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Abstract

The best existing pairing-based traitor tracing schemes have O(
√
N)-sized parameters, which

has stood since 2006. This intuitively seems to be consistent with the fact that pairings allow for
degree-2 computations, yielding a quadratic compression.

In this work, we show that this intuition is false by building a tracing scheme from pairings
with O( 3

√
N)-sized parameters. We additionally give schemes with a variety of parameter size

trade-offs, including a scheme with constant-size ciphertexts and public keys (but linear-sized
secret keys). All of our schemes make black-box use of the pairings. We obtain our schemes by
developing a number of new traitor tracing techniques, giving the first significant parameter
improvements in pairings-based traitor tracing in over a decade.

1 Introduction
Traitor tracing [CFN94] allows a content distributor to trace the source of a pirate decoder. Every
user is given a unique secret key that allows for decrypting ciphertexts. A “traitor” might distribute
their key to un-authorized users, or even hide their key inside a pirate decoder capable of decrypting.
A tracing algorithm can be run on the decoder that will identify the traitor. In a collusion-resistant
scheme, even if several traitors collude, the tracing algorithm will be able to identify at least one
of them1, without ever falsely identifying an honest user. Much of the traitor tracing literature
considers fully collusion-resistant schemes, where the coalition of traitors can be arbitrarily large.
In this work, we will only consider fully collusion-resistant schemes.

The main goal of traitor tracing is to build schemes with short parameters, in particular short
ciphertexts that depend minimally on the number N of users. Boneh, Sahai, and Waters [BSW06]
demonstrated the first collusion-resistant scheme with O(

√
N)-sized parameters using pairings2.

Shortly after their work, Boneh and Waters [BW06] augmented the construction with a broadcast
functionality, achieving a so-called broadcast and trace scheme also with O(

√
N)-sized parameters.

These works remain the state-of-the-art in pairings-based collusion-resistant traitor tracing. Using
other tools such as obfuscation or LWE, better parameters are possible [GGH+13, BZ14, GKW18].

1A traitor could be completely passive, so it is impossible to identify all traitors.
2Following convention, the Big-Oh notation throughout this paper will hide constants that depend on the security

parameter, and focus on the dependence on N . This is made precise in Section 2.
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1.1 Some Existing Approaches to Traitor Tracing

Fingerprinting Codes. One of the earliest approaches to collusion-resistant tracing was shown
by Boneh and Naor [BN08]3, who construct traitor tracing using an object called fingerprinting
codes [BS95]. Their scheme is combinatorial, relying simply on generic public key encryption, and
ciphertexts have optimal O(1) size.

The Boneh-Naor scheme, however, is generally not considered to resolve the traitor tracing
problem. Curiously, different authors seem to have different interpretations of why. Some works
(e.g. [BZ14, GKSW10, TZ17]) note that Boneh-Naor requires very large secret keys — namely
quadratic in the number of users — which is inherent to fingerprinting codes [Tar03]. The main
limitation according to these works appears to be simultaneously achieving small ciphertext and
small secret/public keys. Other works more or less ignore the secret key size limitation (e.g. [GKW18,
KW19, GQWW19]4), suggesting the main limitation of Boneh-Naor is that it is a threshold scheme:
it can only trace decoders whose decryption probability exceeds some a priori threshold. These
latter works appear to consider it an open problem, for example, to build non-threshold tracing
with o(

√
N)-sized ciphertexts (and any secret/public key size) from anything implied by pairings.

Private Linear Broadcast Encryption (PLBE). A Private Linear Broadcast Encryption
(PLBE) scheme is a limited type of functional encryption that allows for encrypting to ranges
of user identities, and is known to imply traitor tracing [BSW06]. Algebraic constructions of
PLBE achieve simultaneously smaller parameters, and are not subject to the threshold restriction.
PLBE is by far the most popular approach to traitor tracing today, being taken by the current
best pairings-based constructions [BSW06, BW06], as well as the obfuscation and LWE-based
constructions [GGH+13, BZ14, GKW18]. In fact, in the last five years (2014-2019) of traitor tracing
papers, we could identify ten papers appearing at EUROCRYPT, CRYPTO, ASIACRYPT, TCC,
STOC, and FOCS giving positive results for traitor tracing. With perhaps one exception (discussed
next) every single one can be seen as following the PLBE or closely related approaches [BZ14,
LPSS14, NWZ16, KMUZ16, GKRW18, KMUW18, CVW+18, GKW18, GQWW19, GKW19].

Risky Traitor Tracing. Recently, Goyal et al. [GKRW18] define a relaxed notion of “risky traitor
tracing” where the pirate decoder is only guaranteed to be traced with some non-zero probability,
say α for some α � 1. Their approach follows the PLBE framework, but actually strengthens
PLBE. Essentially, their scheme constructs PLBE for αN users, but then since α < 1, it must assign
multiple users to the same identity. In order to get tracing to work, however, it must be that users
cannot tell what identity they were assigned to. This requires strengthening PLBE, as in standard
PLBE every user knows their identity.

1.2 This work: New Techniques for Traitor Tracing

In this work, we explore the use of different structures to build traitor tracing, giving rich set of
traitor tracing techniques beyond the usual approaches. We then use these techniques to build
several new schemes from pairings and weaker primitives that offer new trade-offs that were not
possible before. Below we describe our results, with a summary given in Table 1.

3The work originated from 2002, but was not published until 2008.
4Example: Goyal, Koppula, and Waters [GKW18] make the central claim of achieving a “secure traitor tracing

with [constant]-sized ciphertexts from standard assumptions,” without discussing the secret key size at all.
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In the following, we will say a traitor tracing system has size (P,K,C) if its public key, secret
keys, and ciphertexts have sizes at most O(P ), O(K), and O(C), respectively, where constants
hidden in the Big Oh notation are allowed to depend on the security parameter5. We abbreviate
size (A,A,A) as simply A.

• The first scheme of size (N2, N2, 1), or more generally (N2−a, N2−2a, Na), without the threshold
limitation from the minimal assumption of general public key encryption6. Thus, we remove
the threshold limitation of fingerprinting code-based tracing schemes. The main limitation
of these schemes is then the large public and secret key sizes. We note that we easily can
compress the public keys to get a scheme of size (1, N2, 1), or more generally (1, N2−2a, Na),
relying on the stronger assumption of identity-based encryption.

• The first pairings-based scheme of size (1, N, 1), or more generally (1, N1−a, Na) for any
constant a ∈ [0, 1]. For all constants a < 1, this gives a new parameter trade-off that was not
possible before from pairings.

• An (N1−a, N1−a, Na)-sized scheme from pairings, attaining the stronger notion of broadcast
and trace [BW06], which augments traitor tracing with a broadcast functionality. For a = 0,
this gives the first broadcast and trace scheme with constant-size ciphertexts from pairings.
This improves on the recent work of [GQWW19] which attained arbitrarily-small polynomial
ciphertext size, while also requiring lattices in addition to pairings.

• A new model for traitor tracing, which we call the shared randomness model (SRM), where
encryption, decryption, and the decoder have access to a large source of randomness that
is not included in the communication costs. While we define the model as a stepping stone
toward a full tracing algorithm in the plain model, our shared randomness model may be
useful in its own right. For example, the shared randomness could be derived from some
publicly available data, such as stock market fluctuations or blockchains.

• A broadcast and trace scheme of size (N, 1, 1), or more generally (N1−a, 1, Na) for any constant
a ∈ [N ], in the shared randomness model from pairings. The size of the shared randomness
is N1−a; thus, for a ≥ 1/2, the shared randomness can simply be included in the ciphertext,
in which case we get a scheme in the plain model. We note that for a = 1/2, we get the
first broadcast and trace scheme of size (N1/2, 1, N1/2) from pairings, improving on the
(N1/2, N1/2, N1/2)-sized scheme of [BW06].

• Putting it all together: a traitor tracing (non-broadcast) scheme of size 3√N .

Our results are obtained by a number of new techniques that may have applications beyond the
immediate scope of this work:

• A compiler which increases the number of users by expanding the ciphertext size, but in many
cases keeping the other parameters fixed (Theorem 1).

• A compiler which converts any threshold scheme into a non-threshold scheme without affecting
the dependence on N (Theorem 2).

5We will also suppress logN terms. This is without loss of generality since it is always the case that logN < λ,
and the Big-Oh already hides poly(λ) terms.

6Our definition of traitor tracing has public encryption, which in particular implies public key encryption.
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• A compiler which converts a risky scheme into a non-risky scheme, without asymptotically
affecting ciphertext size (Theorem 3).

• A compiler from a certain broadcast functionality into a traitor tracing scheme, in the shared
shared randomness model (Theorem 4).

• New instantiations of broadcast encryption from pairings (Theorem 5).

1.3 Organization

The organization of the rest of the paper is as follows:

• Section 2 gives a high-level technical overview.

• Section 3 discusses the implications and takeaways from our work.

• Section 4 defines the various notions of traitor tracing we will be using.

• Sections 5, 6, 7, and 8 give our four main compilers.

• Section 9 gives new algebraic instantiations of various primitives, which together with our
compilers yield our results.

Scheme |pk| |sk| |ct| Broadcast? Tool Limitations

Trivial
N 1 N

3
PKE

1 1 N IBE

[BN08]
N2 N2 1

7
PKE

Threshold
1 N2 1 IBE

[BSW06]
√
N 1

√
N 7

Pairing
[BW06]

√
N

√
N

√
N 3

Cor 1
N2−a N2−2a Na

7

PKE
1 N2−2a Na IBE

Cor 2 1 N1−a Na

Pairing
Cor 3 N1−a N1−a Na

3
Cor 4 N1−a 1 Nmax(a,1−a)

Cor 5 N1−a−b Nmax(b,1−a−b) Nmax(a,1−a−b) 7

Table 1: Comparing parameters sizes of our schemes to some existing protocols. This table only
includes schemes based on pairings or weaker assumptions implied by pairings. N is the number
of users. All sizes hide multiplicative constants dependent on the security parameter (but not N).
a, b ∈ [0, 1] are any constants such that a+ b ≤ 1.
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2 Technical Overview
In order to abstract and modularize the discussion, the central object we will consider is a gener-
alization of a traitor tracing system, which we call a “multi-scheme,” which can roughly be seen
as a scaled-down version of “identity-based traitor tracing” as defined in [ADM+07]. Intuitively, a
multi-scheme is M essentially independent tracing systems running in parallel, each with distinct
secret keys and ciphertexts. All N users within a single instance can decrypt ciphertexts to that
instance, but not to other instances. Tracing also works within an instance: any pirate decoder
that decrypts for an instance can be traced to traitors within that instance. A plain traitor tracing
scheme implies a multi-scheme by simply setting up M separate instances of the scheme. The point
of a multi-scheme, however, is that the M schemes are allowed share a common public key, which
may be smaller than M copies of a single public key. See Definition 1.

We will also consider broadcast and trace schemes [BW06], which augment plain traitor tracing
with a broadcast functionality. That is, the encrypter can specify a subset S ⊆ [N ], and only users
in S should be able to decrypt the ciphertext. S is also incorporated into the tracing definition; see
Definition 4.

We will say that a scheme Π has size (P,K,C) for functions P = P (N,M), K = K(N,M), and
C = C(N,M), if there is a polynomial poly(λ) such that, for all polynomials N = N(λ) and M =
M(λ), we have |pk| ≤ P (N,M)×poly(λ), |skj,i| ≤ K(N,M)×poly(λ), and |c| ≤ C(N,M)×poly(λ).
For example, if |pk| = |skj,i| = |c| = 2N1/2Mλ2 + λ5, we could set poly(λ) = 2λ5, which shows that
the protocol has size (N1/2M,N1/2M,N1/2M). Here, we follow the convention that both encryption
and decryption take the public key as input.

We will also analyze the run-times of our algorithms. We will assume a RAM model of
computation. Additionally, for notational convenience, we will not require an algorithm to read its
entire input; instead, it can query the bit positions of its input at unit cost per bit. We will use a
similar notation for run-times as we did for parameter sizes: we will say a scheme Π runs in time
(E,D) for functions E,D if there is a polynomial poly(λ) such that, for all polynomials N = N(λ)
and M = M(λ), Enc, and Dec run in time at most E(N,M) × poly(λ) and D(N,M) × poly(λ),
respectively.

We will say that a protocol is asymptotically efficient if the running times of Enc and Dec are,
up to poly(λ) factors, bounded by the sum of their input and output sizes. For traitor tracing
schemes, this is equivalent to requiring E ≤ P + C and D ≤ P + K + C 7; for a broadcast and
trace protocol (where Enc,Dec take as input the N -bit specification of a subset S ⊆ [N ]), this is
equivalent to E ≤ P + C +N and D ≤ P +K + C +N . Since our computational model does not
require an algorithm to read its entire input, asymptotic efficiency may not be optimal. However,
any asymptotically efficient scheme will then have optimal running time if we switch to the model
where we require algorithms to read their entire input.

2.1 User Expansion Compiler

Our first result shows how to expand the number of users by grouping different instances together.
That is, we compile a scheme with N/T users and MT instances into a scheme with N users and
M instances. Essentially, we just partition the MT instances into M sets of size T . Within each
set, there are now N users (N/T for each instance, T instances). We then encrypt the message

7Recall that our convention that decryption takes the public key as input.
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separately to each of the T instances within the set, ensuring that all N users in the set can decrypt.
This conversion blows up the ciphertext size by a factor of T , but hopefully results in smaller
public/secret keys.

Our compiler can be seen as a generalization of the most basic traitor tracing scheme, which
simply gives each user a different secret key for a public key encryption scheme and encrypts to
each user separately. Abstracting the ideas behind this scheme will lead to useful results later in
this paper. Concretely, we prove:

Theorem 1 (User Expansion). Let P = P (N,M),K = K(N,M), C = C(N,M), T = T (N,M)
be polynomials such that T (N,M) ≤ N . Suppose there exists a secure multi-scheme Π0 with size
(P,K,C). Then there exists a secure multi-scheme Π with size

( P (N/T,MT ) , K(N/T,MT ) , T × C(N/T,MT ) ) .

If Π0 runs in time (E,D) for polynomials E(N,M), D(N,M), then Π runs in time

( T × E(N/T,MT ) , D(N/T,MT ) ) .

If Π0 is a broadcast and trace scheme, then so is Π.

Note that, in almost all the schemes we will see, P,K,C are all independent of M . Our compiler
then shrinks P,K by reducing the dependence on N , at the expense of expanding C.

The tracing algorithm in our compiler essentially views the construction as an instance of private
linear broadcast encryption (PLBE), and then uses a tracing algorithm analogous to [BSW06]. Given
a decoder D for the compiled scheme, we test the decoder on invalid ciphertexts where the first t
components have been modified to encrypt gibberish, and see if the decoder still decrypts. For a
good decoder, a simple hybrid argument shows that there will be some t where the decoder decrypts
t− 1 with probability noticeably higher than it decrypts t. This will allow us to construct from the
original decoder D a new decoder Dt for Π0, targeting the t’th instance. We then run Π0’s tracing
algorithm on Dt, which will accuse a set A ⊆ [N/T ]. For each i ∈ A, we then accuse the user who
was assigned index i within instance t. See Section 5 for details.

2.2 Threshold Elimination Compiler

The usual model for traitor tracing ensures that even a decoder that succeeds in decrypting with
arbitrary inverse-polynomial probability can be traced. In contrast, Naor and Pinkas [NP98] consider
a weaker “threshold” tracing, where tracing is only guaranteed to work on decoders whose decryption
probability exceeds some a priori bound. In this paper, we will assume this bound is any constant
decryption probability. See Definition 2 for a formal definition.

Our next compiler converts any threshold tracing scheme into a plain tracing scheme, without
asymptotically affecting parameters:

Theorem 2 (Threshold Elimination). Let P,K,C be polynomials in N,M . If there exists a
threshold secure multi-scheme ΠThr with size (P,K,C), then there exists a (non-threshold) secure
multi-scheme Π with size (P,K,C). If Π0 runs in time (E,D) for polynomials E(N,M), D(N,M),
then so does Π. If ΠThr is a broadcast and trace scheme, then so is Π.
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As an application, the Boneh-Naor traitor tracing scheme [BN08], when instantiated with
“robust” Tardos fingerprinting codes [Tar03, BKM10], yields a threshold scheme of size (N2, N2, 1),
or a multi-scheme of size (MN2, N2, 1). Applying Theorem 2 gives a non-threshold scheme with the
same size. This gives the first non-threshold scheme from generic public key encryption to achieve
constant-sized ciphertexts.

We can also eliminate the public key size by using identity-based encryption (IBE) instead of
public key encryption. Finally, applying Theorem 1 with T = Na gives:

Corollary 1. Assuming public key encryption, there exists a (non-threshold) secure asymptotically
efficient multi-scheme of size (MN2−a, N2−2a, Na). Assuming IBE, there exists a (non-threshold)
secure asymptotically efficient multi-scheme of size (1, N2−2a, Na).

Setting a = 2/3 and M = 1 gives a traitor tracing scheme of size (N4/3, N2/3, N2,3) from
general public key encryption, or (1, N2/3, N2/3) from general IBE. This gives the first construction
simultaneously achieving sublinear secret keys and ciphertexts from general public key encryption.
It also gives the first construction where all parameters are simultaneously sublinear from general
IBE. Instantiating IBE using Cocks IBE [Coc01]) gives the first sublinear traitor tracing scheme
from quadratic residuosity. Using the recent construction of IBE from CDH [DG17] gives the first
sublinear traitor tracing scheme from CDH in pairing-free groups, which in particular gives the first
such a scheme factoring.

Remark 1. We note that Theorem 1 does not work directly on a threshold scheme: the hybrid
argument in the proof results in a decoder whose decryption probability is reduced by a factor of
T , which will typically be non-constant. Thus, our threshold elimination compiler is crucial for
achieving the parameter trade-offs above, even if we were willing to accept a threshold scheme as the
end result.

Proving Theorem 2. Our goal is to design Π such that any decoder D for the scheme — even
one with small but noticeable decryption probability — can be converted into a decoder D′ that
decrypts with high probability, for the original scheme ΠThr. Importantly, we cannot asymptotically
expand the parameters in therms of N .

To encrypt a message m, our basic idea is to choose random m1, . . . ,mn such that m1 ⊕m2 ⊕
· · · ⊕mn = m. We encrypt each of the mi separately using ΠThr, the final ciphertext for Π being
the n encryptions of the mi. To decrypt, simply decrypt each component to recover mi, and then
reconstruct m.

Since the mi are an n-out-of-n secret sharing of m, a decoder needs to, in some sense, be able to
recover all of the mi in order to compute m. Supposing the “decryptability” of the n individual
ciphertexts were independent events, then the decryptability of the individual ciphertexts must very
high in order to have noticeable chance at decrypting all n ciphertexts simultaneously.

To turn this intuition into a proof, we show how to extract the mi whenever the individual
ciphertext is decryptable, in order to build a decoder D′ for Π0 with high-enough decryption
probability so that it can be traced using Π0. On input a ciphertext c, D′ chooses a random i ∈ [n]
and sets ci = c. It then fills in a ciphertext tuple (c1, . . . , cn) where the cj , j 6= i are encryptions of
random messages mj . When D gives a guess m′ for m, D′ can compute a guess m′i for mi using m′
and the mj , j 6= i. D′ decrypts with the same probability as D, and by repeating the process many
times on the same ciphertext c, the hope is to amplify the decryption probability.
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Unfortunately, there are a few issues. For a fixed ciphertext c, the various trials share a
common ciphertext, and therefore their success probabilities are not independent. Also, there is
no obvious way to tell which of the trials produced the correct message. Finally, recent traitor
tracing definitions [NWZ16, GKRW18, GKW18] actually require tracing to hold in the stronger
indistinguishability setting, which means roughly that D does not have to actually produce the
message, but only needs to distinguish it from, say, a random message.

We resolve these issues in a couple steps. We use Goldreich-Levin [GL89] to convert an indistin-
guishability decoder into a predicting decoder. We analyze the decoder’s decryption probability
on the correlated instances, and show that the success probability over multiple trials amplifies
as necessary, when n = poly(λ). Finally, we leverage the indistinguishability security of ΠThr —
meaning D′ only needs to distinguish the correct message from random — which allows D′ to tell
when a trial produces the correct output. Details are given in Section 6.

Putting everything together, if D distinguishes with non-negligible probability, D′ will distinguish
with probability 1 − o(1). Our compiler leaves public and secret keys intact, and blows up the
ciphertext by a factor independent of the number of users N , as desired.

2.3 Risk Mitigation Compiler

The standard tracing model requires any decoder capable of decrypting (potentially with inverse-
polynomial success probability) can be traced with probability negligibly-close to 1. An α-risky
scheme scheme [GKRW18], in contrast, only guarantees that a good decoder will be traced with
probability (negligible-close) to α. See Definition 3 for a formal definition.

Our next result is a compiler that reduces or eliminates risk from risky traitor tracing schemes,
while preserving ciphertext size.

Theorem 3 (Risk Mitigation). Let P = P (N,M),K = K(N,M), C = C(N,M) be polynomials.
Let α = α(N), β = β(N) be inverse polynomials with α < β. If there exists an α-risky multi-scheme
ΠRisk with size (P,K,C), then there exists a β-risky multi-scheme Π with size

( P (N,Mβα−1) , βα−1 ×K(N,Mβα−1) , C(N,Mβα−1) ) .

If Π0 runs in time (E,D) for polynomials E(N,M), D(N,M), then Π runs in time

( E(N,Mβα−1) , D(N,Mβα−1) ) .

If ΠRisk is a broadcast and trace scheme, then so is Π.

Thus, by multiplying M by O(βα−1) and increasing the secret key size by a factor of O(βα−1),
one can improve α-riskiness to β-riskiness.

We note that [GKRW18] give a 1/N -risky (non-multi) scheme of size (1, 1, 1), and more gen-
erally give a β-risky scheme of size (βN, βN, βN). In Section 7.2, we extend the risky scheme
from [GKRW18] into a 1/N -risky multi-scheme of size (1, 1, 1). For any desired level of riskiness
β ≥ 1/N , Theorem 3 then gives a scheme of size (1, βN, 1), thus improving on [GKRW18].

Setting β = 1 eliminates risk all together, yielding a scheme of size (1, N, 1). Applying our user
expansion compiler (Theorem 1) with T = Na gives:

Corollary 2. For any a ∈ [0, 1], if Assumptions 1 and 2 from [GKRW18] hold, there exists a secure
asymptotically efficient multi-scheme of size (1, N1−a, Na).
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Note that the computational assumptions are exactly the same as in [GKRW18]. Also, for any
a < 1, such parameters were not known before from pairings.

We also demonstrate how to add a broadcast functionality to the risky scheme of [GKRW18],
at the cost of increasing the public key size and relying on the generic group model for security.
Running through our compilers gives:

Corollary 3. For any a ∈ [0, 1], there exists an asymptotically efficient broadcast and trace multi-
scheme of size (N1−a, N1−a, Na) from pairings, with security in the generic group model.

For a = 0, this gives the first broadcast and trace scheme with constant-sized ciphertexts from
standard tools, and improves on [GQWW19], which attained N ε ciphertext size for any ε > 0, while
also requiring lattices in addition to pairings8.

Proving Theorem 3. Our compiler is inspired by viewing the fingerprinting code solution to
traitor tracing [BN08] as a form of risk mitigation. Concretely, [BN08] can be seen as follows. First,
built a simple 2-user traitor tracing scheme from public key encryption; since the number of users is
constant, the parameter sizes are constant. Then, extend this to N users by assigning each of the N
users to one of the two identities of the 2-user system. The result is essentially a risky scheme with
2-sided error, where tracing helps narrow down the possible traitors, but does not let us actually
determine the traitor with certainty. [BN08] then remove the error by running many instances of the
scheme and assigning users to identities by using the combinatorics of the underlying fingerprinting
code, thereby removing the riskiness. Crucially, the compiled scheme is set up to not significantly
expand the ciphertext size.

In our setting, the compiler is actually much simpler, since an α-risky scheme has only one-sided
error; honest users are never accused. Let ΠRisk be an α-risky multi-scheme. Consider a new protocol
Π which runs ΠRisk with T = ω(log λ)/α instances. The secret key for a user consists of the all the
secret keys for that user across the T instances. To encrypt, encrypt to a single random instance
from ΠRisk. The overall ciphertext is simply the label of the instance (a number in [T ]), and a
ciphertext from ΠRisk. Since each user has a secret key from each instance, each user can decrypt.

Thus, we expand the secret key by a factor of O(1/α), and add log T = log λ+log(1/α) = O(log λ)
bits to the ciphertext. We can easily extend the above to yield a riskless multi-scheme for M
instances, by increasing the number of instances of ΠRisk to M × T and grouping them into sets of
size T .

Analysis. Suppose a pirate decoder D for Π decrypts with certainty. Then it must decrypt, no
matter which instance of ΠRisk is chosen during encryption. Thus, a perfect decoder for Π actually
yields a decoder for each of the T instances of ΠRisk. α-riskiness means that each of the T decoders
has an α chance of being traced to a traitor, and intuitively the probabilities should be independent.
Over all T instances, we expect the tracing probability to be 1− (1− α)T = 1− negl(λ).

Toward tracing imperfect decoders, suppose D instead only decrypts for a single instance of Π0,
rejecting ciphertexts for any other instance; D has non-negligible decryption probability 1/T , but
will only be traced with probability α. Thus, we cannot trace arbitrary decoders9. We will instead
aim for a threshold scheme; we can then apply Theorem 2 to get a full tracing scheme.

8The size of the broadcast and secret keys are never explicitly calculated in [GQWW19]. From personal communi-
cation with the authors of [GQWW19], we understand that the public key has size Ω(N) and the secret keys have size
Ω(N2). Thus, our scheme also improves on the secret key size from their work.

9This is similar to the reason behind why Boneh-Naor [BN08] is a threshold scheme.
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Even in the threshold setting, however, difficulties arise. The decoder may only decrypt, say,
half of the instances, which we will call “good” instances. The good instances are chosen adaptively,
after the adversary interacts with the many instances of the scheme. This means that the tracing
probabilities for the various good instances will not be independent. Nevertheless, we show by a
careful argument that, for the right definition of security for a multi-scheme, the tracing probabilities
cannot be too correlated, which is sufficient to get our proof to go through. More details are given
in Section 7.

Remark 2. All three of the compilers discussed so far — user expansion and risk mitigation, which
in turn relies on threshold elimination — are necessary to achieve Corollaries 2 and 3. We note that
there are only two valid orderings of the three compilers: risk mitigation→threshold elimination→user
expansion, or user expansion→risk mitigation→threshold elimination. Any other order will either
result in the final scheme being a threshold scheme, or will incorrectly apply user expansion to a
threshold scheme.

2.4 Traitor Tracing from Threshold Broadcast Encryption

We next turn to constructing traitor tracing from a certain type of attribute-based encryption which
we call threshold broadcast encryption (this notion of “threshold” not to be confused with the notion
of “threshold” for traitor tracing). A (plain) broadcast encryption scheme allows for broadcasting a
ciphertext to arbitrary subsets of users with a single constant-sized ciphertext. Broadcast encryption
with constant sized secret keys and ciphertexts (but linear-sized public keys) is possible using
pairings, as first shown by Boneh, Gentry, and Waters [BGW05].

Describing an arbitrary subset of recipients takes linear space; therefore, broadcast schemes
obtain sub-linear ciphertexts by assuming S is public and not counted in the ciphertext. On the
other hand, traitor tracing typically requires a “private” broadcast, where the recipient set is at
least partially hidden. For example, private linear broadcast encryption (PLBE) [BSW06] allows for
encrypting to sets [i], and only user i can distinguish between [i− 1] and [i].

Our goal is to show how to use broadcast functionalities — with public recipient sets — to
enable a private broadcast structure that allows for tracing.

Our Idea. To trace N users, we will instantiate a broadcast scheme with NT users, for some
parameter T . We will think of the NT identities as being pairs (i, x) ∈ [N ] × [T ]. For each user
i ∈ [N ], we will choose a random xi ∈ [T ], and give that user the secret key for broadcast identity
(i, xi). Only user i knows xi. To encrypt, we will simply broadcast to a random subset S ⊆ [N ]× [T ].

For tracing, consider choosing S uniformly at random conditioned on (i, xi) /∈ S; doing so “turns
off” user i, preventing them from decrypting. If i is honest, the adversary does not know xi and
hopefully cannot distinguish between this distribution and a truly uniform S. If turning off a user
causes a change in decryption probability, we then accuse that user.

The description so far has several issues. First, in regular execution of the above scheme, any
(i, xi) will only be in the recipient set with probability 1/2, meaning honest users can only decrypt
half the time. Second, an attacker may guess xi with non-negligible probability 1/T , and create a
decoder that fails if (i, xi) /∈ S, thus fooling the tracing algorithm into accusing an honest user with
non-negligible probability. Finally, encoding an arbitrary subset S takes NT bits, meaning we have
(at least) linear-sized ciphertexts.
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Threshold Broadcast. To rectify the first two issues, we will rely on a stronger version of
broadcast encryption, which we call threshold broadcast encryption10. Here, every secret key is
associated with a set U ; this key can decrypt a ciphertext to set S if and only if |U ∩ S| ≥ t for
some threshold t.

We now give users the secret key for disjoint sets U of identities. The size of S ∩U for a random
set S will concentrate around |U |/2; by setting t slightly smaller than |U |/2, users will be able to
decrypt with overwhelming probability. For tracing, the attacker can only guess a small fraction of
an honest user’s identities. We turn off the identities the attacker does not guess, which will drop
|S ∩ U | below t, thereby turning off the user while keeping the decoder on.

In slightly more detail, we set T = 2λ. We interpret the N × 2λ identities as triples (i, j, b) ∈
[N ]× [λ]× [2]. For each user, we will choose a random vector xi ∈ {0, 1}λ, and give the user the
secret key for set Ui = {(i, j, xij)}j∈[λ]. When we trace, for each user i, we will iterate over all j ∈ [λ],
trying to turn off identity (i, j, xij) by removing that element from S. If removing that element
causes too-large a decrease in the decoder’s decryption probability, we keep it in S; otherwise we
remove it. We demonstrate that, if the user is outside the adversary’s control (meaning in particular
the adversary does not know xi), that with high probability we can remove enough of the elements
to completely turn off that user. A diagram illustrating our idea is given in Figure 1.

Interestingly, our tracing algorithm makes adaptive queries to the decoder: which elements are in
the set S depends on the results of previous queries to the decoder. This is unlike the vast majority
of tracing techniques (including both fingerprinting codes and PLBE), where all queries can be
made in parallel.

Figure 1: An illustration in the case λ = 5, N = 4, t = 2. Here, the ith pair of columns corresponds
to the identities (i, j, b), j ∈ [λ], b ∈ {0, 1}. Ui is the set of boxes with the number i in them. Gray
boxes are those contained in S. Left: Normal usage. In this case, if t = 2, all users would be able to
decrypt. Right: An example tracing attempt. An “X” represents an element that has been explicitly
removed from S. Here, removing (1, 2, 1) (1st pair of columns, 2nd row) failed, and so (1, 2, 1) was
left in S. Tracing succeeds in fully turning off users 1 and 2.

The Shared Randomness Model. For now, we side-step the need to communicate S by
considering a new model for traitor tracing, which we call the shared randomness model. Here, every
ciphertext is encrypted using a large public source of randomness (in addition to private random
coins). This public randomness is also available for decryption, but we will not count it as part of
the ciphertext. In this model, we simply have S be derived from the shared randomness.

We update our size notation, to include a fourth term R which bounds the size of the shared
randomness; C now only bounds the ciphertext component excluding the shared randomness. For

10Prior literature such as [AHL+12] uses the terminology of “threshold attribute based encryption”. We use the
broadcast terminology to emphasize the goal of short ciphertexts, which is the main objective in broadcast encryption.
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example, a scheme of size (P,K,C;R) = (N,N, 1;N) would have linear-sized public and secret
keys, constant-sized ciphertexts, and linear-sized shared randomness. We note that a scheme of
size (P,K,C;R) in the shared randomness model is also a scheme of size (P,K,C +R) in the plain
model. We prove the following in Section 8:

Theorem 4 (Informal). If there exists a secure threshold broadcast scheme Π0 of size (P,K,C) and
run-time (G,E,D), then there exists a secure broadcast and trace scheme Π of size (P,K,C;N) and
run-time (G,E,D) in the shared randomness model. If Π0 has run time (E,D), then so does Π.

Instantiation. We now turn to constructing a threshold broadcast scheme. Existing pairing-based
constructions such as [AHL+12] have size (N,N, 1), allowing us to match Corollary 3 with entirely
different techniques, but in the weaker shared randomness model. We observe, however, that we do
not need a full threshold broadcast scheme. Prior works required security to hold, even if multiple
users had overlapping sets Ui. In our case, all users have disjoint Ui. This turns out to let us strip
away much of the secret key material, arriving at smaller secret keys.

In slightly more detail, the secret key for a set U consists of terms roughly of the form
gβ
∏
i∈U (γ−i)−1

where β, γ are hidden. The problem with overlapping U is that one can combine
different secret keys to generate new keys for other subsets. For example, one can combine
sk12 = gβ(γ−1)−1(γ−2)−1 and sk13 = gβ(γ−1)−1(γ−3)−1 into sk23 = sk−1

12 × sk2
13 = gβ(γ−2)−1(γ−3)−1

without knowing β, γ. This invalidates security, since sk23 may be able to decrypt, even if sk12 and
sk13 are not allowed to. Therefore, existing schemes add additional randomization to the secret key
to prevent combinations; each user then needs a personalized version of the public key in order to
strip away this extra randomization during decryption. This expands the secret keys to size O(N).

Our main observation is that no such randomization is necessary if the U ’s are disjoint; we
describe our scheme in Section 8. We justify the security of our scheme (for disjoint U) in the
generic group model for pairings:

Theorem 5 (Informal). There exists a threshold broadcast scheme with size (N, 1, 1) and run time
(N,N) from pairings with security for disjoint U in the generic group model.

Combining Theorems 4 and 5, we obtain an asymptotically efficient pairing-based scheme of size
(N, 1, 1;N) in the shared randomness model.

While potentially interesting as a shared-randomness model scheme, our scheme is not useful
as a plan-model scheme, since the shared randomness of size N makes the overall plain-model
ciphertext linear sized. Our next observation will show how to nevertheless use our scheme to arrive
at an interesting plain-model scheme.

User Expansion in the Shared Randomness Model. Interestingly, in the shared randomness
model, user expansion (Theorem 1) increases the ciphertext size, but not shared randomness size.
Theorem 1 then becomes:

Theorem 1 (User Expansion with Shared Randomness). Let P = P (N,M),K = K(N,M), C =
C(N,M), R = R(N,M) and T = T (N,M) be polynomials such that T (N,M) ≤ N . If there exists
a secure multi-scheme Π0 with size (P,K,C;R) in the shared randomness model, then there exists a
secure multi-scheme Π with size

( P (N/T,MT ) , K(N/T,MT ) , T × C(N/T,MT ) ; R(N/T,MT ) )
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in the shared randomness model. If Π0 runs in time (E,D) for polynomials E(N,M), and D(N,M),
then Π runs in time

(T × E(N/T,MT ) , D(N/T,MT ) ) .

If Π0 is a broadcast and trace scheme, then so is Π.

By applying our user expansion compiler, we decrease the dependence of P,K,R on N , while
increasing C. Eventually, R ≤ C, in which case a shared-randomness scheme of size (P,K,C;R)
actually gives a plain model scheme of size (P,K,C). Combining Theorems 4 and 5, and then
applying our updated Theorem 1 with T = Na thus gives:

Corollary 4. For any constant a ∈ [0, 1], there exists an asymptotically efficient broadcast and trace
scheme of size (N1−a, 1, Na;N1−a) from pairings in the shared randomness model, whose security is
justified in the generic group model. For a ∈ [1/2, 1], the scheme has size (N1−a, 1, Na) in the plain
model.

Thus, by using the shared randomness model as an intermediate step, we are able to achieve
interesting tracing results in the plain model. Note that setting a = 1/2 gives the first pairing-based
broadcast and trace scheme with size (N1/2, 1, N1/2), improving on (N1/2, N1/2, N1/2) from [BW06].

Asymptotically Efficient Standard Tracing. We note that while a broadcast and trace implies
standard traitor tracing with the same parameter sizes, an asymptotically efficient broadcast and
trace scheme does not imply an asymptotically efficient standard traitor tracing scheme. The reason
is that the required running times for broadcast and trace are looser, owing to having the set S of
size N as input to Enc,Dec.

Concretely, for our scheme above, our compilers give a running time of (N,N1−a), which gives
an asymptotically efficient scheme for broadcast and trace, since Enc,Dec run in time at most N ,
the length of the input set S ⊆ [N ]. However, for standard traitor tracing, asymptotic efficiency
would require a run-time of at most (Na +N1−a, Na +N1−a), meaning the scheme described above
is then not asymptotically efficient due to the large running time of encryption.

Looking deeper, the issue is that, when we apply Theorem 1, we create Na ciphertext components,
and each component requires time N1−a to compute since, at a minimum, the shared randomness
of size N1−a must be read. The result is an overall encryption running time of N . In Section 8, we
explain how to set up the system so that the Na ciphertext components can be computed in tandem,
taking the optimal time Na+N1−a. Intuitively, we can set the system up so that the computation of
the ciphertexts amounts to evaluating a single polynomial Q of degree N1−a at Na points, with the
wrinkle that the coefficients of this polynomial, and the result of evaluation, are in the exponent of the
pairing. Nevertheless, we show that standard algorithms for multi-point polynomial evaluation also
work in the exponent, thus compressing the running time. This multi-point polynomial evaluation
incurs a logarithmic overhead over the sum of input and output sizes, which can be absorbed into
the poly(λ) terms. Thus, we achieve asymptotic efficiency for standard traitor tracing:

Theorem 6. For any constant a ∈ [0, 1], there exists an asymptotically efficient traitor tracing
scheme of size (N1−a, 1, Na;N1−a) from pairings in the shared randomness model, whose security is
justified in the generic group model. For a ∈ [1/2, 1], the scheme has size (N1−a, 1, Na) in the plain
model.
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2.5 Putting it All Together: Our 3
√

N Construction

Finally, we combine all of the ideas above to yield a traitor tracing scheme where all parameters
have size 3√N . At a high level, we take our shared randomness scheme of size (N, 1, 1;N) for N
users, augment the construction with ideas from [GKRW18] to expand it to N2 users while hopefully
keeping the size (N, 1, 1;N), at the expense of only achieving 1/N -riskiness. If this worked, scaling
down N2 7→ N would give 1/

√
N -risky scheme of size (

√
N, 1, 1;

√
N) for N users. Then we apply

Theorem 3 to eliminate the risk, then Theorem 1 with T = 3√N to balance the number of users, and
finally including the shared randomness in the ciphertext, achieving size 3√N in the plain model.

We follow the above idea, but unfortunately there are some subtle issues with the above approach
which make the combination non-trivial. Concretely, when adding riskiness to our shared randomness
scheme, we multiply the number of users by N . However, we cannot expand the set of recipients for
the threshold broadcast scheme, since doing so would require expanding the public key. Since the
recipient set is limited, the sets Ui for the various users will actually need to overlap. As discussed
above, overlapping Ui requires expanding the secret key size, preventing us from achieving our goal.

While we are unable to achieve a 1/
√
N -risky scheme of size (

√
N, 1, 1;

√
N), we build a scheme

with large but redundant secret keys, so that the secret keys resulting from Theorem 3 can then
be compressed by eliminating the redundancy. The result is a secure multi-scheme with size
(
√
N,
√
N, 1;

√
N) in the shared randomness model from pairings with security proved in the generic

group model. We also give a more general parameter size trade-off in Section 9. Finally, we apply
the shared randomness version of Theorem 1 to obtain:

Corollary 5. For any constants a, b ≥ 0 such that a+ b ≤ 1, there exists an asymptotically efficient
secure multi-scheme with size (N1−a−b, Nmax(b,1−a−b), Nmax(a,1−a−b)) from pairings with security
proved in the generic group model.

In particular, for a, b ≥ 1− a− b, the scheme has size (N1−a−b, N b, Na). Setting a = b = 1/3
gives a scheme of size 3√N , as desired.

As with our threshold broadcast-based scheme, the straightforward application of Theorem 1 will
give a scheme where encryption a long time to run, resulting in a scheme that is not asymptotically
efficient. Nevertheless, just as with the prior scheme, we can achieve asymptotic efficiency by using
multi-point polynomial evaluation techniques.

3 Discussion, Other Related Work, and Open Problems

3.1 Takeaways

Beyond PLBE and Fingerprinting Codes. PLBE has been the stalwart abstraction in traitor
tracing literature for some time, and PLBE and fingerprinting codes make up the vast majority of
the fully collusion-resistant tracing literature. Our work demonstrates other useful approaches, and
in doing so we hope motivate the further study of alternative approaches to traitor tracing.

Mind your public and secret key sizes. As a result of our work, the threshold limitation of
fingerprinting code-based traitor tracing is eliminated. The only remaining limitation is the size of
the other parameters. What is important for traitor tracing, therefore, is the trade-off between the
various parameter sizes, rather than any one parameter on its own.

With this view in mind, perhaps a sub-quadratic scheme from pairings could have been anticipated.
After all, the

√
N scheme of Boneh, Sahai, and Waters [BSW06] has some “slack”, in the sense that
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its secret keys are constant sized. On the other hand, Boneh and Naor [BN08] show that ciphertexts
can potentially be compressed by expanding the secret key size. However, prior to our work there
was no clear way to actually leverage this slack to get a 3√N scheme.

|pk| × |sk| × |ct| = N for pairings?: Many of our pairing-based traitor tracing schemes, as well
as [BSW06], have size (Na, N b, N c) where a+ b+ c = 1. We conjecture that any setting of a, b, c ≥ 0
such that a + b + c = 1 should be possible from pairings. We partially solve this conjecture, by
demonstrating schemes with a+ b+ c = 1 for the special cases (1) b = 0, c ≥ a (Corollary 4) and (2)
b, c ≥ a (Corollary 5). However, there are still a number of gaps: for example, is a (

√
N,
√
N, 1)

scheme possible?
For broadcast and trace, we conjecture that any setting where a+ c ≥ 1 and b = 0 is satisfiable,

matching what is known for plain broadcast from pairings. We achieve this in the shared randomness
model, and for c ≥ 1/2 in the plain model (Corollary 4). We also achieve any a+ c ≥ 1 without
restrictions on c, but with non-zero b (Corollary 3).

3.2 Limitations

Generic Groups. Some of our constructions, including our 3√N -size scheme, have security proofs
in the generic group model, as opposed to concrete assumptions on pairings. We believe the
results are nevertheless meaningful. Our schemes are based on new attribute-based encryption-style
primitives, and generic groups have been used in many such cases [BSW07, AY20]. We hope that
further work will demonstrate a 3√N scheme based on concrete assumptions.

Concrete efficiency. While our schemes improve the dependence on N , they may be worse in
terms of the dependence on the security parameter. We therefore view our schemes more as a
proof-of-concept that improved asymptotics are possible, and leave as an important open question
achieving better concrete efficiency. The same can be said of the prior LWE and obfuscation-
based constructions, which incur enormous overhead (much worse than ours) due to non-black box
techniques and other inefficiencies.

Private tracing. Our schemes all achieve only private traceability, meaning the tracing key must
be kept secret. Most schemes from the literature, including the recent LWE schemes, also have
private tracing. On the other hand, some schemes have public tracing, allowing the tracing key to
be public [BW06, GGH+13, BZ14].

3.3 Other Related Work

(1, 1, 1) traitor tracing. Recent developments have given the first traitor tracing schemes where all
parameters are independent of the number of users. These schemes, however, require tools other than
pairings, namely LWE [GKW18, CVW+18] or obfuscation-related objects [GGH+13, BZ14, GVW19].

Embedded identities. Some tracing schemes [NWZ16, KW19, GKW19] allow for information
beyond an index to be embedded into an identity and extracted during tracing. It is not obvious
how to extend our techniques to handle embedded identities, and we leave this as an open question.

Bounded collusions. In this work, we only consider the unbounded collusion setting, where all
users may conspire to build a pirate decoder that defeats tracing. It is also possible to consider
bounded collisions, which often result in more efficient schemes [CFN94, BF99, KY02, ADM+07,
LPSS14, ABP+17].
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4 Traitor Tracing Definitions
In this section, we define traitor tracing, as well as some variants. The central object we will study
is actually a slight generalization of traitor tracing, which we call a a “multi-scheme.” Here, there
are many separate instances of the traitor tracing scheme being run, but the public keys of the
different instances are aggregated into a single common public key. Yet, despite this aggregation, the
separate instances must behave as essentially independent traitor tracing schemes. Multi-schemes
similar to identity-based traitor tracing [ADM+07], except that identity-based traitor tracing has an
exponential number of instances.

In this work, we consider a key encapsulation variant of traitor tracing. A traitor tracing
multi-scheme is a tuple Π = (Gen,Enc,Dec,Trace) of PPT algorithms with the following syntax:

• Gen(1N , 1M , 1λ) takes as input a security parameter, a number of users N , and a number of
instances M . It outputs a public key pk, a (secret) tracing key tk, and N ×M user secret
keys {skj,i}i∈[N ],j∈[M ].

• Enc(pk, j) takes as input the public key bk and an instance number j, and outputs a ciphertext
c together with a key k.

• Dec(pk, skj,i, c) takes as input the public key pk, the secret key skj,i for user i in instance j,
and a ciphertext c; it outputs a message k.

• TraceD(tk, j, ε) takes as input the tracing key tk, and instance j, and an advantage ε. It then
makes queries to a decoder D. Finally, it outputs a set A ⊆ [N ]. We require that the running
time of Trace, when counting queries as unit cost, is poly(λ,N,M, 1/ε).

We require that Dec recovers k: for any polynomials N = N(λ),M = M(λ), there exists a negligible
function negl such that for all i ∈ [N ], j ∈ [M ], λ > 0:

Pr
[

Dec(pk, skj,i, c) = k : (pk,tk,(skj′,i′ )i′∈[N ],j′∈[M ])←Gen(1N ,1M ,1λ)
(c,k)←Enc(pk,j)

]
≥ 1− negl(λ)

For security, we generalize [GKRW18] to the case of multi-schemes. Let A be an adversary, and ε
an inverse polynomial. Consider the following experiment:

• A receives the security parameter λ, written in unary.

• A sends numbers N,M (in unary) and commits to an instance j∗ ∈ [M ]. In response, run
(pk, tk, {skj,i}i∈[N ],j∈[M ])← Gen(1N , 1M , 1λ) and send pk to A.

• A then makes two kinds of queries, in an arbitrary order.

– Secret key queries, on pairs (j, i) ∈ [M ]× [N ]. In response, it receives skj,i. For j ∈ [M ],
let Cj ⊆ [N ] be the set of queries (j, i) of this type.

– Tracing queries, on pairs (j,D); D is a poly-sized circuit and j ∈ [M ] \ {j∗}. All tracing
queries must be on distinct j. Return Aj ← TraceD(tk, j, ε).

• A produces a decoder D∗, and the challenger outputs Aj∗ ← TraceD∗(tk, j∗, ε).
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We define the following events. BadTr is the event Aj∗ * Cj∗ . Let GoodDec be the event that
Pr[D∗(c, kb) = b] ≥ 1/2 + ε(λ), where (c, k0)← Enc(pk, j∗), k1 is chosen uniformly at random from
the key space, and b← {0, 1}. In this case, we call D∗ a “good” decoder. Finally, let GoodTr be the
event that |Aj∗ | > 0.

Definition 1. A traitor tracing multi-scheme Π is secure if, for all PPT adversaries A and all
inverse-polynomials ε, there exists a negligible function negl such that Pr[BadTr] ≤ negl(λ) and
Pr[GoodTr] ≥ Pr[GoodDec]− negl(λ).

Remark 3. Most works require a secure traitor tracing scheme to additionally be a semantically
secure encryption scheme: an attacker who has no secret keys cannot learn anything about the
encrypted message. We note, however, that such a requirement is redundant, given the security
requirement above. Indeed, for any semantic security attacker with non-negligible advantage, we
can take the attacker’s state after receiving the public key and interpret this state as a decoder for
ciphertexts. Let 2ε be the inverse polynomial which lower bounds the adversary’s advantage infinitely
often. Then for infinitely-many security parameters, if we run the tracing experiment above with
parameter ε, we will have Pr[GoodDec] ≥ ε. Therefore, by the tracing security requirement, we
will have Pr[GoodTr] ≥ ε − negl for these security parameters, which is in particular shows that
Pr[GoodTr] is non-negligible. But since the attacker has no user secret keys, GoodTr implies BadTr,
and therefore Pr[BadTr] is non-negligible, contradicting tracing security.

In order to simplify our security proofs, we therefore only prove security according to Definition 1
above, and will ignore semantic security.

Remark 4. The definition given in [GKRW18] is somewhat more complicated than ours: it states
that for all PPT adversaries A, non-negligible ε, and inverse polynomial p, there exists a negligible
function negl such that the following holds: for all λ where ε(λ) > p(λ), Pr[BadTr] ≤ negl(λ) and
Pr[GoodTr] ≥ Pr[GoodDec]− negl(λ)11. We observe that their definition is equivalent to ours, and
thus we prefer our definition for its simplicity. To disambiguate the ε in our definition from theirs,
call ours ε and theirs ε′. To see that their definition implies ours, for an inverse polynomial ε
in our definition, simply set ε′ = ε, p = ε/2 so that ε′ < p always. Invoking their definition on
ε′, p gives the necessary inequalities. In the other direction, given an ε′, p for their definition, set
ε(λ) = max(p(λ), ε′(λ)), which is an inverse polynomial regardless of ε′. Then whenever ε′(λ) > p(λ),
we have that ε′(λ) = ε(λ), and invoking our definition with ε implies the desired inequalities for such
λ; for all other λ, no guarantees are required.

4.1 Variations, Special Cases, and Extensions

Standard Traitor Tracing. A standard tracing scheme is obtained by setting M = 1 in the
multi-scheme definition. By a straightforward hybrid argument, a standard traitor tracing scheme
also gives a multi-scheme by running independent instances for each j ∈ [M ]. The result is that, if
there exists a standard tracing scheme of size (P,K,C), then there exists a secure multi-scheme of
size (M × P,K,C).

Threshold Schemes. A threshold scheme [NP98] is one where a malicious user is accused only
for very good decoders that succeed a constant fraction of the time.

11The authors actually have two different negligible functions, one for each inequality, but this is readily seen to be
equivalent to a single negligible function.
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Definition 2. A multi-scheme Π is threshold secure if there exists a constant ε ∈ (0, 1/2) such
that, for all PPT adversaries A, there exists a negligible function negl such that Pr[BadTr] ≤ negl(λ)
and Pr[GoodTr] ≥ Pr[GoodDec]− negl(λ).

In the case of threshold secure schemes, the constant ε is hard-coded into the algorithm Trace,
and we omit ε as an input to Trace.

Risky Schemes. In a risky scheme [GKRW18], a traitor is only accused with some small but
noticeable probability. Let α = α(N,M, λ) be a polynomial.

Definition 3. A traitor tracing multi-scheme Π is α-risky if, for all PPT adversaries A and all
inverse-polynomials ε, there exists a negligible function negl such that Pr[BadTr] ≤ negl(λ) and
Pr[GoodTr] ≥ αPr[GoodDec]− negl(λ).

Broadcast and Trace. A broadcast and trace multi-scheme [BW06] is a multi-scheme augmented
with a broadcast functionality. Enc,Dec,Trace and the decoder all take as input a subset S ⊆ [N ].
The security experiment is updated to the following:

• A receives the security parameter λ, written in unary.

• A sends numbers N,M (in unary) and commits to an instance j∗ ∈ [M ]. In response, run
(pk, tk, {skj,i}i∈[N ],j∈[M ])← Gen(1N , 1M , 1λ) and send pk to A.

• A then makes two kinds of queries, in an arbitrary order.

– Secret key queries, on pairs (j, i) ∈ [M ]× [N ]. In response, it receives skj,i. For j ∈ [M ],
let Cj ⊆ [N ] be the set of queries (j, i) of this type.

– Tracing queries, on triples (j, S,D); D is a poly-sized circuit and j ∈ [M ] \ {j∗}. All
tracing queries must be on distinct j. Return Aj ← TraceD(tk, j, S, ε).

• A produces a decoder D∗ and set S∗ ⊆ [N ]; the challenger outputs Aj∗ ← TraceD∗(tk, j∗, S∗, ε).

BadTr is now the event Aj∗ * Cj∗ ∩ S∗. GoodDec be the event that Pr[D∗(c, kb) = b] ≥ 1/2 + ε(λ),
where (c, k0)← Enc(pk, j∗, S∗), k1 is chosen uniformly at random from the key space, and b← {0, 1}.
GoodTr is as before: |Aj∗ | > 0.

Definition 4. A broadcast and trace multi-scheme Π is secure if, for all PPT adversaries A and
all inverse-polynomials ε, there exists a negligible function negl such that Pr[BadTr] ≤ negl(λ) and
Pr[GoodTr] ≥ Pr[GoodDec]− negl(λ).

We can analogously define risky and threshold tracing for broadcast and trace schemes.

4.2 Parameter Sizes and Running Times

We will say that a scheme Π has size (P,K,C) for functions P = P (N,M), K = K(N,M), and
C = C(N,M), if there is a polynomial poly(λ) such that, for all polynomials N = N(λ) and M =
M(λ), we have |pk| ≤ P (N,M)×poly(λ), |skj,i| ≤ K(N,M)×poly(λ), and |c| ≤ C(N,M)×poly(λ).
Here, we assume both encryption and decryption take the public key as input.
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Remark 5. Our syntax for traitor tracing allows the decryption algorithm to have access to the
public key. If we were to ignore parameter sizes, the public key input to decryption could be
removed, and instead a copy of the public key be included in the secret key. On the other hand, this
transformation will result in larger secret keys in settings where the secret key is much shorter than
the public key. Both conventions—including and not including the public key in decryption—are
followed throughout the traitor tracing and broadcast encryption literature (e.g. [BGW05] which
includes the public key, and [BSW06] which does not).

Looking at Corollaries 1, 2, 3, and 5, the distinction between the two conventions does not
matter, as the public key will be at least as short as the secret key for these schemes. For Corollary 4,
on the other hand, it is crucial for our claimed secret key sizes that decryption has explicit access to
the public key.

We will also analyze the run-times of our algorithms. We will assume a RAM model of
computation. We will not require an algorithm to read its entire input; instead, it can query the
bit positions of its input at unit cost per bit. We will use a similar notation for run-times as we
did for parameter sizes: we will say a scheme Π runs in time (E,D) for functions E,D if there is a
polynomial poly(λ) such that, for all polynomials N = N(λ) and M = M(λ), Enc and Dec run in
time at most E(N,M)× poly(λ) and D(N,M)× poly(λ), respectively.

We will say that a protocol is asymptotically efficient if the running times of Enc, and Dec are,
up to poly(λ) factors, bounded by the sum of their input and output sizes. For traitor tracing
schemes, this is equivalent to requiring E ≤ P + C and D ≤ P + K + C; for a broadcast and
trace protocol (where Enc,Dec take as input the N -bit specification of a subset S ⊆ [N ]), this is
equivalent to E ≤ P + C +N and D ≤ P +K + C +N . Since our computational model does not
require an algorithm to read its entire input, asymptotic efficiency may not be optimal. However,
any asymptotically efficient scheme will then have optimal running time if we switch to the model
where we require algorithms to read their entire input.

Remark 6. A broadcast and trace multi-scheme is in particular a standard traitor tracing multi-
scheme, by setting S = [N ]. However, note that asymptotic efficiency for broadcast and trace allows
for potentially larger run-times than standard tracing, since E,D are allowed to be as large as N ,
while the various parameter sizes may be much smaller than N . Thus, an asymptotically efficient
broadcast and trace multi-scheme is not necessarily asymptotically efficient when used as a standard
tracing scheme.

4.3 New Notion: The Shared Randomness Model

We now give a new model for traitor tracing, which we call the shared randomness model. In the
shared randomness model, encryption has the form (c = (r, c′), k)← Enc(bk, j ; r, s). That is, some
of the random coins for Enc are public, and included in the output of Enc. In this model, we will
consider the “ciphertext length” to exclude the public random coins, and just be the length of c′.

The shared randomness model captures a setting where the sender and receiver have access to a
common source of randomness, for example randomness beacons, stock market fluctuations, etc.
The sender can use this randomness as r during encryption, but then does not actually need to
send r to the receiver. Thus, communication costs depend only on c′, rather than the entire length
of (r, c′).

For our parameter size notation, we will explicitly consider the size of c′ and r separately. That
is, for a traitor tracing multi-scheme in the shared randomness model, we say the scheme has
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parameter size (P, S,C,R) for functions P,K,C,R, where C × poly(λ) is a bound on the size of c′
and R× poly(λ) is a bound on the size of r. We note that any multi-scheme with parameter size
(P,K,C,R) in the shared randomness model is also a scheme with parameter size (P,K,C + R)
in the plain model, by having the encrypter choose r and send it as part of the ciphertext. We
also note that any plain-model scheme with parameter size (P,K,C) is also a shared-randomness
scheme with parameter size (P,K,C, 0).

We also update our notion of asymptotic efficiency to E ≤ P + C +R, D ≤ P +K + C +R for
standard traitor tracing and E ≤ P + C +R+N and D ≤ P +K + C +R+N for broadcast and
trace.

5 User Expansion Compiler
We now prove Theorem 1, which offers a trade-off between ciphertext size and number of users. For
convenience, we copy the shared-randomness version of Theorem 1 here:

Theorem 1 (User Expansion). Let P = P (N,M),K = K(N,M), C = C(N,M), R = R(N,M)
and T = T (N,M) be polynomials such that T (N,M) ≤ N . If there exists a secure multi-scheme Π0
with size (P,K,C;R) in the shared randomness model, then there exists a secure multi-scheme Π
with size

( P (N/T,MT ) , K(N/T,MT ) , T × C(N/T,MT ) ; R(N/T,MT ) )

in the shared randomness model. If Π0 runs in time (E,D) for polynomials E(N,M), and D(N,M),
then Π runs in time

( T × E(N/T,MT ) , D(N/T,MT ) ) .

If Π0 is a broadcast and trace scheme, then so is Π.

In order for the cleanest exposition, we prove the case of standard tracing; extending to broadcast
and trace is straightforward. Let Π0 = (Gen0,Enc0,Dec0,Trace0) be a traitor tracing multi-scheme
in the shared randomness model. We will assume without loss of generality that the encapsulated
key has length at most the size of the ciphertext.

As described in Section 2, the idea of our comppiler is to instantiate Π0 withM ′ = MT instances,
but each instance having N ′ = N/T users. To obtain N users, we group the M ′ instances into M
collections of T instances each. Over the T instances within a collection, there are now N ′ × T = N
users. In order to ensure that each of the users can decrypt, we encrypt separately to each of the
T instances. Note that in many cases the parameter sizes will depend minimally on M . Thus we
decrease N and hence reduce all parameter sizes, but then multiply the ciphertext size by T . The
result is that we shrink public key and secret key sizes, and the expense of a larger ciphertext. We
now give the construction:

Construction 1 (User Expansion Compiler). Let T = T (N,M) be a polynomial. Let Π =
(Gen,Enc,Dec,Trace) be the tuple of PPT algorithms:

• Gen(1N , 1M , 1λ): Run (pk′, tk′, (sk′j′,i′)i′∈[N ′],j′∈[M ′]) ← Gen0(1N ′ , 1M ′ , 1λ) where N ′ = N/T
and M ′ = M × T . Set pk = pk′, tk = tk′. Interpret [M ′] as [M ]× [T ] and [N ] as [N ′]× [T ].
Then set skj,(i,t) = sk′(j,t),i
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• Enc(pk, j, r): Here, r is the shared randomness, which is taken from the same space of shared
randomness as in Π0. For each t ∈ [T ], run (ct, kt) ← Enc0(pk, (j, t), r), again using our
interpretation of [M ′] as [M ] × [T ]. Choose a random key k from the key space. Output
c = ( (ct)t∈[T ] , (kt ⊕ k)t∈[T ] ) as the ciphertext and k as the key.

• Dec(pk, skj,i, c, r): Write i as (i′, t) and c = ( (ct)t∈[T ] , (ut)t∈[T ] ). Compute k′t ←
Dec0(pk, skj,i, ct, r). Output k′ = ut ⊕ k′t.

• TraceD(tk, j, ε): For each t ∈ [T ] run At ← Trace0
Dt(tk, (j, t), ε/4T ), and output A =

∪t∈[T ]{(i, t) : i ∈ At}. Here, Dt be the following decoder for instance (j, t) of Π0: on in-
put (c, r), u, do the following:

– For t′ 6= t, compute (ct′ , kt′)← Enc0(pk, (j, t′), r). Set ct = c.
– Choose a random bit b← {0, 1}, and random keys k0, k1.
– For t′ < t, choose random ut′. For t′ > t, ut′ = kt′ ⊕ k0. Set ut = u⊕ k0.
– Set c′ = ( (ct′)t′∈[T ] , (ut′)t′∈[T ] ). Output b⊕D((c′, r), kb) We will expand on the role of

XORing with b in the proof of security (Theorem 7). Intuitively, XORing with b has the
effect of converting a distinguisher for a bit into an actual predictor for the bit..

By the correctness of Π0, we will have that k′t = kt, and therefore k′ = ut ⊕ k′t = ut ⊕ kt = k, so
Π is correct. Since the encapsulated key in Π0 is at most the size of the ciphertext, we see that the
desired sizes hold. We see that the desired run-times hold as well.

5.1 Security of Our Compiler

We now state and prove the security of Construction 1, which is enough to justify Theorem 1.

Theorem 7. If Π0 is a secure multi-scheme, then so is Π.

Proof. Let A and ε be a PPT adversary and inverse-polynomial, as in Definition 1. Let GoodTr,
BadTr, and GoodDec be the corresponding events.

We first show that Pr[BadTr] ≤ negl(λ). Intuitively, this holds since a user (i, t) of instance
j∗ of Π is only accused if user i of instance (j∗, t) of Π0 is accused; on the other hand, user (i, t)
of instance j∗ is honest if and only if user i of instance (j∗, t) is honest. We now formalize this
intuition.

Let A0 be the following adversary. It runs A as a sub-routine, playing the role of challenger to
A:

• On input 1λ, A0 forwards 1λ to A.

• When A sends 1N , 1M , j∗, let N ′ = N/T and M ′ = M/T . Also choose a random t∗ ∈ [T ] and
set J∗ = (j∗, t∗). A0 then sends 1N ′ , 1M ′ and J∗ to its challenger.

• In response, A0 receives a public key pk, which it forwards to A.

• When A makes a secret key query on pair (j, i) ∈ [M ] × [N ], A0 will interpret i = (i′, t) ∈
[N ′]× [T ]. It will then let j′ = (j, t), which will be interpreted as an element of [M ′]. It makes
a query to it’s challenger on the pair (j′, i′). Upon receiving skj′,i′ , it sets skj,i = skj′,i′ and
responds to A with skj,i.
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• When A makes a tracing query on a pair (j,D), A0 will simulate running Trace by making
tracing queries to Trace0. It will construct the decoders Dt as in Trace, and then make a
tracing query on j′ = (j, t), Dt, obtaining a set At. Then it sends to A the set A = ∪t∈[T ]{(i, t) :
i ∈ At}.

• Finally, when A outputs a decoder D∗, A0 will construct and output D∗t∗ .

Let ε′ = ε/4T . Define the events GoodDec0,GoodTr0,BadTr0 for A0, using parameter ε′.
Notice that A0 perfectly simulates the view of A; therefore the events BadTr,GoodTr,BadTr0

happen for A as a subroutine with the same probability as they do in Definition 1. Also notice that
the view of A is independent of t∗.

Notice that when D∗t∗ outputted by A0 is traced by Trace0, this is identical to generating At∗
when running Trace on D∗ outputted by A. BadTr0 means that, except with negligible probability,
for every i′ ∈ At∗ , A0 made a secret key query on (J∗, i′) where J∗ = (j∗, t∗). This is equivalent to
A making secret key a query on (j∗, i) where i = (i′, t∗).

Suppose BadTr happens. Then there is some t such that At contains i′ such that A did not
make a secret key query on (j∗, (i′, t)). Since BadTr is independent of t∗, there is a 1/T probability
that t∗ = t, in which case BadTr0 happens. Thus, Pr[BadTr] ≤ T Pr[BadTr0] ≤ negl.

Next, we show that Pr[GoodTr] ≥ Pr[GoodDec] − negl(λ). The intuition is that, by a hybrid
argument, if a decoder D can distinguish ciphertexts from Π, then it can also distinguish ciphertexts
from Π0, and hence will be traced. We now formalize this intuition. To do so, we first show that if
GoodDec happens, then at least one of the decoders Dt are good for Π0. The idea is then that such
a good Dt will be traced.

In more detail, suppose GoodDec happens. This means that Pr[D∗((c′, r), kb) = b] ≥ 1/2+ε. Here,
r is a random value fo the shared randomness, b← {0, 1}, k0, k1 ← K, (ct, kt)← Enc0(pk, (j∗, t), r)
for each t ∈ [T ], ut = kt ⊕ k0, and c′ = ( (ct)t∈[T ] , (ut)t∈[T ] ).

Now, consider the distribution Xt(b) on ((c′, r), kb): the bit b is fixed, and ut′ is changed to be
uniformly random for t′ ≤ t; ut′ for t′ > t remain as above. Let pt := Pr[D∗(Xt(b)) = b : b← {0, 1}].
Note that X0(0) is the same as choosing a random r and running Enc(pk, j∗, r), whereas X0(1) is
the same distribution, but the encapsulated key is replaced with a random string. Thus, GoodDec is
equivalent to the condition p0 ≥ 1/2 + ε. On the other hand, in XT (b), the ciphertext is independent
of k0, k1, and so XT (0) and XT (1) are identical distributions. Thus pT = 1/2. This means, if
GoodDec happens, there must be some t ∈ [T ] such that pt ≤ pt−1 − ε/T . Let t∗ be such a t.

Now consider the decoder D∗t on input (c, r), u. If u is set to the correct key, then D∗t runs D∗
on the distribution Xt−1(b) for a random bit b, and then XORs the output of D∗ with b. Thus D∗t
outputs 0 exactly when D correctly guesses b. Therefore, in the case of u being the correct key, D∗t
outputs 0 with probability pt−1. On the other hand, if u is set to be random, then Dt runs D on the
distribution Xt(b) for a random bit b. Dt outputs 1 exactly when D incorrectly guesses b. Thus, Dt

outputs 1 in this case with probability 1− pt. The probability Dt correctly guesses whether u is the
correct key or random is then pt−1/2 + (1− pt)/2 = 1/2 + (pt−1 − pt)/2. For t = t∗, this probability
is at least 1/2 + ε/2T .

With the above analysis in hand, we define a sequence of events. Let Q = (T/ε)2ω(log λ).
Consider the random variables testt, t ∈ [T ], sampled from the following process:

• Repeat Q times: sample (c, u0) ← Enc0(pk, (j∗, t), r), u1 ← K, and b ← {0, 1}. Run b′ ←
Dt((c, r), ub).
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• Set testt = 1 if at least 1/2 + 3ε/8T of the Q trials above have b′ = b. Otherwise, set testt = 0

We will overload notation, and also define event testt, which occurs if the random variable testt = 1.
If testt happens, we will say that the decoder Dt has “tested good.” We now have the following:

Claim 1. If GoodDec happens, then, except with negligible probability, there will be some t such
that testt happens.

Proof. By the above analysis, if GoodDec happens, there will be a t∗ such that Dt∗ has advantage
ε/2T in distinguishing the correct u from random. Then by Hoeffding’s inequality, we will have
testt∗ happen, except with probability e−2Q((ε/8T )/2)2 , which is negligible by our choice of Q.

We also have the following:

Claim 2. The probability that testt happens, but Dt is not “good” for Π0 using parameter ε/4T , is
negligible.

Proof. If Dt is not good with parameter ε/4T , then by Hoeffding’s inequality, the fraction of trials
that have b′ = b will be less than 1/2 + 3ε/8T , except with probability e−2Q((ε/8T )/2)2 , which is
negligible.

We now derive an adversary A0 from A, and use the tracing guarantee on A0 in order to establish
the tracing guarantee of A. One issue is that while one of the D∗t must be good decoders, we do
not know which one when committing to t∗. By choosing a random t∗, we will output a good D∗t∗
with probability Pr[GoodDec]/T , but this is only enough to guarantee that GoodTr happens with
probability ≈ Pr[GoodDec]/T , which is too weak.

Instead, we will more carefully design A0: A0 will be identical to the above adversary, except
that we replace the final step with:

• Finally, when A outputs a decoder D, A will construct the decoders Dt. It will compute the
variables testt as above. If t∗ is the first t such that testt happens, it will output the decoder
D∗t∗ . Otherwise, abort and output the dummy decoder that always outputs 0.

If the abort happens, then GoodDec0 must not happen, since the decoder will make a correct
guess with probability exactly 1/2. Also, notice that Trace0 must output the empty set (with high
probability) when tracing the dummy decoder: since the dummy decoder is information-theoretically
independent of the queries made by the adversary, if Trace0 outputted a non-empty set with
non-negligible probability, then Trace0 must accuse an honest user with non-negligible probability.
Therefore, if the abort happens, no user is accused.

Let qt be the probability that testt happens, and testt′ does not happen for any t′ < t. By Claim 1,
we have that ∑t qt ≥ Pr[GoodDec] − negl. Then by Claim 2, Pr[GoodDec0] ≥ 1

T

∑T
t=1 qt − negl ≥

Pr[GoodDec]/T − negl. Thus, by the security of Π0, Pr[GoodTr0] ≥ Pr[GoodDec]/T − negl.
Finally, the events testt are independent of the choice of t∗. Therefore conditioned on at least on

testt happening, with probability 1/T , t∗ will be “correct”, in the sense of being the lowest t for
which testt happens. If t∗ is incorrect, then GoodDec0, and hence GoodTr0, will not happen. If t∗
is correct, then GoodTr0 implies GoodTr. Thus, Pr[GoodTr0] ≤ Pr[GoodTr]/T . Putting everything
together shows that Pr[GoodTr] ≥ Pr[GoodDec]− negl, as desired.
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6 Threshold Elimination Compiler
We now prove Theorem 2, generically removing thresholds from tracing schemes. For convenience,
we copy Theorem 2 here, but updated to handle shared-randomness:

Theorem 2 (Threshold Elimination). Let P,K,C,R be polynomials in N,M . If there exists a
threshold secure multi-scheme ΠThr with size (P,K,C;R) in the shared randomness model, then
there exists a (non-threshold) secure multi-scheme Π with size (P,K,C;R). If Π0 runs in time
(E,D) for polynomials E(N,M) and D(N,M), then so does Π. If ΠThr is a broadcast and trace
scheme, then so is Π. If ΠThr is an α-risky scheme, then so is Π.

As described in Section 2, the basic idea of our compiler is to n-out-of-n secret share the
message, and then encrypt each share using ΠThr. The intuition is that any ciphertext under ΠThr
is “hard” to decrypt without being traced with constant probability, meaning decrypting all n
ciphertext components without being traced is “hard”, except with negligible probability. Our
tracing algorithm, however, only guarantees that the message is un-computable, not that it is
entirely hidden. Therefore, we actually encrypt a random message and extract a hardcore bit from
the message. This allows for encrypting a single bit; to encrypt more bits, we simply encrypt each
bit separately.

We note that our compiler treats any shared randomness identically to the ciphertext component.
Therefore, for notational simplicity, we give our compiler for plain-model traitor tracing. Let
ΠThr = (GenThr,EncThr,DecThr,TraceThr) be a multi-scheme.

Construction 2 (Threshold Elimination Compiler). Assume the encapsulated key space of ΠThr
is K = {0, 1}`. Let t = t(λ) be any polynomial. Let Π = (Gen,Enc,Dec,Trace) be the tuple of the
following PPT algorithms:

• Gen(1N , 1M , 1λ) = GenThr(1N , 1M , 1λ)

• Enc(pk, j): Let n = ω(log λ). For each u ∈ [n], v ∈ [t], run (cu,v, ku,v)← EncThr(pk, j). Choose
a random s← K. For each v ∈ [t], let kv = k1,v ⊕ · · · ⊕ kn,v and let bv = s · kv mod 2 be the
bit-wise inner product of s and kv. Let k = k1k2 · kt. Let c = (s, (cu,v)u∈[n],v∈[t] ). Output
(c, k).

• Dec(pk, skj,i, c): Write c = (s, (cu,v)u∈[n],v∈[t] ). For each u ∈ [n], v ∈ [t], run k′u,v ←
DecThr(pk, ski, cu,v). For each v ∈ [t], compute k′v = k′1,v ⊕ · · · ⊕ k′n,v and b′v = r · · · k′v mod 2.
Output k′ = b′1b

′
2 · · · b′t.

• The algorithm TraceD(tk, ε) will be described below.

By the correctness of ΠThr, we have with overwhelming probability that k′u,v = ku,v for all
u ∈ [n], v ∈ [t]. This implies k′v = kv and hence b′v = bv for all v ∈ [t], meaning k′ = k. Thus Π is
correct. We also see that Π has the desired parameter size: only the ciphertext is increased by a
factor of n × t ≤ poly(λ). We now give our algorithm TraceD(tk, j, ε), which proceeds in several
stages:

Target Single Bit: First, we define a decoderD1(s, (cu)u∈[n]), where s ∈ {0, 1}`, cu are ciphertexts
from ΠThr. The goal of D1 is to predict the bit s · k where k is the XOR of all the keys encapsulated
in the cu. It does so by embedding its challenge into a random position of an input for D:
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• Choose a random v ∈ [t].

• Let cu,v = cu and choose (cu,v′ , ku,v′) ← EncThr(pk, j) for u ∈ [n] and v′ ∈ [t] \ {v}. Let
c = (s, (cu,v)u∈[n],v∈[t] ).

• For each v′ ∈ [t]\{v}, compute kv′ = k1,v′⊕· · ·⊕kn,v′ . For v′ ≤ v, choose random bv′ ← {0, 1},
and for v′ > v, set bv′ = r · k′u,v′ mod 2. Set k = b1 · · · bt.

• Output bv ⊕D(c, k) (XORing with bv turns a distinguisher into a predictor)

Apply Goldreich-Levin. Next, we will need the following theorem:

Theorem 8 ([GL89]). There exists a constant Γ and oracle algorithm GLD(`, ε′) running in time
poly(`, log(1/ε′)) and making poly(`, log(1/ε′)) queries to D, such that the following holds. If
there exists an x ∈ {0, 1}` such that Pr[D(r) = x · r mod 2 : r ← {0, 1}`] ≥ 1/2 + ε′, then
Pr[GLD(`, ε′) = x] ≥ Γ× (ε′)2.

Trace will define D2( (cu)u∈[n] ) := GLD1(·,(cu)u∈[n])(`, ε′ = ε/t); D2 is given (cu)u∈[n] that encrypt
k1, . . . , kn, and its goal is to compute k1 ⊕ · ⊕ kn.

Generate List of Potential Decryptions: Let D3(c, k) be the following, where c is a ciphertext
for ΠThr and k ∈ {0, 1}`. For z = 1, . . . , ξ = (2nt3/Γε3)× ω(log λ):

• Choose a random u ∈ [n], and set cu = c.

• Then for each u′ ∈ [n] \ {u}, run (cu′ , ku′)← EncThr(bk, j).

• Run k′ ← D′v,b( (cu)u∈[n]) ), and set k(z) = k′ ⊕ k1 ⊕ · · · ⊕ ku−1 ⊕ ku+1 · · · ⊕ kn.

Next, if k = k(z) for any z ∈ [ξ], output 0. Otherwise, output 1.

Trace. Finally, run and output A← TraceThr
D3(tk, j)

6.1 Security of Our Compiler

We now state and prove the security of Construction 2, which is enough to justify Theorem 2.

Theorem 9. Set n = ω(log λ), ε′ = ε/t, ξ = (2nt3/Γε3) × ω(log λ). Suppose ` = ω(log λ). If ΠThr
is a secure threshold multi-scheme, then Π is a secure (non-threshold) multi-scheme. If ΠThr is an
α-risky threshold multi-scheme, then Π an α-risky (non-threshold) multi-scheme.

Proof. We prove the non-risky version, the risky version being essentially identical. Fix an adversary
A for Π and inverse-polynomial ε. Let GoodTr,BadTr,GoodDec be the events as in Definition 1.
That Pr[BadTr] is negligible follows readily from an analogous argument to the proof of Theorem 7.

To show that Pr[GoodTr] ≥ Pr[GoodDec] − negl, we assume GoodDec happens (D∗ guesses b
with probability ≥ 1/2 + ε) and analyze the decoders D∗1, D∗2, D∗3 constructed by Trace. First, we
have the following:

Claim 3. If GoodDec happens, then Pr[D∗1(s, (cu)u∈[n]) = s · k mod 2] ≥ 1/2 + 2ε/t, where s ←
{0, 1}`, (cu, ku)← EncThr(pk, j) for u ∈ [n], and k = k1 ⊕ · · · ⊕ kn.
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Proof. If GoodDec happens, then Pr[D∗(c, kβ) = β] ≥ 1/2 + ε, where (c, k0) ← Enc(pk, j) and
k1 ← {0, 1}t. Let k(v) be the following string:

k(v)i =
{
k1
i i ≤ v
k0
i i > v

Then a routine calculation shows that Pr[D∗(c, k(v−b)) = b] ≥ 1/2+ε/t, where the probability is
over a random v ∈ [n] and random b ∈ {0, 1}. Notice that the only difference between D∗(c, k(v−1))
and D(c, k(v)) is that, in the first case the vth bit of K is random, whereas in the second case it is
k0
v . Thus, D∗ is in some sense distinguishing k0

v from random, with advantage ε/t. Then we use
the standard trick of turning a bit distinguisher into a bit predictor, by running the distinguisher
on a random bit, and then XORing the output with the same random bit. The result is exactly
equivalent to running D∗1, and a routine calculation shows that Pr[D∗1(s, (cu)u∈[n]) = k] ≥ 1/2 + 2ε/t
as desired.

Next, the following claim shows that D∗2 actually guesses k:

Claim 4. Assuming GoodDec happens, then Pr[D∗2((cu)u∈[n]) = k] ≥ Γ × (ε′)3, where (cu, ku) ←
EncThr(pk, j) and k = k1 ⊕ · · · ⊕ kn.

Proof. For this claim, we will use Goldreich-Levin (Theorem 8). We call a ciphertext vector (cu)u∈[n]
“good” if Pr[D∗1(s, (cu)u∈[n]) = s · k mod 2] ≥ 1/2 + ε′, where the probability is over the random
choice of s and the random coins in D∗1. Applying Goldreich-Levin, we have that for any good
(cu)u∈[n], D∗2 will compute k with probability Γ× (ε′)2.

Claim 3 states that the overall probability Pr[D∗1(s, (cu)u∈[n]) = s · k mod 2] including the
randomness of sampling (cu, ku) is at least 1/2 + 2ε′. Therefore, with probability at least ε′, we
have that (cu)u∈[n] is good. Thus, the overall probability D∗2 will compute k is at least Γ× (ε′)3, as
desired.

Next, we need to show that D∗3 can decrypt with high probability. Let γ > 0. Let x denote
the secret random coins of EncThr. Define Sγ to be the set of x for EncThr such that the following
experiment, named CorrectDecrypt(x), outputs 1 with probability at least δ:

• Choose a random u ∈ [n] and let (cu, ku)← EncThr(bk, j;x).

• Choose random (cu′ , ku′)← EncThr(bk, j) for each u′ 6= u.

• Run k ← D∗2((cu′)u′∈[n]). Output 1 if k1 ⊕ k2 ⊕ · · · ⊕ kn = k

In other words, Sγ is the set of random coins (which correspond to a message/key pair) such
that, if that message/key pair were extended into an entire vector (cu)u∈[n] by randomly filling in
the other ciphertexts, then D∗2 will decrypt correctly with probability at least γ. Let xu′ be the
random coins used to produce the various (cu′ , ku′)

Let η be the fraction of s ∈ Sγ . Let p be the overall probability that D∗2 outputs the correct key
k. Let σ be a random permutation on [n].

Claim 5. p ≤ ηn + n(1− η)γ
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Proof. The intuition is that either (1) all n of the randomnesses are in Sγ , or (2) at least on of the
randomnesses is not in Sγ . Case (1) happens with probability γn. On the other hand, there are n
possible positions for the randomness that is not in Sγ ; for each choice, the probability of being
outside of Sγ is (1− η), and conditioned on being outside of Sγ , the probability of decryption is at
most γ. More formally, we have the following sequence of inequalities:

p = Pr[D∗2((cu)u∈[n]) = k] = Pr[D∗2((cσ(u))u∈[n]) = k]
= Pr[D∗2((cσ(u))u∈[n]) = k ∧ (xu ∈ Sγ∀u)]

+ Pr[D∗2((cσ(u))u∈[n]) = k ∧ ¬(xu ∈ Sγ∀u)]
≤ ηn + Pr[D∗2((cσ(u))u∈[n]) = k ∧ ¬(xu ∈ Sγ∀u)]
≤ ηn +

∑
u∗

Pr[D∗2((cσ(u))u∈[n]) = k ∧ xu∗ /∈ Sγ ]

≤ ηn + nPr[CorrectDecrypt(s) ∧ x /∈ Sγ ]
≤ ηn + n(1− η)γ

Using Claim 4, this means that if GoodDec happens, then Γ(ε′)3 ≤ ηn + n(1 − η)γ. We now
choose γ = Γ(ε′)3/2n. This implies that ηn ≥ Γ(ε′)3/2, meaning η ≥ (Γ(ε′)3)1/n = (Γε3/2n3)1/n. By
our choice of n = ω(log λ), since ε is inverse polynomial in λ, we have that η ≥ poly(λ)−1/ω(log λ) =
2−1/ω(1) = 1− o(1).

This means that, conditioned on GoodDec, when running D∗3 on a fresh ciphertext from EncThr,
the input ciphertext will come from a “good” set of random coins with probability 1 − o(1). In
this case, every time D∗3 runs D∗2, the probability D∗2 outputs the correct k is at least γ. Since
ξ = ω(log λ)/γ, the probability D∗2 will output the correct k in at least one of the runs is then
1 − (1 − γ)ω(log λ)/γ ≥ 1 − e−ω(log λ) = 1 − negl(λ), provided the input to D∗3 was good. If D∗3 is
given the correct key as input, and the ciphertext is good, it will correctly output 0 with probability
1− negl(λ). Over all ciphertexts, it will therefore output 0 with probability at least 1− o(1) when
given the correct key.

On the other hand, if D∗3 is given a random key as input, then the probability it outputs 0 is
the probability the random key matches one of the outputs of D∗2. Regardless of whether the input
to D∗2 is good or bad, this probability is at most ξ/2`, which is negligible since ` = ω(log λ). Thus,
in this case it correctly outputs 1 with probability 1− negl(λ).

The result is that, provided GoodDec happens, D∗3 predicts the correct bit with probability at
least 1/2(1− o(1)) + 1/2(1− negl(λ)) = 1− o(1). From here, it is straightforward to construct an
adversary AThr from A which simulates A, except that when A produces D∗, AThr will construct and
output D∗3. By the analysis above, Pr[GoodDecThr] = Pr[GoodDec]. Moreover, since Trace simply
outputs whatever TraceThr outputs, we have that Pr[GoodTrThr] = Pr[GoodTr]. Finally, by the
security of ΠThr, we have that Pr[GoodTrThr] ≥ Pr[GoodDecThr]− negl(λ), and hence Pr[GoodTr] ≥
Pr[GoodDec]− negl(λ). This completes the proof.

7 Risk Mitigation Compiler
We now prove Theorem 3, which we have reproduced here for convenience, and updated to work
with shared randomness schemes:
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Theorem 3 (Risk Mitigation). Let P = P (N,M),K = K(N,M), C = C(N,M), R = R(N,M)
be polynomials. Let α = α(N), β = β(N) be inverse polynomials with α < β. If there exists an
α-risky multi-scheme ΠRisk with size (P,K,C;R) in the shared randomness model, then there exists
a β-risky multi-scheme Π with size

( P (N,Mβα−1) , βα−1 ×K(N,Mβα−1) , C(N,Mβα−1) ; R(N,Mβα−1) ) .

If Π0 runs in time (E,D) for polynomials E(N,M), D(N,M), then Π runs in time

( E(N,Mβα−1) , D(N,Mβα−1) ) .

If ΠRisk is a broadcast and trace scheme, then so is Π.

Implications. As an immediate application, we apply Theorem 3 to [GKRW18]. They give a
1/N -risky (non-multi) scheme of size (1, 1, 1), and more generally give a β-risky scheme of size
(βN, βN, βN). By repeating their scheme in parallel M times, their construction readily gives a
1/N -risky multi-scheme of size (M, 1, 1). Then applying Theorem 3 yields a β-risky multi-scheme of
size (M × (βN), βN, 1); setting M = 1 gives a non-multi-scheme of size (βN, βN, 1), thus improving
on their work. Moreover, setting β = 1 gives a scheme with constant-size ciphertext and linear
public/secret keys, the first such scheme from pairings.

In Section 7.2, we show to improve the public key size even further. Namely, we show that the
underlying building block in [GKRW18] — which they instantiate using pairings — actually readily
gives a 1/N -risky multi-scheme of size (1, 1, 1) (no dependence on M). This then gives a β-risky
scheme of size (1, βN, 1) and a non-risky scheme of size (1, N, 1). Plugging into our user expansion
compiler with T = Na gives a secure multi-scheme of size (1, N1−a, Na), thus proving Corollary 2.

In Section 8.2, we additional give a new algebraic instantiation, combining [GKRW18] with broad-
cast encryption techniques, to yield a 1/N -risky broadcast and trace multi-scheme of size (N, 1, 1).
Running through our compilers gives a full broadcast and trace scheme of size (N1−a, N1−a, Na),
thus proving Corollary 3.

The Compiler. We now give our compiler. As discussed in Section 2, the idea is to group
instances into collections of size T ; these collections will represent the separate instances in the
compiler scheme. To encrypt to a particular collection, we choose a random instance from the
collection and encrypt to that instance. Each user for a given collection will receive a secret key
for each instance within that collection, thereby allowing them to decrypt. The intuition is that, a
decoder which decrypts with high probability must essentially decrypt ciphertexts for many of the
constituent instances. Each instance gives a probability α of being traced; over all instances the
probability of evading tracing is therefore low, provided T is set large enough.

One wrinkle is that the above only works for decoders with high — say constant — success
probability. As a result we only achieve a threshold scheme. We can then combine with our threshold
elimination compiler (Theorem 2) to obtain a full tracing scheme.

We note that our compiler treats any shared randomness identically to the ciphertext component.
Therefore, for notational simplicity, we give our compiler for plain-model traitor tracing. Let ΠRisk
be an α(N)-risky multi-scheme. For full generality, we will only assume that ΠRisk is a threshold
scheme.

Construction 3 (Risk Mitigation Compiler). Let ΠThr = (GenThr,EncThr,DecThr,TraceThr) be the
tuple of PPT algorithms where:
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• GenThr(1N , 1M , 1λ): set T = (β/α) × ω(log λ), M ′ = M × T . Interpret [M ′] as [M ] × [T ].
Run (pk, tk, {sk(j,t),i}i∈[N ],j∈[M ],t∈[T ])← GenRisk(1N , 1M ′ , 1λ). Output (pk, tk, (skj,i)i∈[N ],j∈[M ]),
where skj,i = (sk(j,t),i)t∈[T ].

• EncThr(pk, j): Run (c, k) ← EncRisk(pk, (j, t)) for a random choice of t ∈ [T ]. Output the
ciphertext (t, c) and encapsulated key k.

• DecThr(pk, skj,i, (j, c)): Run and output k′ ← DecRisk(pk, sk(j,t),i, c).

• TraceThr
D(tk, j): Let Dt be the decoder Dt(c, k) = D((t, c), k). For t ∈ [T ], run At ←

TraceRisk
Dt(tk, (j, t)). Output A = ∪tAt.

Correctness follows readily from the correctness of ΠRisk. We also see that the desired parameter
sizes and run-times hold.

7.1 Security of Our Compiler

We now state and prove the threshold security of Construction 3. As stated above, Construction 3
will only be guaranteed to be a threshold scheme. We then combined with our threshold elimination
compiler (Theorem 2), which justifies Theorem 3.

Theorem 10. Assume T = (β/α)× ω(log λ). If ΠRisk is an α-risky threshold multi-scheme, then
ΠThr is a β-risky secure threshold tracing scheme.

Proof. Consider a decoder D∗ outputted by an adversary. We say that t ∈ [T ] is “good” if D∗t has a
high chance of decrypting ciphertexts for instance (j, t) of ΠRisk. D∗ can only decrypt ciphertexts
for t where D∗t is good; thus GoodDecThr implies that the fraction of good t is large. Since each
t represents a different instance of the risky scheme, each of the decoders D∗t should intuitively
have an α chance of being traced to some user. As long as the number of good t is larger than
ω(log λ)/α, then we would expect that, with overwhelming probability, at least one of the D∗t traces.
One challenge is that, for general decoders with arbitrary inverse-polynomial success probability,
the number of good t may be small. In particular, if D∗ has advantage 1/T , then it could be that
only a single t is good. We resolve this by only guaranteeing threshold security, which implies that
a constant fraction of t are good. Another challenge is that the attacker can choose adaptively
which of the t will good and hence traceable, so the tracing probabilities are not independent events.
Nevertheless, by a careful analysis, we are able to prove security. We now give the formal proof.

By the assumption that ΠRisk is threshold secure, there exists a constant ε as guaranteed by
Definition 2. Let ε′ be any constant such that ε′ > ε. How goal is to show that ΠThr is a threshold
scheme with respect to ε′.

Let AThr be a PPT adversary. Let GoodDecThr,GoodTrThr,BadTrThr be the events from Defini-
tion 2 with respect to parameter ε′. Let D∗ be the decoder outputted by AThr, and D∗t the various
decoders constructed when tracing D∗.

First, that Pr[BadTrThr] < negl(λ) follows from an analogous argument to the proofs of The-
orems 7 and 9. Next, we argue that Pr[GoodTrThr] ≥ Pr[GoodDecThr] − negl(λ). Let η be any
constant, ε < η < ε′. let δ = (ε′ − η)/2, and let m = dδT e. Let Q = ω(log λ). Consider the random
variables testt, t ∈ [T ], sampled from the following process:

• Repeat Q times: sample (c, k0) ← EncRisk(pk, (j∗, t)), k1 ← K, and b ← {0, 1}. Run b′ ←
D∗t (c, kb).
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• Set testt = 1 if at least 1/2 + η of the Q trials above have b′ = b. Otherwise, set testt = 0

We will overload notation, and also define event testt, which occurs if the random variable testt = 1.
If testt happens, we will say that the decoder Dt has “tested good.” Let mGood be the probability
that at least m of the events testt happen.

Claim 6. Pr[mGood] ≥ Pr[GoodDecThr]− negl(λ).

Proof. Recall that D∗((t, c), k) = D∗t (c, k). For t ∈ [T ], let pt := Pr[D∗t (c, kb) = b], where the
probability is taken over the randomness of (c, k0)← EncRisk(bk, (j∗, t)), the choice of k1, and the
choice of b. By a standard argument, if we fix a decoder D∗ such that GoodDecThr happens, then
Prt←[T ][pt ≥ 1/2 + (ε′ + η)/2] ≥ (ε′ − η)/2 where t← [T ] is uniform. In other words, conditioned on
GoodDecThr, we have (ε′ − η)T/2 ≥ δT of the pt will be at least 1/2 + (ε′ + η)/2.

Now, consider a t such that pt ≥ 1/2 + (ε′ + η)/2. By Hoeffding’s inequality, the fraction of the
Q trials for D∗t where b′ = b will be at least 1/2 + η, except with probability e−2Q((ε′−η)/2)2 . This
is negligible by our choice of Q and the fact that ε′ − η is a constant. By union bounding over all
T decoders, at least δT of the decoders will test good, except with negligible probability. Since
the number of decoders that test good must be an integer, at least dδT e = m must therefore test
good.

Now, consider the sequence of decodes D∗1, D∗2, . . . , D∗T . Define the event Badn as mGood happens,
plus the first n good decoders from this sequence all produced empty sets while tracing. Then

Pr[GoodTrThr] ≥ Pr[GoodTrThr ∧mGood] = Pr[mGood]− Pr[Badm]

Based on Claim 6, our goal therefore is to upper bound Pr[Badm]. Towards our goal, consider
the following adversary ARisk:

• On input 1λ, run AThr(1λ) until it produces 1N , 1M , j∗ ∈ [M ].

• Let M ′ = TM , and interpret [M ′] as [M ]× [T ]. Choose a random t∗ ∈ [T ]. Also choose an
integer n ∈ [1,m] with probability Pr[n] = γ(1− α)m−n, where γ is a normalization constant

γ = α

1− (1− α)m

so that ∑m
n=1 Pr[n] = 1.

• Send 1N , 1M ′ , (j∗, t∗) to the risky mult-scheme challenger.

• Continue running AThr. Whenever AThr makes a secret key query on instance j and index i,
ARisk makes T secret key queries on ((j, t), i), t ∈ [T ] to get the secret keys sk(j,t),i. Return to
AThr the secret key sk(j, i) = (sk(j,t),i)t∈[T ]. If Cj is the set of i queried by AThr to instance j,
then C(j,t) (the set of queries ARisk makes for a given j) is equal to Cj , for all t. Whenever
AThr makes a tracing query on (j 6= j∗, D), ARisk makes T tracing queries on ((j, t), Dt) where
Dt is constructed as in TraceThr, obtaining the sets At, t ∈ [T ]. It replies with A = ∪tAt.

• When AThr outputs the decoder D∗, construct the T decoders D∗t as above.

• For each t ∈ [T ], sample the random variable testt as above.

30



• Perform the following checks; if any of the checks fail, immediately abort and output a dummy
decoder which simply always responds with 0.

– Check that at least m of the D∗t test good.
– Check that D∗t∗ tests good.
– Check that exactly n of the D∗t for t ≤ t∗ test good.
– For the good Dt, t < t∗ (of which there must be n − 1 by the checks above), make a

tracing query on ((j∗, t), D∗t ). Check that all the tracing queries result in empty sets.

• Finally, of all the checks pass, output D∗j∗ .

Let GoodTrRisk,BadTrRisk,GoodDecRisk be the events for ARisk as in Definition 3 for parameter
ε. Now let Output be the probability that ARisk actually outputs D∗j∗ , as opposed to producing a
dummy decoder. Fix n, and consider the sequence D∗1, D∗2, . . . and corresponding variables testt.
Suppose the guess t∗ was correct, in the sense that the nth D∗t that tested good is D∗t∗ . In this case,
Output happens exactly when Badn−1 happens. Thus, averaging over all n and the random choice
of t∗ (which are independent of the view of AThr), we have that

Pr[Output] = 1
T

m∑
n=1

Pr[n] Pr[Badn−1]

Next, if Output happens, then ARisk outputs the decoder D∗j∗ . Suppose D∗j∗ has probability less
than 1/2 + ε in predicting b. Then by Hoeffding’s inequality, the probability that D∗j∗ tests good is
at most e−2Q(η−ε)2 , which is negligible. Hence, Pr[Output ∧ ¬GoodDecRisk] is negligible. Thus,

Pr[GoodDecRisk] ≥ Pr[Output]− negl(λ)

By the security of the risky multi-scheme, we have that

Pr[GoodTrRisk] ≥ αPr[GoodDecRisk]− negl(λ) ≥ αPr[Output]− negl(λ) (1)

Now, notice that if ARisk aborts, the decoder information-theoretically contains no information
about the keys queried by ARisk. In this case, we can conclude that TraceRisk accuses no one,
except with negligible probability, since otherwise an honest user will be accused with non-negligible
probability. Therefore, if we fix n, and assume a correct guess of t∗, a successful trace of ARisk occurs
exactly when Badn−1 happens, but Badn does not. Notice that Badn implies Badn−1. Averaging
over the choice of n, t∗, we have:

Pr[GoodTrRisk] = 1
T

m∑
n=1

Pr[n](Pr[Badn−1]− Pr[Badn])

= 1
T

m∑
n=2

(Pr[n]− Pr[n− 1]) Pr[Badn−1] + Pr[1]
T

Pr[Bad0]− Pr[m]
T

Pr[Badm]
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Now, note that Bad0 is just mGood, that Pr[n− 1] = (1− α) Pr[n], and Pr[m] = γ. Thus

Pr[GoodTrRisk] = α

T

m∑
n=2

Pr[n] Pr[Badn−1] + Pr[1]
T

Pr[mGood]− γ

T
Pr[Badm]

= α

T

m∑
n=1

Pr[n] Pr[Badn−1] + (1− α) Pr[1]
T

Pr[mGood]− γ

T
Pr[Badm]

= αPr[Output] + (1− α) Pr[1]
T

Pr[mGood]− γ

T
Pr[Badm] (2)

Combining Equations 1 and 2 and canceling the αPr[Output] from both sides gives

(1− α) Pr[1]
T

Pr[mGood]− γ

T
Pr[Badm] ≥ −negl(λ)

which rearranges to
Pr[Badm] ≤ (1− α) Pr[1]

γ
Pr[mGood] + T

γ
negl(λ)

Note that (1− α) Pr[1]/γ = (1− α)m. Also note that 1/γ = (1/α)(1− (1− α)m) ≤ 1/α, meaning
T
γ negl(λ) ≤ (T/α)negl(λ) ≤ negl(λ). Putting everything together,

Pr[GoodTrThr] ≥ Pr[mGood]− Pr[Badm] ≥ (1− (1− α)m) Pr[mGood]− negl(λ)
= (1− (1− α)(β/α)ω(log λ)) Pr[mGood]− negl(λ)
≥ (1− e−βω(log λ)) Pr[mGood]− negl(λ)
≥ (1− e−βω(log λ)) Pr[GoodDecThr]− negl(λ)

Next, consider the function f(β) := 1− e−βx − β for β ∈ [0, 1].

Claim 7. f(β) ≥ −e−x for β ∈ [0, 1]

Proof. The second derivative of f is −x2e−βx < 0, so this function is concave. Therefore, on the
interval β ∈ [0, 1], f(β) ≥ min(f(0), f(1)). Observe that that f(0) = 0 and f(1) = −e−x.

Setting x = ω(log λ), this means

Pr[GoodTrThr] ≥ (β + f(β)) Pr[GoodDecThr]− negl(λ)
≥ (β − e−ω(log λ)) Pr[GoodDecThr]− negl(λ)
= (β − negl(λ)) Pr[GoodDecThr]− negl(λ)
≥ β Pr[GoodDecThr]− negl(λ)

This completes the proof on Theorem 10.

7.2 How to Build a Risky Multi-Scheme

We now prove the following, which suffices to prove Corollary 2:

Theorem 11. If Assumptions 1 and 2 of [GKRW18] on pairings hold, there exists a 1/N-risky
multi-scheme of size (1, 1, 1) and run-time (1, 1).

32



As a starting point, [GKRW18] build a 1/N -risky traitor tracing scheme of size (1, 1, 1), based on
pairing assumptions that they call Assumption 1 and 2. By tweaking the construction of [GKRW18],
we show how to obtain a 1/N -risky multi-scheme of size (1, 1, 1) under the same computational
assumptions. The idea is that the underlying object from [GKRW18], which they call mixed bit
matching encryption, readily gives an identity-based functionality, which is then used to create the
M different instances with a single short public key.

Mixed Bit Matching Encryption. We now describe a variant of the Mixed Bit Matching
Encryption (MBME) primitive that [GKRW18] use to build traitor tracing. We describe their
primitive a bit differently than in [GKRW18], taking advantage of some additional functionalities of
their MBME scheme, which we will elaborate on below.

An MBME scheme ΠMBME = (GenMBME,ExtractMBME,EncMBME,DecMBME,ReRandMBME) is a
tuple with the following syntax:

• GenMBME(1n, 1λ) takes as input an integer n and security parameter λ. It outputs a master
secret key msk and master public key mpk.

• ExtractMBME(msk,x) takes as input the master secret key msk, and a vector x ∈ {0, 1}n. It
produces a secret key sk.

• EncMBME(msk,y) takes as input the master secret key msk, and a vector y ∈ {0, 1}n. It
produce a ciphertext c and encapsulated key k

• DecMBME(sk, c) takes as input a secret key and a ciphertext, and produces a key k′.

• ReRandMBME(mpk, {(ci, ki)}i∈[`]) takes as input a list of ciphertext/encapsulated key pairs,
and produces a new ciphertext/encapsulated key pair (c, k).

There will be two correctness requirements. First, decryption should recover the encapsulated key
k, as long as x · y = 0 over the integers. Concretely, for any polynomial n = n(λ), there exists a
negligible function negl(λ) such that, for all λ and for all x,y ∈ {0, 1}n such that x · y = 0,

Pr[DecMBME(sk, c) = k : (msk,mpk)←GenMBME(1n,1λ), sk←ExtractMBME(msk,x)
(c,k)←EncMBME(msk,y) ] ≥ 1− negl(λ)

The second correctness requirement concerns ReRandMBME. Intuitively, we ask that ReRandMBME,
on input ciphertexts with attributes xi, i ∈ [`], produces a new ciphertext with attribute x = maxi(xi).
Here, max is applied bit-wise, so that max( (0, 1, 0) , (1, 0, 0) ) = (1, 1, 0).

In more detail, we say that a vector x is generated by a list L = (xi)i∈[`] if the following two
conditions hold: first, x = maxi(xi). Second, let S ⊆ [n] be the set of indices where x has a 1.
Then, there exists an injective function f : S → [`] such that, for each j ∈ S, the vector xf(j) has a
1 in position j. This second condition is a technical condition, which roughly says that for each
1 in x, we can identify a distinct xi that “leads to” x having a 1 in that position. For example,
the list ( (1, 1, 0) , (1, 1, 0) ) generates x = (1, 1, 0), where f assigns each 1 bit to one of the two
copies of (1, 1, 0). The list ( (0, 1, 0) , (1, 1, 0) ) also generates (1, 0, 0). On the other hand, the list
L = ( (1, 1, 0) , (0, 0, 1) ) does not generate x = (1, 1, 1), despite max(L) = x, since there are only
two vectors in L but three positions with 1.

We now give the second requirement formally. For any polynomials n = n(λ), ` = `(λ),
there exists a negligible function negl(λ) such that, for all lists L = (xi)i∈[`] ⊆ ({0, 1}n)` and all
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x ∈ {0, 1}n such that L generates x, the following two distributions over (msk,mpk, (ci, ki)i∈[`], c, k)
are negl(λ)-close in statistical distance:

(msk,mpk)← GenMBME(1n, 1λ)
(ci, ki)← EncMBME(msk,xi)
(c, k)← EncMBME(msk,x)

and
(msk,mpk)← GenMBME(1n, 1λ)

(ci, ki)← EncMBME(msk,xi)
(c, k)← ReRandMBME(mpk, (ci, ki)i∈[`])

We note that only the special case of ReRandMBME where L is empty is explicitly discussed
in [GKRW18]; in this case, it allows for public generation of ciphertext to attribute 0n (which all
secret keys can decrypt), with a distribution statistically close to that generated using msk. This is
the “pk-sk ciphertext indistinguishability” notion from [GKRW18].

Nevertheless, the full ReRandMBME as needed above is easily constructed for their scheme.
Essentially, each ciphertext and encapsulated key is a vector of group elements; for each (ci, ki),
choose a random exponent zi, and set c = ∏

i c
zi
i (where exponentiation and multiplication is

component-wise) and k = ∏
i k

zi
i .

Security for MBME. We make three security requirements. The first is ciphertext indistin-
guishability which, roughly, says that, given a ciphertext with attribute y, a secret key for attribute
x such that x · y > 0 reveals nothing about the encapsulated key; this holds even if multiple such
secret keys are controlled by the adversary. Second, we will have a ciphertext attribute hiding and
secret key attribute hiding property. These requirements roughly state that and adversary, who
gets many secret keys and ciphertexts, learns nothing about the x or y vectors that were used to
generate the secret keys/ciphertexts. Of course, for any secret key/ciphertext pair, the adversary
learns whether or not x · y = 0 by running the decryption algorithm and seeing if it succeeds; the
requirement is roughly that no other information is revealed.

We note that [GKRW18] define slightly different notions, where they combine ciphertext
indistinguishability and ciphertext attribute hiding into a single experiment. Nevertheless, their
notions readily imply ours.

Ciphertext Indistinguishability. Let A be an adversary, and consider the following experiment:

• A, on input 1λ, produces an integer 1n and a ciphertext attribute y∗.

• In response, run (msk,mpk) ← GenMBME(1n, 1λ) and sample (c, k0) ← EncMBME(msk,y∗),
k1 ← K, and b← {0, 1}. Reply with (mpk, c, kb).

• Now, A can make two kinds of queries:

– Ciphertext queries on attribute y; in response it receives a sample from EncMBME(msk,y).
– Secret key queries on attributes x such that x · y∗ > 0; in response it receives a sample

from ExtractMBME(msk,x)

• Finally, A outputs a guess b′ for b.

We say that ΠMBME has ciphertext indistinguishability if, for all PPT adversaries A, there exists a
negligible function negl(λ) such that, for all λ, Pr[b′ = b] ≤ 1/2 + negl(λ).
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Ciphertext Attribute Hiding. Let A be an adversary, and consider the following experiment:

• A, on input 1λ, produces an integer 1n and two ciphertext attributes y∗0,y∗1.

• In response, run (msk,mpk)← GenMBME(1n, 1λ) and sample (c, k)← EncMBME(msk,y∗b) where
b← {0, 1}. Reply with (mpk, c, k).

• Now, A can make two kinds of queries:

– Ciphertext queries on attribute y; in response it receives a sample from EncMBME(msk,y).
– Secret key queries on attributes x such that either (1) both x · y∗0 > 0 and x · y∗1 > 0, or
(2) x · y∗0 = x · y∗1 = 0; in response it receives a sample from ExtractMBME(msk,x)

• Finally, A outputs a guess b′ for b.

We say that ΠMBME has ciphertext attribute hiding if, for all PPT adversaries A, there exists a
negligible function negl(λ) such that, for all λ, Pr[b′ = b] ≤ 1/2 + negl(λ).

Secret Key Attribute Hiding. Let A be an adversary, and consider the following experiment:

• A, on input 1λ, produces an integer 1n and two secret key attributes x∗0,x∗1.

• In response, run (msk,mpk)← GenMBME(1n, 1λ) and sample sk← ExtractMBME(msk,x∗b) where
b← {0, 1}. Reply with (mpk, sk).

• Now, A can make two kinds of queries:

– Ciphertext queries on attribute y such that either (1) both x∗0 · y > 0 and x∗1 · y > 0, or
(2) x∗0 · y = x∗1 · y = 0; in response it receives a sample EncMBME(msk,y).

– Secret key queries on attribute x; in response it receives a sample ExtractMBME(msk,x)

• Finally, A outputs a guess b′ for b.

We say that ΠMBME has secret key attribute hiding if, for all PPT adversaries A, there exists a
negligible function negl(λ) such that, for all λ, Pr[b′ = b] ≤ 1/2 + negl(λ).

Definition 5. An MBME scheme ΠMBME is secure if it has ciphertext indistinguishability, ciphertext
attribute hiding, and secret key attribute hiding.

Existence of MBME. We now state the following theorem, which is proved in [GKRW18]:

Theorem 12 (Adapted from [GKRW18]). If Assumptions 1 and 2 of [GKRW18] on pairings hold,
for n ≤ λ, there exists a secure MBME of size (1, 1, 1) and run-time (1, 1).
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7.2.1 From MBME to Risky Traitor Tracing

Here, we demonstrate that MBME (as defined above) implies risky traitor tracing. Most of the
proof will follow from the techniques of [GKRW18]; our main insight is simply that we can get a
multi-scheme by using the MBME functionality to implement an identity-based functionality.

In slightly more detail, [GKRW18] demonstrate that MBME with n = 2 implies risky traitor
tracing. Their idea is to choose a random user i∗, and give user i∗ a secret key with attribute (1, 0).
Users i < i∗ get attribute (1, 1), and users i > i∗ get attribute (0, 0). With this setup, only user i∗
can distinguish ciphertext attributes (0, 1) from (1, 1); users i < i∗ fail to decrypt in either case,
whereas users i > i∗ successfully decrypt in both cases. Tracing therefore tests whether the decoder
can distinguish (0, 1) from (1, 1), and accuses user i∗ if so. Then, by secret key attribute hiding, a
coalition of users actually cannot tell which user is i∗. By a careful analysis, [GKRW18] leverage
the fact that i∗ is hidden to show the desired tracing guarantee.

In our setting, we will instantiate an MBME scheme with n = 2n′+ 2, for n′ = log2M . Since we
require a multi-scheme, we will choose an independent i∗ for each instance. The extra 2 “slots” are
used to implement the risky tracing idea from [GKRW18]. The 2n′ slots are then used to implement
an identity-based functionality to separate the j instances. Essentially, we map each j to a subset
of Sj ⊆ [2n′] in a containment free way, such that there is no j0 6= j1 where Sj0 ⊆ Sj1 . We then
interpret Sj as its incident vector in {0, 1}2n′ . The secret key for user i in instance j then sets
the 2n′ slots to be the vector Sj , and the remaining two slots to be the appropriate pair for risky
tracing.

To encrypt to an instance j, set the 2n′ slots to be the complement of Sj , and the remaining two
slots to be 0. This allows users in the instance to decrypt, and by the containment free property,
users outside the instance cannot. In order to facilitate public encryption, we give out a set of “basis”
ciphertexts, and then use the re-randomization property to generate the desired ciphertexts.

We now give the construction. Let ΠMBME = (GenMBME,ExtractMBME,EncMBME,DecMBME) be
an MBME scheme.

Construction 4 (MBME to Tracing). Let ΠRisk = (GenRisk,EncRisk,DecRisk,TraceRisk) be the fol-
lowing tuple of algorithms:

• GenRisk(1N , 1M , 1λ): run (mpk,msk)← GenMBME(1n, 1λ) where n = 2n′+2 and n′ = dlog2Me.
Interpret [2n′] as [n′]×{0, 1}. We will then interpret the set [n] as ([n′]×{0, 1})∪ [2]; consisting
of 2n′ pairs (`, b) as well as two singletons 1, 2.
For (`, b) ∈ [n′]×{0, 1}, let e`,b ∈ {0, 1}2n

′+2 be the vector with a 1 in position (`, b) and zeros
everywhere else (including the two singleton positions)
For each (`, b) ∈ [n′] × {0, 1}, let p`,b ← EncMBME(msk, e`,b); note that p`,b denotes the
ciphertext/encapsulated key pair. The public key is pk = (mpk, {p`,b}`∈[n′],b∈{0,1}).
For each j ∈ [M ], choose a random i∗j ∈ [N ]. Let tk = (msk, {i∗j}j∈[M ]). Write j in binary
as j1j2 . . . jn′. Let vj ∈ {0, 1}n be the vector such that (vj)`,b = j` ⊕ b for ` ∈ [n′], b ∈ {0, 1},
and (0, 0) in the singleton positions. Let wj,i ∈ {0, 1}n be the following vector: it is 0 in all
positions (`, b). The two singleton positions are (1, 1), (1, 0), (0, 0) for i < i∗j , i = i∗j , i > i∗j ,
respectively.
For each i ∈ [N ], j ∈ [M ], compute skj,i ← ExtractMBME(msk,vj + wj,i).

36



• EncRisk(pk, j): As above, write j in binary, and let uj ∈ {0, 1}n be the vector such that
(uj)`,b = 1⊕ j` ⊕ b for ` ∈ [n′], b ∈ {0, 1}, and (0, 0) in the singleton positions. Note that uj is
generated by (e`,j`)`∈[n′].
Compute p← ReRandMBME(mpk, (p`,j`)`∈[n′]). Note that p is statistically close to being sampled
by EncMBME(msk,uj). Output p.

• DecRisk(pk, skj,i, c): Output k ← DecMBME(skj,i, c).

• TraceRisk
D(tk, j, ε) will be described below.

Before describing TraceRisk, be briefly justify correctness. As mentioned above, a cipher-
text/encapsulated key pair (c, k) produced by EncRisk(pk, j) will be distributed statistically close
to a pair produced by EncMBME(msk,uj). Note that uj · vj = 0 and uj · wj,i = 0, meaning
uj ·vj + wj,i = 0. Hence, by the correctness of ΠMBME, if (c, k) were produced by EncMBME(msk,uj),
then DecRisk(pk, skj,i, c) would correctly output k. Therefore, DecRisk(pk, skj,i, c) also outputs k when
(c, k) is sampled from EncRisk(pk, j).

The Algorithm TraceRisk
D(tk, j, ε): Let z1 ∈ {0, 1}n be 0 in all positions (`, b) and (0, 1) in the

singleton positions. Let z2 be the same, except that it is (1, 1) in the singleton positions.
Let ζ = (8N)2×ω(log λ). Run ζ trials of b′i ← D(ci, kbi ), (ci, k0

i )← EncMBME(msk,uj + z1), k1 ←
K, b← {0, 1}. Let p̃1 be the fraction of trials where b′i = bi. p̃1 is an estimate of p1, the probability
D is correct, given an encryption with attribute uj + z1

Analogously compute p̃2, and estimate of p2, the probability D is correct, given an encryption
with attribute uj + z2.

Output A = ∅ if p̃2 ≥ p̃1 − ε/2N . Otherwise, output A = {i∗j}.

7.2.2 Security of ΠRisk

We now prove the security of ΠRisk, which follows from a straightforward adaptation of the security
proof from [GKRW18].

Theorem 13. If ΠMBME is secure, then ΠRisk is 1/N -risky.

Proof. Let ARisk be an adversary for ΠRisk, and let ε be an inverse polynomial. Let GoodDecRisk,
GoodTrRisk, and BadTrRisk be the events as defined in Definition 3.

Let p1, p2, p̃1, p̃2 be as above. We first show that Pr[BadTrRisk] is negligible. Consider the
following adversary AMBME:

• On input 1λ, it simulates ARisk on 1λ, obtaining 1N , 1M , j∗.

• AMBME then samples i∗j and computes n′, n, e`,b,vj ,wj,i, z1, z2 as in GenRisk. It then commits
to attributes y0 = uj∗ + z1 and y1 = uj∗ + z2.

• In response, AMBME receives the master public key mpk, as well as a ciphertext/encapsulated
key pair (c, k0), which is either an encryption to attribute y0 or y1. It computes p`,b ←
EncMBME(msk, e`,b) by making ciphertext queries to e`,b, ` ∈ [n′], b ∈ {0, 1}. It sends ARisk the
public key pk = (mpk, {p`,b}`∈[n′],b∈{0,1}).

• Now ARisk makes secret key queries and tracing queries, which AMBME answers as follows:
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– On a secret key query (j, i), if (j, i) = (j∗, i∗j∗), AMBME will immediately abort and output
a random bit b′. Otherwise, AMBME will respond with skj,i ← ExtractMBME(msk,vj+wj,i)
by making a secret key query to ExtractMBME on vj + wj,i.

– On a tracing query (j,D), AMBME will simulate running TraceD(tk, j, ε); whenever it
needs to run EncMBME(msk,uj+z1) or EncMBME(msk,uj+z2), it simply makes ciphertext
queries on uj + z1 or uj + z2, respectively.

• When ARisk produces a decoder D∗, AMBME will simulate A← TraceD∗(tk, j∗, ε), again making
ciphertext queries to uj∗ + z1,uj∗ + z2 as needed. If A = ∅, ARisk outputs a random bit and
aborts. Otherwise, AMBME runs b′ ← D∗(c, kb) for k1 ← K and b← {0, 1}. It outputs b⊕ b′.

Note that AMBME does not abort exactly when BadTrRisk happens, and notice that this event is
independent of whether (c, k0) is an encryption to attribute y0 or y1. Let E[p1],E[p2],E[p̃1],E[p̃2]
be the expected values of p1, p2, p̃1, p̃2, respectively, conditioned on no abort (equiv. BadTrRisk).

Now, if AMBME is given (c, k0) that is an encryption to attribute y0 and no abort happens, then
b = b′ with probability p1. If the abort does not happen, then b = b′ with probability 1/2. Thus,
AMBME outputs 0 with probability

1/2(1− Pr[BadTrRisk]) + Pr[BadTrRisk] E[p1] = 1/2 + Pr[BadTrRisk](E[p1]− 1/2)

On the other hand, if AMBME is given (c, k0) that is an encryption to attribute y1, then AMBME
outputs 1 with probability 1/2− Pr[BadTrRisk](E[p2]− 1/2). Overall, the probability that AMBME
correctly predicts the attribute is therefore 1/2 + τ where

τ = Pr[BadTrRisk](E[p1]− E[p2]) = Pr[BadTrRisk](E[p1 − p2])

and E[p1 − p2] is the expected value of p1 − p2 conditioned on no abort.
Now, if no abort happens, then we know that p̃2 < p̃1 − ε/2N , meaning E[p̃1 − p̃2] > ε/2N ,

where E[p̃1 − p̃2] is the expected value of p̃1 − p̃2 conditioned on no abort. By Hoeffding’s inequality,
Pr[|p1 − p̃1| > ε/8N ] ≤ negl(λ) and Pr[|p2 − p̃2| > ε/8N ] ≤ negl(λ).

This implies that |Pr[BadTrRisk] E[p̃1]− Pr[BadTrRisk] E[p1]| ≤ Pr[BadTrRisk]ε/8N + negl(λ) and
similarly for E[p̃1] and E[p1]. Thus

τ ≥ Pr[BadTrRisk](E[p̃1 − p̃2]− 2ε/8N)− negl(λ) ≥ Pr[BadTrRisk]ε/4N − negl(λ)

Now, observe that AMBME only makes secret key queries on vectors vj + wj,i for j 6= j∗, as well
as vjj∗ + wj∗,i for i 6= i∗j∗ . Observe that vj · uj∗ ≥ 0 for j 6= j∗, and therefore (vj + wj,i) · yb > 0
for both b = 0 and b = 1. Moreover, for i < i∗j∗ , wj,i = (0, 0); since vj∗ · uj∗ = 0 we have that
(vj + wj,i).yb = 0 for both b = 0 and b = 1. Lastly, for i > i∗j∗ , wj,i = (1, 1); meaning that
(vj + wj,i).yb > 0 for both b = 0 and b = 1. Since AMBME never makes a query on (j∗, i∗j∗), we
therefore have that AMBME satisfies the conditions of secret key attribute hiding. As a result, we
know that τ = negl(λ). This implies that Pr[BadTrRisk] ≤ 8N/εnegl(λ) = negl(λ).

Now we prove that Pr[GoodTrRisk] ≥ (1/N) Pr[GoodDecRisk] − negl(λ). For a decoder D and
ciphertext attribute y, let p(D,y) be the probability D correctly guesses b when given (c, kb) where
(c, k0) ← EncMBME(mpk,y), k1 ← K and b ← 0, 1. Let p̃(D,y) denote the estimate of p(D,y)
resulting from running ζ trials.

We define a sequence of experiments:
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• En,0: Run ARisk, setting i∗j∗ = N , meaning wj∗,i is set to (1, 1), (1, 0), (0, 0) for i < n, i =
n, i > n. All other terms are generated as in GenRisk. Set pn,0 = p(D∗,uj∗ + z1) and
p̃n,0 = p̃(D∗,uj∗ + z1)

• En,1: Run ARisk, setting i∗j∗ = n as in En,1. The only difference is that, when ARisk outputs a
decoder D∗, let pn,1 = p(D∗,uj∗ + z2) and define p̃n,1 accordingly.

• En,2: Run ARisk, where we set wj∗,i to (1, 1), (0, 0) for i ≤ n, i > n. The only difference from
En,1 is that wj∗,n is changed from (1, 0) to (1, 1). When ARisk outputs a decoder D∗, let
pn,2 = p(D∗,uj∗ + z2) and define p̃n,2 accordingly.

• En,3: As in En,2, run ARisk where we set wj∗,i to (1, 1), (0, 0) for i ≤ n, i > n. However,
now set pn,3 = p(D∗,uj∗ + z1) and define p̃n,3 accordingly. Notice that, for n < N , the only
difference between En,3 and En+1,0 is that in En+1,0, we change wj∗,n+1 to be (1, 0).

Additionally, define the following experiment:

• E0,3: Run ARisk, setting i∗j∗ = 1, and setting p0 = p(D∗,uj) and p̃0 accordingly. Thus, p0,3, p̃0,3
correspond to running D∗ on honest ciphertexts.

Let Gapn be the event that p̃n,1 < p̃n,0 − ε/2N . Notice that Gapn happens with the same
probability as GoodTrRisk, conditioned on i∗j∗ = n. Hence, Pr[GoodTrRisk] = 1

N

∑
n Pr[Gapn].

Now, let Ẽn,b for b ∈ 0, 1 be the event that p̃n,b ≥ 1/2 + ε− ε(2n+ b− 3/2/)/(2N). We now give
the following claims:

Claim 8. Pr[Ẽ1,0] ≥ Pr[GoodDecRisk]− negl(λ)

Proof. First, Pr[GoodDecRisk] = Pr[p0,3 ≥ 1/2 + ε]. Then by Hoeffding’s inequality, we have that
Pr[p̃0,3 ≥ 1/2+ ε− ε/8N ] ≥ Pr[p0,3 ≥ 1/2+ ε]−negl(λ). Then, note that the only difference between
E0,3 and E1,0 is that the decoder D∗ is run switched from being tested on ciphertext attribute uj∗
to attribute uj∗ + z1. Recall that z1 = (0, 1). On the other hand, all secret keys the adversary has
are either

• Of the form vj + wj,i for j 6= j∗. Since vj · uj∗ > 0 for such j, these secret keys are not allows
to decrypt either uj∗ or uj∗ + z1.

• Of the form vj∗ + wj∗,i; notice that since i∗j∗ = 1, that wj∗,i ∈ {(1, 0), (0, 0)}. These secret
keys are allowed to decrypt both uj∗ and uj∗ + z1.

Hence, for all the secret keys the adversary obtains, either that secret key is allowed to decrypt
both attributes or neither. Thus, by a straightforward reduction ciphertext attribute hiding,
Pr[Ẽ1,0] = Pr[p̃1,0 ≥ 1/2 + ε − ε/4N ] ≥ Pr[p̃0,3 ≥ 1/2 + ε − ε/8N ] − negl(λ). This completes the
proof of Claim 8.

Claim 9. Pr[Ẽn,1] ≥ Pr[Ẽn,0]− Pr[Gapn]
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Proof. Consider the following sequence of inequalities

Pr[Ẽn,0] = Pr[Ẽn,0 ∧ Gapn] + Pr[Ẽn,0 ∧ ¬Gapn]
≤ Pr[Gapn] + Pr[Ẽn,0 ∧ ¬Gapn]
= Pr[Gapn] + Pr[p̃n,0 ≥ 1/2 + ε− ε(2n− 3/2)/(2N) ∧ p̃n,1 ≥ p̃n,0 − ε/2N ]
≤ Pr[Gapn] + Pr[p̃n,1 ≥ 1/2 + ε− ε(2n− 1/2)/(2N)]
= Pr[Gapn] + Pr[Ẽn,1]

Claim 10. Pr[Ẽn+1,0] ≥ Pr[Ẽn,1]− negl(λ).

Proof. The claim is proved by considering the intermediate experiments En,2, En,3. Note that the
only difference between En,1 and En,2 is that we change wj∗,n from being (1, 0) to (1, 1). wj∗,n only
appears in skj∗,n, which has attribute vj∗ + wj∗,n. The ciphertexts available in the experiment are:

• Those in the public key with attribute e`,b.

• Those with attributes uj + z1 or uj + z2 for j 6= j∗, which are used for answering trace queries.

• Those with attribute uj∗ + z2, used during the final computation of p̃.

Notice that e`,b · wj∗,n = 0 for both possibilities of wj∗,n, and so the decryptability of e`,b by
vj∗ + wj∗,n is independent of the choice of wj∗,n. Recall that for j 6= j∗, vj∗ · uj > 0; hence
vj∗ + wj∗,n cannot decrypt either uj + z2 or uj + z1, regardless of the value of wj∗,n. Also,
(vj∗+wj∗,n) · (uj∗+z2) = 0 for either choice of wj∗,n, so the decryptability of uj∗+z2 by vj∗+wj∗,n

is independent of the choice of wj∗,n as well. Therefore, by a straightforward reduction to secret
key attribute hiding,

Pr[p̃n,2 ≥ 1/2 + ε− ε(2n− 1/2 + 1/3)/(2N)] ≥ Pr[p̃n,1 ≥ 1/2 + ε− ε(2n− 1/2)/(2N)]− negl(λ)
= Pr[Ẽn,1]− negl(λ) (3)

Next, note that the only difference between En,2 and En,3 is that we change the attribute being
encrypted when computing p, p̃ from uj∗ + z2 to uj∗ + z1. Notice that the secret keys available in
this experiment are one of the following:

• vj + wj,i for j 6= j∗. Notice that these cannot decrypt either uj∗ + z2 or uj∗ + z2, since
vj · uj∗ > 0

• vj∗ + wj,i, where wj,i is either (1, 1) (for i ≤ n) or (0, 0) (for i > n). In the first case, wj,i · z2
and wj,i · z1 are both > 0, meaning the secret key cannot decrypt either ciphertext attribute.
In the second case, wj,i · z2 = wj,i · z1 = 0, meaning the secret key can decrypt both attributes.

Therefore, the decryptability of the attributes uj∗+z2 and uj∗+z1 is the same for all the secret keys
the adversary controls. Therefore, by a striaghtforward reduction to ciphertext attribute hiding,

Pr[p̃n,3 ≥ 1/2 + ε− ε(2n− 1/2 + 2/3)/(2N)] ≥ Pr[p̃n,2 ≥ 1/2 + ε− ε(2n− 1/2 + 1/3)/(2N)]− negl(λ)
(4)

Next, note that the only difference between En,3 and En+1,0 is that we change wj∗,n+1 from
(0, 0) to (1, 0). wj∗,n+1 only occurs in the secret key skj∗,n+1, which has attribute vj∗ + wj∗,n+1.
The only ciphertexts available in the experiment are:
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• Those in the public key with attribute e`,b.

• Those with attributes uj + z1 or uj + z2 for j 6= j∗, which are used for answering trace queries.

• Those with attribute uj∗ + z1, used in the final computation of p̃.

Notice that e`,b ·wj∗,n+1 = 0 for both possibilities of wj∗,n+1, and so the decryptability of e`,b by
vj∗ + wj∗,n+1 is independent of the choice of wj∗,n+1. Recall that for j 6= j∗, vj∗ · uj > 0; hence
vj∗ + wj∗,n+1 cannot decrypt either uj + z2 or uj + z1, regardless of the value of wj∗,n+1.Also,
(vj∗ + wj∗,n+1) · (uj∗ + z1) = 0 for either choice of wj∗,n+1, so the decryptability of uj∗ + z1 by
vj∗ + wj∗,n+1 is independent of the choice of wj∗,n+1 as well. Therefore, by a straightforward
reduction to secret key attribute hiding,

Pr[p̃n+1,0 ≥ 1/2 + ε− ε(2n− 1/2 + 3/3)/(2N)] ≥ Pr[p̃n,3 ≥ 1/2 + ε− ε(2n− 1/2 + 2/3)/(2N)]− negl(λ)
(5)

Finally, notice that (2n− 1/2 + 3/3) = (2(n+ 1)− 3/2), and therefore Pr[p̃n+1,0 ≥ 1/2 + ε− ε(2n−
1/2 + 3/3)/(2N)] = Pr[Ẽn+1,0]. Piecing together Equations 3, 4, and 5 gives Claim 10.

Claim 11. Pr[ẼN,1 ≥ 1/2 + ε/4N ] < negl(λ)

Proof. In EN,1, the decoder is tested on ciphertexts with attribute uj∗ + z2. Since i∗j∗ = N in this
experiment, all secret keys for the adversary for instance j∗ have attributes vj∗ + wj∗,i where wj∗,i

is either (1, 0) or (1, 1). Hence, (vj∗ + wj∗,i) · (uj∗ + z2) > 0, meaning none of the secret keys the
adversary has can decrypt the ciphertexts the decoder is tested on. The claim then follows from
straightforward reduction to ciphertext hiding.

Now we are ready to complete the proof of Theorem 13: Putting together Claims 8, 9, 10, and 11,
we have that ∑

n

Pr[Gapn] ≥ Pr[GoodDecRisk]− negl(λ)

Recalling that Pr[GoodTrRisk] = 1
N

∑
n Pr[Gapn], the theorem follows.

8 Traitor Tracing from Threshold Broadcast
Here, we demonstrate how to construct traitor tracing from a certain broadcast functionality,
formalizing and proving Theorem 4. Concretely, we will be using a notion that we call threshold
broadcast encryption. A threshold broadcast scheme is a tuple Π = (Gen,Enc,Extract,Dec) of PPT
algorithms where:

• Gen(1u, 1v, 1t, 1λ) takes as input a security parameter, bounds u, v ≤ 2λ, and a threshold
t ≤ u, v. It outputs a public key pk and a master secret key msk.

• Enc(pk, S) takes as input the public key pk and a set of users S ⊆ [2λ] of size at most v. It
outputs a ciphertext c and key k.

• Extract(msk, U) takes as input the master secret key and a subset U ⊆ [2λ] of size at most u.
It outputs a secret key skU .
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• Dec(pk, skU , S, c) takes as input the public key pk, the secret key skU for set U , and a ciphertext
c; it outputs a key k.

For correctness, we require that Dec correctly recovers k, provided |U ∩ S| ≥ t: for any polynomials
v = v(λ), u = u(λ), there exists a negligible function negl such that for all t ≤ u, v and all S,U ⊆ [2λ]
where |U | ≤ u, |S| ≤ v and |U ∩ S| ≥ t:

Pr
[
Dec(pk, skU , c) = k : (pk,msk)←Gen(1u,1v ,1t,1λ)

skU←Extract(msk,U),(c,k)←Enc(pk,S)

]
≥ 1− negl(λ)

We also use the same size notation as for traitor tracing schemes, except that the size parameters
depend on u, v instead of M,N . For security, let A be an adversary, and consider the following
experiment:

• A receives the security parameter λ, written in unary.

• A chooses numbers u, v, t, written in unary. It also chooses an arbitrary number N of disjoint
sets Ui ⊆ [2λ], |Ui| ≤ u such that |Ui ∩ S| < t. Send u, v, t, (Ui)i∈[N ], S to the challenger.

• The challenger runs (pk,msk)← Gen(1u, 1v, 1t, 1λ), and for each i runs skUi ← Extract(msk, Ui).
It sends the adversary (skUi)i∈[N ].

• A chooses a set S ⊆ [2λ], |S| ≤ v, such that |Ui ∩ S| < t for all i. It sends S to the challenger.

• The challenger chooses a random bit b, samples random k1, runs (c, k0) ← Enc(pk, S), and
sends the adversary (c, kb).

• Finally, the adversary produces a guess b′ for b.

Definition 6. A threshold broadcast scheme is adaptively secure if, for all PPT adversaries A,
there exists a negligible negl such that Pr[b′ = b] ≤ 1/2 + negl(λ).

Remark 7. We note that what we call threshold broadcast encryption is typically called threshold
attribute-based encryption (e.g. [AHL+12]). However, we choose the name threshold broadcast for
two reasons. The first is that our security requirement is weaker: we require that the Ui sets are
disjoint, whereas prior literature on the topic allows the adversary to have overlapping Ui. As we
will see, this distinction is critical to achieving shorter parameter sizes using current techniques.
Using a new name will avoid some confusion with our definitions.

The second reason is a philosophical one: the attribute-based encryption literature typically
focuses on functionality, with parameter sizes being a secondary concern; in contrast the main
concern in broadcast encryption literature is the parameter sizes. In more detail, it is trivial
to achieve the broadcast functionality by giving each user an independent key for a public key
encryption scheme, resulting in linear-sized parameters. Analogously, it is straightforward to achieve
the threshold broadcast functionality for disjoint Ui, again with linear-sized parameters. From an
attribute-based encryption perspective, the main challenge is then to enhance the functionality, which
entails achieving security for overlapping Ui. From a broadcast encryption perspective, the challenge
is to reduce parameter sizes. Since we require small parameters but only need security for disjoint
Ui, our setting is philosophically aligned with the broadcast encryption literature.
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8.1 The Theorem

Here, we formalize and prove Theorem 4:

Theorem 4 (Formal Version). Suppose there exists an adaptively secure threshold broadcast scheme
Π0, which for u ≤ λ has size (P = P (v), S = S(v), C = C(v)). Then there exists a secure broadcast
and trace multi-scheme Π in the shared randomness model with size (P (N), S(N), C(N);N). If the
running time of Π0 for u ≤ λ is (E(v), D(v)), then the running time of Π is (E(N), D(N))

Implications. Attrapadung [Att16] builds an adaptively secure attribute-based encryption for
monotone span programs, which in particular include threshold functions, based on certain bilinear-
map assumptions. This implies a threshold broadcast scheme of size (v, v, 1). Applying Theorem 4
gives a shared-randomness broadcast and trace (multi-)scheme of size (N,N, 1;N).

The resulting scheme on it’s own is un-interesting outside the shared randomness model, as
incorporating the shared randomness into the ciphertexts results in linear-sized parameters. However,
we can apply our user expansion compiler (Theorem 1) with T = N1/2, which yields a broadcast
and trace scheme of size (N1/2, N1/2, N1/2;N1/2); now we can incorporate the shared randomness
into the ciphertext, yielding (N1/2, N1/2, N1/2) in the plain model, under the same assumptions as
in [Att16]. This matches the parameters achieved by [BW06], but using entirely different means.

In Section 8.2, we observe that existing pairing-based constructions of threshold broadcast
encryption are “too strong”, in the sense that they maintain security even for overlapping Ui. We
give a new construction, closely related to [AHL+12], achieving an improved size (v, 1, 1). Our
construction is insecure if the Ui overlap, but for non-overlapping Ui, we prove security in the generic
group model for pairings. Running through our compilers gives a broadcast and trace scheme of
size (N1/2, 1, N1/2) from pairings, the first such scheme.

The Construction. To prove the theorem, let Π0 = (Gen0,Enc0,Extract0,Dec0) be a threshold
broadcast scheme satisfying the given size requirement.

As discussed in Section 2, the intuition for our construction is to give each user a secret key
for a set U ; all users’ sets will be disjoint. The shared randomness will specify a random subset T .
Then |T ∩ U | will concentrate around |U |/2. By setting the threshold slightly lower, we guarantee
users can decrypt with overwhelming probability. During tracing, we will “turn off’ various users
by choosing S so that |T ∩ U | is much smaller than |U |/2, and accuse any user for which this
significantly changes the decryption probability. We now give the construction:

Construction 5. Let Π = (Gen,Enc,Dec,Trace) be the tuple of the following PPT algorithms:

• Gen(1N , 1M , 1λ): run (pk,msk) ← Gen0(1u, 1v, 1t, 1λ), where u = ω(log λ), v = Nu, and
t = (2/5)u. Let J·K be an arbitrary efficient injection from [M ] × [N ] × [u] × {0, 1} into
the identity space [2λ]. For each i ∈ [N ], j ∈ [M ], choose a random xj,i ∈ {0, 1}u. Set
Uj,i = {Jj, i, `, xi,j,`K}`∈[u] ⊆ [2λ] and run skj,i ← Extract0(msk, Uj,i). Output pk as the public
key, tk = (xj,i)i∈[N ],j∈[M ] as the tracing key, and (skj,i)i∈[N ],j∈[M ] as the secret keys.

• Enc(pk, j, S, r): here, r ∈ {0, 1}N×u is the shared randomness, which will be interpreted as
the list r = (ri,`)i∈[N ],`∈[u], ri,` ∈ {0, 1}. Let Tj,S,r = {Jj, i, `, ri,`K}i∈S,`∈[u]. Run and output
(c, k)← Enc0(pk, Tj,S,r).

• Dec(pk, skj,i, S, r, c): Output k′ ← Dec0(pk, skj,i, Tj,S,r, c) for Tj,S,r as above.
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• TraceD(tk, j, S, ε) will be described below.

Notice that |Uj,i| = u and |Tj,r| = Nu to that |Tj,S,r| ≤ Nu = v. Also, notice that if we set u ≤ λ,
Π will have the desired parameter size and running times, since the factor of u ≤ λ can be absorbed
into the terms hidden by the notation. Next, notice that, by the correctness of Π0, we must have
that k′ = k, provided |Tj,S,r ∩ Uj,i| ≥ t = (2/5)u. For users i ∈ S of instance j, each element in
Uj,i will be placed in Tj,S,r with probability 1/2. As a result, |Tj,S,r ∩ Uj,i| will be distributed as
a Binomial distribution with u samples and probability 1/2. This value will concentrate around
u/2 > t; in particular, for u = ω(log λ), Hoeffding’s inequality implies that the desired inequality
will hold, except with negligible probability. Thus Π is correct.

TraceD(tk, j, S, ε). We now explain how to trace. For a probability distribution Z over {0, 1}Nu,
let pZ = Pr[D(c, r, kb) = b : r ← Z, (c, k0) ← Enc0(pk, Tj,S,r), k1 ← K, b ← {0, 1}] denote the
probability that D correctly distinguishes a random ciphertext using the set Tj,S,r for r ← Z.

Let ζ = (4Nu/ε)2 × ω(log λ). We will use the following procedure, which on input (an efficient
representation of) a distribution Z, will compute an estimate of pZ : run ζ trials of b′i ← D(c+ i, r +
i, kb+ii ) : ri ← Z, (c+ i, k0

i )← Enc0(pk, Tj,S,ri), k1
i ← K, bi ← {0, 1}. Output p̃Z , the fraction of the

trials where b′i = bi.

We now describe our algorithm Trace:

1. Initialize an empty set A.

2. We will associate vectors Z ∈ {0, 1, ∗}Nu with the following probability distribution over
{0, 1}Nu: replace each ∗ with a uniformly random bit, leaving all other bits as specified.
We will initialize a vector Z = ∗Nu, corresponding to the uniform distribution over {0, 1}Nu.
Using the estimation procedure above, compute estimate p̃ of p = pZ .

3. For each i ∈ S do the following:

(a) Initialize a counter ctri = 0.
(b) For ` = 1, . . . , u do the following:

i. Let Zb denote the current value of Z, except that Zi,` is replaced with b (note that
up to this point, Zi,` = ∗). Compute estimates p̃0, p̃1 of the probabilities p0 = pZ0

and p1 = pZ1 .
ii. If p̃1−xj,i,` ≥ p̃− (ε/2Nu), update Z to Z1−xj,i,` , p̃ to p̃1−xj,i,` , and set ctri = ctri + 1.

Otherwise do not update Z, p̃, or ctri.
(c) If ctri/u ≤ 2/5, add user i to A.

4. Output A.

The following theorem then establishes the security of Construction 5, thereby proving Theorem 4:

Theorem 14. Assuming Π0 is a secure threshold broadcast scheme and u = ω(log λ), Construction 5
is a secure broadcast and trace multi-scheme.
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Proof. The idea is the following. Supposing that our estimates p̃ were exact, we have that a good
decoder means p̃ starts off at least 1/2 + ε. Moreover, in Step 3(b)i, we thus have (p0 + p1)/2 = p,
meaning at least one of p0 or p1 are at least p. If user i of instance j is honest, xj,i,` is independent
of the attacker’s view and therefore p1−xj,i,` ≥ p with probability ≥ 1/2. For honest users, ctri will
therefore concentrate around ≥ u/2, and be larger than (2/5)u with overwhelming probability. Thus
honest users are not accused.

On the other hand, consider a user i of instance j that is not accused. Consider the set
Tj,S,r ∩ {Jj, i, `, bK}`∈[u],b∈{0,1}. Once we have finished processing user i, the distribution Z fixes at
least (2/5)u of the entries within this set to be outside of Uj,i, and the remaining ≤ (3/5)u of the
entries are randomly chosen to be either in the set or outside. Therefore, the size of the overlap
with Uj,i will concentrate around (3/10)u ≤ (2/5)u. Thus, any user that is not accused will, with
overwhelming probability, be unable to decrypt by the end. Note that for a good decoder, by our
assumption of perfect estimation, p̃ starts off ← 1/2 + ε. In each step, p̃ drops by at most ε/2Nu
and there are only Nu steps; the result is that, by the end, p̃ remains at least 1/2 + ε/2. Thus, by
the end of tracing, a good decoder still decrypts, meaning some user must still be able to decrypt,
and hence some user is accused.

We now give the formal proof. For each estimate p̃Z made by Trace, Hoeffding’s inequality
implies that Pr[|p̃Z − pZ | > ε/4Nu] ≤ 2e−2(ε/4Nu)2ζ = 2e−ω(log λ) = negl(λ). Thus, over the ≤ Nu
such estimates, except with negligible probability, Pr[|p̃Z − pZ | > ε/4Nu] for all estimates.

Consider an honest user i of instance j. Consider a single run of Step 3(b)i for this user,
for some ` ∈ [u]. We know that (p0 + p1)/2 = p, and thus, with overwhelming probability,
p̃0 + p̃1 ≥ p0 + p1 − 2ε/4Nu ≥ 2(p− ε/4Nu) ≥ 2(p̃− ε/2Nu). Thus, at least one of p̃0 or p̃1 are at
least (p̃− ε/2Nu) (except with negligible probability).

Now, up until this step, tracing has not read the bit xj,i,`, and therefore xj,i,` is independent
of the attacker’s view so far. Let Ci,` be the random variable that is 1 if p̃1−xj,i,` ≥ p̃− (ε/2Nu),
and 0 otherwise. The above shows that, even conditioned on Ci,`′ for `′ < ` (as well as Ci′,`′
for i′ < i), we have Ci,` is 1 with probability at least 1/2 − negl(λ). We note, however, that the
various Ci′,` may not be independent. However, we can define another set of random variables C ′i,`
which are all independent random variables that equal 1 with probability 1/2− negl(λ), such that
Pr[Ci,` ≥ C ′i,`] = 1.

The final value of ctri is at least ∑`∈[u]Ci,` ≥
∑
`∈[u]C

′
i,` =: C ′i. By Hoeffding’s inequality,

Pr[C ′i/u < 2/5] = Pr[( C ′i/u− (1/2− negl(λ)) ) < −1/10 + negl(λ)] ≤ e−2(1/10−negl(λ))2u = negl(λ).
Thus, ctri/u ≥ 2/5, except with negligible probability. Therefore, Pr[BadTr] < negl(λ).

We now show that some user is accused, provided D is a good decoder. By being a good
decoder, we know that initially pZ ≥ 1/2 + ε, and therefore p̃Z ≥ 1/2 + (1− 1/2Nu)ε, except with
negligible probability. Since every step of the algorithm drops p̃Z by at most ε/2Nu and there
are at most Nu steps, we have that, by the end, p̃Z ≥ 1/2 + (1/2 − 1/2Nu)ε. Thus, by the end,
pZ ≥ 1/2 + (1/2− 1/Nu)ε. In particular, D still predicts b with inverse-polynomial advantage.

On the other hand, at the end of tracing, for any user i of instance j that is not accused, we
know that at least 2/5u of the elements of Uj,i lie in Tj,S,r for the final distribution of Z over
r. The remaining ≤ 3/5u are in Tj,S,r with probability 1/2. By Hoeffding’s inequality again,
Pr[|Uj,i ∩Tj,S,r| ≥ (2/5)u] = Pr[(|Uj,i ∩Tj,S,r| − (3/10)u) ≥ 1/10u] ≤ e2(1/10)2u = negl(λ). Therefore,
any user that is not accused is unable to decrypt. Yet, the decoder decrypts with inverse-polynomial
probability. If no user is accused (meaning no user can decrypt), but the decoder constructed from
those keys can decrypt, it is straightforward to construct an adversary which breaks the assumed
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security of Π0. Hence, except with negligible probability, some user is accused.

We note that, in the proof above, adaptive security of Π0 is necessary, even if one only aims for
selective security for Π; the reason is that the recipient set Tj,S,r at the end of tracing depends on
the decoder itself (since various users were turned off as a result of querying the decoder), and the
decoder is constructed from the secret keys. Therefore, the et Tj,S,r is not known until after secret
key queries are made, necessitating adaptive security.

8.2 Instantiating Threshold Broadcast

In this section, we give a new algebraic instantiation of threshold broadcast from pairings. Before
giving our construction, give some notation for pairings, and recall a pairing-based construction
from the literature, upon which our schemes will be built.

Let G1,G2,G′ be groups of prime order p with pairing operation e : G1 × G2 → G′. Let g1, g2 be
generators of G1,G2, respectively. For a (row) vector v ∈ Znp , we use the notation gv = (gv1 , . . . , gvn).
We also use the notation e(g,h) = ∏

i e(gi, hi), so that e(gv
1 , g

w
2 ) = e(g1, g2)v·wT .

Next, we briefly recall two pairings-based schemes from the literature, which will be the basis
for our new instantiations.

The Delerablée Broadcast Scheme. We briefly recall Delerablée’s scheme [Del07]. The set of
possible user identities is Zp \ {0}. The public and secret keys are

pk = (e(g1, g2)β, gβγ1 , (gγ
i

2 )j∈[0,N ]) ski = g
β/(1−γ/i)
1

for random secrets β, γ ∈ Zp. The public key allows for computing J(P ) := g
P (γ)
2 , for any polynomial

P of degree at ≤ N . The ciphertext to a set S is:

c1 = gαβγ1 , c2 =
[
J

(∏
i∈S

(1− γ/i)
)]α

= g
α
∏
i∈S(1−γ/i)

2

where α ∈ Zp is random. The encapsulated key is k = e(g1, g2)αβ . Notice that any user in Zp \ {0}
(which has exponential size) can be a recipient, as long as the number of recipients is at most N .

To decrypt, let Q(γ) = ∏
j∈S\{i}(1− γ/j) and P (γ) = (1−Q(γ))/γ. Notice that 1−Q(0) = 0,

meaning 1−Q(γ) is a polynomial of degree ≤ N − 1 with a 0 constant term; thus P (γ) is also a
polynomial. Therefore, compute

e(c1, J(P )) · e(ski, c2) = e(g1, g2)αβγP (γ)+αβQ(γ) = e(g1, g2)αβ = k

The intuition for security is that, for any i /∈ S, pairing ski with c2 will leave a pole in γ, which
cannot be canceled; thus users outside of S cannot decrypt.

Note that Delerablée’s scheme has size (N,N, 1) and running time (N,N).

8.2.1 A Threshold Broadcast Scheme

Here, we show how to construct a threshold broadcast scheme from pairings. Concretely, we
formalize and prove Theorem 5:
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Theorem 5 (Formal Version). There exists a secure threshold broadcast scheme of size (v, 1, 1) for
u ≤ λ and run-time (v, v) from pairings, with security proved in the generic group model.

Combined with Theorem 4, Theorem 5 gives a broadcast and trace scheme of size (N, 1, 1;N)
and run-time (N,N) in the shared-randomness model. Then applying Theorem 1 and including the
shared randomness in the ciphertext gives Corollary 4.

Our construction is a modification to Delerablée’s broadcast scheme, inspired by threshold ABE
schemes such as [AHL+12] but with modifications to ensure small secret keys.

Construction 6 (Threshold Broadcast Scheme). Let Π = (Gen,Enc,Extract,Dec) be the following
tuple of algorithms:

• Gen(1u, 1v, 1t, 1λ) will be identical to Delerablée’s scheme: choose random β, γ ∈ Zp. Set the
master secret key to be msk = (β, γ), and the public key to be:

pk = (e(g1, g2)β, gβγ1 , (gγ
j

2 )j∈[0,v])

Note that Gen is independent of the upper bound u on secret key attribute size and the threshold
t. This means our scheme technically handles un-bounded sets for secret keys and arbitrary
thresholds, but we do not need this feature.

• Enc(pk, S) will also be identical to Delerablée: choose a random α ∈ Zp. The ciphertext is set
to

c1 = gαβγ1 , c2 = J

(∏
i∈S

(1− γ/i)
)α

= g
α
∏
i∈S(1−γ/i)

2

while the encapsulated key is k = e(g1, g2)αβ.

• Extract(msk, U): output

skU =
(
g
βγj/∏i∈U (1−γ/i)
1

)
j=0,...,|U |−t

Note that for |U | = t = 1, the secret key is identical to a secret key from Delerablée for a single
index.

Notice that, from skU , one can compute H(R) := g
βR(γ)/∏i∈U (1−γ/i)
1 for any polynomial R of

degree at most |U | − t.

• Dec(pk, skU , S, c): parse c as (c1, c2). Define the following functions:

P (γ) = (1−Q(γ))/γ
Q(γ) =

∏
j∈S\U

(1− γ/j)

R(γ) =
∏

i∈U\S
(1− γ/i)

Since U ∩ S has size at least t, R(γ) is a polynomial of degree at most |U | − t. Therefore,
using skU , it is possible to compute

H(R) = g
β/∏i∈U∩S(1−γ/i)
1
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Notice that
e(H(R), c2) = e(g1, g2)αβQ(γ)

Next, notice that 1 − Q(0) = 0, meaning 1 − Q(γ) is a polynomial of degree ≤ N with a 0
constant term; thus P (γ) is also a polynomial. Therefore, it is possible to compute J(P ).
Thus, to decrypt, compute

e(c1, J(P )) · e(H(R), c2) = e(g1, g2)αβγP (γ)+αβQ(γ) = e(g1, g2)αβ = k

Correctness follows from the calculations above. Notice that secret keys have size O(u), and in
particular do not grow with v. Thus, our scheme has the desired size and running time. We omit
the proof of security in the generic group model, as it follows readily from our proof of security for
Construction 7; see Section 9. The intuition is that, to use a secret key for a set U for decryption,
one must cancel out all the poles not in S. The secret key allows for canceling out any choice of
all but t poles, but always t poles remain. Therefore, S ∩ U must have size at least t in order to
decrypt. These t poles can also not be canceled out by combining with other secret keys, since those
secret keys will have a disjoint set of poles (by our assumption that the U are disjoint). Note that if
the U ’s overlap and contain common poles, then they can be canceled out, and hence the scheme
would not be secure in this case.

8.3 Fast Evaluation

Corollary 4 gives a broadcast and trace scheme of size (N1−a, 1, Na) for any a > 1/2, with run-time
(N,Na). Since the input to Enc and Dec for broadcast and trace has size N due to describing the
recipient set, the run-time is asymptotically efficient. However, if we wish to derive a standard
traitor tracing scheme, an asymptotically efficient scheme would have encryption run-time being
Na, as opposed to N , since now S = [N ] as does not need to be communicated. Thus, we do not
yet have an asymptotically efficient standard tracing scheme.

Digging a bit deeper, Corollary 4 instantiates Construction 6 above with v = N1−a × ω(log λ).
We then (roughly) embed [v]× [Na] into Zp \{0}. Then, to encrypt, a random string r ∈ 2v is chosen,
which is used to specify set S ⊆ [v]. For j ∈ [Na], let Sj = {(s, j) : s ∈ S} ⊆ [v]× [Na] ⊆ Zp \ {0}.
Then we encrypt separately to each of the Na sets Sj , obtaining ciphertext cj and encapsulated key
kj . The encapsulated key is a random key k. The ciphertext consists of the Na values (cj , kj ⊕ k),
as well as r.

The problem is that, while each cj value is short (just a constant number of group elements),
generating cj requires combining N1−a terms of the public key and hence each cj takes time N1−a

to compute. Over all Na values, this gives a linear time algorithm for generating the ciphertext.
Here, we prove Theorem 6, showing that our construction can be made asymptotically efficient.

We accomplish this by carefully choosing how [v]× [Na] is embedded into Zp, we can use techniques
from fast multi-point polynomial evaluation to evaluate all Na ciphertext components in total time
approximately Na (recall that Na ≥ N1−a).

8.3.1 Our Embedding.

Recall that, for Construction 5 (our conversion from threshold broadcast to broadcast and trace), we
embed the set [M ]× [N ]× [u]× {0, 1} into the identity space, which for Construction 6 is Zp \ {0}.
For Corollary 4, we set M = Na and u = ω(log λ).
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Choose a random linear function L(z) = µz + ψ over Zp. Let L·M be an arbitrary injection from
[N ]× [u]× {0, 1} into Zp \ {0}. Then define Jj, i, x, bK = L(j)× Li, x, bM.

Claim 12. With overwhelming probability over the choice of µ, ψ, J·K is injective and the image
does not include 0.

Proof. For any fixed j, i, x, b, Jj, i, x, bK = 0 if and only if L(j) = 0, since L·M is never 0. The
probability, for fixed j, that L(j) = 0 is exactly 1/p. By a union bound, the probability any output
is 0 is at most M/p, which is negligible. This shows that the image does not include 0.

To show that J·K is injective, fix a pair of distinct inputs (j0, i0, x0, b0) 6= (j1, i1, x1, b1). We now
bound the probability that they collide; that is, that Jj0, i0, x0, b0K = Jj1, i1, x1, b1K. We split into
two cases:

• (i0, x0, b0) = (i1, x1, b1). Note that in this case, j0 6= j1 since the points are distinct. In this
case, using the definition of J·K and L(·), a collision is equivalent to L(j0) = L(j1), which
occurs with probability 1/p.

• (i0, x0, b0) 6= (i1, x1, b1). By the injectivity of L·M, this means Li0, x0, b0M 6= Li1, x1, b1M. In this
case, we can use the definition of J·K and L(·) to solve for ψ as

ψ = −µj0 × Li0, x0, b0M− j1 × Li1, x1, b1M
Li0, x0, b0M− Li1, x1, b1M

For any choice of µ, there is thus exactly one choice of ψ that will make this true; as such, the
probability of a collision is at most 1/p.

Finally, by union-bounding over all (2MNu)2 possible pairs of inputs, we get that the overall
probability of a collision is at most O((2MNu)2/p), which is negligible.

8.3.2 Multi-Point Polynomial Evaluation In the Exponent

Here, we describe the multi-point polynomial evaluation in the exponent (MPPEE) problem. Let
P (·) be a polynomial of degree d over Zp, P (x) = ∑d

i=0 aix
i. For a group G of order p with generator

g, let gP (·) = (gai)i∈[0,d]. Note that given gP (·) and an input x ∈ Zp, it is possible to compute gP (x)

as ∏d
i=0(gai)xi .

Definition 7. The MPPEE problem is to, given gP (·) for some (potentially unknown) polynomial
P of degree d, and n points x1, . . . , xn ∈ Zp, to compute (gP (xj))j∈[n].

We note that the MPPEE problem can easily be solved using Õ(nd) group operations, by simply
computing each term gP (xj) separately. However, this is much larger than the input or output of
the problem, and ideally once could solve the MPPEE problem in time roughly Õ(n+ d).

We now explain how evaluating Enc resulting from Corollary 4 reduces to the MPPEE problem,
over the group G2. Recall that, for our broadcast and trace scheme (Construction 5), to encrypt to
the set of all users within an instance j, we choose a random string r ∈ {0, 1}N1−au 12. Then we
define Tj,r = {Jj, i, `, ri,`K}i∈[N1−a],`∈[u]. Finally, we output (c, k)← Enc0(pk, Tj,r).

12Recall that the total number of users per instance is being set to N1−a
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When we instantiate with Construction 6, we have that Tj,r = {L(j) × s : s ∈ Sr}, where
Sr = {Li, `, ri,`M}. The ciphertext for instance j is:

c1,j = g
αjβγ
1 , c2,j = J

 ∏
s∈Tj,r

(1− γ/s)

αj

while the encapsulated key is kj = e(g1, g2)αjβ. Here, αj is a random scalar for each ciphertext
component. Recall that c2,j is computed by taking an approriate linear combination of the N1−a

public key elements gγ
t

2 .
In the construction resulting from Corollary 4, we therefore choose a random r and random αj

for each j ∈ Na. Computing c1,j and kj in time Na is trivial. Now, expand out

dj := J(

 ∏
s∈Tj,r

(1− γ/s)

 = g

∏
s∈Sr

(1−γ/L(j)s)
2

From the dj , we can easily compute c2,j in total time Na as well. Let P ′(x) = ∏
s∈Sr(1− x/s).

This is a polynomial of degree |Sr| = N1−au. The coefficients of this polynomial can easily be
computed in time Õ(|Sr|) using standard polynomial multiplication techniques. Let the coefficients
be a′i. Then consider the polynomial P (x) = P ′(γx), which has coefficients ai := a′iγ

i. Since we
know the values a′i and have terms gγ

i

2 , we can therefore compute gP (·) in time Õ(|Sr|)
Then we have that dj = gP (xj), where xj = L(j)−1. So if we can compute all Na of the dj

in time Õ(|Sr|), then we use the fact that we can bound log factors by the security parameter,
obtaining that the run-time of encryption is Na × poly(λ), as desired.

8.3.3 Algorithm for the MPPEE Problem

Here, we briefly show that the MPPEE problem can be solved by known techniques for solving the
plain multi-point polynomial evaluation problem. This is essentially a special case of the result of
Mohassel [Moh11], who show analogous statements for additively homomorphic encryption. The
main observation (specialized to our setting) is that the plain problem can be solved completely
algebraically, and only performs linear operations on the coefficients ai. We can therefore apply
these linear operations “in the exponent” to the terms gai . For completeness, we now sketch the
ideas.

Fast Fourier Transform (FFT) in the exponent. Let d′ be the smallest power of 2 that is
larger than 2d. We will assume d′ divides p. Given gP (·) for a degree-d polynomial P , we can compute
(gP (ωj))j∈[d′] in time Õ(d), by running a standard FFT algorithm — such as CooleyâĂŞTukey —
“in the exponent”. Here, ω is a primitive d′-roots of 1, mod p, which lie in Zp since d′ divides p− 1.

Here, we briefly sketch the details. Interpret P as a polynomial of degree d′ − 1. Write
P (x) = P0(x2) + xP1(x2), where P0, P1 represent the even and odd parts of P , and have degrees at
most d′/2− 1. From gP (·), we can easily compute gP0(·) and gP1(·), since the latter two vectors are
just a partition of the vector gP (·). Now, recursively compute (gP0(ω2j))j∈[d′/2] and (gP1(ω2j))j∈[d′/2].
Then we let gP (ωj) = gP0(ω2j) × (gP1(ω2j))ωj . Solving the recursion running time easily give Õ(d)
running time.

We note that we can also compute the inverse FFT in time Õ(d), as the inverse FFT is essentially
just the FFT.
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Polynomial Multiplication in the exponent. Let P (·), Q(·) be two polynomials of degree at
most d, and let R(x) = P (x)Q(x). Given P (·) and gQ(·), we can compute gR(·) in time Õ(d) using
the standard FFT approach. Indeed, by applying the FFT to P , and the FFT in the exponent to
gQ(·), we obtain P (ωj) and gQ(ωj). Then we can compute gR(ωj) = (gQ(ωj))P (ωj). Finally, we apply
the inverse FFT to the gR(ωj) to obtain gR(·).

Polynomial Division in the exponent. Let Q(·) be a polynomial of degree at most d, and let
P (·) be a polynomial of degree at most e+ 1 ≤ d. Then there exist unique polynomials a(·), r(·)
such that Q(x) = a(x)P (x) + r(x) and r(x) has degree at most e. Given P (·) and gQ(·), the goal is
to compute ga(·) and gr(·).

For a polynomial H, let Ĥ(x) = xdeg(H)H(1/x), which is also a polynomial, obtained by reversing
the coefficients of H. We can then write Q̂(x) = â(x)P̂ (x) + xdeg(Q)−deg(r)r̂(x). Thus, we have that
Q̂ = âP̂ mod xd−e, which re-arranges to

â = Q̂(P̂ )−1 mod xd−e

We can therefore compute the polynomial P ′ = (P̂ )−1 mod xd−e over Zp using standard tech-
niques in time Õ(d). Then we compute ga(·) using our polynomial multiplication in the exponent,
combining P ′(·) and gQ(·). Then we can compute gr(·) = g(Q−aP )(·).

The MPPEE Algorithm. For polynomial P (·) and points x1, . . . , xn, define P0 = P mod (x−
x1)(x− x2) · · · (x− xn/2) and P1 = P mod (x− xn/2+1)(x− xn/2+2) · · · (x− xn). Note that P (xi) =
P0(xi) if i ≤ n/2, and P (xi) = P1(xi) if i > n/2.

Therefore, given gP (·) and x1, . . . , xn, we perform the following procedure:

• Compute the polynomials (x−x1)(x−x2) · · · (x−xn/2) and (x−xn/2+1)(x−xn/2+2) · · · (x−xn).
This is done by recursively computing (x − x1)(x − x2) · · · (x − xn/4), (x − xn/4+1)(x −
xn/4+2) · · · (x − xn/2), etc, and then using polynomial multiplication in Zp to combine the
polynomials. Solving the recurrence gives an run-time of Õ(n) for this step.

• Compute gP0(·) and gP1(·) using the polynomial division algorithm. This takes time Õ(n+ d)

• Recursively apply the MPPEE algorithm to evaluate gP0(xi) for i = 1, · · · , n/2 and also to
evaluate gP1(xi) for i = n/2 + 1, . . . , n.

Solving the recurrence gives an overall run-time of Õ(n+ d).

By applying the MPPEE algorithm to computing ciphertexts, we prove Theorem 6.

Remark 8. The above sketch assumes that the modulus p is such that p − 1 is divisible by a
sufficiently large power of 2, as needed for computation of the FFT. We can always choose p to
have this property, but it may be desirable to use a given p rather than a chosen p — say, if
using a standardize elliptic curve for the pairing. In such cases, performing an FFT may not be
possible. Instead, it is straightforward to re-interpret the Schönhage-Strassen integer multiplication
algorithm [SS71] as a fast polynomial multiplication algorithm. The algorithm is completely linear in
each input polynomial, meaning we can use the algorithm in place of the “Polynomial Multiplication
in the exponent” procedure above. The rest of the algorithm proceeds as above, and no longer needs
the FFT. Hence an arbitrary p can be used. We omit the details.
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9 Putting It All Together
In this section, we give a new algebraic instantiation that combines threshold broadcast with risky
tracing techniques of [GKRW18]. By carefully applying our various compilers, this will prove
Corollaries 3 and 5.

9.1 Mixed Bit Matching with Threshold Broadcast

Here, we define a new primitive, which will combine the functionality of Mixed Bit Matching
encryption with Threshold Broadcast encryption. We therefore call the primitive Mixed Bit
Matching with Threshold Broadcast (MTB). The mixed bit matching functionality will allow us
to realize a risky-tracing scheme on top of our threshold broadcast. This will ultimately lead to
our broadcast and trace scheme with short ciphertexts (Corollary 3) and ultimately for our N1/3

construction (Corollary 5).
An MTB scheme is a tuple ΠMTB = (GenMTB,ExtractMTB,EncMTB,DecMTB,ReRandMTB) with

the following syntax:

• GenMTB(1u, 1v, 1t, 1n, 1λ) takes as input integers u, v, t, n and security parameter λ. It outputs
a master secret key msk and master public key mpk.

• ExtractMTB(msk, U,x) takes as input the master secret key msk, a set U ⊆ [2λ] of size at most
u, and a vector x ∈ {0, 1}n. It produces a secret key sk.

• EncMTB(msk, S,y) takes as input the master secret key msk, a set S ⊆ [2λ] of size at most v,
and a vector y ∈ {0, 1}n. It produce a ciphertext c and encapsulated key k.

• EncMTB(mpk, S) is a public key version of EncMTB, which takes as input the master public key
mpk, a set S ⊆ [2λ], and produces a ciphertext/encapsulated key pair (c, k).

• DecMTB(sk, S, c) takes as input a secret key, a set S ⊆ [2λ] and a ciphertext, and produces a
key k′.

As with an MBME scheme, there will be two correctness requirements. First, decryption should
recover the encapsulated key k, as long as both x · y = 0 over the integers and |U ∩ S| ≥ t.
Concretely, for any polynomials u = u(λ), v = v(λ), t = t(λ), n = n(λ), there exists a negligible
function negl(λ) such that, for all λ, for all x,y ∈ {0, 1}n such that x · y = 0, all sets U, S ⊆ [2λ]
with |U | ≤ u, |S| ≤ v, |U ∩ S| ≥ t, we have:

Pr[DecMTB(sk, c) = k : (msk,mpk)←GenMTB(1u,1v ,1t,1n,1λ), sk←ExtractMTB(msk,U,x)
(c,k)←EncMTB(msk,S,y) ] ≥ 1− negl(λ)

The second correctness requirement concerns the public and secret key versions of EncMTB. In
the case of MBME in Section 7.2, we had a re-randomization algorithm, which re-randomized a list
of ciphertexts. To keep things simpler, for MTB, we will only consider the case where the list of
ciphertexts is empty (this corresponds to the setting considered in [GKRW18]). It is more natural
in this setting to think of the algorithm as an encryption algorithm, and the requirement is that the
public key version of encryption has the same distribution as the secret key, using attribute 0n.

We now give the correctness requirement: for any polynomials u = u(λ), v = v(λ), t = t(λ), n =
n(λ), there exists a negligible function negl(λ) such that, for all sets S ⊆ [2λ] of size at most v, the
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following two distributions over (msk,mpk, c, k) are negl(λ)-close in statistical distance:

(msk,mpk)← GenMTB(1u, 1v, 1t, 1n, 1λ),(c, k)← EncMTB(msk, S, 0n), and
(msk,mpk)← GenMTB(1u, 1v, 1t, 1n, 1λ),(c, k)← EncMTB(mpk, S)

Security for MTB. We make three security requirements, as with MBME. The first is ciphertext
indistinguishability which, roughly, says that, given a ciphertext to set S with attribute y, a secret
key for set U and attribute x such that either (1) |U ∩ S| < t or (2) x · y > 0 reveals nothing about
the encapsulated key. This holds even if multiple such secret keys are controlled by the adversary.
Second, we will have a ciphertext attribute hiding and secret key attribute hiding property. These
requirements roughly state that and adversary, who gets many secret keys and ciphertexts, learns
nothing about the x or y vectors that were used to generate the secret keys/ciphertexts. Of course,
for any secret key/ciphertext pair for set U and set S where |U ∩S| ≥ t, the adversary learns whether
or not x · y = 0 by running the decryption algorithm and seeing if it succeeds; the requirement is
roughly that no other information is revealed.

Ciphertext Indistinguishability. Let A be an adversary, and consider the following experiment:

• A, on input 1λ, produces integers 1u, 1v, 1n and a ciphertext attribute y∗.

• In response, run (msk,mpk)← GenMTB(1u, 1v, 1n, 1λ). Reply with mpk.

• Now, A can make three kinds of queries:

– A single Challenge query on a set S∗. We require that, for any previous secret key query
(described below) on U,x, either (1) |U ∩ S∗| < t or (2) x · y∗ > 0. In response, sample
(c, k0)← EncMTB(msk, S∗,y∗), k1 ← K, and b← {0, 1}. Reply with (mpk, c, kb).

– Ciphertext queries on set S, |S| ≤ v and attribute y; respond by sampling from
EncMTB(msk, S,y).

– Secret key queries on set U, |U | ≤ u attributes x such that either (1) |U ∩ S∗| < t or (2)
x · y∗ > 0; in response it receives a sample from ExtractMTB(msk, U,x)

• Finally, A outputs a guess b′ for b.

We say that ΠMTB has ciphertext indistinguishability if, for all PPT adversaries A, there exists a
negligible function negl(λ) such that, for all λ, Pr[b′ = b] ≤ 1/2 + negl(λ).

Ciphertext Attribute Hiding. Let A be an adversary, and consider the following experiment:

• A, on input 1λ, produces integers 1u, 1v, 1n and two ciphertext attributes y∗0,y∗1.

• In response, run (msk,mpk)← GenMTB(1u, 1v, 1n, 1λ). Reply with mpk.

• Now, A can make three kinds of queries:

– A single Challenge query on a set S∗. We require that, for any previous secret key query
(described below) on U,x, either (1) |U ∩ S∗| < t, (2) both x · y∗0 > 0 and x · y∗1 > 0, or
(3) both x · y∗0 = x · y∗1 = 0. In response, reply with a sample from EncMTB(msk, S∗,y∗b)
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– Ciphertext queries on set S, |S| ≤ v and attribute y; respond by sampling from
EncMTB(msk, S,y).

– Secret key queries on set U, |U | ≤ u attributes x such that either (1) |U ∩ S∗| < t, (2)
both x · y∗0 > 0 and x · y∗1 > 0, or (3) both x · y∗0 = x · y∗1 = 0; in response it receives a
sample from ExtractMTB(msk, U,x)

• Finally, A outputs a guess b′ for b.

We say that ΠMTB has ciphertext indistinguishability if, for all PPT adversaries A, there exists a
negligible function negl(λ) such that, for all λ, Pr[b′ = b] ≤ 1/2 + negl(λ).

Secret Key Attribute Hiding. Let A be an adversary, and consider the following experiment:

• A, on input 1λ, produces integers 1u, 1v, 1n, two secret key attributes x∗0,x∗1, and a set U∗.

• In response, run (msk,mpk)← GenMTB(1u, 1v, 1n, 1λ) and sk← ExtractMTB(msk, U∗,x∗b) where
b← {0, 1}. Reply with (mpk, sk).

• Now, A can make two kinds of queries:

– Ciphertext queries on set S, |S| ≤ v and attribute y, such that either (1) |S ∩ U∗| < t,
(2) both x∗0 · y > 0 and x∗1 · y > 0, or (3) x∗0 · y = x∗1 · y = 0. In response it receives a
sample from EncMTB(msk, S,y).

– Secret key queries on set U, |U | ≤ u attributes x; in response it receives a sample from
ExtractMTB(msk, U,x)

• Finally, A outputs a guess b′ for b.

We say that ΠMTB has ciphertext indistinguishability if, for all PPT adversaries A, there exists a
negligible function negl(λ) such that, for all λ, Pr[b′ = b] ≤ 1/2 + negl(λ).

Definition 8. An MTB scheme ΠMTB is secure if it has ciphertext indistinguishability, ciphertext
attribute hiding, and secret key attribute hiding.

9.2 Our MTB Scheme from Pairings

Here, we give our MTB scheme. Our construction extends our threshold broadcast scheme above by
augmenting it with a mixed bit matching functionality, following our simplified view of [GKRW18].

As before, let G1,G2,G′ be groups of prime order p with pairing operation e : G1 × G2 → G′.
Let g1, g2 be generators of G1,G2, respectively. For a (row) vector v ∈ Znp , we use the notation
gv = (gv1 , . . . , gvn). We also use the notation e(g,h) = ∏

i e(gi, hi), so that e(gv
1 , g

w
2 ) = e(g1, g2)v·wT .

A Simplified View of [GKRW18]. We also give an overly simplified view of the MBME scheme
of [GKRW18] that we used in Section 7.2 to build our risky multi-scheme. During GenMBME, a
matrix R← Z(n+2)×(n+2)

q is chosen. This R allows us to create “slots”, similar to composite-order
pairings.
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The secret key contains R, as well as a random secret α. The secret key for attribute x ∈ {0, 1}n
(represented as a row vector) is generated as:

g
(α , x·D , η)·R−1

1

where D is a diagonal matrix D ∈ Zn×nq whose diagonal entries are uniformly random, and η is a
random scalar. D, η are chosen independently for each key. Similarly, a ciphertext for attribute
y ∈ {0, 1}n (also represented as a row vector) is generated as:

g
(s , y·E , 0)·RT
2

for a random s← Zq and diagonal matrix E ∈ Zn×nq whose diagonal entries are uniformly random.
The encapsulated key is e(g1, g2)sα. The public key is simply ciphertext/encapsulated key pair for
attribute 0n.

To decrypt a ciphertext c ∈ Gn+2
2 with secret key sk ∈ Gn+2

1 , simply compute e(sk, c), using our
notation for pairing vectors form above. The result is that the R−1 and R terms cancel, leaving
e(g1, g2)sα+x·D·ET ·yT . Recall that x,y ∈ {0, 1}n and D · ET is diagonal. As long as the diagonal
entries of D ·ET are all non-zero, we then have that x ·D ·ET ·yT is 0 if any only if x ·y = 0. Thus,
decryption recovers the encapsulated key e(g1, g2)sα exactly when x · y = 0.

TheRmatrices bind the different “slots” together, and essentially enforce that the only meaningful
way to combine a secret key sk with a ciphertext c is to compute e(sk, c); any other combination
of the various elements will fail to cancel out the R−1 and R terms, yield a pseudorandom group
element.

Remark 9. We note that [GKRW18] does not explicitly describe their construction in this way, but
nevertheless their construction can be interpreted as above, with a few differences. First, they have an
additional slot, that is always set to zero. Moreover, their matrix R is not chosen uniformly random,
but instead with some structure. These facilitate their reduction to the underlying computational
assumption. We note that it is always possible to “re-randomize” R by left- and right- multiplying
by a random matrix S and it’s inverse. As such, the only material difference in our description is
that we eliminate the extra slot. Our constructions in the following sections will be proved secure in
the generic group model, and in this model security holds even without the extra slot.

Our Idea. The high-level idea of our construction is the following: we will assign some “slots” to
form a mixed bit matching functionality, as in our simplified view of [GKRW18] above. Meanwhile,
the remaining slots will be used to run our threshold broadcast protocol from Section 8.2. One
wrinkle is that, for our N1/3 construction, we will need some flexibility to have secret keys with
overlapping sets U for the threshold component. As discussed previously, overlapping U would
cause our scheme to be insecure. We resolve this issue by including additional randomization in the
secret key, to prevent difference keys from being combined. This separation technique is essentially
that used in [AHL+12].

Unfortunately, this additional randomization will break decryption. To overcome this issue, we
include a “helper” key along with the secret key. This helper key is used during decryption just as
the public key was above, but the helper key has appropriately been modified so that it works with
the given secret key. This is also analogous to [AHL+12]. However, one difference is that we will
give some flexibility to allow some secret keys to share helper keys. In particular, if two secret keys
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have U that are disjoint, we can randomize them the same way, and therefore give the same helper
key to both secret keys. This will be important for keeping parameter sizes small, when running
through our compilers, as redundant helper keys can be eliminated.

We will assume a polynomial-sized upper bound is known on the number of helper keys that will
be used; this will be the case for all schemes we consider. Let X be a polynomial-sized index set for
the helper keys. Let U be the set of subsets U of size at most u. Let f : U → X be an arbitrary
function.

Construction 7. ΠMTB = (GenMTB,ExtractMTB,EncMTB,DecMTB,ReRandMTB) be the following:

• GenMTB(1u, 1v, 1t, 1n, 1λ): Choose random β, γ ∈ Zp. Choose random R ∈ Z(n+2)×(n+2)
q . For

each θ ∈ X , choose random τθ ∈ Zp. The secret key is (β, γ,R, (τθ)θ∈X ). The public key is:

pk =
(
e(g1, g2)β, g(βγ , 0 , 0)·R−1

1 ,
(
g

(γi , 0 , 0)·RT
2

)
j∈[0,v]

)

• ExtractMTB(msk, U,x): Let θ ← f(U). Let

sk =
(
g
(τθγ`/

∏
s∈U (1−γ/s) , x·D` , η`)·R−1

1

)
`=0,...,u−t

where the D` are diagonal matrices with random entries, chosen freshly for each secret key,
and the η` are chosen randomly for each secret key. Additionally, compute the “helper key”:

hkθ =

hθ := g

(
β−τθ
βγ

, 0 , 0
)
·RT

2 ,
(
g

(τθγi , 0 , 0)·RT
2

)
j∈[0,v]


Output (sk, hkθ) as the secret key.

• EncMTB(msk, S,y): Compute the ciphertext

c1 = g
(αβγ , 0 , 0)·R−1

1 , c2 = g
(α∏s∈S(1−γ/s) , y·E , 0)·RT
2

for uniformly random α ∈ Zp and diagonal matrix E with random entries. The encapsulated
key is e(g1, g2)αβ.

• EncMTB(mpk, S): Choose random α ∈ Zp. Compute the ciphertext

c1 = g
(αβγ , 0 , 0)·R−1

1 , c2 = g
(α∏s∈S(1−γ/s) , 0 , 0)·RT
2

The encapsulated key is e(g1, g2)αβ. Notice that c2 can be computed from the public key terms.

• DecMTB((sk, hkθ), S, c): Define Jθ(P ) := g
(τθP (γi) , 0 , 0)·RT
2 for any polynomial P . Notice that

the components of hkθ allow for compute Jθ(P ) for any P of degree at most v. Also, let
Hθ(R) := g

(τθR(γ)/∏s∈U (1−γ/s) , x·D , η)·R−1

1 for some diagonal matrix D and scalar η. Notice
that Hθ(R) can be computed from sk, as long as R has degree at most u− t.

56



Define the following functions:

P (γ) = (1−Q(γ))/γ
Q(γ) =

∏
j∈S\U

(1− γ/j)

R(γ) =
∏

i∈U\S
(1− γ/i)

Since U ∩S has size at least t, R(γ) is a polynomial of degree at most |U |−t ≤ u−t. Therefore,
Hθ(R) has the form

Hθ(R) = g
(τθ/

∏
s∈U∩S(1−γ/s) , x·D , η)·R−1

1

for some diagonal D and scalar η.
Now suppose x · y = 0. Then x ·D · ET · y = 0 for any diagonal matrices D,E (recall that
x,y are binary). Thus:

e(Hθ(R), c2) = e(g1, g2)ατθQ(γ)

Next, notice that 1 − Q(0) = 0, meaning 1 − Q(γ) is a polynomial of degree ≤ v with a 0
constant term; thus P (γ) is also a polynomial. Therefore, it is possible to compute Jθ(P ).
Thus, to decrypt, compute

e(c1, hθ) · e(c1, Jθ(P )) · e(Hθ(R), c2) = e(g1, g2)α(β−τθ)+ατθγP (γ)+ατθβQ(γ) = e(g1, g2)αβ = k

The correctness of Construction 7 follows from the above discussion. We briefly give the security
statement, which will be formally proved in Section 9.5.

Theorem 15. Suppose it is guaranteed that that, for any secret key queries on U1, U2 with non-
empty intersection, f(U1) 6= f(U2). Then Construction 9 is a secure MTB scheme, with security
justified in the generic group model for pairings.

9.3 Risky Broadcast and Trace from MTB: Proving Corollary 3

Here, we show that MTB implies a risky broadcast and trace. The idea is to use the mixed bit
matching functionality to create a 1/N -risky tracing scheme, and use the broadcast functionality to
enable broadcasting to an arbitrary subset of users. Note that we will not be using the threshold
broadcast functionality: all sets U will be disjoint singletons and the threshold will be set to 1,
corresponding to standard broadcast encryption. The result is the following theorem:

Theorem 16. Suppose there exists a secure MTB scheme Π0, which for u = t = 1 has size
(P = P (v), S = S(v), C = C(v)). Then there exists a 1/N -risky broadcast and trace multi-scheme
Π with size (P (N), S(N), C(N)). If the running time of Π0 for u ≤ λ is (E(v), D(v)), then the
running time of Π is (E(N), D(N))

The Construction. To prove the theorem, let Π0 = (Gen0,Enc0,Extract0,Dec0) be a threshold
broadcast scheme satisfying the given size requirement

Construction 8. Let Π = (Gen,Enc,Dec,Trace) be the tuple of the following PPT algorithms:
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• Gen(1N , 1M , 1λ): Let n = 2, v = N, u = t = 1. Run (pk,msk)← Gen0(1u, 1v, 1t, 1n, 1λ).
For each j ∈ [M ], choose a random i∗j ∈ [N0]. Let wj,i ∈ {0, 1}2 be (1, 1), (1, 0), (0, 0) for
i < i∗j , i = i∗j , i > i∗j , respectively.

Let J·K be an arbitrary efficient injection from [M ] × [N ] into the identity space [2λ]. Run
skj,i ← Extract0(msk, {Jj, iK},wj,i). Output pk as the public key, tk = msk, (i∗j )j∈[M ] as the
tracing key, and (skj,i)i∈[N ],j∈[M ] as the secret keys.

• Enc(pk, j, S): Let Tj,S = {Jj, iK}i∈S. Run and output (c, k)← Enc0(pk, Tj,S).

• Dec(pk, skj,i, S, c): Output k′ ← Dec0(pk, skj,i, Tj,S , c) for Tj,S as above.

• TraceD(tk, j, S, ε) will be described below.

Since encryption always sets y = 0, correctness immediately follows.

The Algorithm TraceRisk
D(tk, j, S, ε): If i∗j /∈ S, output ∅. Otherwise, do the following. Let

z1 = (0, 1) and z2 = (1, 1). Let ζ = (8N)2 × ω(log λ). Run ζ trials of b′i ← D(ci, kbi ), (ci, k0
i ) ←

Enc0(msk, z1), k1 ← K, b← {0, 1}. Let p̃1 be the fraction of trials where b′i = bi. p̃1 is an estimate
of p1, the probability D is correct, given an encryption with attribute z1

Analogously compute p̃2, and estimate of p2, the probability D is correct, given an encryption
with attribute uj + z2.

Output A = ∅ if p̃2 ≥ p̃1 − ε/2N . Otherwise, output A = {i∗j}.
The following theorem then establishes Theorem 18:

Theorem 17. Assuming Π0 is a secure MTB scheme, Construction 8 is an 1/N-risky broadcast
and trace multi-scheme.

Proof. The proof is basically the same as the proof of Theorem 13, and is omitted.

To prove Corollary 3, we plug Construction 7 into Construction 8. Note that Construction 8
assigns every user a disjoint set, meaning we can use a single helper key for all users. This helper key
can simply be included in the public parameters. The result is a 1/N -risky broadcast multi-scheme of
size (N, 1, 1). We then apply our risk mitigation compiler to et a non-risky scheme of size (N,N, 1),
and finally our user expansion compiler to get (N1−a, N1−a, Na) for any constant a ∈ [0, 1].

9.4 Risky Tracing from MTB: Proving Corollary 5

Here, we show that MTB implies a risky traitor tracing multi-scheme. While weaker than our
broadcast and trace scheme from the preceding section, our scheme here will offer smaller parameters
as necessary for Corollary 5. The idea is to use the mixed bit matching functionality to create a
1/N0-risky tracing scheme for N0 users, and the threshold broadcast functionality to create a tracing
scheme for N1 users. By layering the tracing of the two schemes correctly, we obtain a 1/N0-risky
scheme for N0 ×N1 users. The result is the following theorem:

Theorem 18. Suppose there exists a secure MTB scheme Π0, which for u ≤ λ has size (P =
P (v), S = S(v), C = C(v)). Let α = α(N) be an inverse polynomial. Then there exists an α-risky
multi-scheme Π in the shared randomness model with size (P (αN), S(αN), C(αN);αN). If the
running time of Π0 for u ≤ λ is (E(v), D(v)), then the running time of Π is (E(αN), D(αN))
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The Construction. To prove the theorem, let Π0 = (Gen0,Enc0,Extract0,Dec0) be a threshold
broadcast scheme satisfying the given size requirement

Construction 9. Let Π = (Gen,Enc,Dec,Trace) be the tuple of the following PPT algorithms:

• Gen(1N , 1M , 1λ): Let n = 2, N0 = 1/α,N1 = αN, u = ω(log λ), v = N1u, and t = (2/5)u.
Run (pk,msk)← Gen0(1u, 1v, 1t, 1n, 1λ).
We will interpret identities i ∈ [N ] as pairs (i0, i1) ∈ [N0] × [N1]. i0 will correspond to the
“risky identity” which will be traced using risky tracing techniques of [GKRW18]/Section 7.2,
and i1 will be the “threshold broadcast identity” which will be traced using our techniques from
Section 8.
For each j ∈ [M ], choose a random i∗0,j ∈ [N0]. Let wj,i0 ∈ {0, 1}2 be (1, 1), (1, 0), (0, 0) for
i0 < i∗0,j , i0 = i∗0,j , i0 > i∗0,j, respectively.
Let J·K be an arbitrary efficient injection from [M ] × [N1] × [u] × {0, 1} into the iden-
tity space [2λ]. For each i ∈ [N ], j ∈ [M ], choose a random xj,i ∈ {0, 1}u. Set Uj,i =
{Jj, i1, `, xi,j,`K}`∈[u] ⊆ [2λ] and run skj,i ← Extract0(msk, Uj,i,wj,i0). Output pk as the public
key, tk = msk, (i∗0,j)j∈[M ], (xj,i)i∈[N ],j∈[M ] as the tracing key, and (skj,i)i∈[N ],j∈[M ] as the secret
keys.

• Enc(pk, j, r): here, r ∈ {0, 1}N1×u is the shared randomness, which will be interpreted as the
list r = (ri1,`)i1∈[N1],`∈[u], ri1,` ∈ {0, 1}. Let Tj,r = {Jj, i1, `, ri1,`K}i1∈[N1],`∈[u]. Run and output
(c, k)← Enc0(pk, Tj,r).

• Dec(pk, skj,i, r, c): Output k′ ← Dec0(pk, skj,i, Tj,r, c) for Tj,r as above.

• TraceD(tk, j, ε) will be described below.

Since encryption always sets y = 0, correctness is essentially the same as our traitor tracing
construction from threshold broadcast encryption (Construction 5). We now discuss tracing.

9.4.1 Tracing

Our tracing algorithm essentially combines the tracing algorithm for risky tracing with our
tracing algorithm for threshold broadcast. That is, we first apply the risky tracing technique
from [GKRW18]/Section 7.2 to trace an identity i0. Assuming this succeeds, we then move to
tracing i1, which we accomplish by using our threshold broadcast-based tracing strategy.

We note that it is critical that tracing proceeds in this order. The problem is that there are N0
users for a particular i1 value, and we cannot “turn off” all such users simultaneously since they
share a common identity space. This means there is no way to directly apply our tracing algorithm
from Section 8, if we trace i1 first. On the other hand, if we trace i0 first, then we can turn off the
users for that i0 (leaving the users for i′0 6= i0 on). The result is that we successfully trace to an
identity (i0, i1).

We now give the algorithm TraceD(tk, j, ε) in more detail.
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Tracing i0. Define the following “helper” algorithm Enc(msk, j, z; r) for z ∈ {0, 1}2 and shared
randomness r: Let Tj,r = {Jj, i1, `, ri1,`K}i1∈[N1],`∈[u]. Run and output (c, k) ← Enc0(msk, Tj,r, z).
This is just a secret key version of Enc, which allows for specifying an attribute vector z1.

Let z1 = (0, 1) and z2 = (1, 1). Let ζ = (8N)2×ω(log λ). Run ζ trials of b′i ← D(ci, kbi ), (ci, k0
i )←

Enc(msk, z1), k1 ← K, b← {0, 1}. Let p̃1 be the fraction of trials where b′i = bi. p̃1 is an estimate of
p1, the probability D is correct, given an encryption with attribute z1

Analogously compute p̃2, and estimate of p2, the probability D is correct, given an encryption
with attribute z2. If p̃2 ≥ p̃1 − ε/2N0, immediately stop tracing and output an empty set A.
Otherwise, we will accuse the “half user” identity i0 = i∗0,j , and proceed to the next round to accuse
the second half of the user identity i1.

Tracing i1. For a probability distribution Z over {0, 1}N1u and o ∈ {1, 2}, let

pZ,o = Pr[D(c, r, kb) = b : r ← Z, (c, k0)← Enc0(msk, Tj,r, zo), k1 ← K, b← {0, 1}]

denote the probability that D correctly distinguishes a random ciphertext using the set Tj,r for
r ← Z. Let ∆pZ = pZ,1 − pZ,2.

Let ζ = (16Nu/ε)2 × ω(log λ). We will use the following procedure, which on input (an efficient
representation of) a distribution Z, will compute an estimate of ∆pZ : for o ∈ {1, 2}, run ζ trials of
b′i ← D(c + i, r + i, kb+ii ) : ri ← Z, (c + i, k0

i ) ← Enc0(msk, Tj,ri , zo), k1
i ← K, bi ← {0, 1}. Let p̃Z,o,

the fraction of the trials where b′i = bi. Then output ∆p̃Z = p̃Z,1 − p̃Z,2.
We now describe how to trace i1, following our algorithm from Section 8, but using the estimates

∆p̃Z instead of p̃Z :

1. Initialize an empty set A.

2. We will associate vectors Z ∈ {0, 1, ∗}Nu with the following probability distribution over
{0, 1}N1u: replace each ∗ with a uniformly random bit, leaving all other bits as specified.
We will initialize a vector Z = ∗N1u, corresponding to the uniform distribution over {0, 1}N1u.
Using the estimation procedure above, compute estimate ∆p̃ of ∆p = ∆pZ .

3. For each i1 ∈ [N1] do the following:

(a) Let i = (i∗0,j , i1).
(b) Initialize a counter ctri = 0.
(c) For ` = 1, . . . , u do the following:

i. Let Zb denote the current value of Z, except that Zi1,` is replaced with b (note that
up to this point, Zi1,` = ∗). Compute estimates ∆p̃0,∆p̃1 of the values ∆p0 = ∆pZ0

and ∆p1 = ∆pZ1 .
ii. If ∆p̃1−xj,i,` ≥ ∆p̃ − (ε/8Nu), update Z to Z1−xj,i,` , ∆p̃ to ∆p̃1−xj,i,` , and set

ctri = ctri + 1. Otherwise do not update Z, ∆p̃, or ctri1 .
(d) If ctri/u ≤ 2/5, add user i to A.

Finally, after tracing both i0 and i1, output A.

The following theorem then establishes Theorem 18:
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Theorem 19. Assuming Π0 is a secure MTB scheme and u = ω(log λ), Construction 5 is an
α-risky multi-scheme.

Proof. We only sketch the proof, since it follows almost verbatim from a combination of the proofs
of Theorem 10 and Theorem 14.

Let GoodTr0 be the probability that tracing i0 actually accuses the half-identity i∗0,j . Following
the proof of Theorem 10, by relying on the Ciphertext Indistinguishability, Ciphertext Attribute
Hiding, and Secret Key Attribute Hiding, we have that Pr[GoodTr0] ≥ αPr[GoodDec]− negl(λ).

Now, if GoodDec0 happens, we know p̃1 − p̃2 ≥ ε/2N1. But since ∆p̃Z is initially estimating
exactly p̃1 − p̃2, we have by Hoeffding’s inequality that ∆p̃Z ≥ ε/4N1 initially, with overwhelming
probability. We then follow an essentially identical argument as in the proof of Theorem 14 to show
that, except with negligible probability:

• If (i∗0,j , i1) is not controlled by the attacker, then that user will not be accused. This follows
since, for any user not controlled by the attacker, we will succeed in “turning off” that user,
and will not decrease ∆p̃Z by too much.

• Some user will be accused. This is because, if no user is accused, then we will turn off all users
with half-identity i∗0,j . But these are the only users that can distinguish ciphertext attribute
z1 from z2, meaning turning off all users results in the final ∆pZ being negligible. But then
the final ∆p̃Z will be small. But this is a contradiction, since our tracing algorithm guarantees
that ∆p̃Z does not change too much.

Thus, we have that Pr[GoodTr] ≥ Pr[GoodTr0] − negl(λ) ≥ αPr[GoodDec] − negl(λ), and that
Pr[BadTr] ≤ negl(λ).

9.4.2 Proving Corollary 5

Here, we discuss how Construction 7 and 9 gives Corollary 5, which will in particular require
specifying the function f .

Note that, if we ignore the size of the helper key hkθ, Construction 7 has size (v, 1, 1) for u ≤ λ
and n = 2. When we plug into Theorem 18, we obtain an α-risky scheme of size (αN, 1, 1;αN) in
the shared randomness model.

We can then apply our risk reduction compiler (Theorem 3) to get a non-risky scheme of
size (αN,α−1, 1;αN). Then we apply our user expansion compiler (Theorem 1) to get a scheme
of size (αN/T, α−1, T ;αN/T ). Now we set T = Na and α = N−b, giving a scheme of size
(N1−a−b, N b, Na;N1−a−b), still in the shared randomness model. Including the shared randomness
in the ciphertext would then give a scheme of size (N1−a−b, N b, Na +N1−a−b).

Unfortunately, we have so far ignored the size of hkθ, which has size v. Naively, running though
our compilers would multiply the secret key size by N1−a−b, which would give too-big of a secret
key.

Instead, we recall that our risk reduction compiler gives each user many secret keys from the
underlying risky scheme. If all the secret keys from the underlying scheme happened to have the
same helper key hkθ, then we only need to include one copy of hkθ in the combined key. Thus,
instead of multiplying the secret key size by N1−a−b, we would only add N1−a−b to the secret key
size. The result is a scheme of size (N1−a−b, N b +N1−a−b, Na +N1−a−b).
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Choosing f . There are two requirements we need from f . First, for security, we need that no two
secret keys with overlapping U get mapped to the same θ, in order to rely on Theorem 15. Looking
at Construction 9, we see that the secret keys which overlap are those for the same j and same i1
value, but potentially different i0. Therefore, to ensure that such secret keys get mapped to different
θ, we need that f(j, (i0, i1)) 6= f(j, (i′0, i1)) for any j, i1 and i0 6= i′0.

Second, in order to get the desired size outcome, we need all secret keys that are handed to a
single user after risk reduction compiler is applied to have the same θ. Looking at Construction 3,
we interpret instances as j = (j0, j1), and user i of instance j0 will get secret keys for user i in each
of the instances (j0, j1) as j1 varies. Thus, we need that f( (j0, j1) , i) = f( (j0, j′1) , i) for all j1, j′1.

We can accomplish both requirements by setting f( (j0, j1) , i) = (j0, i).

Efficiency. Finally, we briefly discuss the computational efficiency. As with Section 8, the
straightforward application of our compilers will give a scheme where the run-time of encryption is
larger than it’s input and output size. However, encryption and decryption essentially have the same
form as in Section 8, just with each group element being replaced with a vector of group elements.
Nevertheless, it is straightforward though tedious to choose an appropriate embedding J·K such that
the encryption run-time can be made optimal using fact polynomial evaluation in the exponent.

Putting everything together, we get an asymptotically efficient scheme of size (N1−a−b, N b +
N1−a−b, Na +N1−a−b) from pairings, with security proved in the generic group model. This gives
Corollary 5.

9.5 Proof of Theorem 15

Here, we prove Theorem 15, justifying the security of Construction 7 in the generic group model,
provided f(U1) 6= f(U2) for any overlapping U1, U2 queries by the adversary. Our proof follows
standard techniques for proving security in the generic group model.

We first briefly recall the generic group model for pairings. Here, the groups G1,G2,G′ are
modeled as random embeddings G1, G2, G

′ from the additive group Zp into {0, 1}m. The generators
g1, g2 of G1,G2 are modeled as G1(1), G2(1), respectively, and e(g1, g2) is modeled as G′(1). Then
ga1 is modeled as G1(a), with analogous statements for ga2 , e(g1, g2)a. These embedding are provided
as oracles to the adversary. The group action and pairing operation are provided as additional
oracles. All queries will be unit cost, and any local computations will be considered free. Thus, a
polynomial time algorithm in this setting is simply one that makes a polynomial number of queries.

Our proof will follow standard techniques for proving security in the generic group model. In
Construction 7, all the exponents are rational functions in underlying random values sampled from
Zp. At any stage in the security experiment, let L1 = (v1,i(·))i be the list of rational functions v1,i
the adversary has so far corresponding to elements in G1, with L2, L

′ defined analogously. Here,
the v1,i, v2,i, v

′
i are multivariate rational functions in some underlying random values, which we will

denote x. Thus, at any stage of the experiment, the adversary sees the strings G(L1) = (G(v1,i(x)))i,
and analogously G(L2), G(L′).

By a standard argument, generic group interface is equivalent to allowing the attacker to submit
bilinear polynomials P over the terms in L1, L2, L

′: P (L1, L2, L
′) = ∑

i,j ai,jv1,iv2,i+
∑
i biv

′
i. We will

write P (L1, L2, L
′)(x) = ∑

i,j ai,jv1,i(x)v2,i(x) +∑
i biv

′
i(x). In response to the query, the attacker

learns whether or not P (L1, L2, L
′)(x) = 0. Additionally, the adversary can submit linear functions

P1(L1), P2(L2), or P ′(L′).
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We can write any rational function P as Q/R, for polynomials Q,R that are relatively prime.
We will say that a rational function P (·) is identically 0, denoted P ≡ 0, if Q is the identically
0 polynomial. Note that, for Construction 7, writing any polynomial P in this way will result in
Q,R of polynomial total degree. By another standard argument, except with negligible probability,
over all queries the adversary makes, P (L1, L2, L

′)(x) = 0 exactly when P (L1, L2, L
′) ≡ 0 as a

polynomial, with analogous statements for P1, P2, P
′ queries.

It is straightforward that for all linear polynomials P1, P2, P
′, the polynomials are not identically

0, in any of the experiments for ciphertext indistinguishability, ciphertext attribute hiding, or secret
key attribute hiding. This is because each term has its own randomness that cannot be canceled out
by linear combinations. Only be computing bilinear polynomials P is it possible to be identically 0.
Therefore, for the rest of the section, we only need to focus on bilinear P .

We observe the that the variables in R only ever occur in the form gv·R−1
1 or gv·RT

2 for some
vector of rational functions v. Moreover, all terms given out in G1,G2 have this form and no terms in
G′ depend on R. The choice of b only affects v, but not R. Therefore, we will group the polynomials
in L1, L2 together accordingly, writing L1 = (v1,i ·R−1)i and L2 = (v2,i ·RT )i. We will then write
the adversary’s polynomials P as

P (L1, L2, L
′) =

∑
i,j

ai,j,k,`(v1,i ·R−1)k(v2,i ·RT )` +
∑
i

biv
′
i

We will say that P is “well formed” if ai,j,k,` = ai,jδk,`, for some values ai,j , where δk,` is 1 if
k = ` and 0 otherwise. For such P , the R−1 and RT terms will cancel out leaving

P (L1, L2, L
′) =

∑
i,j

ai,j(v1,i · v2,i) +
∑
i

biv
′
i

For all other P , P (L1, L2, L
′) will have terms that are rational in the entries of R, and hence cannot

be identically 0.

In each of the experiments for ciphertext indistinguishability, ciphertext attribute hiding, and
secret key attribute hiding, the attacker “sees” polynomials that depend on b; call these polynomials
L1,b, L2,b, L

′
b. Thus, proving security of Construction 7 reduces to demonstrating that, for any P

the adversary can construct, P (L1,0, L2,0, L
′
0) ≡ 0 if and only if P (L1,1, L2,1, L

′
1) ≡ 0. Based on the

above, we can restrict our attention to only well-formed P .
We now examine some consequences of P being well-formed.

• Consider a vector v1,i corresponding to a secret key component sk` with attribute y, and a
vector v2,j corresponding to a ciphertext component c2 with attribute x. Suppose x · y > 0,
meaning there is some k such that xk = yk = 1. Then v1,i · v2,j will contain a term of the
form (D`)kEk, where D`, E are the random diagonal matrices created when generating sk`, c2,
respectively. Note that D` only appears in v1,i and E only appears in v2,j , meaning (D`)kEk
only appears in the product v1,i · v2,j and no other product of two vector (nor in any of the
v′i). Thus, if ai,j 6= 0, then P 6≡ 0.
We will call P “attribute respecting” if ai,j = 0 for all i, j corresponding to secret keys and
ciphertexts with attributes x,y such that x · y > 0.

• Consider v1,i0 ,v1,i1 , ·,v1,iu−t corresponding to the secret key components sk1, sk2, · · · , sk` of a
secret key for set U . Consider a vector v2,j corresponding to a ciphertext component c2 for
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set S, and suppose |S ∩ U | < t. Also suppose for simplicity that the corresponding attributes
x,y satisfy x · y = 0. Then

∑
`

ai`,jv1,i` · v2,j = ατθ
(∑` ai`,jγ

`)∏s∈S(1− γ/s)∏
s∈U (1− γ/s) = ατθ

(∑` ai`,jγ
`)∏s∈S\U (1− γ/s)∏

s∈U\S(1− γ/s)

for any constants a`. If x · y > 0, then ∑` ai`,jv1,i` · v2,j has the same form, but with some
extra additive terms containing (D`)kEk.
Notice that by the requirement |S ∩U | < t, ∏s∈U\S(1− γ/s) has degree > u− t. On the other
hand,∑` a`γ

` has degree at most u−t. Therefore, regardless of the choice of a`,
∑
` a`v1,i` ·v2,j

has the form ∑
`

a`v1,i` · v2,j = ατθ
Q(γ)∏

s∈U ′(1− γ/s)

for some polynomial Q(γ) and a non-empty set U ′.
Notice that there is no other way to construct terms of this form. Indeed, since α is unique
to the given ciphertext, the only way to get ατθ terms is to either (1) pair c2 with a secret
key component using the given θ value, or (2) pair the corresponding c1 with a helper key
component using the given θ. In case (1), using our requirement that secret keys have disjoint
U , so there is no way to create the pole 1/∏s∈U ′(1− γ/s), except to use the given secret key
components. For case (2), there is also no way to create the pole, since the helper keys only
divide by γ and not 1− γ/s.
Therefore, unless ai`,j = 0 for all `, P 6≡ 0. We will therefore call P “threshold respecting” if,
for any secret key and ciphertext with |S ∩ U | < t, the corresponding terms ai`,j = 0 for all `.

We note that the requirements for the experiments for ciphertext indistinguishability, ciphertext
attribute hiding, and secret key attribute hiding all result in the following: P is both attribute
respecting and threshold respecting in b = 0 if and only if P is both attribute respecting and
threshold respecting in b = 1. Thus, it suffices to restrict our attention to well formed, attribute
respecting, threshold respecting polynomials, as all other polynomials will be non-identically 0 for
both b = 0 and b = 1. We now examine each of the three experiments for Construction 7, and
demonstrate that the desired condition holds for such polynomials.

Ciphertext Attribute Hiding. The only difference between b = 0 and b = 1 is a single ciphertext,
consisting of components c1, c2 and encapsulated key K; the only difference is that the attribute y
changes. Only c2 depend on the attribute; c2 can be paired with public key components or with
secret key components. Notice that by being well formed, pairing with public key components will
zero out the terms depending on the attribute. On the other hand, by being attribute respecting
and threshold respecting, c2 can only be paired with secret keys that are “allowed” to decrypt the
ciphertext. In particular, this means that if the secret key attribute is x, it must be that x · y = 0,
regardless of b. But again, this means that the terms depending on y are zeroed out when pairing
with such secret keys. The result is that any well formed, attribute respecting, threshold respecting
P is actually identical in both b = 0 and b = 1.
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Secret Key Attribute Hiding. Secret key attribute hiding is almost identical to ciphertext
attribute hiding, with the roles of ciphertext and secret key flipped. The only difference between
b = 0 and b = 1 is a single secret key, consisting of components sk`, with a different attribute x
for b = 0 and b = 1. sk` can be paired with helper key components, public key components, or
the c2 part of a ciphertext. Notice that by being well formed, pairing with helper or public key
components, the terms depending on x are zeroed out. On the other hand, by being attribute
respecting and threshold respecting, sk` can only be paired with c2 that it is “allowed” to decrypt.
In particular, this means that is c2 has attribute y, it must be that x · y = 0, regardless of b. But
again, this means that the terms depending on y are zeroed out when pairing with such ciphertext.
The result is that any well formed, attribute respecting, threshold respecting P is actually identical
in both b = 0 and b = 1.

Ciphertext Indistinguishability. Here, the only difference is that a single encapsulated key is
changed from K = e(g1, g2)αβ to K = e(g1, g2)η for a fresh random variable η. Let (c1, c2) be the
associated ciphertext components. The only way a polynomial P will have a different behavior on
the two is if (1) the bi corresponding to this K is non-zero, and (2) in the case K = e(g1, g2)αβ,
P ≡ 0. By scaling the ai,j , bi, we can assume the bi corresponding to K is −1. Then let P ′ be P ,
but with this bi changed to 0. Then P ′ ≡ P + αβ. Since P ≡ 0, we therefore have that P ′ ≡ αβ. If
P is well formed, attribute respecting, and threshold respecting, then so is P ′.

We now show that such a P ′ is impossible. Note that the only way to get αβ from the terms in
G1,G2 is to pair the ciphertext components c1 with a combination of the hθ terms from a helper
key. Let a2,iθ be the coefficients for the various hθ. Carrying out the pairing results in

(
∑
θ

a2,iθ)αβ − α
∑
θ

a2,iθτθ

Therefore, in order to obtain αβ, we need ∑θ a2,iθ = 1, which in particular means that at least one
of the a2,iθ = 0. But then we have a term of the form ατθ which needs to be canceled out by other
terms. There are only two possible ways to compute such terms:

• Pair c1 with other components from hkθ. But this actually results in αβγz; the presence of β
means this has the wrong form.

• Pair c2 with components of a secret key that uses θ. However, by being attribute respecting
and threshold respecting, we can only pair c2 with secret keys that are “allowed” to decrypt
the ciphertext. But the ciphertext indistinguishability experiment requires that the adversary
does not have any secret keys that are allowed to decrypt.

This shows that such a P ′ is impossible, thereby establishing ciphertext indistinguishability. This
completes the proof of Theorem 15.
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