
Performance comparison between deep
learning-based and conventional cryptographic

distinguishers

Emanuele Bellini1 and Matteo Rossi2

1 Technology Innovation Institute, UAE
eemanuele.bellini@gmail.com
2 Politecnico di Torino, Italy
matteo.rossi046@gmail.com

Abstract. While many similarities between Machine Learning and crypt-
analysis tasks exists, so far no major result in cryptanalysis has been
reached with the aid of Machine Learning techniques. One exception is the
recent work of Gohr, presented at Crypto 2019, where for the first time,
conventional cryptanalysis was combined with the use of neural networks
to build a more efficient distinguisher and, consequently, a key recovery
attack on Speck32/64. On the same line, in this work we propose two
Deep Learning (DL) based distinguishers against the Tiny Encryption
Algorithm (TEA) and its evolution RAIDEN. Both ciphers have twice
block and key size compared to Speck32/64. We show how these two
distinguishers outperform a conventional statistical distinguisher, with
no prior information on the cipher, and a differential distinguisher based
on the differential trails presented by Biryukov and Velichkov at FSE
2014. We also present some variations of the DL-based distinguishers,
discuss some of their extra features, and propose some directions for
future research.

Keywords: distinguisher · neural networks · Tiny Encryption Algorithm
· differential trails · cryptanalysis

1 Introduction

During an invited talk at Asiacrypt 1991 [41], Rivest stated that, since the
blossoming of computer science and due to the similarity of their notions and
concerns, machine learning (ML) and cryptanalysis can be viewed as sister fields.
However, in spite of this similarity, it is hard to find in the literature of the most
successful cryptanalytical results the use of ML techniques. Several attempts
have been made by researchers, using all range of tools that ML can offer, from
genetic algorithms, to optimization techniques, neural networks, etc., both in the
supervised and unsupervised setting, with the goal of improving or presenting
new techniques for black box distinguishers, differential trail searches, or even
plaintext or key recovery. So far, all positive results were only able to break

2 E. Bellini, M. Rossi

particular instances of historical ciphers, simplified versions of modern ciphers,
or ciphers for which a conventional attack already existed.

For the first time in 2019, standard differential cryptanalysis techniques
and deep residual neural networks were successfully combined by Gohr [14], to
significantly improve an existing attack breaking a reduced version of the NSA
cipher Speck32/64. While the reduction of the attack complexity obtained by
Gohr was significant, and the adopted techniques not specific to Speck32/64, one
might still wonder if the success of Gohr’s experiment is due to the very small
block and key size of the cipher. Indeed, Speck32/64 has a block size of 32 bits,
and a key size of 64, which means the cipher can also be attacked by brute force.

Following the line of Gohr, in this work, we investigate how conventional
distinguishers compare to deep learning based distinguisher, on a cipher with a
similar (Feistel) structure to Speck32/64, but with twice its block and key size.
For our experiments, we selected the Tiny Encryption Algorithm (TEA), and its
variation RAIDEN.

The goal of this work, rather than improving existing results, is to compare
conventional distinguishers with neural network based distinguishers, and to show
weaknesses and strengths of one or the other.

The Tiny Encryption Algorithm (TEA) [49] is a block cipher with an extremely
simple design, based only on the modular addition, bitwise exclusive or and shift
operations. The cipher was designed by Wheeler and Needham of the Cambridge
Computer Laboratory, and first presented during FSE 1994. Weaknesses of TEA
are known, such as the existence of equivalent keys, reducing its security to
126 bits, and making the cipher not suited to be used as cryptographic hash
function (use that led to the hack of Microsoft’s Xbox game console [47]). The full
TEA is also susceptible to a related-key attack [20]. Because of these weaknesses,
variations of TEA where presented as XTEA [32] and RAIDEN [40]. The latter
was designed by means of genetic programming to be as quick as TEA and to be
used in the same real world applications, but with stronger security properties.

1.1 Our contribution

In this work, we compare conventional distinguishers with deep learning based
distinguishers. We propose two different (but similar) network architectures
to be used as distinguishers against round-reduced versions of the TEA and
RAIDEN ciphers. In particular, one network is based on the multi-layer perceptron
structure, while the other on a convolutional structure. Contrary to what Baksi
et al. [7] stated, we show that Convolutional Neural Networks are suitable for
the purpose of finding a distinguisher. We test the performances of all our deep
learning based distinguishers, in terms of accuracy, against the conventional ones,
then we propose a distinguishing task where conventional distinguisher cannot
be applied. Finally, we analyze the limitations of our approach and we propose
some directions for further research in the field.3

3 The Python scripts used to generate the results on this manuscript will be released
under an open source license.

Deep Learning-based Distinguishers vs Conventional Distinguishers 3

1.2 Outline of the paper

In section 2, we briefly overview the main results of ML applications to crypt-
analysis. In section 3, devoted to the preliminaries, we describe the ciphers used
in this work, we define cryptographic distinguishers and their properties, and
we introduce the neural networks utilized during our analysis. In section 4, we
describe two conventional distinguishers, one that can be used without any prior
information on the cipher, and another that requires a preliminary cryptanalysis
of the cipher. In section 5, we describe our neural network based distinguishers.
Section 6 is devoted to the comparison and the experimental results, and finally,
in section 7, we draw the conclusions.

2 Related works

2.1 Use of machine learning in cryptanalysis

We now give a brief (not exhaustive) overview of the literature concerning
applications of machine learning techniques to cryptanalysis.

We already mentioned the brief invited talk by Rivest during Asiacrypt 1991
[41] on the relationship between cryptography and machine learning, where he
discussed how each field has contributed ideas and techniques to the other. In 2017,
a short survey on automated design and cryptanalysis of cipher systems was given
[6], showing that computational intelligence methods, such as genetic algorithms,
genetic programming, Tabu search, and memetic computing, are effective tools to
solve many cryptographic problems. In his master thesis [24] (2018), Lagerhjelm
presents six experiments using long short-term memory networks to try to
decipher encrypted text (with DES algorithm) and convolutional neural networks
to perform classification tasks on encrypted MNIST images. Both tasks are
unsuccessful, except when classifying images encrypted under DES-ECB mode.

ML has been applied with fair success to aid profiled side-channel analysis (e.g.
[27,38,39]). This is a technique in which the attacker has access to a clone device,
which can be profiled for any chosen key. Afterwards, he can use that knowledge
to extract a secret from a different device. Profiled attacks are conducted in two
distinctive phases, where the first phase is known as the profiling (or sometimes
learning/training) phase, while the second phase is known as the attack (test)
phase. This very well resembles the same general profiled approach that is actually
used in supervised machine learning. In 2019 the first non-profiled side-channel
attack using neural networks with sensitivity analysis was presented [48]. The
literature on this subject is somehow extended, and out of scope with respect to
our work, where we only consider cryptanalysis methods which do not benefit
from side channel information.

In 2007 [25], the problem of finding some missing bits of the key that is
used in a 4 and 6 rounds DES instance is tackled, with the optimization tech-
niques of Particle Swarm Optimization (PSO) and Differential Evolution (DE).
Experimental results for 4-round DES showed that the optimization methods
considered located the solution efficiently, as they required a smaller number of

4 E. Bellini, M. Rossi

function evaluations compared to the brute force approach. For 6 rounds DES
the effectiveness of the proposed algorithms depends on the construction of the
objective function. In the same work, also the factorization and discrete logarithm
problem have been modeled as an optimization problem or by means of Artificial
Neural Networks, but the experiments where run on 3 decimal digit numbers
only.

A direct application of ML to distinguishing the output produced by modern
ciphers was explored in [10]. The ML distinguisher had no prior information
on the cipher structure, and the authors conclude that their technique was not
successful in the task of extracting useful information from the ciphertexts when
CBC mode was used and not even distinguish them from random data. Better
results were obtained in ECB mode, as one may easily expect, due to the non-
randomization property of the mode. A similar experiment was also reproduced,
with similar results, in [29] and in [24], both in 2018.

Better success has been recently obtained with historical ciphers or to sim-
plified version of modern ciphers. For example, in 2018, code-book recovery for
short-period Vigenère cipher was obtained with the use of unsupervised learning
using neural networks [15] or, in 2017, restricted version of Enigma cipher were
simulated using restricted neural networks [16]. In 2014, in [11], the authors
successfully mapped the input/output behaviour of the Simplified Data Encryp-
tion Standard (S-DES), with the use of Multi-layer Perceptron (MLP) neural
network. They also showed that the effectivness of the MLP network depends on
the nonlinearity of the internal s-boxes of S-DES. Previous pioneering works on
S-DES or other simplified ciphers are [36], [46], [2], or [3]. A somehow singular
case, in 2002, is that of a public-key scheme based on neural networks, who was
broken by use of genetic algorithms (and also by other classical algorithms) [22].

In [37], the authors perform an extensive data analysis of the RC4 keystreams
which allow them to extract the single-byte and double-byte distributions in the
early portions of the keystream itself. This is used to then recover plaintext data.

In [17], the authors use a genetic-algorithm to search for subsets of the input
space that produces a high statistically significant deviation of the distribution of
a given subset of the output produced by the Tiny Encryption Algorithm (TEA)
encryption. They find 4 rounds trails using 211 random inputs.

In 2019, the work by Gohr [14] is the first that compares cryptanalysis
performed by a deep neural network to solving the same problems with strong,
well-understood conventional cryptanalytic tools. It is also the first paper to
combine neural networks with strong conventional cryptanalysis techniques and
the first paper to demonstrate a neural network based attack on a symmetric
cryptographic primitive that improves upon the published state of the art. All
this is applied to Speck32/64, a lightweight cipher designed by the NSA, with a
32 bit block input and a 64 bit key. At the time of writing this manuscript, other
similar works followed Gohr approach. In particular, Baksi et al. [7] proposed
a Deep Learning based distinguisher for up to 8-round reduced version of the
Gimli-Hash and Gimli-Cipher using the all-in-one differential approach [4]. Jain
et al. [19] analyze 3-6 round reduced PRESENT lightweight block cipher, by

Deep Learning-based Distinguishers vs Conventional Distinguishers 5

presenting a multi-layer perceptron network distinguisher Finally, Yadav and
Kumar [51] derive a multi-layer perceptron distinguisher for 9 rounds SIMON
and 6 rounds SPECK.

3 Preliminaries

3.1 Description of TEA and RAIDEN

In this work we are considering two block ciphers with a similar structure:
RAIDEN and TEA. Precisely, they are Feistel networks of r rounds, in which the
output of the nonlinear function F is injected into the network through a modular
addition, see fig. 1. Both ciphers input and output are b = 64 bit strings, and

F

F

Fig. 1: Two rounds of the Feistel structure of TEA and RAIDEN.

are represented as two words of w = 32 bits, to which we refer to as, respectively,
(L0, R0) and (Lr, Rr). The key is k = 128 bits long, and split in four w-bit words,
i.e. K = (K0,K1,K2,K3). To perform the encryption and decryption, they only
use the following types of operation: modular addition, bitwise exclusive or, and
right or left shift. The cipher output is obtained by repeating r rounds as follows{

Li+1 = F(Ri) � Li, Ri+1 = Ri for i even
Li+1 = Li, Ri+1 = F(Li) �Ri for i odd

TEA nonlinear function FTEA is defined as

FTEA
δi,ki0 ,ki1

(x) = ((x� 4) � k0)⊕ (x� δi)⊕ ((x� 5) � k1) ,

where δ0 = 0x9e3779b9, δi = δ0 · b(r+ 1)/2c mod 2w (so that the same constant
is used for two consecutive rounds), (ki0 , ki1) = (K0,K1) for the even rounds,
and (ki0 , ki1) = (K2,K3) for the odd rounds.

RAIDEN nonlinear function FRAIDEN is defined as

FRAIDEN
ki (x) = ((ki � x)� 9)⊕ (ki � x)⊕ ((ki � x)� 14) ,

where ki is updated according to the following key schedule ki = Ki mod 4 =
((K0 �K1)� ((K2 �K3)⊕ (K0 � K2))), so that it is the same every other round.

6 E. Bellini, M. Rossi

Differential trails An additive differential difference ∆x is a n-bit string
obtained as the modular difference of two other n-bit strings x1, x2, i.e. ∆x =
x1 � x2.

Definition 1. Let ∆x,∆y ∈ {0, 1}n be fixed n-bit strings, representing two
additive differences. The Additive Differential Probability (ADP) of a function f
(adpf) is the probability with which ∆x propagates to ∆y through the function f ,
computed over all n-bit input x:

adpf (∆x→ ∆y) = 2−n · |{x : (f(x�∆x) = f(x) �∆y}| .

A differential trail for an iterated cipher is a sequence of triple (∆xi, ∆yi, pi)
representing the input/output i-th round differences and their associated ADP
of the round function, where ∆xi+1 = ∆yi. Differential trails are usually found
using standard techniques, such as the Matsui algorithm [28], which require a
manual analysis of the nonlinear layer of the cipher combined with a tree-search.

To build our classical and neural network based distinguisher, we use the
differential trails found in the work of Biryukov and Velichkov [9]. These trails have
been found using standard cryptanalysis techniques, with no aid from machine
learning. A differential trail for TEA and RAIDEN are shown, respectively, in
table 1 and table 2 of appendix A.

One fundamental difference among TEA and RAIDEN is that, due to the
very simple key schedule, TEA cannot be modeled as a Markov ciphers, i.e. its
round keys cannot be assumed to be independent. This means, for example, that
a trail that has very good probability computed as an average over all keys, may
in fact have zero probability for many or even all keys. This does not happen in
RAIDEN. For this reason, the differential trail for TEA is only valid for a fixed
key, and it cannot be used to mount a distinguishing attack (and, consequently,
cannot be used for a key recovery). On the other hand, the probabilities of
RAIDEN differential trail are computed as an average over all keys.

3.2 Distinguishers

In what follows, a cryptographic distinguisher (or simply a distinguisher) AOracle

is a probabilistic algorithm, that takes as input an oracle Oracle secretly running
either a random permutation Π, or a specific instantiation Ck, indexed by the
key k, of a family C of ciphers. The output of AOracle is 1 if it believes that Oracle
is executing Ck, and 0 if it believes it is executing Π. Internally, the distinguisher
might use specific information about C, as this is a public family of functions.
In this case we speak about a tailored distinguisher (see e.g. section 4.2), or no
information at all (except for the block size), in which case we speak about a
generic distinguisher (see e.g. section 4.1).

In cryptography, a distinguisher is often called an adversary. The prp-cpa-
advantage [8], or simply advantage, of the adversary A in distinguishing the family
C of permutations from the set of random permutations, using 2λ resources, is,

Deep Learning-based Distinguishers vs Conventional Distinguishers 7

informally, a measure of how successfully A can distinguish C from the set of
random permutation and, formally, is defined as

Advprp−cpaA,C (λ) = |Pr[E1]− Pr[E0]| ,

where E1 is the event that A outputs 1 when Oracle contains Ck, and E0 is the
event that A outputs 1 when Oracle contains Π.

If A is doing a good job at telling what function Oracle is running, it would
return 1 more often when Oracle contains an instance of C, than when it contains
a random permutation. Different adversaries have different advantages, depending
on if the adversary is more “clever” in querying the oracle, or simply asks more
questions and thus has more information. A block cipher algorithm is considered
secure if no adversary has a non-negligible advantage. In this work, we will
compare the performance of different distinguishers.

The concept of adversary advantage in machine learning, is usually referred
to as accuracy of the distinguisher. This can be seen as the ability of recognizing
true positives and negatives, or, in other words, the average of the probability
of returning 1 while the oracle contains Ck, and the probability of returning 0
while it contains Π. When this accuracy is close to 1 or to 0 we have a useful
distinguisher, while when the accuracy is close to 0.5, we say the distinguisher is
not able to distinguish C.

Two examples of bad distinguishers include the case where A always returns
1, or it flips a coin and returns 1 or 0 with equal probability. In this case its
advantage/accuracy would be 0.5.

Single key and known key distinguishers In this work, we consider two
scenarios. In the first case, called single secret-key scenario, the attacker sees
some traffic, which he knows is coming either from a known cipher or a random
permutation, and wants to determine from which of the two is coming. In the
second case, called single known-key scenario, the attacker knows the cipher
and the key, and wants to verify that the cipher with that specific key behaves
as a random permutation or not. In other words, the adversary aims to find a
structural property for the cipher under the known key, i.e. a property which an
ideal cipher (a permutation drawn at random) would not have. The notion of
known-key distinguisher was introduced in 2007, by Knudsen and Rijmen [23],
and subsequently vastly studied, e.g in [30,42], for AES-like ciphers, in [5,43,44]
for Feistel-like ciphers, or in [12,31,33] for other constructions.

3.3 Neural networks

In this section, we give a brief description of Deep Learning for Data Classification.
Deep Learning is a branch of machine learning that uses Deep Neural Networks
and which has been applied in many fields such as image classification, speech
recognition and machine translation [13,1,52]. The goal is to classify some data
x ∈ Rn based on their labels y(x) ∈ S in some classes, where n is the dimension
of the data and S is the set of classes that we are considering. For simplicity, we

8 E. Bellini, M. Rossi

can consider S = {0, 1, ..., σ−1} as our classes and the so called one-hot encoding
C : Rn → S as the vector representation of y(x) in Rσ, where C(x) is a vector
of length σ with all components set to 0 except for the y(x)-th one, that is set to 1.

A Neural Network is a function F : Rn → S which for an input x ∈ Rn gives
in output a score vector y ∈ Rσ such that the i-th component of the vector is a
positive real number that is proportional to our confidence that the input value
x comes from the class i. To measure the performance of our network, we can
define an error function, that is a measure on how far from the real data our
previsions are. The most common choice for the error function is the Euclidean
Distance

E(x) = ‖C(x)− F (x)‖2 .
To quantify the error of the network to the whole dataset we define the so called
loss function, that is simply the average of the error function on the entire set:

L =
1

L

L∑
i=i

E(xi),

where L is the cardinality of the dataset. Together with the loss function we
define another metric called the accuracy, that in our case is defined as the
proportion of our dataset that is correctly classified, that is, the proportion of
the xi’s for which y(xi) = argmax F (xi) holds.

The goal of a neural network is ideally to minimize the loss function L on
every possible input dataset, and this is done by considering L as a function of
some parameters θ called the trainable parameters of the network. The training
phase of the neural network can be seen as a numerical optimization problem,
where the function L(θ) is minimized using an iterative approach, called the
optimizer of the network. The most famous and classical approach is called
Gradient Descent where we iteratively update θ in this way:

θ(t+1) = θ(t) − α∇L(θ(t))

where α is called the learning rate and it should be seen as the speed of the
training procedure: bigger values of α in general will lead to faster trainings,
while smaller ones will lead to slower but more precise trainings. Since Deep
Neural Networks are usually made up by a lot of layers, doing Gradient Descent
in practice is slow and, as the dimension of the dataset grows, can also be pretty
unprecise. To avoid these problems a lot of techniques have been introduced that
perform the parameters update over a small subset of the initial dataset; then the
dataset is shuffled and the process is repeated on different subsets. The dimension
of the subsets is called the batch size while the process of going through the
entire dataset one time is called an epoch.

Multilayer Perceptron The most simple form of a neural network is the so
called multilayer perceptron. We can define a perceptron as a function P : Rn → R

Deep Learning-based Distinguishers vs Conventional Distinguishers 9

of the form

P (x) = a

(
ω0 +

n∑
i=1

ωixi

)
where a is a non linear function called the activation function of the perceptron,
ω0 is called the bias and ωi for 1 ≤ i ≤ n are the weights. Bias and weights put
together form the set of trainable parameters of the perceptron.

A multilayer perceptron is the combination of several perceptrons organized
in fully connected layers, in the sense that each perceptron output of a layer is
used as an input for every perceptron in the next layer. The first layer is our
input, while the last layer is a set of σ perceptrons representing each class of S.

Convolutional Neural Networks A convolutional neural network is a deep
neural network composed of two types of layers: convolutional layers and pooling
layers. This kind of network has shown a lot of success in the Image Recognition
field [26,35] because of its translation invariance property. Convolutional layers
apply convolution operations to the target by sliding a set of filters on it, while
pooling layers are non-linear layers that slide a window over the input data and
output a local summary such as the maximum or the mean of the current portion
of data.

4 Classical distinguishers

4.1 A classical generic distinguisher

In this section, we describe a generic (differential) distinguisher A1, which we
call the bitflip distinguisher, that performs a simple statistical test on a set of
outputs provided by the oracle when given a certain set of inputs. More precisely,
the bitflip distinguisher A1 works as follows. It takes as additional input the
parameter τ , defining the threshold for the accuracy of the test. A message m is
randomly selected and encrypted to c. Then a bit of m is flipped in a random
bit position, and a new encryption c′ is computed. The distinguisher counts how
many bits changed from c to c′. If the number of bits that changed from c to c′

is about half the bit size b of c, the distinguisher concludes that the oracle is
using a random permutation, otherwise a block cipher. The pseudo-code of the
distinguisher is provided in fig. 2.

4.2 A classical tailored distinguisher

In this section, we describe a tailored distinguisher A2, which we call the differ-
ential distinguisher, which uses information about the family C of block ciphers.
More precisely, the differential distinguisher A2 works as follows. As an additional
input, beside a threshold τ defining the accuracy of the distinguisher, it receives
an additive differential triple, including an input difference ∆x ∈ {0, 1}b, an
output difference ∆y ∈ {0, 1}b and the probability p that the input/output differ-
ence is preserved after applying the cipher to be distinguished. The probability p

10 E. Bellini, M. Rossi

Bitflip distinguisher: A1
Oracle(τ)

1 : j ←$ {0, . . . , b}
2 : m←$ {0, 1}b

3 : c← Oracle(m)

// encrypt m with j-th bit flipped

4 : c′ ← Oracle(m⊕ 2j)

5 : h = HammingWeight(c⊕ c′)
6 : if |h/b| < b/2 + τ return 0

7 : else return 1

Differential distinguisher: A2
Oracle(∆x,∆y, p, τ)

1 : h = 0

2 : for i = 0, · · · , d1/pe − 1

3 : m←$ {0, 1}b

4 : c← Oracle(m)

5 : c′ ← Oracle(m�∆x)

6 : if c′ � c = ∆y

7 : h← h+ 1

8 : if h ≥ τ return 1

9 : else return 0

Fig. 2: Bitflip (left) and Differential (right) distinguisher.

determines the number of sample messages the distinguisher needs to process.
For each sample m the encryption c and c′ of m and m � ∆x is computed,
and if the difference between c and c′ is ∆y, then a counter is increased. If,
at the end of the process, at least τ output differences matched ∆y, then the
distinguisher concludes that the Oracle is using an instance from the family C of
ciphers, otherwise that it is using a random permutation. The pseudo-code of
the distinguisher is provided in fig. 2.

5 Neural network based distinguishers

In this section we present a distinguisher A3, that we will call neural distinguisher.
As the name suggests this is based on Neural Networks. Here we give a general
structure of the distinguisher, then we will go into the details in the following
sections. Recall that we defined a Neural Network as a function F that takes
an input and tries to classify it in one of the given classes. Here the classes will
be only 2: S = {random, cipher}, where the random class is the class in which
random inputs will be classified, and the cipher one is the one for the inputs
coming from the cipher. Our network is simply a function F : R2 → S that takes
in input a pair of integer numbers and classify it in one of the two classes. In
the case of the random class, the input will simply be made up by two uniformly
random integers with bit size equal to the block size of the cipher, while for the
cipher class the input will be a pair of ciphertext coming from a fixed plaintext
difference ∆x unknown to the network.

To build the distinguisher we first train the network using n input-output
pairs coming half from the cipher and half from the random distribution (this
is done one time, then the network is saved and reused for all the distinguisher
calls) for e epochs, then we predict the classes for chunks of n input pairs coming
all from the same source (random or cipher) and we go for a majority vote: we
fix a threshold τn and we check if at least τn out of n samples are classified as

Deep Learning-based Distinguishers vs Conventional Distinguishers 11

coming from the cipher. If this is true, the chunk is classified as a cipher chunk,
otherwise, it is classified as random. The general pseudo-code for the training
phase and the one for the distinguisher can be seen, respectively, on the left and
on the right of fig. 3.

Neural Network Training: Train(n, e,∆x)

1 : TrainingInput = ∅
2 : TrainingOutput = ∅
3 : for i = 0, · · · , n
4 : if Uniform(0, 1) > 0.5

5 : m←$ {0, 1}b

6 : c← Encrypt(m)

7 : c′ ← Encrypt(m�∆x)

8 : Add (c, c′) to TrainingInput

9 : Add (1) to TrainingOutput

10 : else

11 : c←$ {0, 1}b

12 : c′ ←$ {0, 1}b

13 : Add (c, c′) to TrainingInput

14 : Add (0) to TrainingOutput

15 : Net ← TrainNetwork(TrainingInput,

TraningOutput,e)

16 : return Net

Neural distinguisher: A3
Oracle(∆x, n, τn, n, e)

1 : h = 0

2 : Net← Train(n, e,∆x)

3 : for i = 0, · · · , n
4 : m←$ {0, 1}b

5 : c← Oracle(m)

6 : c′ ← Oracle(m�∆x)

7 : if Net(c, c′) = 1

8 : h← h+ 1

9 : if h ≥ τn
10 : return 1

11 : else

12 : return 0

Fig. 3: Neural Network training (left) and Neural Distinguisher (right).

5.1 Time Distributed distinguisher

In this section, we describe the first of our network architectures for the neural
distinguisher. We will refer to this as the Time Distributed distinguisher (TD
distinguisher).

Input and Output Layers As we said before, our network takes in input a
pair of bit size b integers, ideally representing two ciphertext coming from the
same key and a known input difference. However we noticed that the network
learns better if the inputs are given as bit vectors, so our input layer is made up
by 2b neurons with binary values. For the output, we simply one-hot encode the
two classes, so we have 2 output neurons that, during training, take the value

12 E. Bellini, M. Rossi

(1, 0) for random inputs and (0, 1) for cipher inputs. In the classification phase
we classify an observation for which the network output is a vector v to the class
represented by arg max v.

Hidden Layers The network is structured as a multilayer perceptron. The
hidden layers can be ideally splitted in two parts: the first part is what we call
a time distributed network, while the second one is a multilayer perceptron in
its classic definition. In the first part we split our input in four chunks of 32
bits, each representing one of the four words that make up the two ciphertexts,
and we pass each chunk separatedly in 2 dense layers of 32 neurons (in our case,
perceptrons) each. The name “time distributed” comes from the fact that this
approach is common when dealing with temporal data, however in our case this
can be simply seen as treating the chunk separatedly, without letting their values
influence each other. The outputs are four vectors in R32 that are now flattened,
in the sense that they are joined to form a unique vector in R128 that will be the
input of the second part. The second part is made up by three fully connected
layers of 64, 64 and 32 neurons, ending up in the output layers that is, as we said
before, made up by two neurons.

Activations and Loss Function For the hidden layers we chose the Leaky
ReLU activation function [50], that can be defined as

a(x) =

{
x x ≥ 0

γx x < 0

with the value γ = 0.3. This solution has been found mainly with trial and
error, but intuitively we expected it to work well since our problem has a strong
vanishing gradient issue [18]. For the output layer, since we are using one-hot
encoding, it comes natural to use the softmax activation function, defined as
a(x) = (a1(x), ..., an(x)) where

ai(x) =
exi∑n
j=1 e

xj
.

For the loss function we opted for the standard mean squared error, since we
have not seen significant improvements using more sophisticated functions.

Optimizer and Learning Rate We chose the state of the art Adam algorithm
as optimizer [21]. Since it slightly differs from the classical gradient descent we
presented before, we give a brief explanation here. We define two sequences

mt =

{
0 t = 0

β1mt−1 + (1− β1)∇L(θ(t−1)) t > 0
, vt =

{
0 t = 0

β2vt−1 + (1− β2)
(
∇L(θ(t−1))

)2
t > 0

where θ(t) represents as before our trainable parameters, L is our loss function
and β1, β2 are constants. Then the update rule is

θ(t) = θ(t−1) − α
mt

√
1− βt2

(
√
vt + ε)(1− βt1)

,

Deep Learning-based Distinguishers vs Conventional Distinguishers 13

where ε is again a constant and α is the learning rate of our network. We fixed
the constants to the values suggested by the authors, that are β1 = 0.9, β2 =
0.999, ε = 10−7. For the learning rate we followed a similar approach to the one
described in [45]: we defined two values αmax and αmin and we fixed a small
number of epochs (we used 3). We defined αmax as the maximum value of the
learning rate such that we still see some improvements for all the 3 epochs, and
αmin as the minimum value that gives a significant improvement in the loss at
the end of the 3 epochs (ideally, this can be seen as an elbow in the graph of
learning rate versus loss). We then set a cyclic learning rate as

αi = αmin +
(αmax − αmin)(c− i (mod c))

c
,

where i refers to the current epoch in the training and c is the length of the cycle.
Experimentally we found that for our problem αmax = 0.015, αmin = 0.0003 and
c = 5 works well.

Training and Testing We ran our network on 106 training pairs and 104

validation pairs for e = 50 epochs. Based on the validation accuracy we selected the
minimum number n of samples needed in each experiment to have a distinguisher
with accuracy significantly far from 0.5 (where with significantly we mean that it
deviates at least by 0.02 from 0.5) and the threshold τn (see previous section).
We then evaluated 103 sets of dimension k to estimate the accuracy of the
distinguisher.

5.2 Convolutional distinguisher

Here we briefly outline a second neural distinguisher that we will include in the
accuracy comparison in section 6. Since it is very similar to the TD distinguisher,
we only talk about the main difference: hidden layers. We will refer to this
distinguisher as the Convolutional distinguisher.

Hidden Layers As before, we can identify two splits of layers: in the first split,
instead of perceptrons, we use two one-dimensional convolutional layers of size
32. The approach is very similar to the previous one: the input is split in four
parts and passed through the filters. However, the main difference is that these
filters can have dimensions greater than 1, allowing the network to learn different
features. Then the output of these layers is flattened and passed to the prediction
head, that is modeled as before as a multilayer perceptron with 3 layers of 32, 32
and 16 neurons.

6 Experimental results and comparisons

In this section, we present the methodology we adopted to compare the perfor-
mance of different distinguishers. We also present the results of this comparison,
focusing in particular on the performance of the NN based distinguishers.

14 E. Bellini, M. Rossi

6.1 Description of the experiment

In order to compare the distinguishers, we run the following experiments. We
consider different reduced version of TEA and RAIDEN (with rounds ranging
from 4 to 8). For each cipher family C, each distinguisher AiOracle, and a fixed
number of samples n, we compute the accuracy of the distinguisher. Precisely, we
ran 1000 experiments. For half of the experiments we call the distinguisher AiOracle

with Oracle equal to an instance Ck of the cipher family C, (with a fixed key for
TEA, and with a randomly chosen key for RAIDEN). For the other half we fix
Oracle to a random generator (using NumPy [34] random number generator).
Then we measure the accuracy of the distinguisher by counting how many times
it distinguishes correctly (i.e. it returns 1 in the first case, and 0 in the second),
averaging the two cases.

The number n ranges from 20 to 220 in the case of TEA, and from 20 to 212

in the case of RAIDEN. These numbers have been chosen in order to have high
success probability with the differential distinguisher up to a number of rounds
where the bitflip distinguisher was failing (i.e. having accuracy 0.5). Precisely, the
bitflip distinguisher becomes useless at round 7 for both TEA and RAIDEN. At
round 7 and 8, TEA has a fixed key output difference of probability, respectively,
2−20.77 and 2−29.43, while RAIDEN has a “true” output difference of probability,
respectively, 2−8 and 2−10.4 Thus, for example, as far as it concern the differential
distinguisher A2

Oracle, we expect to have a success probability (accuracy) close to
1 with 28 samples at 7 rounds for RAIDEN, and with 221 samples at 7 rounds
for TEA.

For both the bitflip distinguisher A1 and the differential distinguisher A2

we set the threshold value τ = 1. The choice of the threshold for the neural
distinguishers was a bit more complicated: in general for n samples we set τn = n

2 ,
though this is not always the optimal choice. We found out that sometimes, during
the training phase, the network overfits one of the two classes, so it develops the
tendency to predict better one class instead of the other. This happens especially
with an high number of rounds, and we found out that it can be solved increasing
a little bit the threshold. So, we set all the thresholds for the 8-rounds simulations
to τn = δn with 0.5 ≤ δ ≤ 0.7, depending on how it performed in the validation
set. We stress that this is not a limitation of the distinguisher, since the value
of δ is fixed during the training phase and remains fixed for all the calls to the
distinguisher.

6.2 Detailed results

The entire experiment was run in few days of computation with a fairly powerful
personal laptop (2.9 GHz Quad-Core Intel Core i7 with 16 GB of RAM) and
no excessive parallelization and optimization effort. Though, memory usage was
significant during the training of the neural networks when targeting 7 and 8

4 Note that TEA differential trail is longer than the one for RAIDEN, since it holds
for a fixed key (see section 3.1).

Deep Learning-based Distinguishers vs Conventional Distinguishers 15

rounds, and it seems that we need more computational power to increase the
number of rounds (see section 6.5).

Both the bitflip and the differential distinguisher behaved as expected. In
particular, the bitflip distinguisher started failing on both ciphers at round 7,
and, in the case of RAIDEN, it was already showing some weaknesses at round
6, confirming the better diffusion properties compared to TEA.

In the case of TEA 4 rounds, we expect about 214 samples to reach accuracy
1 for the differential distinguisher. In practice, with 214 samples, we reached an
accuracy of 0.92, and accuracy very close to 1 was reached with 216 samples.
Similar results can be observed for all other rounds, and also for RAIDEN.

Both neural distinguishers performed a little worse than expected in some
cases: for example for the 8-round experiment on TEA we obtained a validation
accuracy of 0.545 when using the TD network; this would imply that, in theory, 28

samples should be enough to reach an accuracy of 1, while in practice we reached
0.982. This phenomena is worse in the Convolutional case, where, with a very
similar validation accuracy, we reached a test accuracy of 0.916 with 28 samples.
However, these results might be biased by the generation of the samples, since
the validation set is relatively small and the NumPy random number generator
does not yield a perfect uniform distribution, so the accuracy on the validation
set can be slightly over or underestimated. In any case, the results (especially in
the TD experiment) do not deviate significantly from what we expected.

A visualization of the performance of all distinguishers considered in our
experiments, is given in fig. 4, fig. 5, fig. 6.

02468101214161820

3
4

5
6

7
8

0.6

0.8

1

0.5

1

log2(#samples)

Rounds

A
cc

u
ra

cy

TEA

Bitflip distinguisher

Differential distinguisher

TD distinguisher

Convolutional distinguisher

024681012

3
4

5
6

7
8

0.6

0.8

1

0.5

1

log2(#samples)

Rounds

A
cc

u
ra

cy

RAIDEN

Bitflip distinguisher

Differential distinguisher

TD distinguisher

Convolutional distinguisher

Fig. 4: Distinguisher comparison for TEA (left) and RAIDEN (right), 1000
experiments.

16 E. Bellini, M. Rossi

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
0.5

1

log2(#samples)

A
cc

u
ra

cy

TEA 4-rounds

Bitflip distinguisher

Differential distinguisher

TD distinguisher

Convolutional distinguisher

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
0.5

1

log2(#samples)

A
cc

u
ra

cy

TEA 7-rounds

Bitflip distinguisher

Differential distinguisher

TD distinguisher

Convolutional distinguisher

Fig. 5: Distinguishers applied to TEA 4 round (left) and 7 rounds (right), 1000
experiments.

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy

RAIDEN 5-rounds

Bitflip distinguisher

Differential distinguisher

TD distinguisher

Conv. distinguisher

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy

RAIDEN 6-rounds

Bitflip distinguisher

Differential distinguisher

TD distinguisher

Conv. distinguisher

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy

RAIDEN 7-rounds

Bitflip distinguisher

Differential distinguisher

TD distinguisher

Conv. distinguisher

Fig. 6: Distinguishers applied to RAIDEN 5 round (left), 6 rounds (middle), and
7 rounds (right), 1000 experiments.

Deep Learning-based Distinguishers vs Conventional Distinguishers 17

6.3 Lowering the training

Although our models being quite small (compared to the common neural network
models, especially in image classification), we asked ourselves if the training phase
can be lowered without losing too much accuracy. In fig. 7 and fig. 8 we report the
results of our two neural distinguishers on TEA with 6, 7 and 8 rounds, ranging
the number of training samples from 103 to 106. The results are pretty surprising:
with 6 rounds 103 samples are enough to have a very good distinguisher, so with
a negligible time in training (a few seconds) we can easily build this distinguisher.
The most interesting case is the 8-rounds one: we can notice that in both network
architectures the number of training samples can be lowered, but we can also see
for the first time a significant difference between the two networks. In fact, we
can see that with 104 samples a decent distinguisher can be build with the TD
network, but not with the Convolutional one. Vice versa with 105 samples the
Convolutional distinguisher seems a lot better than the TD one, that shows a
lower accuracy. In general, fig. 7 and fig. 8 show that in the majority of the cases
computations can be reduced significantly (from near 30 minutes for each model
with 106 samples on our laptop to less than a minute with 104 and a couple of
minutes with 105) with only a small performance loss.

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy

TEA 6-rounds - TD distinguisher

103 training samples

104 training samples

105 training samples

106 training samples

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy

TEA 7-rounds - TD distinguisher

103 training samples

104 training samples

105 training samples

106 training samples

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy
TEA 8-rounds - TD distinguisher

103 training samples

104 training samples

105 training samples

106 training samples

Fig. 7: Time Distributed distinguishers applied to TEA 6 (left), 7 (center) and 8
(right) rounds, with different size for the training set, 1000 experiments.

6.4 Further experiments

In this section we propose two more experiments, one on TEA and one on
RAIDEN, using the TD distinguisher. All the trainings are done as before with
106 samples.

TEA: random key experiment Until now, we focused on distinguishing
TEA with a fixed key and a given fixed input difference. We also wanted to test
what happens if we only fix the input difference and select random keys, as we do
on RAIDEN. Since the differential trail we used before for TEA was generated
for a specific key, one can not use the same input difference of the trail for any

18 E. Bellini, M. Rossi

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy

TEA 6-rounds - Convolutional Distinguisher

103 training samples

104 training samples

105 training samples

106 training samples

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy

TEA 7-rounds - Convolutional Distinguisher

103 training samples

104 training samples

105 training samples

106 training samples

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy

TEA 8-rounds - Convolutional Distinguisher

103 training samples

104 training samples

105 training samples

106 training samples

Fig. 8: Convolutional distinguishers applied to TEA 6, 7 and 8 rounds, with
different size for the training set, 1000 experiments.

other key. So, we decided to fix an input difference of low hamming weight and
low integer value, i.e. 0x1. We ran the experiment on 6, 7, 8 rounds (see the left
panel of fig. 9 of appendix B), observing that for 6 and 7 rounds the distinguisher
seems identical to the previous ones, while for 8 rounds the distinguisher shows
an accuracy of around 0.6. The results on 6 and 8 are somehow expected, since
it is intuitive that this task is in general harder than the previous one (and this
explains the lack of performance on 8 rounds), but also with 6 rounds the cipher
has not reached the full diffusion yet, so it seems reasonable that the network
is exploiting this property. The results on 7-rounds are a bit more unexpected:
we think that the network is learning something that is neither only a diffusion
property nor only a differential one, but probably a combination of them (with
possibly some other properties). We leave a deep analysis of this result for future
research.

RAIDEN: ciphertext difference experiment In this experiment we mod-
ified the network to take only a word of size b as input. The idea is to feed the
network with ciphertext differences (rather than the ciphertext pairs generating
the differences) generated from RAIDEN with random key and fixed input differ-
ence. The main point of this experiment is to verify if the network is actually
learning only the differential properties of the cipher or something else. The
results are shown in the right panel of fig. 9. We can notice that the performances
are pretty similar to the ones with the two ciphertexts as inputs, so there is
no clear evidence of what is happening. However, since there is no significant
improvement, we suspect that in the previous case the network was learning also
some other properties of the data. As before, we leave further analysis of this
experiment for future works.

6.5 Limitations of NN based distinguishers

Even if, at run-time, the NN based distinguishers outperform the two conventional
distinguishers considered in this work, one has to keep in mind that the accuracy
of such distinguishers depends on the intensity of the training. Our experiments

Deep Learning-based Distinguishers vs Conventional Distinguishers 19

used at most 106 samples, with a memory cost of nearly 2.5GB during the training
phase, so we expect the limit for a high level laptop to be somewhere near 107

samples, and this may not be enough to increase the number of rounds, especially
in TEA case.

7 Conclusion

In this work we introduced a simple network architecture to perform a distin-
guishing task on TEA and RAIDEN ciphers. We then showed that NN based
distinguishers outperformed classical ones with quite high margin. We also
showed that these results can be reached without excessive computational power
on round-reduced versions of the ciphers. We leave for future research a more
computationally extensive analysis of these results, in particular to see what
happens for higher number of rounds, how the neural networks need to be trained,
and how much memory they need. It would also be of interest to apply the same
techniques to ciphers with 128 bit message block, and 256 bit keys, and to test
different neural networks, or variation of the ones we used.

References

1. Al-Saffar, A., Tao, H., Talab, M.A.: Review of deep convolution neural network in
image classification. 2017 International Conference on Radar, Antenna, Microwave,
Electronics, and Telecommunications (ICRAMET) pp. 26–31 (2017)

2. Alallayah, K.M., Alhamami, A.H., AbdElwahed, W., Amin, M.: Applying neural
networks for simplified data encryption standard (sdes) cipher system cryptanalysis.
Int. Arab J. Inf. Technol. 9(2), 163–169 (2012)

3. Alallayah, K.M., El-Wahed, W.F., Amin, M., Alhamami, A.H.: Attack of against
simplified data encryption standard cipher system using neural networks. Journal
of Computer Science 6(1), 29 (2010)

4. Albrecht, M.R., Leander, G.: An all-in-one approach to differential cryptanalysis for
small block ciphers. In: Knudsen, L.R., Wu, H. (eds.) Selected Areas in Cryptography.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

5. Andreeva, E., Bogdanov, A., Mennink, B.: Towards understanding the known-key
security of block ciphers. In: International Workshop on Fast Software Encryption.
pp. 348–366. Springer (2013)

6. Awad, W., El-Alfy, E.S.M.: Computational intelligence in cryptology. In: Artificial
Intelligence: Concepts, Methodologies, Tools, and Applications, pp. 1636–1652. IGI
Global (2017)

7. Baksi, A., Breier, J., Dong, X., Yi, C.: Machine learning assisted differential
distinguishers for lightweight ciphers (2020), available at: https://eprint.iacr.
org/2020/571.pdf

8. Bellare, M., Rogaway, P.: Introduction to modern cryptography. Ucsd Cse 207,
207 (2005)

9. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers simon
and speck. In: International Workshop on Fast Software Encryption. pp. 546–570.
Springer (2014)

https://eprint.iacr.org/2020/571.pdf
https://eprint.iacr.org/2020/571.pdf

20 E. Bellini, M. Rossi

10. Chou, J.W., Lin, S.D., Cheng, C.M.: On the effectiveness of using state-of-the-art
machine learning techniques to launch cryptographic distinguishing attacks. In:
Proceedings of the 5th ACM Workshop on Security and Artificial Intelligence. pp.
105–110 (2012)

11. Danziger, M., Henriques, M.A.A.: Improved cryptanalysis combining differential
and artificial neural network schemes. In: 2014 International Telecommunications
Symposium (ITS). pp. 1–5. IEEE (2014)

12. Dong, L., Wu, W., Wu, S., Zou, J.: Known-key distinguisher on round-reduced 3d
block cipher. In: International Workshop on Information Security Applications. pp.
55–69. Springer (2011)

13. España-Bonet, C., Fonollosa, J.A.R.: Automatic speech recognition with deep neural
networks for impaired speech. In: Abad, A., Ortega, A., Teixeira, A., Garćıa Mateo,
C., Mart́ınez Hinarejos, C.D., Perdigão, F., Batista, F., Mamede, N. (eds.) Advances
in Speech and Language Technologies for Iberian Languages. pp. 97–107. Springer
International Publishing, Cham (2016)

14. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In:
Advances in Cryptology – CRYPTO 2019. pp. 150–179. Springer (2019)

15. Gomez, A.N., Huang, S., Zhang, I., Li, B.M., Osama, M., Kaiser, L.: Unsupervised
cipher cracking using discrete gans. arXiv preprint arXiv:1801.04883 (2018)

16. Greydanus, S.: Learning the enigma with recurrent neural networks. arXiv preprint
arXiv:1708.07576 (2017)

17. Hernandez, J.C., Isasi, P.: Finding efficient distinguishers for cryptographic map-
pings, with an application to the block cipher tea. Computational Intelligence 20(3),
517–525 (2004)

18. Hochreiter, S.: The vanishing gradient problem during learning recur-
rent neural nets and problem solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 6, 107–116 (04 1998).
https://doi.org/10.1142/S0218488598000094

19. Jain, A., Kohli, V., Mishra, G.: Deep learning based differential distinguisher for
lightweight cipher present (2020), available at: https://eprint.iacr.org/2020/
846.pdf

20. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-way, biham-
DES, CAST, DES-X, newDES, RC2, and TEA. In: International Conference on
Information and Communications Security. pp. 233–246. Springer (1997)

21. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. International
Conference on Learning Representations (12 2014)

22. Klimov, A., Mityagin, A., Shamir, A.: Analysis of neural cryptography. In: Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security. pp. 288–298. Springer (2002)

23. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 315–324. Springer (2007)

24. Lagerhjelm, L.: Extracting information from encrypted data using deep neural
networks (2018)

25. Laskari, E.C., Meletiou, G.C., Stamatiou, Y.C., Vrahatis, M.N.: Cryptography and
cryptanalysis through computational intelligence. In: Computational Intelligence in
Information Assurance and Security, pp. 1–49. Springer (2007)

26. Lecun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series.
The handbook of brain theory and neural networks (1995)

https://doi.org/10.1142/S0218488598000094
https://eprint.iacr.org/2020/846.pdf
https://eprint.iacr.org/2020/846.pdf

Deep Learning-based Distinguishers vs Conventional Distinguishers 21

27. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering. pp. 3–26. Springer (2016)

28. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: EUROCRYPT.
Lecture Notes in Computer Science. vol. 765, pp. 386–397. Springer (1993)

29. de Mello, F.L., Xexéo, J.A.: Identifying encryption algorithms in ECB and CBC
modes using computational intelligence. J. UCS 24(1), 25–42 (2018)

30. Minier, M., Phan, R.C.W., Pousse, B.: Distinguishers for ciphers and known key
attack against rijndael with large blocks. In: International Conference on Cryptology
in Africa. pp. 60–76. Springer (2009)

31. NakaharaJr, J.: New impossible differential and known-key distinguishers for the
3d cipher. In: International Conference on Information Security Practice and
Experience. pp. 208–221. Springer (2011)

32. Needham, R.M., Wheeler, D.J.: TEA extensions. Report, Cambridge University,
Cambridge, UK (October 1997) (1997)

33. Nikolić, I., Pieprzyk, J., Soko lowski, P., Steinfeld, R.: Known and chosen key differ-
ential distinguishers for block ciphers. In: International Conference on Information
Security and Cryptology. pp. 29–48. Springer (2010)

34. Oliphant, T.E.: A guide to NumPy, vol. 1. Trelgol Publishing USA (2006)

35. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR
abs/1511.08458 (2015), http://arxiv.org/abs/1511.08458

36. Pandey, S., Mishra, M.: Neural cryptanalysis of block cipher. International Journal
2(5) (2012)

37. Paterson, K.G., Poettering, B., Schuldt, J.C.: Big bias hunting in amazonia: Large-
scale computation and exploitation of RC4 biases. In: International Conference on
the Theory and Application of Cryptology and Information Security. pp. 398–419.
Springer (2014)

38. Picek, S., Heuser, A., Guilley, S.: Template attack vs bayes classifier. IACR Cryp-
tology ePrint Archive 2017, 531 (2017)

39. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: International
Conference on Security, Privacy, and Applied Cryptography Engineering. pp. 157–
176. Springer (2018)

40. Polimón, J., Hernandez-Castro, J., Tapiador, J., Ribagorda, A.: Automated design
of a lightweight block cipher with genetic programming. KES Journal 12, 3–14 (03
2008). https://doi.org/10.3233/KES-2008-12102

41. Rivest, R.L.: Cryptography and machine learning. In: International Conference on
the Theory and Application of Cryptology. pp. 427–439. Springer (1991)

42. Sasaki, Y.: Known-key attacks on rijndael with large blocks and strengthening
shiftrow parameter. IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences 95(1), 21–28 (2012)

43. Sasaki, Y., Emami, S., Hong, D., Kumar, A.: Improved known-key distinguishers
on feistel-sp ciphers and application to camellia. In: Australasian Conference on
Information Security and Privacy. pp. 87–100. Springer (2012)

44. Sasaki, Y., Yasuda, K.: Known-key distinguishers on 11-round feistel and colli-
sion attacks on its hashing modes. In: International Workshop on Fast Software
Encryption. pp. 397–415. Springer (2011)

45. Smith, L.N.: No more pesky learning rate guessing games. CoRR abs/1506.01186
(2015), http://arxiv.org/abs/1506.01186

http://arxiv.org/abs/1511.08458
https://doi.org/10.3233/KES-2008-12102
http://arxiv.org/abs/1506.01186

22 E. Bellini, M. Rossi

46. Srinivasa Rao, K., Rama Krishna, M., Bujji, B.: Cryptanalysis of a feistel type
block cipher by feed forward neural network using right sigmoidal signals. Int. J. of
Soft Computing 4(3), 136–135 (2009)

47. Steil, M.: 17 mistakes Microsoft made in the Xbox security system. In: 22nd Chaos
Communication Congress (2005)

48. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitiv-
ity analysis. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2019(2), 107–131 (Feb 2019). https://doi.org/10.13154/tches.v2019.i2.107-131,
https://tches.iacr.org/index.php/TCHES/article/view/7387

49. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: International
Workshop on Fast Software Encryption. pp. 363–366. Springer (1994)

50. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in
convolutional network. CoRR abs/1505.00853 (2015), http://arxiv.org/abs/
1505.00853

51. Yadav, T., Kumar, M.: Differential-ml distinguisher: Machine learning based generic
extension for differential cryptanalysis (2020), available at: https://eprint.iacr.
org/2020/913.pdf

52. Zhang, J., Zong, C.: Deep neural networks in machine translation: An overview.
IEEE Intelligent Systems 30, 16–25 (09 2015). https://doi.org/10.1109/MIS.2015.69

A Explicit differential trails for TEA and RAIDEN

A differential trail for TEA is shown in table 1, while one for RAIDEN is shown
in table 2. In the tables, rather than the ADP, we report the accumulated ADP,
which is the one we need to define the number of samples for our distinguishers.

B Plots for the section 6.4

In this section, we provide the plotting of our experiments from section 6.4. In
particular, the left side of fig. 9 represents the performance of the TD distinguisher
applied to TEA, where the training is done by fixing the input difference to 0x1

and selecting random keys. The right side of fig. 9 represents the performance
of the TD distinguisher applied to RAIDEN, where the network is trained only
using the output difference of RAIDEN (rather than the pair of outputs) with
random key and fixed input difference.

https://doi.org/10.13154/tches.v2019.i2.107-131
https://tches.iacr.org/index.php/TCHES/article/view/7387
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853
https://eprint.iacr.org/2020/913.pdf
https://eprint.iacr.org/2020/913.pdf
https://doi.org/10.1109/MIS.2015.69

Deep Learning-based Distinguishers vs Conventional Distinguishers 23

Round difference FTEA in/out differences Accumulated

Round L R ∆x ∆y adpF
TEA

(∆x→ ∆y)

0 0xfffffff1 0xffffffff - - -
1 0x00000000 0xffffffff 0xffffffff 0x0000000f 2−3.62

2 0x00000000 0xffffffff 0x00000000 0x00000000 2−3.62

3 0x0000000f 0xffffffff 0xffffffff 0x0000000f 2−6.49

4 0x0000000f 0xffffffff 0x0000000f 0x00000000 2−14.39

5 0x00000000 0xffffffff 0xffffffff 0xfffffff1 2−17.99

6 0x00000000 0xffffffff 0x00000000 0x00000000 2−17.99

7 0xfffffff1 0xffffffff 0xffffffff 0xfffffff1 2−20.77

8 0xfffffff1 0x00000001 0xfffffff1 0x00000002 2−29.43

9 0x00000000 0x00000001 0x00000001 0x0000000f 2−33.00

10 0x00000000 0x00000001 0x00000000 0x00000000 2−33.00

11 0xfffffff1 0x00000001 0x00000001 0xfffffff1 2−35.87

12 0xfffffff1 0xffffffff 0xfffffff1 0xfffffffe 2−43.77

13 0x00000000 0xffffffff 0xffffffff 0x0000000f 2−47.36

14 0x00000000 0xffffffff 0x00000000 0x00000000 2−47.36

15 0x00000011 0xffffffff 0xffffffff 0x00000011 2−50.15

16 0x00000011 0xffffffff 0x00000011 0x00000000 2−58.98

17 0x00000000 0xffffffff 0xffffffff 0xffffffef 2−62.59

18 0x00000000 0xffffffff 0x00000000 0x00000000 2−62.59

Table 1. TEA 18-round additive differential trail, for the fixed key (0x11CAD84E,
0x96168E6B, 0x704A8B1C, 0x57BBE5D3).

Round difference FRAIDEN in/out differences Accumulated

Round L R ∆x ∆y adpF
RAIDEN

(∆x→ ∆y)

0 0x7fffff00 0x00000000 - - -
1 0x7fffff00 0x00000000 0x00000000 0x00000000 2−0.00

2 0x7fffff00 0x7fffff00 0x7fffff00 0x7fffff00 2−2.00

3 0x00000000 0x7fffff00 0x7fffff00 0x80000100 2−4.00

4 0x00000000 0x7fffff00 0x00000000 0x00000000 2−4.00

5 0x7fffff00 0x7fffff00 0x7fffff00 0x7fffff00 2−6.00

6 0x7fffff00 0x00000000 0x7fffff00 0x80000100 2−8.00

7 0x7fffff00 0x00000000 0x00000000 0x00000000 2−8.00

8 0x7fffff00 0x7fffff00 0x7fffff00 0x7fffff00 2−10.00

9 0x00000000 0x7fffff00 0x7fffff00 0x80000100 2−12.00

10 0x00000000 0x7fffff00 0x00000000 0x00000000 2−12.00

· · ·
29 0x7fffff00 0x7fffff00 0x7fffff00 0x7fffff00 2−38.00

30 0x7fffff00 0x00000000 0x7fffff00 0x80000100 2−40.00

31 0x7fffff00 0x00000000 0x00000000 0x00000000 2−40.00

32 0x7fffff00 0x7fffff00 0x7fffff00 0x7fffff00 2−42.00

Table 2. RAIDEN 32-round additive differential trail.

24 E. Bellini, M. Rossi

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy

TD Distinguisher TEA with random key 6 rounds

TD Distinguisher TEA with random key 7 rounds

TD Distinguisher TEA with random key 8 rounds

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

log2(#samples)

A
cc

u
ra

cy

TD distinguisher RAIDEN with difference 6 rounds

TD distinguisher RAIDEN with difference 7 rounds

TD distinguisher RAIDEN with difference 8 rounds

Fig. 9: Results on TEA with 6, 7, 8 rounds and random key (left), results on
RAIDEN 6, 7, 8 rounds letting the network learn only the output difference
(right).

