algebraic attacks.

Remark 5. Note that the problem of finding an optimal multi-homogeneous structure mini-
mizing the multi-homogeneous Bézout bound is NP-Hard.

3 Algebraic Cryptanalysis of Block Ciphers

Algebraic cryptanalysis of block ciphers has been popularized by [19]. The authors demon-
strated that key-recovery on AES [20] can be reduced to the problem of solving a system of
quadratic equations over F2.
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Given a pair of message/ciphertext, the basic idea of such modelling is to introduce interme-
diate variables for each round as well as variables corresponding to the secret-key. In AES, the
Sbox SAES : F28 → F28 is the inverse function in F28 . That is:

SAES(X) =

{
1/X, if X 6= 0
0, otherwise

If X 6= 0, then X × SAES(X) = 1. This yields 8 quadratic equations over F2.

Initially, it was claimed in [19] that the complexity of solving the whole key-recovery system
modelling AES

“does not grow exponentially with the number of rounds”.

This claim was proved to be false in a series of papers, e.g. [17,21,4].

Despite this false claims on the complexity, the results of [19] motivated to further investigate
the behaviour of algebraic attacks against block ciphers. We recall below a selection of these
results.

Alternative modelling. In [40], the authors introduced the so-called Big Encryption Standard
(BES). This is an embedding of AES over F28 leading to an alternative algebraic modelling of
AES with multivariate polynomials over F28 . these equations are of higher degree than in the
previous modelling [19]. In the case of BES, the SBox is represented as

SBES(X) = X28−2 = X254.

Practical experiments. In order to understand the practical behaviour of algebraic attacks,
[18] proposed a general framework to perform such attacks on so-called small scale variants
of AES. Even for such small scale variants, it turns to be difficult to perform relevant practical
experiments.

A Gröbner basis for AES. In [16], the authors proved a rather surprising result. The algebraic
equations GAES describing a key-recovery in AES already forms a zero-dimensional Gröbner
basis for a suitable monomial ordering (the degree-lexicographical ordering). To do so, [16]
considered the BES-style modelling of AES over F28 [40].

As explained in Section 2.2.1, the cost of computing the variety is the cost of the change
of ordering. Thus, the complexity of this approach is essentially polynomial in number of
solutions of the algebraic system over F28 . A bound on the number of solutions can be easily
deduced from the shape of the leading terms of GAES. In the case of AES128, the number of
solutions D (counted with multiplicities) is:

D = 254200 ≈ 21598. (3)

Remark that 254 is the degree of the polynomial representation of the inverse function in
F28 = F256. Note also that the cost of the change of ordering is polynomial in (3). Thus, the
attack has no direct impact on the security of AES. Still, this approach provides a first rigorous
(upper) bound on the complexity of an algebraic attack against AES. It also emphasizes the
importance of the number of solutions D in the cost of algebraic attacks against block ciphers.
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Block Ciphers Sensitive to Gröbner bases. The idea of [16] has been be generalized in [15] to
a large class of block ciphers. In particular, the authors introduces two parametrized families
of block ciphers – Curry (SPN) and Flurry (Feistel) – that have a sound design strategy
against linear and differential attacks but which can be modelled by very simple polynomial
equations. Then, they generalized the approach described in the previous paragraph for AES

on Curry and Flurry. This demonstrates the existence of block ciphers resistant against
differential and linear cryptanalysis but vulnerable against Gröbner basis attacks.

4 STARK-Friendly Ciphers

We briefly describes here the STARK-friendly ciphers that have been considered in this report.
Namely:

Jarvis [5] The first generation of block cipher optimized for STARK-proofs

MiMC [2] A lightweight block cipher well suited for the STARK technology

Pepper/Rescue/ A second generation of AO ciphers fixing some weaknesses
Vision [3] of Jarvis

Starkad/Poseidon [32] Latest design of STARK-friendly hash functions

We review here the main components of these primitives and refer to the initial papers for
details regarding the design rational. As mentioned in the introduction, we describe the ciphers
with the specification provided by Starkware Industries.

4.1 Jarvis

The state of AES is a matrix composed by elements in F28 transformed through a certain
number of rounds with operations in F28 or in F2. Jarvis is a generalization of AES, or more
precisely of BES, whose state is reduced to a single field element of F2n and involves few simple
operations in F2n . It borrows to AES, the use of the inverse as a non-linear component as well
as quasi-linear polynomials for the linear layer. We recall that L(X) ∈ F2n [X] is a quasi-linear
polynomial if it is defined as follows :

L(X) = c−1 +

n−1∑

i=0

ciX
2i .

In particular, Jarvis uses a special polynomial A(X) ∈ F2n [X] chosen such that:

A(X) = C
(
B−1(X)

)
(4)

where C(X) ∈ F2n [X] and B(X) ∈ F2n [X] quasi-linear polynomials of degree 4 which define
a permutation.

Algorithm 1 Jarvis

1: Input: plaintext M ∈ F2n and
a secret-key K0 ∈ F2n

2: K1, . . . ,KN ← KeyExpand(K0)

3: S0 ←M + K0

4: for r from 1 to N do
5: Sr ← A(1/Sr−1) + Kr (with

A(X) ∈ F2n [X] being de-
fined as in (4))

6: end for
7: return SN

Algorithm 2 KeyExpand

1: Input: K0 ∈ F2n

2: Internal constant: C0 ∈ F2n

3: C1, . . . , CN ← ConsGen(C0)
4: for r from 1 to N do
5: Kr ← 1/Kr−1 + Cr

6: end for
7: return K1, . . . ,KN ∈ F2n
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Algorithm 3 ConsGen

1: Input: C0 ∈ F2n

2: Internal constants: a, b ∈
F2n

3: for r from 1 to N do
4: Cr ← aCr−1 + b
5: end for
6: return C1, . . . , CN ∈ F2n

Security analysis. We give below the parameters initially recommended by the designers of
Jarvis [5] for various security levels.

Name n N

Jarvis128 128 10

Jarvis192 192 12

Jarvis256 256 14

Recently, and in parallel of this work, the authors of [1] presented an improved algebraic
attack against Jarvis. In particular, [1] has been able to exploit the particular structure of
the linear layer, i.e. the polynomial A as defined in (4), to improve the algebraic modelling of
Jarvis. They then rely on generic bounds on the degree of regularity and number of solutions
(Section 2) to derive new complexity bounds on the cost of an algebraic attack.

Name n N New security bound [1]

Jarvis128 128 10 72

Jarvis192 192 12 85

Jarvis256 256 14 92

Table 8. Complexity of the attack of [1] (assuming ω = 2).

The authors [1] also mentioned that at least N = 18 rounds are necessary to reach a security
level of 128 bit according to this new attack. With our new algebraic attack, we show that
number of rounds should be, at least, N = 62 to reach this security level (Table 3).

Finally, the authors [1] observed that their algebraic attack behaves better in practice than
expected. In particular, they observed that the number of solutions D(N) ≈ 2 × 5N . In
Theorem 5.3, we prove that D(N) = (N + 1)4N .

4.2 MiMC

The MiMC family operates on finite field K that can be a binary extension F2n or a prime
field Fp. In this report, we have considered the (SPN) version of MiMC where the non-linear
component is the cubic Sbox (i.e. d = 3).
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Algorithm 4 MiMC

1: Input: plaintext M ∈ K and a secret-key K ∈ K
2: Internal constants: C1, . . . , CN ∈ K

3: S1 ←
(
M + (K + C1)

)d
4: for r from 1 to N do
5: Sr ←

(
Sr−1 + (K + Cr)

)d
6: end for
7: return SN

The internal constants C1, . . . , CN ∈ K are chosen randomly.

Remark 6. We provide in Appendix A some reference codes for implementing Algorithm 4 in
Sage, Magma and Maple.

Number of Rounds. According to the designers [2], the number of rounds N required to reach
a security level s is equal to :

N =

⌈
s

log2 3

⌉
.

More recently, the authors of [1] quickly analysed MiMC against algebraic attacks. In particular,
they observed than a natural algebraic modelling of MiMC has a number of solutions D(N) ≈
3N . We also prove this result in Theorem 5.3.

4.3 Pepper/Rescue/Vision

In [5], the authors set the basis on the design of AO ciphers. This leads to the proposal of two
new block ciphers Vision and Rescue optimized for the STARK-technology. These are SPN
block ciphers operating on fields of odd and even characteristic, respectively. In contrast to
Jarvis (Section 4.1), the state space in Vision and Rescue are composed of more than one
element.

The goal of [5] was also to fix initial weaknesses quickly identified on Jarvis. In this process,
we also analysed intermediate versions such as Jarvis-v2 (one dimensional version of Vision)
and Pepper (evolution of Jarvis that removed the linear layer and uses two Sboxes).

4.3.1 Pepper. The first version of Pepper-v1 operates on a prime field K = Fp. We set
d = 3, c = (2p− 1)/3 and N ′ = 2N .

Algorithm 5 Pepper-v1
1: Input: plaintext M ∈ K and a

secret-key K0 ∈ K
2: K1, . . . ,KN′ ←

KeyExpand(K0)
3: S0 ←M
4: for r from 1 to N do
5: Sr ←←

(
Sd
r−1 + K2r−1

)c
+

K2r

6: end for
7: return SN

Algorithm 6 KeyExpand

1: Input: K0 ∈ K
2: Internal constant: C0 ∈ K
3: C1, . . . , CN′ ← ConsGen(C0)
4: for r from 1 to N ′ do
5: Kr ← 1/Kr−1 + Cr

6: end for
7: return K1, . . . ,KN′ ∈ K

Algorithm 7 ConsGen

1: Input: C0 ∈ K
2: Internal constants: a, b ∈

F2n

3: for r from 1 to N ’ do
4: Cr ← aCr−1 + b
5: end for
6: return C1, . . . , CN′ ∈ K

The second version, denoted Pepper-v2, simplifies the key expansion and add a key addition
on the message.
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Algorithm 8 Pepper-v2
1: Input: plaintext M ∈ K and a

secret-key K0 ∈ K
2: K1, . . . ,KN′ ←

KeyExpand(K0)
3: S0 ←M + K0

4: for r from 1 to N do
5: Sr ←←

(
Sd
r−1 + K2r−1

)c
+

K2r

6: end for
7: return SN

Algorithm 9 KeyExpand

1: Input: K0 ∈ K
2: Internal constants: a, b ∈

F2n

3: for r from 1 to N ’ do
4: Kr ← aKr−1 + b
5: end for
6: return K1, . . . ,KN′ ∈ K

4.3.2 Rescue. In this case, the finite field in Fp. The Sboxes are the power maps Xd and
Xc, where d is the smallest prime such gcd((p − 1), d) = 1. In most cases, we can set d = 3
and c = (2p− 1)/3. This is the situation analysed in this report. Finally, we set N ′ = 2N .

Algorithm 10 Rescue

1: Input: plaintext M ∈ Fm
p and a secret-key K0 ∈

Fm
p

2: K1, . . . ,KN′ ← KeyExpand(K0)
3: S0 ←M + K0

4: for r from 1 to N do
5: S ← T

[
Sr−1[1]d, . . . , Sr−1[m]d

]

6: S′ ←MS + K2r−1

7: S′′ ← T
[
S′[1]c, . . . , S′[m]c

]

8: Sr ←MS′′ + K2r

9: end for
10: return SN

Algorithm 11 KeyExpand

1: Input: K0 ∈ Fm
p

2: Internal constants: a, b ∈ Fp

3: B ← T [b, . . . , b]
4: for r from 1 to N ′ do
5: Kr ← aKr−1 + b
6: end for
7: return K1, . . . ,KN′ ∈ Fm

p

Number of Rounds. According to [5], the number of rounds N required to reach a security
level m · log2(p) is equal to :

max

(
10, 2

⌈
log2(p)

4

⌉)
.

4.3.3 Hash Functions. Once the secret-key is fixed in Rescue, then Algorithm 10 defines
a permutation, denoted as:

permRescue : Fmq −→ Fmq . (5)

As explained in [5], permRescue can be precessed into a hash function thanks to the sponge
construction [11]. In this case, the value of the secret-key is fixed to a random value. The
state of a sponge function is defined as m = r + c bits, where r and c are called the rate and
the capacity of the sponge, respectively. In particular, we focused our attention the following
128-bit challenge parameters3.

4.3.4 Vision. This block cipher [5] operates on the finite field F2n/m . The non-linear compo-
nent is the inverse function in F2n/m and it uses a quasi-linear permutation B(X) ∈ F2n/m [X]
of degree d (d is usually 4). Finally, the state is also mixed thanks to an invertible matrix
M∈ Fm×m

2n/m . Finally, we set N ′ = 2N .

3https://starkware.co/hash-challenge/
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Name Field n = log2(p) N m c

Rescue128a Fp 125 16 4 2

Rescue128b Fp 253 22 12 1

Rescue128c Fp 125 10 12 2

Rescue128d Fp 61 10 12 4

Rescue128e Fp 253 10 11 1
Table 9. Challenge parameters for the Rescue-based hash function.

Algorithm 12 Vision(N, d,m, n)
1: Input: plaintext M ∈ Fm

2n/m and a secret-key
K0 ∈ Fm

2n/m

2: K1, . . . ,KN′ ← KeyExpand(K0)
3: S0 ←M + C0

4: for r from 1 to N − 1 do
5: S ← T

[
B(1/Sr−1[1]), . . . , B(1/Sr−1[m]

]

6: S ←MS + K2r−1

7: S ← T
[
B−1(1/S[1]), . . . , B−1(1/S[m]

]

8: Sr ←MS + K2r

9: end for
10: S ← T

[
1/SN−1[1], . . . , 1/SN−1[m]

]

11: SN ←MS + K2N−1

12: return SN

Algorithm 13 KeyExpand

1: Input: K0 ∈ Fm
2n/m

2: Internal constants: a, b ∈ Fm
2n/m

3: B ← T [b, . . . , b]
4: for r from 1 to N ′ do
5: Kr ← aKr−1 + B
6: end for
7: return K1, . . . ,KN′ ∈ Fm

2n/m

Number of Rounds. According to [5], the number of rounds N required to reach a security
level n is equal to :

max
(

10, 2
⌈ n

5.5m

⌉)
.

Variant of Jarvis. We will have Jarvis−v2(N,n) = Vision(N, d, 1, n).

4.4 Poseidon and Starkad

To date, Poseidon and Starkad this are the last primitives especially optimized for STARK

applications. Starkad and Poseidon [32] are hash functions that operate on a binary field
and prime field respectively. More precisely, Starkad and Poseidon are constructed from a
permutation and transformed into a hash function thanks to the sponge construction [32].

To describe the permutations, we use the following notations :

– K a finite field

– MDS is t× t matrix,

– C[. . .] are round constants

– P is an extra parameter and is usually equal to 1.

– d is the degree of the S-BOX and is usually equal to 3.

– The field is chosen so that x −→ xd is a permutation.



20

Algorithm 14 Starkad/Poseidon(RF , RP , t, d, P )

1: Input: s ∈ Kt

2: Rf ← RF /2
3: for r from 1 to Rf do

4: s[i]←
(
s[i] + C[t (r − 1) + i]

)d
for i = 1, . . . , t

5: s← s×MDS
6: end for
7: for r from 1 to RP do
8: s[i]←

(
s[i] + C[t (Rf + r − 1) + i]

)d
for i = 1, . . . , P

9: s[i]← s[i] + C[t (Rf + r − 1) + i] for i = (P + 1), . . . , t
10: s← s×MDS
11: end for
12: for r from 1 to Rf − 1 do do

13: s[i]←
(
s[i] + C[t (Rf + RP + r − 1) + i]

)d
for i = 1, . . . , t

14: s← s×MDS
15: s[i]←

(
s[i] + C[t (RF + RP + r − 1) + i]

)d
for i = 1, . . . , t

16: end for
17: Output : s

Remark 7. A reference code for Algorithm 14 is provided in Appendix B.

We report some typical values (S-Box is x −→ x3). We also give another value so that
nk ≈ 256. To simplify the description we introduce the following full round and partial round

Name Security Field n RF RP t

Poseidon-256 2128 Fp 256 8 84 6

STARK-252 2126 F263 63 12 39 24

Sage Reference Code 2128? F263 63 6 42 24

Table 10. Parameters for Poseidon and Starkad.

functions:

Algorithm 15 Rr(s)

1: Input: s ∈ Kt

2: s[i]← (s[i] + C[t (r − 1) + i])d for i = 1, . . . , t
3: Output : s×MDS

Algorithm 16 R′r(s)
1: Input: s ∈ Kt

2: s[i]←
(
s[i] + C[t (r − 1) + i]

)d
for i = 1, . . . , P

3: s[i]← s[i] + C[t (r − 1) + i] for i = (P + 1), . . . , t
4: Output : s×MDS

Algorithm 17 L(s)

1: Input: s ∈ Kt

2: s[i]←
(
s[i] + C[t (r − 1) + i]

)d
for i = 1, . . . , P

3: s[i]← s[i] + C[t (r − 1) + i] for i = (P + 1), . . . , t
4: Output : s×MDS
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In the following, we always define Rf = RF /2. The permutation function perm in Starkad

and Poseidon is defined by:

permHades(s) = L(s′′′) where





s′ = RRf
◦ · · · ◦R1(s)

s′′ = R′Rf+RP
◦ · · · ◦R′Rf+1(s

′)
s′′′ = RRF+RP−1 ◦ · · · ◦RRf+RP+1(s

′′)
(6)

We then have four maps:
permHades : Kt −→ Kt

Rr : Kt −→ Kt

R′r : Kt −→ Kt

L : Kt −→ Kt

5 Algebraic Cryptanalysis of Jarvis

We present in this part an improved algebraic attack against Jarvis (Section 4.1). Our
modelling is given in Section 5.1. Then, we show that the equations modelling Jarvis have a
multi-homogeneous structure (Section 2.3). This allows to derive the bound on the number of
solutions given in Table 3 (Theorem 5.3). We then present experimental results in Section 5.3
and derive an experimental upper bound on the maximal degree reached in the computation
of DRL-Gröbner basis; leading the complexity results obtained in Section 5.4.

5.1 Algebraic Modelling

We describe in this part the algebraic modelling of Jarvis. To this end, we introduce several
extra variables. Namely:

– s0, s1, . . . , sN−1 corresponding to intermediate state variables,
– a variable k0 corresponding to the master-key and variables k1, . . . , kN corresponding to

the sub-keys.

According to Algorithm 1 and the very definition of the linear layer A(X) ∈ F2n [X] (as in
(4)), we have for each round r:

sr = A(1/sr−1) + kr = C
(
B−1(1/sr−1)

)
+ kr. (7)

For each r, 1 ≤ r ≤ N , we introduce a new variable

ur−1 = B−1
(
1/sr−1

)
. (8)

Combining (8) with (7), we get:
sr = C(ur−1) + kr.

Finally, (8) is equivalent to:
B(ur−1) = 1/sr−1

By taking the numerator, this leads to:

B(ur−1) sr−1 − 1 = 0.

Let K0 ∈ F2n and
(
M,C = Jarvis(M,K0)

)
∈ F2n × F2n be a pair message/ciphertext

encrypted under the secret-key K0. Our key-recovery system for Jarvis is as follows:
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SJarvis(M,C) =





s0 + k0 +M,
B(u0) s0 + 1,

C(u0) + s1 + k1,
· · ·

B(ur−1) sr−1 + 1,
C(ur−1) + sr + kr,

· · ·
B(uN−1) sN−1 + 1,
C(uN−1) + C + kN

(9)

KJarvis =





k1 k0 + k0C0 + 1,
...

kr kr−1 + kr−1Cr + 1,
...

kN kN−1 + kN−1CN + 1,

According to Section 4.1, the polynomials B,C ∈ F2n [X] are of degree 4, and constants
C1, . . . , CN ∈ F2n are known and explicitly given. From now on, we denote by SysJarvis(M,C)
the key-recovery system for Jarvis composed by the equations of SJarvis(M,C) and from
KJarvis.

Lemma 1. The key-recovery system SJarvis(M,C) has 3N + 1 equations over F2n (N of
degree 2, N of degree 4, N of degree 5 and one linear equation) and 3N + 1 variables.

Example 1. Let’s consider SysJarvis(M,C) for F2n = F231 , N = 3 and with (M = 539787998, C =
1389316418).

s0 + k0 + 539787998,

s0 u0
4 + 283125965 s0 u0

2 + 1450602990 s0 u0 + 424342659 s0 + 1,
u0

4 + 1781139933u0
2 + k1 + s1 + 498270819u0 + 761232961,

s1 u1
4 + 283125965 s1 u1

2 + 1450602990 s1 u1 + 424342659 s1 + 1, u1
4 + 1781139933u1

2 + k2 +
s2 + 498270819u1 + 761232961,

s2 u2
4 + 283125965 s2 u2

2 + 1450602990 s2 u2 + 424342659 s2 + 1,
u2

4 + 1781139933u2
2 + k3 + 498270819u2 + 2140157699,

k0 k1 + 1824939501 k0 + 1,
k1 k2 + 1240992103 k1 + 1,
k2 k3 + 1828068674 k2 + 1.

5.2 Bounding the Number of Solutions

As emphasized in Sections 2 and 3, the number of solutions D(N) of SysJarvis(M,C) is a key
quantity to understand the complexity of an algebraic attack. The Bézout bound (Definition
1, Section 2.2.2) on SysJarvis(M,C) yields :

D(N) ≤ 5N × 4N × 2N = 40N .

However, this bound it not tight since it does not take into account the structure of the
equations.
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To estimate D(N) more accurately, we first consider a variant of SJarvis(M,C) where we keep
the variable sN−1. The system is:

ShJarvis(M) =





s0 + k0 +M,
B(u0) s0 + 1,

C(u0) + s1 + k1,
· · ·

B(ur−1) sr−1 + 1,
C(ur−1) + sr + kr,

· · ·
B(uN−1) sN−1 + 1,
C(uN−1) + sN + kN

(10)

We denote by SyshJarvis(M) the corresponding homogenized system (that it, ShJarvis(M) +
KJarvis.). This system has a multi-homogeneous structure (Definition 2.6, Section 2.3).

Theorem 4. The system SyshJarvis(M) ⊂ F2n [s0, s1, . . . , sN , k0, k1, . . . , kN , u0, . . . , uN−1] is
multi-homogeneous and its multi-homogeneous Bézout bound is:

(N + 1)4N .

Proof. SyshJarvis(M) is multi-homogeneous w.r.t. to following partition of the variables:

V =
[
[s0], [u0], [s1], [u1], . . . , [sN−1], [uN−1], [k0], . . . , [kN ]

]
.

Let s = #SyshJarvis(M) be the number of polynomials and nh = 3N + 1 be the number of
variables. We build the matrix:

M = [degVj (fi)]1≤i≤s,1≤j≤nh
(11)

where Vj is the j-th variable in the list V and fi is the i-th equation in the system SyshJarvis(M).

Example 2. In the case of Example 1, the matrix (11) is as follows:

M =




1 1
1 4

4 1 1
1 4

4 1 1
1 4

4 1

1 1
1 1

1 1




To ease the notations, we denote by x1, . . . , xnh
be variables of SJarvis(M,C). Let then :

W = M × [x1, . . . , xnh
]T .

The Bézout multi-homogeneous bound (Definition 2, Section 2) is the coefficient of V1V2 · · ·Vnh

in the polynomial

PN =
s∏

i=1

Wi.

The proof is by induction that this coefficient if (N + 1)4N .
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Base case. When N = 1, the polynomial is:

P1 = (k0 + s0)(s0 + 4u0)(4u0 + k1)(k0 + k1).

By expanding this expression, we get: P1 = k20 k1 s0+4 k20 k1 u0+4 k20 s0 u0+16 k20 u
2
0+k0 k

2
1 s0+

4 k0 k
2
1 u0 + k0 k1 s

2
0 + 8 k0 k1 s0 u0 + 16 k0 k1 u

2
0 + 4 k0 s

2
0 u0 + 16 k0 s0 u

2
0 + k21 s

2
0 + 4 k21 s0 u0 +

4 k1 s
2
0 u0 + 16 k1 s0 u

2
0 and the bound is 8.

Induction. We assume that the bound is N4N−1 for N − 1 rounds. Then it is easy to check
that:

PN = PN−1(sN−1 + 4uN−1)(4uN−1 + kN )(kN−1 + kN )

We expand the polynomial starting with (kN−1 + kN ).

1. We begin with kN−1. Since the next products are (k0+k1)(k1+k2) · · · (kN−2+kN−1) so we
obtain successively kN−2,. . . k1, k0. Next we have (k0 + s0)(s0 + 4u0)(4u0 + k1 + s1)(s1 +
4u1) · · ·. Thus, we deduce (in this order): s0, 4u0, s1, 4u1,. . . . In total, the coefficient is
4N .

2. We now begin with kN . From the product (sN−1 + 4uN−1) (4uN−1 + kN ) we obtain
4uN−1 and sN−1 so we have 4uN−1sN−1kNPN−1. Hence, by induction the coefficient is
4N 4N−1 = N4N .

By mixing the two cases, we have 4N +N4N = (N + 1)4N .

in 4.1, the polynomials B,C ∈ F2n [X] are
We can generalize the proof for any polynomials B,C ∈ F2n [X] as in (4) (Section 4.1) such
that deg(B) = dB and deg(C) = dC .

Theorem 5. Let SyshJarvis(M) be the key-recovery system generated from polynomials B(X)/C(X)
of degree dB/dC . The Bézout multi-homogeneous bound is equal to

B =

{
dN+1
B −dN+1

C
dB−dC when dB 6= dC

(N + 1)dN when d = dB = dC

5.3 Maximal Degree in DRL Gröbner Basis

In this part, we present experiment results showing that the number of solutions derived in
Theorem indeed holds in practice.

Experimental Fact 1. The maximal degree occurring in the computation of a DRL-Gröbner
basis of SJarvis(M,C) is

max(5, N + 2). (12)

Note that for any value of N , SJarvis(M,C) contains equations of degree 5 (Lemma 1). So,
the maximal degree is always at least 5.

Remark 8. The experimental bound (12) is much better than the Macaulay bound (Remark
4) for SJarvis(M,C):

8N + 1.

We also provide some the timings on the two steps in zero-dim solving process (Section 2.2).
In what follows, we denote by:
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– TDRL, the time for computing a DRL-Gröbner basis,

– Dmax, the maximum degree reached in the computation of a DRL-Gröbner basis

– TFGLM, the time for the change of ordering,

In Table 11, we present the experimental results obtained on Jarvis using the Fgb software.
Most of the experiments can also be done with the Magma computer algebra system. The only

N n #Sol TDRL Dmax TFGLM Density FGLM

2 31 24 0.0s 5 0.0s 52.9%

3 31 160 0.03s 5 0.01s 31.3%

4 31 896 1.85s 6 0.89s 26.0%

5 31 4608 169.7s 7 153.7s 35.1%

6 31 22528 23027s 8 17639s 37.6%

Table 11. Algebraic cryptanalysis of Jarvis with Fgb.

main difference is the implementation of the FGLM algorithm which can be the bottleneck
in Magma.

N n #Sol TDRL TFGLM

2 31 24 0.02s 0.00s

3 31 160 0.14s 0.28s

4 31 896 9.35s 56.6s

5 31 4608 962.6s 5464.2s

Table 12. Algebraic cryptanalysis of Jarvis with Magma.

5.4 Complexity Analysis

According to the experiments of Section 5.3, we can assume that the maximum degree reached
in the computation of a DRL-Gröbner basis of SJarvis(M,C) is max(5, N + 2) (Exp. Fact 1).
According to Theorem 2, the cost of computing a DRL-Gröbner basis is then:

T1 = O

((
4N + 3

N + 2

)ω)
.

This out of the scope of this report, but we demonstrated that the change of ordering (Section
2.2.2) can be done in :

T2 = O
(
(N + 1)4N

)
.

This is linear in the number of solutions SJarvis(M,C) (Theorem 5.3). The number of rounds
in Table 3 is obtained by assuming that the complexity of solving is essentially equivalent to
T2. From now, we will always used this approach.
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6 Algebraic Cryptanalysis of MiMC

6.1 A First Simple Algebraic Attack

Let K ∈ K and
(
M,C = MiMC(M,K)

)
∈ K×K be a pair message/ciphertext encrypted under

the secret-key K. The algebraic modelling of MiMC (Section 4.2) is rather straightforward.

We need to introduce:

– variables s0, s1, . . . , sN−1 corresponding to the intermediate states, and

– a variable k corresponding to the master-key.

The key-recovery system is then as follows:

SMiMC(M,C) =





s0 = (M + k + C1)
d ,

...

sr = (Sr−1 + k + Cr)
d ,

...
C = k + SN−1

Recall that there is no key schedule in MiMC. Thus :

Lemma 2. The key-recovery system SMiMC(M,C) has N + 1 equations over K (N of degree d
in one linear equation) and N + 1 variables.

Example 3. We provide below the equations of the system SMiMC(M,C) for N = 3, d = 3 and
K = F231 . 




k3 + 18 k2 + 260 k + s0 + 4680,
k3 + s0 k

2 + s0
2k + s0

3 + 573341058 k2 + 573341058 s0
2

+ 1561922980 k + 1561922980 s0 + s1 + 1910775587,
k3 + s1 k

2 + s1
2k + s1

3 + 54203621 k2 + 54203621 s1
2

+ 21629643 k + 21629643 s1 + s2 + 869220636,
s2 + k + 2100078585

We have 4 variables k, s0, s1, s2 and 4 equations (3 cubic equations and 1 linear equation).

The following result on the number of solutions of SMiMC(M,C) is obvious :

Theorem 6. Let d be the degree of SBox used in MiMC ( Algorithm 4, Section ). The Bézout
bound for SMiMC(M,C) is:

dN .

Similarly than in the previous section, we can assume that the change of ordering can be done
in linear time. This explains the number of rounds derived in Table 3.

6.2 Improved Algebraic Attacks

For MiMC, we also considered variants of the attack considered in Section 6.1.
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6.2.1 Several Pairs. We consider the case when we have ` > 1 pairs of message/ciphertext
(instead of just one in the Section 6.1). For each pair, we need to introduce N new variables
corresponding to the intermediate states (for each pair message/ciphertext). On the other
other hand, we can keep the same variable k for the secret-key. All in all, we have then ` (N+1)
equations and `N + 1 variables. The algebraic system is then slightly overdetermined.

Remark 9. For Gröbner basis the more equations we have the best it is. More precisely, when
m is the number of equations and n the number of variables, the complexity is exponential
when m ≈ n but sub-exponential when m� n (under some algebraic assumptions).

Conclusion. We perform some experiments. In comparison to the attack of Section 6.1, we
can only reduce by one the maximal degree occurring in the Gröbner basis computation.
Hence, since we increase a lot the number of variables there is no gain in practice.

6.2.2 Splitting the Equations. We assume here that the field K = F2n . The idea is to
split the system SMiMC(M,C) over the base field F2. In addition, we can add the field equations.
We have then (N + 1)n + n equations of degree 2 in F2 and (N + 1)n variables. This has
to be compared with the direct attack (Section 6.1)that has mush less variables, but whose
equations are of degree 3.

We present below some practical results. In particular, we report the maximal degree Dmax

reached during the computation of a DRL-Gröbner basis. In this context, the system has very
few solutions making the cost of the change of ordering negligible (in contrast to the direct
algebraic attack of Section 6.1 that has an exponential number of variables). The cost of this
attack is then exponential in Dmax. The last column essentially corresponds to the time for
computing a DRL-Gröbner basis.

N n Dmax CPU Time

3 7 3 0.00s
3 17 3 2.75s
3 27 3 23.67s
3 50 3 177.45s
5 7 3 0.11s
5 10 3 1.41s
5 15 3 34.22s
5 17 3 80.49s
10 10 3 26.44s
15 10 3 1179.57s
6 10 3 4.2s
6 11 > 3
6 12 > 3
6 15 > 3
8 15 > 3
10 15 > 3

– Experiments are difficult to conduct (due to the large number of variables). Hence, only
partial experimental results are available.

– Surprisingly when n (say ≤ 10) is small the complexity does not seem to depend on the
number of rounds.
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– When n > 10 then there is a change in the complexity (maximal degree in the computa-
tion). Consequently the computation is probably exponential.

– The attack is not very efficient in practice, however it is difficult to evaluate precisely the
theoretical complexity.

Thus, since it is difficult to evaluate precisely the complexity, it is recommended to take
K = Fp where p is a prime number to avoid this attack.

7 Algebraic Cryptanalysis of Pepper

Let K0 ∈ Km and
(
M,C = Pepper−vi(M,K0)

)
∈ Km × Fmq be a pair message/ciphertext

encrypted under the secret-key K0. We denote by SysPepper−vi(M,C) the corresponding alge-
braic system.

In this case, we introduce:

– s0, s1, . . . , sN−1 corresponding to intermediate state variables,

– a variable k0 corresponding to the master-key and variables k1, . . . , kN ′ corresponding to
the sub-keys.

For Pepper−v1, the system SysPepper−v1(M,C) is as follows:

SPepper−v1(M,C)





S3
1 −M3 − k1,
...

S3
r − k2r+1 − (Sr−1 + k2r)3,
...

C = k2N + SN

KPepper





k1 k0 + C0 k0 − 1,
· · ·

k2r−1 k2r + C2r−1 k2r−1 − 1,
k2r k2r+1 + C2r+1 k2r − 1,
· · ·

k2N k2N−1 + C2N k9 − 1

We that that the Cr are known constants. The system corresponding SysPepper−v2(M,C)
is essentially similar. The main difference is that the equations corresponding to the key
scheduling are linear.

Theorem 7. For Pepper−v1(N), the Bézout multi-homogeneous bound is

(d+ 1)N dN−1.

For Pepper−v2(N), the Bézout bound is dN+1.

8 Algebraic Cryptanalysis of Rescue

8.1 Analysis of the Block Cipher

Let K0 ∈ Fmq and
(
M,C = Rescue(M,K0)

)
∈ Fmq × Fmq be a pair message/ciphertext en-

crypted under the secret-key K0. We denote by SysRescue(M,C) the corresponding algebraic
system.
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Example 4. We consider N = 3,m = 2, p = 65519, M =

[
13612

47071

]
, C =

[
55389

56921

]
, a = 20801,

b = 275, and k =

[
64238

8057

]
In this case, SysRescue(M,C) is as follows:

[s0,1
3 − k0 − 13612, s0,2

3 − k1 + 18448,

s1,1
3+11 (−11 s0,1 − 132 s0,2 + 20801 k0 + 275)3+132 (12 s0,1 + 133 s0,2 + 20801 k1 + 275)3+5875 k0−20397, s1,2

3−
12 (−11 s0,1 − 132 s0,2 + 20801 k0 + 275)3−133 (12 s0,1 + 133 s0,2 + 20801 k1 + 275)3 +5875 k1−20397, s2,1

3 +

11 (−11 s1,1 − 132 s1,2 − 12940 k0 − 22772)3+132 (12 s1,1 + 133 s1,2 − 12940 k1 − 22772)3+12888 k0−22273, s2,2
3−

12 (−11 s1,1 − 132 s1,2 − 12940 k0 − 22772)3−133 (12 s1,1 + 133 s1,2 − 12940 k1 − 22772)3+12888 k1−22273,−11

(−11 s2,1 − 132 s2,2 + 20460 k0 + 16099)3 − 132 (12s2,1 + 133 s2,2 + 20460 k1 + 16099)3 − 22964 k0 + 18095,

12 (−11 s2,1 − 132 s2,2 + 20460 k0 + 16099)3 + 133 (12 s2,1 + 133 s2,2 + 20460 k1 + 16099)3− 22964 k1 + 16563].

The following result on the number of solutions of SRescue(M,C) is obvious :

Theorem 8. Let d be the degree of the first SBox used in Rescue (Algorithm 10, Section
4.3.2). The Bézout bound for SRescue(M,C) is:

dm·(N+1). (13)

Proof. We have :

– N + 1 rounds,

– m equations of degree d at each round.

So, SRescue(M,C) has in total m(N + 1) equations of degree d. The result follows from Defi-
nition 1.

The result in Table 3 is obtained by assuming that the change of ordering is quadratic in the
Bézout bound (13).

8.2 Analysis of the Hash Function

As explained in [5]), Rescue (Section 4.3) can be transformed into a hash function thanks
to the sponge construction. In this part, we consider the security of Rescue-based hash
function against an algebraic attacks. To do so, we consider the so-called Constrained-Input
Constrained-Output (CICO) problem. This problem, introduced in [32], is related to the the
problem of finding a pre-image of the hash function.

Assuming that the secret-key is fixed in Rescue, then Algorithm 10 (Section 4.3) defines a
permutation. Let permRescue : Fmq −→ Fmq be the corresponding permutation.

In this context, the CICO problem is as follows:

CICO (k)
Find xk+1, . . . , xt ∈ Kt−k such that

x = (0, . . . , 0, xk+1, . . . , xt) // Constrained input
y = permRescue(x)
y1 = · · · = yk = 0 // Constrained output
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9 Algebraic Cryptanalysis of Vision

9.1 Algebraic Modelling

Let K0 ∈ F2n/m and
(
M,C = Vision(M,K0)

)
∈ F2n/m × F2n/m be a pair message/ciphertext

encrypted under the secret-key K0. We denote by SysVision(M,C) the algebraic system mod-
elling Rescue (Algorithm 12) where the variables are:

– s0,1, . . . , s0,m, s1,1, . . . , s1,m, . . . , sN−1,1, . . . , sN−1,m corresponding to intermediate state vari-
ables,

– additional variables u0,1, . . . , u0,m, u1,1, . . . , u1,m, . . . , uN−1,1, . . . , uN−1,m corresponding to
intermediate state variables,

– variables k0,1, . . . , k0,m corresponding to the master-key.

We give below a pseudo-code for generating the equations of SysVision(M,C).

Input:
(
M,C = Vision(M,K0)

)
∈ F2n/m × F2n/m

K := T [k0,1, . . . , k0,m]
S0 := M + K0

Eqs := []
K1, . . . ,K2N := KeyExpand(K0) // Ki depends on {k0,i}
for r from 1 to N − 1 do

Eqs := Eqs ∪ [Numerator
(
B(1/Sr−1[i]))ur,i

)
| i = 1, . . . ,m]

S :=M T[ur,1, . . . , ur,m] + K2r−1

Eqs := Eqs ∪ [B(sr,i)S[i]− 1 | i = 1, . . . ,m]
Sr :=M T[sr,1, . . . , sr,m] + K2r

EndFor
Eqs := Eqs ∪ [uN,iSN−1[i]− 1 | i = 1, . . . ,m]
Eqs := Eqs ∪ [uN,i + K2N−1[i]− C[i] | i = 1, . . . ,m]

Fig. 3. Magma pseudo-code for SysVision(M,C).

9.2 Bounding the Number of Solutions

Similarly to the algebraic attack against Jarvis (Section 5), the algebraic system SysVision(M,C)
(Figure 3) has a multi-homogeneous structure (Definition 2.6, Section 2.3). In particular, we
can derive a precise bound on the number of solutions of SysVision(M,C) for m = 2, 3, 4.
Remark that the technique can be generalized to any m.

Theorem 9. Let d be the degree of B (Algorithm 12). SysVision(M,C) has a multi-homogeneous
structure. Let then BN,m(d) be the multi-homogeneous Bézout bound of Vision(N, d,m, n)
(with the modelling of Figure 3). We have :

BN,2(d) =
2
(
−
(
3 d2 + 12 d+ 3

)
N + (11 d+ 1) (d− 1)

) (
d2
)N

+
(
14 d2 + 11 d+ 2

) (
4 d2

)N

18 d4
,

BN,3(d) = −
(
−249 d3 + 33 d2 + 9 d+ 47

) (
d3
)N

64 d6
+

(
51 d3 + 77 d2 + 29 d+ 3

)
(N + 1)

(
9 d3

)N

144 d6
,

−
(
201 d3 + 655 d2 + 295 d+ 33

) (
9 d3

)N

576 d6
+

(
7 d3 + 9 d2 + 9 d+ 7

)
(N + 1)

(
d3
)N

16d6
.
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BN,4(d) ≈
(
377 d2 + 231 d+ 22

) (
66 d2 + 63 d+ 11

) (
36 d4

)N

61250 d8
.

In the table below, we report experimental results on the exact number of solutions of
SysVision(M,C) for m = 2. We also compute the bound derived in Theorem 9. We can
notice that the bound is perfectly sharp.

(N,m, d) Exact Value BN,2(d)

(1, 2, 4) 4 4

(2, 2, 4) 233 233

(3, 2, 4) 15072 15072

(2, 2, 2) 65 65

(3, 2, 2) 1096 1096

(4, 2, 2) 17968 17968

(2, 2, 1) 20 20

(3, 2, 1) 90 90

(4, 2, 1) 376 376

(5, 2, 1) 1526 1526

It is easy to obtain an asymptotic estimates:

BN,2(d) ≈
(
14 d2 + 11 d+ 2

) (
4 d2

)n

18 d4
.

In particular when d = deg(B) = 4, we deduce the value given in Table 4:

BN,2(4) ≈ 15

256
64N =

15

256
26
N
.

In the next table, we provide experimental results for m = 3. In this case, The bound of
Theorem 9 is tight but no longer exact.

(N,m, d) Exact Value BN,3(d)

(1, 3, 4) 8 8

(2, 3, 2) 667 679

(2, 3, 4) 4645 4693

(2, 3, 1) 109 112

(3, 3, 1) 1626 1752

For m = 3, we get:

B3,N (d) ≈ (3 d+ 1)
(
4 (d+ 1) (17 d+ 3)n+ d2 − 116 d− 21

) (
9 d3

)n

576 d6
.

In particular when d = 4, we get:

B3,N (d) ≈ (18460n− 6097) 576n

2359296
.

10 Algebraic Pre-Image Attacks

In this part, we consider the CICO problem (Figure 1, [32]) against Starkad, Poseidon (Sec-
tion 10.1) and Rescue (Section 10.2). This is a preimage attack against the permutations
underlying these ciphers.
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10.1 The CICO Problem for Starkad and Poseidon

Let permHades : Kt −→ Kt be the permutation defined as in (6) (Section 4.4). In this context,
the CICO problem is defined as follows:

CICOHades (k)
Find (xk+1, . . . , xt) ∈ Kt−k such that

x = (0, . . . , 0, xk+1, . . . , xt) ∈ Kt // Constrained input
y = permHades(x)
y1 = · · · = yk = 0 // Constrained output

Remark 10. We assume that K is of size n. We then fix nk bits of the input and the output
of the permutation function. In practice, we will have nk ≈ 256 bits.

In the CICO problem, we want to find x = (0, . . . , 0, xk+1, . . . , xt) such that:

permHades(x) = (0, . . . , 0, ?, . . . , ?)

It is equivalent to find z = (z1, . . . , zk) such that L(z1, . . . , zk) = (0, . . . , 0, ?, . . . , ?) and
z = perm′Hades(x) where the perm′Hades function is:

perm′Hades(s) = s′′′ where





s′ = RRf
◦ · · · ◦R1(s)

s′′ = R′Rf+RP
◦ · · · ◦R′Rf+1(s

′)
s′′′ = RRF+RP−1 ◦ · · · ◦RRf+RP+1(s

′′)

Since there is no matrix multiplication, we can recover explicitly the values of z1, . . . , zk.

We then define a variant of the CICO problem by:

CICO′Hades

(
k, (a1, . . . , ak) ∈ Kk

)

Find: (xk+1, . . . , xt) ∈ Kt−k such that
x = (0, . . . , 0, xk+1, . . . , xt) ∈ Kt // Constrained input
y = perm′Hades(x)
y1 = a1, . . . , yk = ak // Constrained output

10.1.1 Algebraic Modelling of the CICO Problem – Starkad and Poseidon. Let
a = (a1, . . . , ak) ∈ Kk. The algebraic system SCICO′Hades

(a) ⊂ K[xk+1, . . . , xt] corresponding to
the CICO′Hades problem is given below :

SCICO′Hades
(a) =





y1 = a1
...

yk = ak

where y = perm′Hades

(
0, . . . , 0, xk+1, . . . , xt

)
.
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Hence, we have k equations and t − k variables. For practical parameters (Table 10), we
see that t − k is much larger than k. Hence the system SCICO′Hades

(a) is under-defined. As a
consequence, we can fix arbitrarily some values of the input x.

By randomly fixing r2k+1, . . . , rt ∈ K, we define a square algebraic system of k equations and
k variables:

SCICO′Hades
(a) =





y1 = a1
...

yk = ak

where y = perm′Hades

(
(0, . . . , 0, xk+1, . . . , x2k, r2k+1, . . . , rt)

)
.

Remark 11. The complexity of solving SCICO′Hades
(a) does not depend on t. The attack is more

efficient when the field (n) is big.

10.1.2 Practical Experiments We present here experimental results on the complexity
of solving SCICO′Hades

(a). For the experiments, we took d = 2 and a prime field K = Fp. We
have done the experiments for k = 1, 2, 3 (we also checked that the results are the same when
K = F2n and d = 3). In each case, we compute a Gröbner basis of SCICO′Hades

(a) w.r.t. a
lexicographical monomial ordering.

We report below the degree of the non linear leading terms in the Gröbner basis.

RF RP t degree

2 0 5 x23, x
2
4

2 1 5 x23, x
4
4

2 2 5 x23, x
8
4

4 0 5 x23, x
32
4

4 1 5 x23, x
64
4

4 2 5 x23, x
128
4

6 0 5 x23, x
512
4

6 1 5 x23, x
1024
4

k = 2.

RF RP t degree

2 0 6 x24, x
2
5, x

2
6

2 1 6 x24, x
2
5, x

4
6

2 2 6 x24, x
2
5, x

8
6

4 0 6 x24, x
2
5, x

128
6

4 1 6 x24, x
2
5, x

256
6

4 2 6 x24, x
2
5, x

512
6

6 0 6 x24, x
2
5, x

8192
6

k = 3.

RF RP t degree

2 0 4 x22
2 1 4 x42
2 2 4 x82
4 0 4 x82
4 1 4 x162
4 2 4 x322
6 0 4 x322
6 1 4 x642
10 0 4 x5122

11 1 4 x10242

14 0 4 x81922

k = 1.

10.1.3 Bounding the Number of Solutions Starkad and Poseidon. We can prove the
following results:

Theorem 10. The degree of the univariate polynomial of the lexicographical Gröbner basis
of SCICO′Hades

(a) is

dk RF+P RP−2 k+1

For the permutation of Starkad/Poseidon (d = 3 and P = 1), it holds in particular that the
number of solutions D is equal to:

D = 3k RF+RP−2 k+1.
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Remark 12. As expected, when k 6= 1 we see that the number of full rounds is the most
important factor in the complexity.

The complexity of the attack is polynomial in the degreeD of the univariate polynomial:O(Dω).
When k = 1 or 2, we take ω = 1; when k > 2 then ω = 2.

The complexity of the attack is then:

k 1 2 > 2

Complexity for Starkad/Poseidon 3RF+RP−1 32RF+RP−3 32(k RF+RP−2 k)+2

This allows to derive the security estimates of Table 6 (Section 1.3).

10.2 The CICO Problem for Rescue

Let permRescue : Fmq −→ Fmq be the Rescue permutation (Section 4.3.3). As in the previous
part, we consider:

CICORescue(k)
Find (xk+1, . . . , xt) ∈ Km−k such that

x = (0, . . . , 0, xk+1, . . . , xt) ∈ Km // Constrained input
y = permRescue(x)
y1 = · · · = yk = 0 // Constrained output

This is not detailed in the report but, as in Section 10.1, we can define an algebraic set of
equations SCICORescue(k) modelling CICORescue(k). Also, it holds that:

Theorem 11. The number of solutions D of SCICORescue(k) is equal to:

D = 3(N−1)m+k.

The complexity of the attack is polynomial in the degreeD of the univariate polynomial:O(Dω).
When k = 1 or 2, we take ω = 1; when k > 2 then ω = 2.

k 1 2 > 2

Complexity for Rescue 3(N−1)m+k 3(N−1)m+k 32
(
(N−1)m+k

)

This allows to derive the security estimates of Table 7 (Section 1.3).

11 History of the Report

Version Comment Date

Algebraic analysis of STARK-friendly ciphers 11/2018-09/2019

1.0 First version of the document 09/2019

1.1 Minor typos corrected 03/2020

Algebraic analysis of the CICO problem against Rescue 03/2020

1.2 New part (Section 10.2) dedicated to the CICO problem against Rescue. 04/2020
Report updated and re-organised accordingly.



35

References

1. M. R. Albrecht, C. Cid, L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, and M. Schofnegger.
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7. M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of Gröbner basis computation of semi-regular
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of Symbolic Computation, pages 1–24, Sept. 2014. 24 pages.

9. M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang. Asymptotic behaviour of the degree of regularity of
semi-regular polynomial systems. In The Effective Methods in Algebraic Geometry Conference – MEGA
2005, pages 1–14, 2005.

10. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-quantum secure
computational integrity. IACR Cryptology ePrint Archive, 2018:46, 2018.

11. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the indifferentiability of the sponge construc-
tion. In N. P. Smart, editor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17,
2008. Proceedings, volume 4965 of Lecture Notes in Computer Science, pages 181–197. Springer, 2008.

12. W. Bosma, J. J. Cannon, and C. Playoust. The Magma algebra system I: The user language. Journal of
Symbolic Computation, 24(3-4):235–265, 1997.

13. B. Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the
residue class ring of a zero dimensional polynomial ideal. Journal of Symbolic Computation, 41(3-4), 2006.

14. B. Buchberger, G. E. Collins, R. G. K. Loos, and R. Albrecht. Computer algebra symbolic and algebraic
computation. SIGSAM Bull., 16(4):5–5, 1982.

15. J. A. Buchmann, A. Pyshkin, and R. Weinmann. Block ciphers sensitive to gröbner basis attacks. In
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algebraic geometry. CoRR, abs/cs/0610051, 2006.

23. A. C. (ed.), T. Beyne, I. Dinur, M. Eichlseder, G. Leander, G. Leurent, M. N. Plasencia, L. Perrin,
Y. Sasaki, Y. Todo, and F. Wiemer. Report on the security of stark-friendly hash functions (version 2.0),
2020.

24. J. Faugère, P. Gaudry, L. Huot, and G. Renault. Sub-cubic change of ordering for gröbner basis: a
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Appl. Math. Comput., 146(1):237–256, Dec. 2003.

36. F. Macaulay. The Algebraic Theory of Modular Systems. Cambridge University Press, 1916.

37. F. S. Macaulay. On some formula in elimination. London Mathematical Society, 1(33):3–27, 1902.

38. G. Malajovich and K. Meer. Computing minimal multi-homogeneous bézout numbers is hard. In STACS
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A Reference codes for MiMC

A.1 Sage code for MiMC

n = 129

K = GF(2**n, "a")

K.inject_variables()

constants = [.....]

def mimc_encryption(p, k, num_rounds):

state = (p + (k + K.fetch_int(constants[0])))^3

for i in range(1, num_rounds):

state = (state + (k + K.fetch_int(constants[i])))^3

state = state + k

return state

num_rounds = ceil(n / log(3, 2))

k = K.fetch_int(0x42424242424242424242424242424242)

p = K.random_element()

c = mimc_encryption(p, k, num_rounds)

print "Plaintext:", p.integer_representation()

print "Ciphertext:", c.integer_representation()

A.2 Maple code MiMC

Nb:=80; # number of rounds

d:=3; # degree (3 by default)

Vs:=proc(i) cat(’s’,i): end:

encryption_symb:=proc(msg, cyp, Nb)

local state,eqs,i;

state:=(msg + (k + C[1]))^d;

eqs:=[Vs(0)-state];

state:=Vs(0);

for i from 1 to (Nb-1) do

state:=(state + (k + C[i+1]))^d;

eqs:=[op(eqs),Vs(i)-state];

state:=Vs(i);

od:

return [op(eqs),state+k-cyp];

end:

# Algebraic Equations:

Eqs:=encryption_symb(M,C,Nb):

A.3 Magma code for MiMC

n:=129;

d:=3;

Nb:=Ceiling(n / Log(2, 3));
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K<a>:=GF(2,n);

constants:=[...];

encryption:=function(p, sk, Nb)

state:=(p + (sk + constants[1]))^d;

for i in [1..(Nb-1)] do

state:=(state + (sk + constants[i+1]))^d;

end for;

state:=state + sk;

return state;

end function;

sk:=Random(K);

msg:=Random(K);

cyp:=encryption(msg, sk, Nb);

B Magma code for Poseidon/Starkad

The following Magma code permits to:

– easily change the ground field to be Fp, F2n or even Q.

– change the degree of the equations between 2 and 3.

– try to modify P the number of S-boxes which are applied in the middle rounds (partial
rounds).

perm:=function(input_words,dd,part)

R_f := Z!(R_F / 2);

state_words := Vector(F,input_words);

for r in [1..R_f] do

for i in [1..t] do

state_words[i] := (state_words[i] + round_constants_field[t*(r-1)+i])^dd;

end for;

state_words := state_words * MDS_matrix_field;

end for;

for r in [1..R_P] do

for i in [1..t] do

state_words[i] := state_words[i] + round_constants_field[t*(R_f+r-1)+i];

end for;

for i in [1..part] do

state_words[i] := (state_words[i])^dd;

end for;

state_words := state_words * MDS_matrix_field;

end for;

for r in [1..(R_f-1)] do

for i in [1..t] do

state_words[i] := (state_words[i] +

round_constants_field[t*(R_f+R_P+r-1)+i])^dd;

end for;
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state_words := state_words * MDS_matrix_field;

end for;

for i in [1..t] do

state_words[i] := (state_words[i] + round_constants_field[t*(R_F+R_P-1)+i])^dd;

end for;

return state_words;

end function;
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Short description of Rescue



Rescued(N,m,p)

Arithmetic: finite field K= Fp, c = 1
d mod (p−1), N 0 = 2N

M is an invertible m ×m matrix.

Rescue:
Input: M ∈Km

S0 = M +C0
for r from 1 to N do

S = T �
Sr−1[1]d , . . . ,Sr−1[m]d

�

S0 = M S +C2r−1
S00 = T [S0[1]c , . . . ,S0[m]c]
Sr = M S00 +C2r

Output : SN ∈Km

CstesGeneration:
Input: C0 ∈K

m,a ∈K,b ∈K

B = T [b, . . . ,b]
for r from 1 to N 0 do

Cr = aCr−1 +B
Output : C0, . . . ,CN 0

In practice: d = 3 and c = (2p−1)/3

Rescue overview

Since we want to study the CICO problem, C0 is no longer a secret key
but a randomly-chosen vector:

1 Choose randomly a ∈K,b ∈K

and C0 ∈K
m

2 Run CstesGeneration(C0,a,b)

3 Given a message M ∈Km run
C:=Rescue(M)

4 Send C ∈Km

A sponge construction generates a hash function from an underlying
permutation by iteratively applying it to a large state. The state of a
sponge function is defined to consist of m = r +c bits, where r and c
are called the rate and the capacity of the sponge, respectively.



Algebraic Equations
Variables/equations

The CICO Problem
The CICO Problem (Constrained-Input Constrained-Output) is defined
by:

CICO Problem(k):
Find: xk+1, . . . ,xm ∈Km−k such that

x = [0, . . . ,0,xk+1, . . . ,xm] // Constrained input
y = Rescue(x)
y1 = ∙ ∙ ∙ = yk = 0 // Constrained output

Hence if we assume that K is of size n we fix nk bits of the input and
the output of the permutation function. In practice we will have
nk ≈ 256 bits.

Remark
Thanks to the last Matrix multiplication M at the end, we cannot
remove the last round.However, we will see how to simplify the
algebraic system.



CICO first example and optimizations
We take, N = 3, m = 2, k = 1 and M =

�
−11 −132
12 133

�

We take for the input/output vectors:
X = [0,x1] and Y = [0,y1]

We have the following equations:
[s0,2

3 −x1 +24825,

s1,1
3 +11

�
7615−132s0,2

�3
+132

�
31617+133s0,2

�3
−29116,

s1,2
3 −12

�
7615−132s0,2

�3
−133

�
31617+133s0,2

�3
−21978,

s2,1
3 +11

�
−11s1,1 −132s1,2 −15445

�3
+132

�
12s1,1 +133s1,2 −26929

�3
+31513,

s2,2
3 −12

�
−11s1,1 −132s1,2 −15445

�3
−133

�
12s1,1 +133s1,2 −26929

�3
+27923,

−11
�
−11s2,1 −132s2,2 +15957

�3
−132

�
12s2,1 +133s2,2 −113

�3
+2578,

12
�
−11s2,1 −132s2,2 +15957

�3
+133

�
12s2,1 +133s2,2 −113

�3
+8446−y1]

Remark
We can remove the first and the last equations: these equations are
linear in x1 and y1. In general we can remove the first k equations and
the last k equations.

CICO second example and optimizations
We take, N = 2, m = 3, k = 1 and M =

�
−11 −132
12 133

�

We take for the input/output vectors:

X = [0,x1,x2] and Y = [0,y1,y2]

We have the following equations (removing the linear equations):
[s1,1

3 −1331
�
29260−19534s0,2 −24464s0,3

�3
+19534

�
−31963+3309s0,2 +25225s0,3

�3
+

24464
�
−3157+16226s0,2 −760s0,3

�3
−29116,

s1,2
3 +1463

�
29260−19534s0,2 −24464s0,3

�3
−3309

�
−31963+3309s0,2 +25225s0,3

�3
−

25225
�
−3157+16226s0,2 −760s0,3

�3
−21978,

s1,3
3 −133

�
29260−19534s0,2 −24464s0,3

�3
−16226

�
−31963+3309s0,2 +25225s0,3

�3
+

760
�
−3157+16226s0,2 −760s0,3

�3
−11587,

1331
�
1331s1,1 −19534s1,2 −24464s1,3 −15445

�3
−19534

�
−1463s1,1 +3309s1,2 +25225s1,3 −26929

�3
−

24464
�
133s1,1 +16226s1,2 −760s1,3 −22939

�3
−31513]

Remark
Clearly we have 4 equations and 5 variables: we can fix arbitrarily s0,3
(or equivalently x2). In general we can fix the last m−2k variables of
the input vector X = [0, . . . ,0,x1, . . . ,xk ,?, . . . ,?].



Structure of the new system of equations

CICO problem (k) for Rescued (N,m,p)
Assuming that X = [0, . . . ,0,x1, . . . ,xk ,?, . . . ,?]
We have linear equations (that we can ignore):

�

sd
0,i −xi−k −αi for i=(k+1),. . . ,m

where αi ∈K and we have non linear equations:

(S )






sd
1,i −P1,i(s0,k+1, . . . ,s0,2k ) for i=1,. . . ,m

sd
2,i −P2,i(s1,1, . . . ,s1,m) for i=1,. . . ,m

∙ ∙ ∙

sd
N−1,i −PN−1,i(sN−2,1, . . . ,sN−2,m) for i=1,. . . ,m

PN,i(sN−1,1, . . . ,sN−1,m) for i=1,. . . ,k

where Pi ,j are polynomials of degree d .

Parameters

Name Field n = log2 p N m k
Rescue128a Fp 125 16 4 2
Rescue128b Fp 253 22 12 1
Rescue128c Fp 125 10 12 2
Rescue128d Fp 61 10 12 4
Rescue128e Fp 253 10 11 1

We remark that m ≥ 2k , so that we can apply the previous strategy
and fix m−2k variables.

We report now some Gröbner bases experiments: as usual this is
TDRL+TFGLM where TDRL (resp. TFGLM) is the CPU time of the
DRL Gröbner basis (resp. the time to change the monomial ordering).

When k = 1 or 2 is possible to speedup the computations by using the
sparse structure of the equations.



Experiments: standard tools d=3

# Nb m k #Sol TDRL TFGLM Dmax
# 2 2 1 3^3 0.0s 0.0s 6
# 2 3 1 3^4 0.0s 0.0s 7
# 2 4 1 3^5 0.0s 0.0s 9
# 2 4 2 3^6 0.09s 0.04s 12
# 3 2 1 3^5 0.0s 0.0s 8
# 3 3 1 3^7 0.42s 0.73s 13
# 3 4 1 3^9 124.9s 501.6s 16
# 4 2 1 3^7 0.22s 0.77s 12
# 5 2 1 3^9 44.4s 543.1s 16

Experiments: standard tools d=2

# Nb m k #Sol TDRL TFGLM Dmax
# 2 4 2 2^6 0s 0s 7
# 2 5 2 2^7 0.01s 0s 8
# 3 2 1 2^5 0s 0s 5
# 3 4 2 2^10 0.47s 0.14s 11
# 3 5 2 2^12 19.8s 6.5 s 12
# 4 2 1 2^7 0s 0s 7
# 4 3 1 2^8 0.29s 0.13s 9
# 5 2 1 2^9 0.04s 0.02s 9



CICO Problem:complexity of the attack

From the experimental results, we see that all the algebraic systems
behave like regular systems. So that we can derive sharp complexity
bounds.
We observe similar results for d = 2 or d = 3 (but computations are
much faster for d = 2 of course).
We count the number of solutions of the system (S ) by counting the
number of equations: In (S ) we have,
E = m +(N −2)m +k = (N −1)m +k equations of degree d .
Consequently,

Theorem (Number of Solutions)
The number of solutions of the CICO problem (k) for Rescued (N,m,p):

D = 3(N−1)m+k

CICO Problem:comparison with exhaustive search

The complexity of the attack will be polynomial in this number
D = 3(N−1)m+k . It is important to compare D with the cost of the
exhaustive search which is pk ≈ 2256.

Name n = log2 p N m k pk D
Rescue128a 125 16 4 2 2250 298.3

Rescue128b 253 22 12 1 2253 2401.0

Rescue128c 125 10 12 2 2250 2174.3

Rescue128d 61 10 12 4 2244 2177.5

Rescue128e 253 10 11 1 2253 2158.5

We see that the number D vary significantly. We have to investigate
precisely to complexity of the attack.



CICO Problem:complexity of the attack
The complexity of the attack is polynomial in the degree D of the
univariate polynomial: O(Dω)
When k = 1 or 2, we take ω = 1; when k > 2 then ω = 2.
Proposition
The complexity of the attack is:

k 1 or 2 > 2
Complexity 3(N−1)m+k 32((N−1)m+k)

Name n = log2 p N m k pk CICO
Rescue128a 125 16 4 2 2250 298.3

Rescue128b 253 22 12 1 2253 2401.0

Rescue128c 125 10 12 2 2250 2174.3

Rescue128d 61 10 12 4 2244 2355

Rescue128e 253 10 11 1 2253 2158.5

Hybrid method (1)
For Rescue128d the size of the ground field K= GF (261 +20232 +1)
is “small”. An hybrid method is a combination between exhaustive
search and Gröbner bases computation.

For the system (S ) the maximal degree occurring in the (DRL)
Gröbner basis is given by

dmax = 1+(d −1)E = 2((N −1)m +k)+1

By exhaustive search, we can find the value of one variable of (S ): we
keep the same the number of equations but we decrease by one the
number of variables. Under semi-regularity assumption of the system,
the new maximum degree is given by:

d 0
max =

�
dmax

2

�

= E +1 = ((N −1)m +k)+1



Experiments: standard tools d=3

We check experimentally the semi-regularity of the system when we fix
one variable:

# Nb m k TDRL Dmax
# 2 4 2 0.0s 7
# 2 5 2 0.08s 8
# 2 6 2 0.95s 9
# 3 4 2 259.4s 11

Conclusion: the system behaves exactly as expected.

Hybrid method (2)

d 0
max =

�
dmax

2

�

= E +1 = ((N −1)m +k)+1

However, the total complexity estimate of this computation is very

pessimistic: it is equal to
�

E +E −1+1
E −1

�ω

=

�
2E

E −1

�ω

In total, the complexity of the exhaustive search and the Gröbner basis

is C = 2n
�

2E
E −1

�ω

.

For Rescue128d, then N=10,m=12,k=4 we have E = 114, so that
C = 261+223.7ω . Since k −1 = 3 � 1 we cannot expect to have ω = 2.

� The Hybrid method is not efficient in this case.
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