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Abstract—The industrial Internet of Things (IIoT) integrates sensors, instruments, equipment, and industrial applications, enabling
traditional industries to automate and intelligently process data. To reduce the cost and demand of required service equipment, IIoT relies
on cloud computing to further process and store data. However, the means for ensuring the privacy and confidentiality of the outsourced
data and the maintenance of flexibility in the use of these data remain unclear. Public-key authenticated encryption with keyword search
(PAEKS) is a variant of public-key encryption with keyword search that not only allows users to search encrypted data by specifying
keywords but also prevents insider keyword guessing attacks (IKGAs). However, all current PAEKS schemes are based on the discrete
logarithm assumption and are therefore vulnerable to quantum attacks. Additionally, the security of these schemes are only proven under
random oracle and are considered insufficiently secure. In this study, we first introduce a generic PAEKS construction that enjoys the
security under IKGAs in the standard model. Based on the framework, we propose a novel instantiation of quantum-resistant PAEKS that
is based on NTRU assumption. Compared with its state-of-the-art counterparts, our instantiation is more efficient and secure.
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1 INTRODUCTION

THE Internet of Things (IoT) is a system that connects a
large set of devices to a network, where these devices can

communicate with each other over the network. Industrial
IoT (IIoT) is a particular type of IoT that fully utilizes
the advantages of IoT for remote detection, monitoring,
and management in industry. Because the volume of data
and computation in industry is very large, and long-term
storage is required, IIoT is highly reliant on cloud computing
technology to reduce the cost of storage and computing
environments (Fig 1). Despite the numerous benefits of
processing IIoT data through cloud computing, industrial
data typically have commercial value and thus necessitate
privacy protection when such sensitive data are offloaded to
the cloud. Therefore, to ensure data confidentiality, sensitive
data should be encrypted before being uploaded to the cloud.

In addition to data confidentiality, data sharing is indis-
pensable in IIoT. For instance, in an industrial organization,
the administrator in the information department (i.e., the
data sender) must share the data collected from IoT devices
with an administrator from another department (i.e., the
data receiver). To ensure data confidentiality, the data sender
encrypts the data by using the public key of the data receivers.
However, in such a method, if the data receiver wants to
retrieve the data from the ciphertext stored in the cloud, the
data receiver must download all the ciphertext and further
decrypt it, which consumes considerable time and resources.
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Public-key encryption with keyword search (PEKS), first
introduced by Boneh [1], is highly suited to the aforemen-
tioned application environment because PEKS makes the
ciphertext searchable. Furthermore, in PEKS, a data sender
not only uploads encrypted data but also and uploads the
encrypted keywords related to the data using the data
receiver’s public key. To download the data related to a
specified keyword, the data receiver can use their private
key to generate a corresponding trapdoor and submit the
trapdoor to the cloud server. The cloud server can then iden-
tify encrypted keywords corresponding to the trapdoor and
then returns the corresponding encrypted data to the data
receiver. A secure PEKS scheme is required to ensure that
the ciphertext and trapdoor leak no keyword information
to the malicious outsiders. However, Byun [2] noted that
having only the two aforementioned security requirements
is insufficient because the cloud server may be malicious,
where the malicious cloud server guesses the keyword hiding
in the trapdoor—a type of attack called insider keyword
guessing attacks (IKGAs). In particular, because the cloud
server can adaptively generate a ciphertext for any keyword
by using the data receiver’s public key, through trial and
error, test for that self-made ciphertext that is matched with
the trapdoor received from the data receiver. As mentioned in
[2], because the keyword space is not large enough, there is a
high probability that keyword-related information searched
for by the data receiver is leaked to the malicious cloud
server.

To prevent IKGA, some early PEKS schemes have used
additional servers to perform tests, in place of the original
server. This method is called designated-tester PEKS [3]
or dual-server PEKS [4]–[8]. When servers do not collude,
IKGAs do not occur. However, using additional servers can
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significantly increase the cost of communication. Further-
more, the means for ensuring that servers do not collude
remain unclear. Recently, Huang and Li [9] introduced a
new cryptography primitive called public-key authenticated
encryption with keyword search (PAEKS). In this primitive,
the data sender not only generates but also authenticates
ciphertext, whereas a trapdoor generated from the data
receiver is only valid to the ciphertext authenticated by
the specific data sender. Therefore, the cloud server cannot
perform IKGAs. Because of the higher efficiency and greater
convenience compared with designated-tester PEKS schemes,
many PAEKS schemes [10]–[16] have been formulated for
further application in IoT and IIoT as well as in cloud
computing environments.

Unfortunately, these PAEKS schemes are only proven
under random oracle model (ROM). As described in [17]–
[19], ROM can be said to be unnatural and markedly different
from the construction of the real world; thus, there is both
a theoretical drawback and also a practical concern of the
constructions proven under ROM. How to obtain a secure
PAEKS scheme avoiding such heuristics is still an important
question.

Shor [20], [21] reported on quantum algorithms that can
violate the traditional number-theoretic assumptions, such
as the integer factoring assumption and discrete logarithm
assumption. In particular, the advent of the 53-qubit quantum
computer, proposed by Arute et al. [22], may improve
quantum computing technology and affect the existing cryp-
tographic systems. Because the security of existing PAEKS
schemes is based on the discrete logarithm assumption,
quantum computers can come to pose a potential threat
to existing schemes. Hence, the means of constructing a
quantum-resistant PEAKS scheme is an emerging issue
among scholars and practitioners.

Fig. 1. Typical network architecture for IIoT.

1.1 Our Contribution
In this paper, we introduce a novel solution for constructing
a quantum-resistant PAEKS scheme for use in IIoT. At a
high level, the original keyword space is commonly found
and easy to test. Our strategy is to allow a data sender and
data receiver to generate an “extended keyword” from an

original keyword without interacting with each other. In this
method, the ciphertext and trapdoor are generated using the
extended keyword instead of the original keyword. Because
the keyword space increases after the keyword is extended,
the malicious cloud server cannot generate a valid ciphertext
to perform IKGAs.

Accordingly, we provide a generic PAEKS construction
by leveraging an identity-independent 2-tier identity-based
key encapsulation mechanism (IBKEM), a pseudorandom
generator (PRG), and anonymous identity-based encryption
(IBE). We also present two rigorous proofs to show that our
construction satisfies the security requirements of PAEKS.
These requirements are indistinguishability against chosen
keyword attacks (IND-CKA) and indistinguishability against
IKGAs (IND-IKGA) under a multi-user setting in a standard
model, without ROM. Furthermore, we first employ Ducas et
al.’s anonymous IBE [23] to obtain an identity-independent
2-tier IBKEM under the NTRU assumption. We then combine
the scheme with [23] to obtain an instantiation of PAKES.
Because the security of [23] is inherited, we obtain the first
quantum-resistant instantiation of PAEKS.

The comparison results of our scheme with other state-of-
the-art PAKES schemes are presented in Table 2 and Figure
3; our instantiation was demonstrated to be not only more
secure but also more efficient with respect to ciphertext
generation, trapdoor generation, and testing.

1.2 Related Work

The PEKS schemes against IKGAs can be separated into three
categories: designated-tester (or called dual-server) PEKS,
PAEKS, and witness-based searchable encryption.

The concept of designated-tester PEKS was first intro-
duced by Rhee et al. [3], who proposed a PEKS scheme that
supports trapdoor indistinguishability. Chen et al. [4]–[6]
followed this concept and proposed a variant scheme, called
dual-server PEKS, which can be used against IKGAs if the
servers do not collude with each other. However, Huang [24]
indicates that [4]–[6] are susceptible to IKGAs. Recently, Chen
et al. [8] introduced an efficient dual-server scheme that is re-
sistant to IKGAs without needing any pairing computations.
In addition, Mao et al. [7] suggested a quantum-resistant
designated-tester PEKS scheme, which is also the first lattice-
based PEKS that is protected from IKGAs. However, the
above schemes requires that servers do not collude with
each other, which is difficult to guarantee in many scenarios.
Moreover, construction costs and communications costs are
increased in this method.

Considering these limitations, scholars thus began to
study methods for constructing trapdoors that are only valid
for certain ciphertexts. Fang et al. [25], [26] first considered
using a one-time signature to authenticate the ciphertext,
while having the trapdoor be valid only for the authenticated
ciphertext, a method that improved resistance to IKGA.
Huang and Li [9] formally defined the system model and
security model for PAEKS. Noroozi and Eslami [12] first
considered Huang and Li’s scheme [9] is not secure against
IKGAs and further improved [9] without incurring additional
cost complexity. To resist quantum attacks, Zhang et al. [27]
proposed a lattice-based PAEKS scheme; however, Liu et
al. [28] recently demonstrated that the security model of



3

that work is flawed and therefore cannot withstand IKGAs.
Pakniat et al. [13] introduced the first certificateless PAEKS
scheme for an IoT environment. Moreover, Li et al. [15] and
Qin et al. [14] further prevented malicious adversary eaves-
drops on the transmission channel of ciphertext and trapdoor,
and executes the test algorithm to determine whether the
two ciphertexts shared the same keyword. Although the
aforementioned PAEKS schemes resist IKGAs, these schemes
are based on the discrete logarithm assumption, which make
them vulnerable to attacks from quantum computers.

Ma et al. [29] introduced a cryptographic primitive called
“witness-based searchable encryption,” in which the trapdoor
is valid only when the ciphertext has a witness relation to
the trapdoor. Chen et al. [30] formulated an improvement to
reduce the complexity of the trapdoor size. Inspired by [29],
Liu et al. [31] introduced a new concept called “designated-
ciphertext searchable encryption,” where the trapdoor is
designated to a ciphertext; this concept affords users with
a quantum-resistant instantiation. Despite their advantages,
however, these schemes require the data sender to interact
with the data receiver; moreover, they incur additional
communication costs and are inapplicable to many scenarios.

1.3 Organization of the Paper

The rest of the paper is organized as follows. Section
2 introduces the preliminaries, and Section 3 recalls the
definition of the building blocks used in our generic con-
struction. Moreover, Section 4 provides the definition and
security requirement of the PAEKS. Next, Sections 5 and
6 introduce our generic constriction before providing the
security proofs. Section 7 elaborates on the first quantum-
resistant PAEKS instantiation, and Section 8 details the
analysis of the communication cost and computation cost
incurred in the related PAEKS schemes. Finally, Section 9
concludes this study.

2 PRELIMINARY

For simplicity and readability, we use the notations in Table
1 throughout the manuscript.

2.1 Lattices

We now introduce the basic concepts underlying lattices that
are used in our instantiation. An m-dimension lattice Λ is an
additive discrete subgroup of Rm, which can be defined as
follows.

Definition 1 (Lattice). We say that a m-dimension lattice Λ
generated by a basis B = [b1| · · · |bn] ∈ Rm×n is defined
by

Λ(B) = Λ(b1, · · · ,bn) =

{ n∑
i=1

biai|ai ∈ Z
}

,

where b1, · · · ,bn ∈ Rm are n linear independent vectors.

In addition, for a prime q, a matrix A ∈ Zn×mq , and a vector
u ∈ Znq , we can define the following three sets [32], [33]:

• Λq := {e ∈ Zm | ∃s ∈ Zn where As = e mod q}.
• Λ⊥q := {e ∈ Zm | Ae = 0 mod q}.
• Λu

q := {e ∈ Zm | Ae = u mod q}.

TABLE 1
Notations

Notation Description

λ Security parameter
Π PAEKS
Ψ IBE
Ω Identity-independent 2-tier IBKEM
F Pseudorandom generator
IDS Identity space
CS Ciphertext space
KS Shared key space
PS Plaintext space
W Keyword space
N,Z,R Natural number, integer number, real number
G1,GT Cyclic group
v,V Vector, matrix
a‖b Concatenation of element a and b

s
$←− S Sampling an element s from S uniformly at random

T̃ Gram-Schmidt orthogonalization of T
|v| The bit length of element v
‖v‖, ‖V‖ The Euclidean norm of v and V
negl(·), poly(·) Negligible function, polynomial function
PPT Probabilistic polynomial-time

2.2 Discrete Gaussian Distributions
For any vector c ∈ Rn and any positive real number s, we
define the following two notations:

• ρs,c(x) = exp
(
−π ‖x−c‖

2

s2

)
.

• ρs,c(Λ) =
∑
x∈Λ

ρs,c(x).

The discrete Gaussian distribution over the lattice Λ with
center c and parameter s can then be defined as DΛ,s,c(x) =
ρs,c(x)/ρs,c(Λ) for any x ∈ Λ. Note that we usually omit c
if c is 0.

2.3 Rings and NTRU Lattices
Here, we briefly introduce rings and NTRU lattices, as
formulated in previous studies [34], [35]. Let N be a power
of 2. The ring can then be defined as R = Z[x]/Φm(x),
where ΦN (x) = xN + 1. Furthermore, for some integer q,
we use Rq to denote R/qR = Z[x]/(q,ΦN (x)). For two

polynomials f =
N−1∑
i=0

fix
i and g =

N−1∑
i=0

gix
i, fg denotes

polynomial multiplication in Q[x] and f ∗ g is defined as the
convolution product of f and g, i.e., f ∗g , fg mod (xN +1).
Additionally, bfe denotes the coefficient-wise rounding of f .

The first NTRU-based public-key encryption is intro-
duced in 1996 by Hoffstein et al. [36], and later Stehlé and
Steinfeld [37] presents a new variant that has been proven to
be secure in the worst-case lattice problem. Compared with
integer lattices, the operations of NTRU are based on the ring
of polynomials R, and can be defined as follows.
Definition 2 (Anticirculant Matrix [23]). An N -dimensional

anticirculant matrix of f is the following Toeplitz matrix:

AN (f) =


f0 f1

. . . fN−1

−fN−1 f0
. . . fN−2

. . .
. . .

. . .
. . .

−f1 −f2
. . . f0


=


(f)

(x ∗ f)
...

(xN−1 ∗ f)

.
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Definition 3 (NTRU Lattices [38]). For prime integer q and
f, g ∈ R, h = g ∗ f−1 mod q, the NTRU lattice with h
and q is Λh,q = {(u, v) ∈ R2|u + v ∗ h = 0 mod q}.
Here, Λh,q is a full-rank lattice generated by the rows of

Ah,q =

(
−AN (h) IN
qIN ON

)
, where I is an identity matrix.

As mentioned by Hoffstein et al. [39], although one can
generate the lattice from basis Ah,q by using a single polyno-
mial h ∈ Rq , Ah,q has a large orthogonal defect and therefore
inefficiency in standard lattice operation. Therefore, to solve
the issue, They further showed that another short basis

Bf,g =

(
AN (g) −AN (f)
AN (G) −A(F )

)
generates the same lattice Λh,q

as Ah,q , where f, g, F,G ∈ R and f ∗G− g ∗ F = q.
Definition 4 (Statistical Distance [33]). Given two random

variables X and Y taking values in a finite set S , the
statistical distance is defined as:

∆(X,Y ) = 1
2

∑
s∈S
|Pr[X = s]−Pr[Y = s]|.

Due to the efficient of NTRU, Ducas et al.’s introduced
a NTRU-based IBE scheme. In their scheme, they provided
an algorithm that can efficiently obtain the pair of basis
(h,Bf,g), as shown in Algorithm 1. Additionally, since
Bf,g is a short basis, based on [32] and [23], there exist
an algorithm Gaussian Sampler(B, σ, c) that can sample a
vector v without leaking any information of the basis Bf,g

such that ∆(DΛ(B),σ,c,v) ≤ 2−λ), where σ > 0 and c ∈ ZN .

Algorithm 1 Basis Generation [23]
Input: N, q
Output: h ∈ Rq,Bf,g ∈ Z2N×2N

q .

Initialisation : σf = 1.17
√

q
2N .

1: f, g ← DN,σf
.

2: Norm← max
(
‖g,−f‖ ,

∥∥∥ gf̄
f∗f̄+g∗ḡ ,

gḡ
f∗f̄+g∗ḡ

∥∥∥).
3: if (Norm > 1.17

√
q) then

4: Go to Step 1.
5: end if
6: Using extended Euclidean algorithm, compute ρf , ρg ∈
R and Rf , Rg ∈ Z such that −ρf · f = Rf and −ρg · g =
Rg .

7: if (GCD(Rf , Rg) 6= 1 or GCD(Rf , q) 6= 1) then
8: Go to Step 1.
9: end if

10: Using extended Euclidean algorithm, compute u, v ∈ Z
such that u ·Rf +v ·Rg = 1, and F ← qvρg, Q← −quρf .

11: Compute k =
⌊
F∗f̄+G∗ḡ
f∗f̄+g∗ḡ

⌉
∈ R, and compute F ←

F − k ∗ f and G← G− k ∗ g.
12: Compute h = g ∗ f−1 mod q and Bf,g =(

AN (g) −AN (f)
AN (G) −A(F )

)
.

13: return h and Bf,g .

3 BUILDING BLOCKS

In this section, we recall three crucial cryptographic primi-
tives, namely identity-independent 2-tier IBKEM, IBE, and
PRG, which are used as the building blocks in our generic
construction.

3.1 Identity-independent 2-tier IBKEM

An identity-independent 2-tier IBKEM Ω comprises the five
algorithms: (Setup,Extract,Enc1, Enc2,Dec) along with an
identity space IDS, ciphertext space CS, and symmetric key
space KS. These algorithms are described as follows.

• Setup(1λ)→ (msk,mpk): This is the setup algorithm
that takes the security parameter 1λ as its input and
outputs a master private key msk and a master public
key mpk.

• Extract(msk, id ∈ IDS)→ skid: This is the extraction
algorithm that takes the two inputs of a master private
key msk and identity id ∈ IDS and outputs a private
key skid for the identity.

• Enc1(mpk) → (ct, r): This is the first encapsulation
algorithm that takes the input of a master public
key mpk and outputs a ciphertext ct ∈ CS and a
randomness r.

• Enc2(mpk, id, r) → k/⊥: This is the second encapsula-
tion algorithm that takes the three inputs of a master
public key mpk, identity id, and randomness r and
outputs either a symmetric key k ∈ KS or the reject
symbol ⊥.

• Dec(skid, id, ct) → k/⊥: This is the decryption algo-
rithm that takes the three inputs of a private key
skid, identity id, and ciphertext ct and outputs either
symmetric key k ∈ KS or a reject symbol ⊥.

Definition 5 (Correctness of identity-independent 2-tier
IBKEM). An identity-independent 2-tier IBKEM Ω is
correct if for all security parameters 1λ, all master key
pairs (msk,mpk) output by Setup(1λ), all private keys
skid for identity id output by Extract(msk, id), all (ct, r)
pairs output by Enc1(mpk), and all k values output by
Enc2(mpk, id, r), the following equation holds:

Pr[Dec(skid, id, ct) = k] = 1− negl(λ).

The basis security requirement of identity-independent
2-tier IBKEM is IND-ID-CPA, which ensures that no PPT
adversary can distinguish whether the challenge ciphertext
is generated from the Enc1 and Enc2 algorithm or is
randomly chosen from the ciphertext space CS. This security
requirement can be modeled by the following security game
played between an adversary A and a challenger B.

Game - IND-ID-CPA:

• Initialization. The challenger B first runs
(msk,mpk) ← Setup(1λ). B then sends the master
public key mpk to A and keeps the master private
key msk secret.

• Phase 1. The adversary A is given access to query the
extract oracle with any identity id, and B returns a
valid private key skid for identity id by using Extract
algorithm.

• Challenge. A submits B an identity id∗ that has not
been queried to extract oracle in Phase 1. B randomly
selects a bit b ∈ {0, 1}. If b = 0, B generate a true
ciphertext by using Enc1 and Enc2. Otherwise, B
randomly selects a ciphertext from the ciphertext
space. B then returns the ciphertext as a challenge to
A.



5

• Phase 2. A can continue querying the extract oracle
as Phase 1. The only restriction is thatA cannot query
the extract oracle with the identity id∗.

• Guess. A outputs a bit b′ ∈ {0, 1}.

The advantage of A is defined as

AdvIND-CPA
Ω,A (λ) = |Pr[b = b′]− 1

2 |.

Definition 6 (IND-ID-CPA Security of identity-independent
2-tier IBKEM). An identity-independent 2-tier IBKEM
scheme Ω is IND-ID-CPA secure if for all PPT adversaries
A, AdvIND-CPA

Ω,A (λ) is negligible.

The above IND-ID-CPA notion can be extended to IND-
ID-CCA secure by allowing the adversary can query the
decapsulation oracle. The only restriction is that the adver-
sray cannot query decapsulation oracle with the challenge
ciphertext for challenge identity.

3.2 IBE
An IBE scheme Ψ comprises four algorithms
(Setup,Extract,Enc,Dec) along with an identity space
IDS, ciphertext space CS, and plaintext space PS,
described as follows.

• Setup(1λ)→ (msk,mpk): This is the setup algorithm
that takes the security parameter 1λ as its input and
outputs a master private key msk and master public
key mpk.

• Extract(msk, id) → skid: This is the extraction algo-
rithm that takes the two inputs of a master private
key msk and identity id ∈ IDS and outputs a private
key skid for the identity.

• Enc(mpk, id,m) → ctid: This is the encryption algo-
rithm that takes the three inputs of a master public key
mpk, identity id, and plaintext m ∈ PS and outputs a
ciphertext ctid ∈ CS.

• Dec(skid, ctid) → m: This is the decryption algorithm
that takes the two inputs of a private key skid (for
identity id) and ciphertext ctid and outputs a plaintext
m ∈ PS.

Definition 7 (Correctness of IBE). An IBE Ψ is correct if, for
all security parameters 1λ, all master key pairs (msk,mpk)
output by Setup(1λ), all private keys skid for identity
id output by Extract(msk, id), and all ciphertexts (ctid)
output by Enc(mpk, id,m), the following equation holds:

Pr[Dec(skid, ctid) = m] = 1− negl(λ).

The basis requirement of IBE is indistinguishability
against chosen plaintext attacks. However, our
instantiation requires a stronger security requirement
called indistinguishability and anonymity against chosen
plaintext and chosen identity attacks (IND-ANON-ID-CPA).
IND-ANON-ID-CPA security ensures that no PPT adversary
can retrieve any information pertaining to the identity and
the message from a challenge ciphertext, as modelled by the
following game.

Game - IND-ANON-ID-CPA:

• Initialization. The challenger B first runs
(msk,mpk) ← Setup(1λ) and then sends the

master public key mpk to A and keeps master private
key msk secret.

• Phase 1. The adversary A is given access to query
the extract oracle with any identity id, and B returns
a valid private key skid for identity id by using the
Extract algorithm.

• Challenge. A submits B two messages m∗0,m
∗
1 and

two identities id∗0, id
∗
1 that have not been queried to

extract the oracle. B randomly chooses a bit b ∈ {0, 1}
and then computes ct∗ ← Enc(mpk, id∗b ,m

∗
b). Finally,

B returns the challenge ciphertext ct∗ to A.
• Phase 2. A can continue querying the oracle per

Phase 1. The only restriction is that A cannot query
the extract oracle with id∗0 and id∗1.

• Guess. A outputs a bit b′ ∈ {0, 1}.

The advantage of A is defined as

AdvIND-ANON-ID-CPA
Ψ,A (λ) = |Pr[b = b′]− 1

2 |.

Definition 8 (IND-ANON-ID-CPA Security of IBE).
An IBE scheme Ψ is IND-ANON-ID-CPA secure if
AdvIND-ANON-ID-CPA

Ψ,A (λ) is negligible for all PPT adver-
saries A.

For analytical convenience, in this work, we consider
an IBE to be anonymous if the IBE is IND-ANON-ID-CPA
secure.

3.3 Pseudorandom Generator (PRG)
Informally, suppose that a distribution D is pseudorandom if
no PPT distinguisher that can distinguish a string s is either
selected from the distribution D or randomly selected from
a uniform distribution. We provide the following definition
of the pseudorandom generator in [40].
Definition 9 (Pseudorandom Generator). Let F : {0, 1}n →
{0, 1}m be a deterministic PPT algorithm, where n′ =
poly(n) and m > n. We say that F is a pseudorandom
generator the following two conditions are satisfied:

• Expansion: For every n, it holds that m > n.
• Pseudorandomness: For all PPT distinguishers D,

|Pr[D(r) = 1]−Pr[D(F (s)) = 1]| ≤ negl(n),

where r $←− {0, 1}m and seed s $←− {0, 1}n.

4 PAEKS
In this section we introduce the system model and the
security requirements of PAEKS.

4.1 System Model
A PAEKS has four entities: a trusted authority, data sender,
data receiver, and cloud server (Fig 2). In practice, the
data sender and data receiver register their identity with
the trusted authority and obtain their public/private key
pairs. A PAEKS scheme Π comprises six algorithms: (Setup,
KeyGenS,KeyGenS,PAEKS,Trapdoor,Test) together with a
keyword space W , which are detailed as follows.

• Setup(1λ) → (PP,msk): This is the setup algorithm
that takes the security parameter 1λ as input, and
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Fig. 2. System model for the proposed PAEKS scheme.

outputs a system parameter PP and a master private
key msk. Note that the master private key is hold by
trusted authority.

• KeyGenS(PP,msk, idS) → (pkS, skS): This is the data
sender key generation algorithm that interacts between
data sender and trusted authority. It takes a system
parameter PP, master private key msk, and an identity
idS as input, and outputs data sender’s public key pkS
and private key skS.

• KeyGenR(PP,msk, idR)→ (pkR, skR): This is the data
receiver key generation algorithm that interacts between
data receiver and trusted authority. It takes a system
parameter PP, master private key msk, and an identity
idR as input, and outputs data receiver’s public key
pkR and private key skR.

• PAEKS(PP, pkS, skS, pkR, kw) → ct: This is the au-
thenticated encryption algorithm that takes a system pa-
rameter PP, data sender’s public key pkS and private
key skS, data receiver’s public key pkR, and a keyword
kw ∈W , and outputs a searchable ciphertext ct.

• Trapdoor(PP, pkR, skR, pkS, kw) → tw: This is the
trapdoor algorithm that takes a system parameter PP,
data receiver’s public key pkR and private key skR,
data sender’s public key pkS, and a keyword kw ∈W,
and outputs a trapdoor tw.

• Test(PP, ct, tw)→ 1/0: This is the test algorithm that
takes a system parameter PP, searchable ciphertext
ct, and a trapdoor tw, and outputs 1 if ct and tw
correspond the same keyword; outputs 0, otherwise.

Definition 10 (Correctness of PAEKS). A PAEKS scheme
Π is correct if, for all security parameters 1λ, all
system parameter/master private key pairs (PP,msk)
output by Setup(1λ), all data sender idS’s key
pairs (pkS, skS) output by KeyGenS(PP,msk, idS), all
data receiver idR’s key pairs (pkR, skR) output by
KeyGenR(PP,msk, idR), all searchable ciphertexts ct out-
put by PAEKS(PP, pkS, skS, pkR, kw), and all trapdoors
tw output by Trapdoor(PP, pkR, skR, pkS, kw), the follow-
ing equation holds:

Test(PP, ct, tw) =

{
1, if ct, tw contains the same kw;

0, otherwise.

4.2 Security Requirements
The basic secure requirement of the PAEKS scheme is
IND-CKA and IND-IKGA. Specifically, IND-CKA and
IND-IKGA security ensures that no PPT adversary can
obtain any information regarding the keyword from the
searchable ciphertext and keyword, respectively. We follow
the method of [12] to model the aforementioned two security
requirements in the multi-user context by using two security
games featuring interaction between the adversary A and
challenger B. Because the malicious insider has more power
than the malicious outsider has, we only consider the
IND-IKGA in this work. Note that we use idU, pkU, and skU
to denote some user U’s identity, public key, and private key,
respectively.

Game - IND-CKA:

• Initialization. The challenger B first runs
(PP,msk) ← Setup(1λ). The algorithm then
chooses two identities idS, idR and runs
(pkS, skS) ← KeyGenS(PP,msk, idS) and
(pkR, skR) ← KeyGenR(PP,msk, idR). Finally, B
sends the system parameter PP, data sender’s public
key pkS, and data receiver’s public key pkR to A
while keeping secret the master private key msk, data
sender’s private key skS, and data sender’s private
key skR.

• Phase 1. A can make polynomially many queries to
oracles OPKGenS , OPKGenR , OPAEKS, and OTrapdoor, B
then responds as follows.

– OPKGenS(idU): B runs (pkU, skU) ←
KeyGenS(PP,msk, idU). Then, B returns
pkU to A, and keeps skU secret.

– OPKGenR(idU): B runs (pkU, skU) ←
KeyGenR(PP,msk, idU). Then, B returns
pkU to A, and keeps skU secret.

– OPAEKS(kw, pkU): B computes ct ←
PAEKS(PP, pkS, skS, pkU, kw) and returns
ct to A.

– OTrapdoor(kw, pkU): B computes
tw ← Trapdoor(PP, pkR, skR, pkU, kw) and
returns tw to A.

• Challenge. After the end of Phase 1, A outputs
two keywords kw∗0, kw

∗
1 ∈ W with the following

restriction: for i = 0, 1, (kw∗i , pkR) and (kw∗i , pkS)
have not been queried to oraclesOPAEKS andOTrapdoor

in Phase 1, respectively. B then chooses a random
bit b ∈ {0, 1} and returns ct∗ = (Ψ.ct∗, h) ←
PAEKS(PP, pkS, skS, pkR, kw

∗
b) to A.

• Phase 2. A can continue to make queries, as was
the case in Phase 1. The only restriction is that A
cannot make any query to OPAEKS on (kw∗i , pkR) and
to OTrapdoor on (kw∗i , pkS) for i = 0, 1.

• Guess. A outputs its guess b′ ∈ {0, 1}.
The advantage of A is defined as

AdvIND-CKA
Π,A (λ) = |Pr[b = b′]− 1

2 |.

Definition 11 (IND-CKA security of PAEKS). A PAEKS
scheme Ω is IND-CKA secure if for all PPT adversaries
A, AdvIND-CKA

Π,A (λ) is negligible.
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Game - IND-IKGA:

• Initialization. The challenger B first runs
(PP,msk) ← Setup(1λ) and then runs
(pkS, skS) ← KeyGenS(PP,msk) and then runs
(pkR, skR) ← KeyGenR(PP,msk). Finally, B sends
the system parameter PP, data sender’s public key
pkS, and data receiver’s public key pkR to A while
keeping secret the master private key msk, data
sender’s private key skS, and data sender’s private
key skR.

• Phase 1. A can make polynomially many queries to
oracles OPKGenS , OPKGenR , OPAEKS, and OTrapdoor, B
then responds as follows.

– OPKGenS(idU): B runs (pkU, skU) ←
KeyGenS(PP,msk, idU). Then, B returns
pkU to A, and keeps skU secret.

– OPKGenR(idU): B runs (pkU, skU) ←
KeyGenR(PP,msk, idU). Then, B returns
pkU to A, and keeps skU secret.

– OPAEKS(kw, pkU): B computes ct ←
PAEKS(PP, pkS, skS, pkU, kw) and returns
ct to A.

– OTrapdoor(kw, pkU): B computes
tw ← Trapdoor(PP, pkR, skR, pkU, kw) and
returns tw to A.

• Challenge. After the end of Phase 1, A outputs two
keywords kw∗0, kw

∗
1 ∈ W with the following restric-

tion: for i = 0, 1, (kw∗i , pkR) and (kw∗i , pkS) have not
been queried to oraclesOPAEKS andOTrapdoor in Phase
1, respectively. B then selects a random bit b ∈ {0, 1}
and returns tw∗ ← Trapdoor(PP, pkR, skR, pkS, kw

∗
b)

to A.
• Phase 2. A can continue to make queries, as was

the case in Phase 1. The only restriction is that A
cannot make any query to OPAEKS on (kw∗i , pkR) and
to OTrapdoor on (kw∗i , pkS) for i = 0, 1.

• Guess. A outputs its guess b′ ∈ {0, 1}.
The advantage of A is defined as

AdvIND-IKGA
Π,A (λ) = |Pr[b = b′]− 1

2 |.

Definition 12 (IND-IKGA security of PAEKS). A PAEKS
scheme Ω is IND-IKGA secure if for all PPT adversaries
A, AdvIND-IKGA

Π,A (λ) is negligible.

5 GENERIC PAEKS CONSTRUCTION

We now construct our generic PAEKS. Specifically, we
demonstrate how a PAEKS scheme can be constructed by
combing an anonymous IBE, PRG, and identity-independent
2-tier IBKEM.

The high-level conception of our construction is that
through identity-independent 2-tier IBKEM, the data sender
and data receiver can obtain the shared key shk without inter-
action. The data sender and data receiver each use this shared
key to extend the keyword by computing f ← F(kw‖shk),
where F is PRG. Rather than using the original keyword kw,
the data sender and data receiver use the extended keyword
f to generate a ciphertext and trapdoor, respectively. The data
sender takes f as an “identity” to generate a ciphertext for the

data receiver by using an anonymous IBE. The data receiver
can extract a private key for identity f and take this private
key as the corresponding trapdoor. By using this trapdoor,
the cloud server can search for the ciphertext containing
the keyword kw. In addition, because the ciphertext and
trapdoor are using the output of PRG as the identity and
because the IBE is anonymous, PPT adversaries cannot obtain
any information regarding the keyword from the ciphertext
and trapdoor.

To construct a PAEKS scheme Π = (Setup, KeyGenS,
KeyGenR, PAEKS, Trapdoor, Test) with the keyword space
W , we use the following cryptosystems as the building
block. Let Ψ = (Setup, Extract, Enc, Dec) be an anony-
mous IBE scheme with the identity space Ψ.IDS, cipher-
text space Ψ.CS, and plaintext space Ψ.PS. Let Ω =
(Setup,Extract,Enc1,Enc2,Dec) be an identity-independent
2-tier IBKEM scheme with the identity space Ω.IDS, ci-
phertext space Ω.CS, and symmetric key space Ω.KS. In
addition, let F : X → Y be a PRG that maps X to Y , where
X = {kw‖shk | kw ∈ W ∧ shk ∈ Ω.KS} and Y = Ψ.IDS.
The generic construction is detailed in the subsequent section.
Note that although our construction is based on identity-
based cryptosystems, the entire construction remains in the
public key setting.

• Setup(1λ) → (PP,msk): Given a security parameter
1λ, this algorithm runs as follows.

1) Choose a proper PRG F : X → Y .
2) Choose a secure hash function H : {0, 1}α →
{0, 1}β , where α, β ∈ Z+.

3) Generate (Ω.msk,Ω.mpk)← Ω.Setup(1λ).
4) Output system parameter PP :=

(λ,Ω.mpk,H,F) and master private key
msk := Ω.msk. Note that msk is kept secret by
the trusted authority.

• KeyGenS(PP,msk, idS)→ (pkS, skS): Given a system
parameter PP = (λ,Ω.mpk,H,F), a master private
key msk = Ω.msk, and a data sender’s identity idS ∈
Ω.IDS, data sender and trusted authority interact as
follows.

1) The data sender first computes
(Ω.ctS,Ω.rS) ← Ω.Enc1(mpk), and registers
identity idS with Ω.ctS to trusted authority.

2) The trusted authority then returns Ω.skidS ←
Ω.Extract(Ω.msk, idS) to the data sender.

3) Data sender outputs his/her public key
pkS := (idS,Ω.ctS) and private key skS :=
(Ω.skidS ,Ω.rS).

• KeyGenR(PP,msk, idR)→ (pkR, skR): Given a system
parameter PP = (λ,Ω.mpk,H,F), a master private
key msk = Ω.msk, and a data receiver’s identity idR ∈
Ω.IDS, data receiver and trusted authority interact
as follows.

1) The data receiver first computes
(Ω.ctR,Ω.rR) ← Ω.Enc1(mpk), and registers
identity idR with Ω.ctR to trusted authority.

2) The trusted authority then returns Ω.skidR ←
Ω.Extract(Ω.msk, idR) to the data receiver.
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3) Data receiver computes (Ψ.mpk,Ψ.msk) ←
Ψ.Setup(1λ).

4) Finally, data receiver outputs data receiver’s
public key pkR := (idR,Ω.ctR,Ψ.mpk) and
private key skR := (Ω.skidR ,Ω.rR,Ψ.msk).

• PAEKS(PP, pkS, skS, pkR, kw) → ct: Given a system
parameter PP = (λ,Ω.mpk,H,F), a data sender’s
public key pkS = (idS,Ω.ctS) and private key skS =
(Ω.skidS ,Ω.rS), a data receiver’s public key pkR =
(Ω.idR,Ω.ctR,Ψ.mpk), and a keyword kw ∈ W , data
sender works as follows.

1) Compute kidS,idR ← Ω.Dec(Ω.skidS , idS,Ω.ctR).
2) Compute kidR,idS ← Ω.Enc2(Ω.mpk, idR,Ω.rS).
3) Compute shk ← kidS,idR ⊕ kidR,idS , where ⊕ is

an operation compatible with the key space.
4) Compute f ← F(kw‖shk).
5) Choose a random r

$←− Ψ.PS and compute
Ψ.ctkw ← Ψ.Enc(Ψ.mpk, f, r).

6) Compute h = H(Ψ.ctkw, r).
7) Output a searchable ciphertext ct :=

(Ψ.ctkw, h).

• Trapdoor(PP, pkR, skR, pkS, kw) → tw: Given a sys-
tem parameter PP = (λ,Ω.mpk,H,F), a data re-
ceiver’s public key pkR = (idR,Ω.ctR,Ψ.mpk) and
private key skR = (Ω.skidR ,Ω.rR,Ψ.msk), a data
sender’s public key pkS = (idS,Ω.ctS), and a keyword
kw ∈W , data receiver works as follows.

1) Compute kidR,idS ← Ω.Dec(Ω.skidR , idR,Ω.ctS).
2) Compute kidS,idR ← Ω.Enc2(Ω.mpk, idS,Ω.rR).
3) Compute shk ← kidR,idS ⊕ kidS,idR , where ⊕ is

an operation compatible with the key space.
4) Compute f ← F(kw‖shk).
5) Compute Ψ.skkw ← Ψ.Extract(Ψ.msk, f).
6) Output a trapdoor tw := Ψ.skkw for keyword

kw.

• Test(PP, ct, tw): Given a system parameter PP =
(λ,Ω.mpk,H,F), a searchable ciphertext ct =
(Ψ.ctkw, h), and a trapdoor tw = Ψ.skkw for keyword
kw, cloud server works as follows.

1) Compute r← Ψ.Dec(Ψ.skkw,Ψ.ctkw).
2) Output 1 if H(Ψ.ct, r) = h; outputs 0, other-

wise.

Correctness. Notably, the data sender and data receiver rely
on the underlying identity-independent 2-tier IBKEM to
exchange an extended keyword and the extended keyword
acts as an identity in the underlying IBE scheme. Therefore,
the proposed construction is correct if and only if the
underlying anonymous IBE and identity-independent 2-tier
IBKEM are correct.

6 SECURITY PROOFS

The following provides two security proofs to show that
our generic construction is IND-CKA secure and IND-IKGA
secure under standard model.
Theorem 1. The proposed PAEKS scheme Π is IND-CKA

secure if the underlying IBE scheme Ψ is IND-ANON-ID-
CPA secure.

Proof of Theorem 1: If adversary A can win the
IND-CKA game with a non-negligible advantage, then
challenger B can win the IND-ANON-ID-CPA game of the
underlying IBE scheme Ψ with a non-negligible advantage.
Their interaction is as follows.

• Initialization. Given the security parameter 1λ, B
first chooses the proper secure hash function H and
pseudorandom generator F and invokes the IND-
ANON-ID-CPA game of Ψ to obtain Ψ.mpk. Next, B
executes the following steps.

– Compute (Ω.msk,Ω.mpk)← Ω.Setup(1λ).
– Choose idS and idR from Ω.IDS.
– Compute Ω.skidS ← Ω.Extract(Ω.msk, idS) and

Ω.skidR ← Ω.Extract(Ω.msk, idR).
– Compute (Ω.ctS,Ω.rS) ← Ω.Enc1(mpk) and

(Ω.ctR,Ω.rR)← Ω.Enc1(mpk).

Finally, B sends the data sender’s public key
pkS = (idS,Ω.ctS), data receiver’s public key
pkR = (idR,Ω.ctR,Ψ.mpk), and system param-
eter PP = (λ,Ω.mpk,H,F) to A, and keeps
(Ω.msk,Ω.skidS ,Ω.skidR) secret.

• Phase 1. A can make polynomially many queries to
oracles OPKGenS(idU), OPKGenR(idU), OPAEKS(kw, pkU),
and OTrapdoor(kw, pkU), B then responds as follows.

– OPKGenS(idU): B first computes
Ω.skidU ← Ω.Extract(Ω.msk, idU) and
(Ω.ctU,Ω.rU) ← Ω.Enc1(mpk). B then
returns pkU = (idU,Ω.ctU) to A and keeps
skU = (Ω.skidU , rU) secret.

– OPKGenR(idU): B first computes
Ω.skidU ← Ω.Extract(Ω.msk, idU) and
(Ω.ctU,Ω.rU) ← Ω.Enc1(mpk). B also
computes (Ψ.mpk,Ψ.msk) ← Ψ.Setup(1λ).
Finally, B returns pkU = (idU,Ω.ctU,Ψ.mpk)
to A and keeps skU = (Ω.skidU ,Ω.rU,Ψ.msk)
secret.

– OPAEKS(kw, pkU): B first computes
kidS,idU ← Ω.Dec(Ω.skidS , idS,Ω.ctU) and
kidU,idS ← Ω.Enc2(Ω.mpk, idU,Ω.rS). Then,
B computes shk ← kidS,idU ⊕ kidU,idS
and computes f ← F(kw‖shk). Next, B
randomly chooses r ← {0, 1}∗, computes
Ψ.ctkw ← Ψ.Enc(Ψ.mpk, f, r) and computes
h = H(Ψ.ctkw, r). Finally, B returns
ct = (Ψ.ctkw, h) to A.

– OTrapdoor(kw, pkU): B first computes kidR,idU ←
Ω.Dec(Ω.skidR , idR,Ω.ctU) and kidU,idR ←
Ω.Enc2(Ω.mpk, idU,Ω.rR). Then, B computes
shk ← kidR,idU ⊕ kidU,idR and computes f ←
F(kw‖shk). Next, B invokes Ψ.Extract oracle
of the IND-ANON-ID-CPA game on f, and
is given Ψ.skkw. Finally, B returns a trapdoor
tw = Ψ.skkw to A.

• Challenge. After the end of Phase 1, A outputs
two keywords kw∗0, kw

∗
1 ∈ W with the following

restriction: for i = 0, 1, (kw∗i , pkR) and (kw∗i , pkS)
have not been queried to oraclesOPAEKS andOTrapdoor

in Phase 1, respectively. B then selects a bit b ∈ {0, 1}
and runs the subsequent steps.
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1) Compute kidS,idR ← Ω.Dec(Ω.skidS , idS,Ω.ctR).
2) Compute kidR,idS ← Ω.Enc2(Ω.mpk, idR,Ω.rS).
3) Compute shk← kidS,idR ⊕ kidR,idS .
4) Compute f0 ← F(kw∗0‖shk) and f1 ←

F(kw∗1‖shk).
5) Invoke the Challenge phase of the IND-

ANON-ID-CPA game on (f0, f1, r), where r is
randomly chosen from {0, 1}∗, and is given
Ψ.ct∗.

6) Compute h = H(Ψ.ct∗, r).
7) Return ct∗ = (Ψ.ct∗, h) to A.

• Phase 2. A can continue to make queries, as was the
case in Phase 1. The only restriction is that A cannot
make any query to OPAEKS and OTrapdoor regarding
(kw∗i , pkR) and (kw∗i , pkS), respectively.

• Guess. A outputs its guess b′. Then, B follows A’s
answer and outputs b′.

Regardless of whether Ψ.ct∗ is generated from f0 or f1,
from A’s perspective, ct∗ = (Ψ.ct∗, h) is a valid search-
able ciphertext. Thus, A can whether distinguish Ψ.ct∗ is
generated from f0 or f1 and win the IND-CKA game with
non-negligible advantage. Then, B can follow A’s answer to
win the IND-ANON-ID-CPA of the underlying IBE scheme
Ψ with the non-negligible advantage. Therefore, we have

AdvIND-CKA
Π,A (λ) ≤ AdvIND-ANON-ID-CPA

Ψ,B (λ).

This completes the proof.
Theorem 2. The proposed PAEKS scheme Π is IND-IKGA

secure if the underlying pseudorandom generator F
satisfies pseudorandomness and identity-independent
2-tier IBKEM is IND-ID-CPA secure.

Proof of Theorem 2: Let A be a PPT adversary that
attacks the IND-IKGA security of the PAEKS scheme Π with
advantage AdvIND−IKGA

Π,A (λ). We prove Theorem 2 through
the following three games, where we define Ei to be the
event that A wins Gamei.

Game0: This is the original IND-IKGA game, defined in
Section 4. By the definition,

AdvIND−IKGA
Π,A (λ) =

∣∣Pr[E0]− 1
2

∣∣.
Game1: This game is identical to Game0, except that

kidS,idR is randomly chosen from the output range of Ω.Enc2.
Lemma 1. For all PPT algorithms, A01, |Pr[E0]−Pr[E1]| is

negligible if the underlying identity-independent 2-tier
IBKEM scheme Ω is IND-ID-CPA secure.

Proof of Lemma 1: Suppose there exists an adversary
A01 such that |Pr[E0]−Pr[E1]| is non-negligible, then there
exists another challenger B01 that can win the IND-ID-CPA
game of the underlying identity-independent 2-tier IBKEM
with non-negligible advantage.

• Initialization. Given a security parameter λ, B01

first chooses two identities idS, idR, a proper secure
hash function H, and pseudorandom generator F.
B01 runs (Ψ.mpk,msk) ← Ψ.Setup(1λ). Then, B01

invokes the IND-ID-CPA game of Ω with idR to obtain
(Ω.mpk,C∗,K∗). B01 then computes Ω.ctS,Ω.rA ←
Ω.Enc1(mpk,⊥). Additionally, B invokes Ω.Extract

oracle of the IND-ID-CPA game on idR, and given
Ω.skidS . Finally, B01 sends the data sender’s public
key pkS = (idS,Ω.ctS), data receiver’s public key
pkR = (idR,Ω.ctR = C∗,Ψ.mpk), and system pa-
rameter PP = (λ,Ω.mpk,H,F) to A01, and keeps
(Ψ.msk,Ω.rS,K

∗) secret.
• Phase 1. A01 can make polynomially many queries

to oracles as was the case in a previous game, B01

responds as follows.

– OPKGenS(idU): B01 first invokes Ω.Extract or-
acle of the IND-ID-CPA game on idU, and
given Ω.skidU . Then, B01 runs (Ω.ctU,Ω.rU)←
Ω.Enc1(mpk). Finally, B01 returns pkU =
(idU,Ω.ctU) to A01 and keeps skU =
(Ω.skidU , rU) secret.

– OPKGenR(idU): B01 first invokes Ω.Extract
oracle of the IND-ID-CPA game on
idU, and given Ω.skidU . Then, B01 runs
(Ω.ctU,Ω.rU) ← Ω.Enc1(mpk). B01 also
computes (Ψ.mpk,Ψ.msk) ← Ψ.Setup(1λ).
Finally, B01 returns pkU = (idU,Ω.ctU,Ψ.mpk)
to A01 and keeps skU = (Ω.skidU ,Ω.rU,Ψ.msk)
secret.

– OPAEKS(kw, pkU): B01 first computes kidU,idS ←
Ω.Dec(Ω.skidU , idU,Ω.ctS) and kidS,idU ←
Ω.Enc2(Ω.mpk, idS,Ω.rU). Then, B01 com-
putes shk ← kidU,idS ⊕ kidS,idU and com-
putes f ← F(kw‖shk). Next, B01 ran-
domly chooses r ← {0, 1}∗, computes
Ψ.ctkw ← Ψ.Enc(Ψ.mpk, f, r) and computes
h = H(Ψ.ctkw, r). Finally, B01 returns ct =
(Ψ.ctkw, h) to A01.

– OTrapdoor(kw, pkU): B01 first computes
kidU,idR ← Ω.Dec(Ω.skidU , idU,Ω.ctR) and
kidR,idU ← Ω.Enc2(Ω.mpk, idR,Ω.rU). Then,
B01 computes shk ← kidU,idR ⊕ kidR,idU and
computes f ← F(kw‖shk). Next, B01 computes
Ψ.skkw ← Ψ.Extract(Ψ.msk, f). Finally, B01

returns a trapdoor tw = Ψ.skkw to A01.

• Challenge. After the end of Phase 1, A01 outputs
two keywords kw∗0, kw

∗
1 ∈ W with the following

restriction: for i = 0, 1, (kw∗i , pkR) and (kw∗i , pkS)
have not been queried to oraclesOPAEKS andOTrapdoor

in Phase 1, respectively. B01 then runs the following
steps:

1) Random choose a bit β ∈ {0, 1}.
2) Compute kidR,idS = Ω.Enc(mpk, idR,Ω.rS).
3) Set kidS,idR ← K∗.
4) Compute shk ← kidR,idS ⊕ kidS,idR , where ⊕ is

an operation compatible with the key space.
5) Compute f ← F(kwβ‖shk).
6) Return a challenge trapdoor tw∗ ←

Ψ.Extract(Ψ.msk, f) to A01.

• Phase 2.A01 can continue to make queries, same as in
Phase 1. The only restriction is that A01 cannot make
any query to OPAEKS on (kw∗i , pkS) and OTrapdoor on
(kw∗i , pkR), for i = 0, 1.

• Guess. A01 outputs its guess b′.
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If K∗ is generated from Ω.Enc2(Ω.mpk, idS,Ω.rR), B01

provides the view of Game0 to A01; if K∗ is a random string
sampled from the output range of Ω.Enc2, then B01 provides
the view of Game1 to A01. Hence, if |Pr[E0]−Pr[E1]| is non-
negligible, B01 has a non-negligible advantage against the
IND-ID-CCA game of the underlying identity-independent
2-tier IBKEM scheme. Therefore, the advantage of A01 is

|Pr[E0]−Pr[E1]| = AdvIND−ID−CPA
Ω,B01

(λ).

Game2: In this game, we make the following minor
conceptual change to the aforementioned game. In the
challenge phase, the challenger B substitutes the value
ct∗ ← Ψ.Enc(pkR, f, r) with ct∗ ← Ψ.Enc(pkR, f

′, r), where
f ′ is randomly selected from the output space Y of the
underlying pseudorandom generator Y .
Lemma 2. For all PPT algorithms A12, |Pr[E1] − Pr[E2]| is

negligible if the underlying pseudorandom generator F
satisfies pseudorandomness.

Proof of Lemma 2: If A12 can win the IND-IKGA game
with non-negligible advantage, then there exists a challenger
B12 that can win the pseudorandom game of the underlying
pseudorandom generator with non-negligible advantage. B12

constructs a hybrid game, interacting with A12 as follows.
Given a challenge string T ∈ Y and the description of a
pseudorandom generator F′, B constructs a hybrid game,
interacting with A12 as follows.

• Initialization. B12 chooses the public parameter fol-
lowing the proposed construction, with the following
exception: rather than selecting a proper pseudoran-
dom generator from the pseudorandom generator
family, B12 sets F′ as a system parameter. B12 then
follows the previous game to generate the system
parameter params, data sender’s key pair (pkS, skS),
and data receiver’s key pair (pkR, skR). Finally, B12

sends (PP, pkS, pkR) to A12 and keeps (msk, skS, skR)
secret.

• Phase 1. A12 can make polynomially many queries
to oracles as was the case in Game0.

• Challenge. After the end of Phase 1, A12 outputs
two keywords kw∗0, kw

∗
1 ∈ W with the following

restriction: for i = 0, 1, (kw∗i , pkR) and (kw∗i , pkS)
have not been queried to oraclesOPAEKS andOTrapdoor

in Phase 1, respectively. B12 then runs the subsequent
steps.

1) Set f∗ = T .
2) Compute tw∗ = Ψ.Extract(Ψ.msk, f∗).
3) Return tw∗ to A12.

• Phase 2.A12 can continue to make queries, same as in
Phase 1. The only restriction is that A12 cannot make
any query to OPAEKS on (kw∗i , pkS) and OTrapdoor on
(kw∗i , pkR), for i = 0, 1.

• Guess. A12 outputs its guess b′.

If T is generated from F′, B12 provides the view of
Game0 to A12; if T is a random string sampled from Y ,
then B12 provides the view of Game1 to A12. Hence, if
|Pr[E1]−Pr[E2]| is non-negligible, B12 has a non-negligible
advantage against the pseudorandom generator security
game. Therefore, the advantage of A12 is

|Pr[E1]−Pr[E2]| = AdvPRG
F,B12

(λ).

Lemma 3. Pr[E2] = 1
2 .

Proof of Lemma 3: The proof of this lemma is intuitive.
Because the trapdoor tw∗ contains no information regarding
the keyword, the adversary can only return b′ by guessing.

Combining Lemmas 1, 2, , and 3, we can conclude that
the advantage of A in winning the IND-IKGA game is

AdvIND−IKGA
Π,A (λ) =

∣∣∣∣Pr[E0]− 1

2

∣∣∣∣
=

∣∣∣∣ |Pr[E0]−Pr[E1]|

+ |Pr[E1]−Pr[E2]|+
∣∣∣∣Pr[E2]− 1

2

∣∣∣∣ ∣∣∣∣
≤
∣∣∣AdvIND−ID−CPA

Ω,B01
(λ) + AdvPRG

F,B12
(λ)
∣∣∣ .

This completes the proof.

TABLE 2
Comparison of Security Properties with Other PAEKS Schemes

Schemes IKGAs Quantum-resistance Security

HL17 [9] 7 7 ROM
HMZKL17 [10] 3 7 ROM
NE18 [12] 3 7 ROM
LHSYS19 [15] 3 7 ROM
WZMKH19 [16] 3 7 ROM
LLYSTH19 [11] 3 7 ROM
QCHLZ20 [14] 3 7 ROM
PSE20 [13] 3 7 ROM

Ours 3 3 SM∗

3: the scheme supports the corresponding feature.
7: the scheme fails in supporting the corresponding feature.
ROM: random oracle model
SM: standard model.
∗Our generic construction supports standard model, while
our instantiation only supports random oracle since the
underlying scheme [23] only proved random oracle model.

TABLE 3
Experimentation Platform Information

Description Data

CPU AMD Ryzen 5-2600 3.4GHz
CPU processor number 6
Operation system Ubuntu 18.04
Linux kernel version 5.3.0-59-generic
Random access memory 16.3GB
Solid state disk 232.9GB

7 CONCRETE INSTANTIATION

In this section we give a concrete instantiation by adopting
Ducas et al.’s IBE [23], which is secure under the NTRU
assumption and has proved anonymous by [38]. More
preciously, following the idea in [41], we tweak [23] to obtain
an identity-independent 2-tier IBKEM. Then, we combine it
with Ducas et al.’s IBE [23] to instantiate a quantum-resistant
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Fig. 3. Comparison of computational costs with other PAEKS schemes.

TABLE 4
Notations of Operations and Their Running Time

Notations Operations Running time (ms)

TH Hash-to-point 2.613
TBP Bilinear pairing 0.872
TSM Scalar multiplication over point 1.303
TGM General multiplication over point 0.006
TEX Modular exponentiation 1.149
TPA Addition over point 0.001
THA General hash function 0.008
TPRG Pseudorandom generation 0.005
TPRM Multiplication over polynomial ring 0.135
TPRA Addition over polynomial ring 0.003
TSAM Gaussian Sampler function 1.091

PAEKS scheme. The instantiation is comprehensively de-
tailed in the subsequent section.

• Setup(1λ): Given a security parameter 1λ, this algo-
rithm runs as follows.

1) Select N = poly(λ), and a large prime q.
2) Compute (h,B)← Basis Generation(N, q).
3) Choose a proper PRG F and two secure

hash functions H1 : {0, 1}∗ → ZNq and
H2 : {0, 1}∗ → ZNq .

4) Outputs PP = (N, q, h,F,H1,H2) and master
private key msk = B. Note that msk is kept
secret by the trusted authority.

• KeyGenS(PP,msk, idS): Given a system parameter
PP, a master private key msk, and an identity
idS ∈ {0, 1}∗, data sender and trusted authority
interact as follows.

1) Data sender first chooses rS, eS ← {−1, 0, 1}N ,
vS ← Rq , and computes uS ← rS ∗ h + eS ∈
Rq . Then, he/she registers his/her identity idS
with (uS, vS) to trusted authority. The trusted
authority computes the following steps.

a) Compute tS ← H1(idS) ∈ ZNq .
b) Compute (sS,1, sS,2) ← (tS, 0) −

Gaussian Sampler(B, σ, (tS, 0)), such that
sS,1 + sS,2 ∗ h = tS.

c) Return (sS,1, sS,2) to data sender.

2) Data sender outputs his/her public key pkS =
(idS, uS, vS) and keeps private key skidS =
(sS,1, sS,2, rS) secret.

• KeyGenR(PP,msk, idR): Given a system parameter
PP, a master private key msk, and an identity
idR ∈ {0, 1}∗, data receiver and trusted authority
interact as follows.

1) Data receiver first chooses rR, eR ←
{−1, 0, 1}N , vR ← Rq , and computes uR ←
rR∗h+eR ∈ Rq . Then, he/she registers his/her
identity idR with (uR, vR) to trusted authority.
The trusted authority computes the following
steps.

a) Compute tR ← H1(idR) ∈ ZNq .
b) Compute (sR,1, sR,2) ← (tR, 0) −

Gaussian Sampler(B, σ, (tR, 0)), such that
sR,1 + sR,2 ∗ h = tR.

c) Return (sR,1, sR,2) to data receiver.

2) Data receiver then computes (hR,BR) ←
Basis Generation(N, q).
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TABLE 5
Comparison of Needing Operations with Other PAEKS Schemes

Schemes Ciphertext generation Trapdoor generation Testing

HL17 [9] TH + 3TEX + TGM TH + TBP + TEX 2TBP + TGM

HMZKL17 [10] TH + 3TBP + 5TSM + 2TPA + 2THA TH + TBP + 3TSM + 2TPA + 2THA 2TBP + 2TSM + TGM + 2TPA + 2THA

NE18 [12] TH + 3TEX + TGM TH + TBP + TEX 2TBP + TGM

LHSYS19 [15] 2TH + 2TBP + 3TEX 4TH + TBP + TGM 2TBP + TGM + 2TEX

WZMKH19 [16] TH + 6TSM + 2TPA + 2THA TH + +TBP + 9TSM + 4TPA + THA 2TBP + 4TSM + TEX + 2TPA + THA

LLYSTH19 [11] TH + 3TSM + TPA TH + TBP + 4TSM + 2TPA 2TBP + 2TSM + TGM + 2TPA

QCHLZ20 [14] 3TH + 2TBP + 3TEX + THA 3TH + TBP + 2TEX TH + TBP

PSE20 [13] TH + TBP + 3TSM + 2THA TH + TBP + TSM + THA TSM + THA

Ours 3THA + TPRG + 4TPRM + 5TPRA THA + TPRG + 2TPRM + 2TPRA + TSAM THA + TPRA + TPRM

TABLE 6
Comparison of Communication Costs with Other PAEKS Schemes

Schemes Ciphertext overhead Trapdoor overhead

HL17 [9] 2|G1| |GT |
HMZKL17 [10] |G1| |GT |
NE18 [12] |G1| |GT |
LHSYS19 [15] 2|G1|+ |GT | |G1|+ |GT |
WZMKH19 [16] 2|G1| 2|G1|+ |GT |
LLYSTH19 [11] |G1| |GT |
QCHLZ20 [14] |G1|+ |r| |GT |
PSE20 [13] 2|G1| |GT |

Ours 2N |q|+N N |q|

N : lattice dimension.
G1,GT : cyclic group.
r: group order.
q: module.

3) Data receiver outputs his/her public key
pkR = (idR, uR, vR, hR) and keeps private key
skR = (sR,1, sR,2, rR,BR) secret.

• PAEKS(PP, pkS, skS, pkR, kw): Given a system param-
eter PP, data sender’s public key pkS and private key
skS, data receiver’s public key pkR, and a keyword
kw ∈ {0, 1}∗, data sender runs the following steps.

1) kidS,idR = b(2/q) · (vR − uR ∗ sS,2)e.
2) kidR,idS = b(2/q) · (vS − rS ∗ H1(idR))e.
3) shk← kidS,idR ⊕ kidR,idS .
4) Compute f ← F(kw‖shk).
5) Choose a random ξ

$←− {0, 1}N , and randoms
r, e1, e2 ← {−1, 0, 1}N ;

6) Compute ukw ← r ∗ hR + e1 ∈ Rq .
7) Compute vkw ← r∗H1(f)+e2+bq/2c·ξ ∈ Rq .
8) Compute h = H2(ukw, vkw, ξ).
9) Output a searchable ciphertext ct =

(ukw, vkw, h).

• Trapdoor: Given a system parameter PP, data re-
ceiver’s public key pkR and private key skR, data
sender’s public key pkS, and a keyword kw ∈ {0, 1}∗,
data receiver runs the following steps.

1) kidR,idS = b(2/q) · (vS − uS ∗ sR,2)e.
2) kidS,idR = b(2/q) · (vR − rR ∗ H(idS))e.
3) shk← kidR,idS ⊕ kidS,idR .
4) Compute f ← F(kw‖shk).
5) Compute (skw,1, skw,2) ← (H1(f), 0) −

Gaussian Sampler(BR, σ, (H1(f), 0).

6) Output a trapdoor tw = skw,2.

• Test: Given a system parameter PP, a searchable ci-
phertext ct = (ukw, vkw, h), ans a trapdoor tw = skw,2,
cloud server works as follows.

1) Compute ξ′ = b(2/q) · (vkw − ukw ∗ skw,2)e).
2) If H2(ukw, vkw, ξ

′) = h, output 1; otherwise,
output 0.

8 COMPARISON AND ANALYSIS

To the best of our knowledge, although existing PAEKS
schemes [10]–[16] can defend against IKGAs, these schemes
cannot defend against quantum attacks because the secu-
rity of these schemes are based on the discrete logarithm
assumption. In this section, we first compare our proposed
instantiation with these existing schemes with respect to
their security properties. We then compared these schemes
with respect to their computational and communication
complexities.

Table 2 lists the results of our comparison between
our instantiation and its counterpart PAEKS schemes with
respect to their security properties. Because our instantiation
inherits the security of [23], it can be considered to be based
on the lattice hard assumption. In other words, only our
instantiation has the ability to resist quantum attacks and
IKGAs simultaneously.

We subsequently conducted such a comparison with
respect to computational complexity when generating search-
able ciphertexts and trapdoors. For simplicity, we only
considered the time-consuming operations listed in Table
4. Experiments simulating these operations were performed
on a PC; the efficiency of the methods are detailed in Table
3. In particular, the operations of TH , TBP , TSM , TGM ,
TEX , and TPA were obtained by using a pairing-based
cryptography library (PBC)—under Type-A pairing with
a 160-bit group order, 512-bit base field, and 1024-bit group
element for G1 and GT [42]. TPRM , TPRA. As for TSAM ,
we simulated it by using SAFEcrypto project1 [43] that
implementing [23] with the its suggested parameters, i.e.,
N = 512, q = 4206593, l = 18, and N th root of unity = 990.
Moreover, TPRG was obtained using the AES-256 algorithm2,
and THA was simulated using the SHA3-256 algorithm3. The
computational costs for the methods are compared in Table

1. https://github.com/safecrypto/libsafecrypto
2. https://github.com/kokke/tiny-AES-c
3. https://github.com/brainhub/SHA3IUF

https://github.com/kokke/tiny-AES-c
https://github.com/brainhub/SHA3IUF
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5. The results indicate that our instantiation took the least
time to generate the ciphertext and trapdoor as well as to
perform tests (only take 0.584, 1.38, 0.146 (ms), respectively);
such speed was due to our method not requiring any time-
consuming operations, such as hash-to-point.

Additionally, we also conducted such a comparison with
respect to communication complexity (which was indicated
by the size of the ciphertext and trapdoor). The comparison
results are detailed in Table 6. For the pairing-based schemes,
the pairing operation is represented by e : G1 × G1 → GT ,
where G1 and GT are 1024-bit elements. Moreover, because
the group order of the pairing r is 160 bit; therefore, |r| = 512.
For our instantiation, N = 512, |q| = 23. To ensure security,
our instantiation must be set in high dimensions. Therefore,
in contrast to its counterpart schemes, our instantiation
yielded larger ciphertext and trapdoor sizes, which are
2N |q|+N = 24064 bits and N |q| = 11776 bits, respectively.

9 CONCLUSION

In this work, we introduced a new method for constructing
a generic PAEKS scheme, which is secure against IND-
CKA and IND-IKGAs under multi-user context in standard
model. In addition, we provided a lattice-based concrete
instantiation based on the lattice hard assumption. Compared
with current PAEKS schemes, our instantiation is not only
the first PAEKS scheme that is quantum-resistant but also
the most efficient scheme with respect to computational cost.
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