
Public-key Authenticated Encryption with Keyword Search: A
Generic Construction and Its Quantum-resistant Instantiation

Zi-Yuan Liu1, Yi-Fan Tseng1, Raylin Tso1∗, Masahiro Mambo2, Yu-Chi Chen3

1Department of Computer Science, National Chengchi University, Taipei 11605, Taiwan
{zyliu, yftseng, raylin}@cs.nccu.edu.tw

2Institute of Science and Engineering, Kanazawa University, Kakuma-machi,
Kanazawa 920-1192, Japan

3Department of Computer Science and Engineering, Yuan Ze University,
Taoyuan 32003, Taiwan

June 6, 2021

Abstract

The industrial Internet of Things (IIoT) integrates sensors, instruments, equipment, and industrial applications,
enabling traditional industries to automate and intelligently process data. To reduce the cost and demand of re-
quired service equipment, IIoT relies on cloud computing to further process and store data. However, the means for
ensuring the privacy and confidentiality of the outsourced data and the maintenance of flexibility in the use of these
data remain unclear. Public-key authenticated encryption with keyword search (PAEKS) is a variant of public-key
encryption with keyword search that not only allows users to search encrypted data by specifying keywords but also
prevents insider keyword guessing attacks (IKGAs). However, all current PAEKS schemes are based on the discrete
logarithm assumption and are therefore vulnerable to quantum attacks. Additionally, the security of these schemes
are only proven under random oracle and are considered insufficiently secure. In this study, we first introduce a
generic PAEKS construction that enjoys the security under IKGAs in the standard model. Based on the framework,
we propose a novel instantiation of quantum-resistant PAEKS that is based on ring learning with errors assumption.
Compared with its state-of-the-art counterparts, our instantiation is more efficient and secure.

Keywords— Public-key authenticated encryption with keyword search, Insider keyword guessing attacks, In-
dustrial IoT, Quantum-resistant

1 Introduction
The Internet of Things (IoT) is a system that connects a large set of devices to a network, where these devices can
communicate with each other over the network. Industrial IoT (IIoT) is a particular type of IoT that fully utilizes the
advantages of IoT for remote detection, monitoring, and management in industry. Because the volume of data and
computation in industry is very large, and long-term storage is required, IIoT is highly reliant on cloud computing
technology to reduce the cost of storage and computing environments (Figure 1). Despite the numerous benefits of
processing IIoT data through cloud computing, industrial data typically have commercial value and thus necessitate
privacy protection when such sensitive data are offloaded to the cloud. Therefore, to ensure data confidentiality,
sensitive data should be encrypted before being uploaded to the cloud.

In addition to data confidentiality, data sharing is indispensable in IIoT. For instance, in an industrial organization,
the administrator in the information department (i.e., the data sender) must share the data collected from IoT devices
with an administrator from another department (i.e., the data receiver). To ensure data confidentiality, the data sender
encrypts the data by using the public key of the data receivers. However, in such a method, if the data receiver wants

∗Corresponding author

1



Figure 1: Typical network architecture for IIoT.

to retrieve the data from the ciphertext stored in the cloud, the data receiver must download all the ciphertext and
further decrypt it, which consumes considerable time and resources.

Public-key encryption with keyword search (PEKS), first introduced by Boneh [BCOP04], is highly suited to the
aforementioned application environment because PEKS makes the ciphertext searchable. Furthermore, in PEKS, a
data sender not only uploads encrypted data but also and uploads the encrypted keywords related to the data using
the data receiver’s public key. To download the data related to a specified keyword, the data receiver can use their
private key to generate a corresponding trapdoor and submit the trapdoor to the cloud server. The cloud server can
then identify encrypted keywords corresponding to the trapdoor and then returns the corresponding encrypted data
to the data receiver. A secure PEKS scheme is required to ensure that the ciphertext and trapdoor leak no keyword
information to the malicious outsiders. However, Byun [BRPL06] noted that having only the two aforementioned
security requirements is insufficient because the cloud server may be malicious, where the malicious cloud server
guesses the keyword hiding in the trapdoor—a type of attack called insider keyword guessing attacks (IKGAs). In
particular, because the cloud server can adaptively generate a ciphertext for any keyword by using the data receiver’s
public key, through trial and error, test for that self-made ciphertext that is matched with the trapdoor received
from the data receiver. As mentioned in [BRPL06], because the keyword space is not large enough, there is a
high probability that keyword-related information searched for by the data receiver is leaked to the malicious cloud
server. Hence, if the malicious cloud server has the ability to perform encryption and test, such as [LLW21, ZCH20,
ZLW+21, EIO20], then such PEKS schemes cannot resist IKGA attacks.

To prevent IKGA, some early PEKS schemes have used additional servers to perform tests, in place of the
original server. This method is called dual-server PEKS [CMY+15, CMY+16b, CMY+16a, MFGW19, CWZH19].
When servers do not collude, IKGAs do not occur. However, using additional servers can significantly increase the
cost of communication. Furthermore, the means for ensuring that servers do not collude remain unclear. Recently,
Huang and Li [HL17] introduced a new cryptography primitive called public-key authenticated encryption with
keyword search (PAEKS). In this primitive, the data sender not only generates but also authenticates ciphertext,
whereas a trapdoor generated from the data receiver is only valid to the ciphertext authenticated by the specific data
sender. Therefore, the cloud server cannot perform IKGAs. In addition, with the same reason, the cloud server also
cannot obtain any keyword information from the receiver’s search pattern [LZWT14] because he/she cannot generate
ciphertext to test his/her guess. Furthermore, because of the higher efficiency and greater convenience compared with
designated-tester PEKS schemes, many PAEKS schemes [HMZ+18, LLY+19, NE19, PSE20, QCH+20, LHS+19,
WZM+19] have been formulated for further application in IoT and IIoT as well as in cloud computing environments.

Shor [Sho99, Sho94] reported on quantum algorithms that can violate the traditional number-theoretic as-
sumptions, such as the integer factoring assumption and discrete logarithm assumption. In particular, the ad-
vent of the 53-qubit quantum computer, proposed by Arute et al. [AAB+19], may improve quantum com-
puting technology and affect the existing cryptographic systems. Because the security of existing PAEKS
schemes [HMZ+18, LLY+19, NE19, PSE20, QCH+20, LHS+19, WZM+19] is based on the discrete logarithm
assumption, quantum computers can come to pose a potential threat to existing schemes. Hence, the means of
constructing a quantum-resistant PEAKS scheme is an emerging issue among scholars and practitioners.

2



1.1 Our Contribution
In this paper, we introduce a novel solution for constructing a quantum-resistant PAEKS scheme for use in IIoT. At a
high level, the original keyword space is commonly found and easy to test. Our strategy is to allow a data sender and
data receiver to generate an “extended keyword” from an original keyword without interacting with each other. In
this method, the ciphertext and trapdoor are generated using the extended keyword instead of the original keyword.
Since the extended keyword is high-entropy, the malicious cloud server cannot generate a valid ciphertext (i.e., the
malicious cloud server cannot pass the authentication) to perform IKGAs.

Accordingly, we provide a generic PAEKS construction by leveraging an identity-independent 2-tier identity-
based key encapsulation mechanism (IBKEM), a pseudorandom generator (PRG), and anonymous identity-based
encryption (IBE). We also present two rigorous proofs to show that our construction satisfies the security require-
ments of PAEKS. These requirements are indistinguishability against chosen keyword attacks (IND-CKA) and indis-
tinguishability against IKGAs (IND-IKGA) under a multi-user setting in a standard model, without random oracle
model (ROM). Because our construction is IND-IKGA secure, there is no adversary can infer any information about
the queried keyword from the given trapdoor. Therefore, there is no search pattern privacy concern [LZWT14] in
our construction.

Furthermore, we first employ Ducas et al.’s anonymous IBE [DLP14] to obtain an identity-independent 2-tier
IBKEM under the NTRU assumption. We then combine the scheme with [DLP14] to obtain an instantiation of
PAKES. Because the security of [DLP14] is inherited, we obtain the first quantum-resistant instantiation of PAEKS.

The comparison results of our scheme with other state-of-the-art PAKES schemes are presented in Table 2 and
Figure 3; our instantiation was demonstrated to be not only more secure but also more efficient with respect to
ciphertext generation, trapdoor generation, and testing.

1.2 Related Work
The PEKS schemes against IKGAs can be separated into three categories: dual-server PEKS, PAEKS, and witness-
based searchable encryption.

The concept of designated-tester PEKS was first introduced by Rhee et al. [RPSL10], who proposed a PEKS
scheme that supports trapdoor indistinguishability from outsider because only server can perform test algorithm.
Chen et al. [CMY+15, CMY+16b, CMY+16a] followed this concept and proposed a variant scheme, called
dual-server PEKS, which can be used against IKGAs if the servers do not collude with each other. However,
Huang [HT17] indicates that [CMY+15, CMY+16b] are susceptible to IKGAs. Recently, Chen et al. [CWZH19]
introduced an efficient dual-server scheme that is resistant to IKGAs without needing any pairing computations.
In addition, Mao et al. [MFGW19] suggested a quantum-resistant designated-tester PEKS scheme, which is also
the first lattice-based PEKS that is protected from IKGAs. However, the above schemes requires that servers do
not collude with each other, which is difficult to guarantee in many scenarios. Moreover, construction costs and
communications costs are increased in this method.

Considering these limitations, scholars thus began to study methods for constructing trapdoors that are only valid
for certain ciphertexts. Fang et al. [FSGW09, FSGW13] first considered using a one-time signature to authenticate
the ciphertext, while having the trapdoor be valid only for the authenticated ciphertext, a method that improved re-
sistance to IKGA. Huang and Li [HL17] formally defined the system model and security model for PAEKS. Noroozi
and Eslami [NE19] first considered Huang and Li’s scheme [HL17] is not secure against IKGAs and further im-
proved [HL17] without incurring additional cost complexity. To resist quantum attacks, Zhang et al. [ZXW+21]
proposed a lattice-based PAEKS scheme; however, Liu et al. [LTT20] recently demonstrated that the security model
of that work is flawed and therefore cannot withstand IKGAs. Pakniat et al. [PSE20] introduced the first certifi-
cateless PAEKS scheme for an IoT environment. Moreover, Li et al. [LHS+19] and Qin et al. [QCH+20] further
prevented malicious adversary eavesdrops on the transmission channel of ciphertext and trapdoor, and executes the
test algorithm to determine whether the two ciphertexts shared the same keyword. Although the aforementioned
PAEKS schemes resist IKGAs, these schemes are based on the discrete logarithm assumption, which make them
vulnerable to attacks from quantum computers.

Ma et al. [MMSY18] introduced a cryptographic primitive called “witness-based searchable encryption,” in
which the trapdoor is valid only when the ciphertext has a witness relation to the trapdoor. Chen et al. [CXWT19] for-
mulated an improvement to reduce the complexity of the trapdoor size. Inspired by [MMSY18], Liu et al. [LTTM21]
introduced a new concept called “designated-ciphertext searchable encryption,” where the trapdoor is designated to a

3



Table 1: Notations
Notation Description

λ Security parameter
Π PAEKS
Ψ IBE
Ω Identity-independent 2-tier IBKEM
F Pseudorandom generator
IDS Identity space
CS Ciphertext space
KS Shared key space
PS Plaintext space
W Keyword space
N,Z,R Natural number, integer number, real number
G1,GT Cyclic group
v,V Vector, matrix
a‖b Concatenation of element a and b

s← S
Sampling an element s from S
uniformly at random

T̃ Gram-Schmidt orthogonalization of T
|v| The bit length of element v
‖v‖, ‖V‖ The Euclidean norm of v and V
negl(·), poly(·) Negligible function, polynomial function
PPT Probabilistic polynomial-time

ciphertext; this concept affords users with a quantum-resistant instantiation. Despite their advantages, however, these
schemes require the data sender to interact with the data receiver; moreover, they incur additional communication
costs and are inapplicable to many scenarios.

1.3 Organization of the Paper
The rest of the paper is organized as follows. Section 2 introduces the preliminaries, and Section 3 recalls the
definition of the building blocks used in our generic construction. Moreover, Section 4 provides the definition and
security requirement of the PAEKS. Next, Sections 5 and 6 introduce our generic constriction before providing the
security proofs. Section 7 elaborates on the first quantum-resistant PAEKS instantiation, and Section 8 details the
analysis of the communication cost and computation cost incurred in the related PAEKS schemes. Finally, Section 9
concludes this study.

2 Preliminary
For simplicity and readability, we use the notations in Table 1 throughout the manuscript.

2.1 Lattices
We now introduce the basic concepts underlying lattices that are used in our instantiation. An m-dimension lattice
Λ is an additive discrete subgroup of Rm, which can be defined as follows.

Definition 1 (Lattice). We say that a m-dimension lattice Λ generated by a basis B = [b1| · · · |bn] ∈ Rm×n is
defined by

Λ(B) = Λ(b1, · · · ,bn) =

{ n∑
i=1

biai|ai ∈ Z
}

,

4



where b1, · · · ,bn ∈ Rm are n linear independent vectors.

In addition, for a prime q, a matrix A ∈ Zn×mq , and a vector u ∈ Znq , we can define the following three
sets [GPV08, ABB10]:

• Λq := {e ∈ Zm | ∃s ∈ Zn where A>s = e mod q}.

• Λ⊥q := {e ∈ Zm |Ae = 0 mod q}.

• Λu
q := {e ∈ Zm |Ae = u mod q}.

2.2 Discrete Gaussian Distributions
For any vector c ∈ Rn and any positive real number s, we define the following two notations:

• ρs,c(x) = exp
(
−π ‖x−c‖

2

s2

)
.

• ρs,c(Λ) =
∑
x∈Λ

ρs,c(x).

The discrete Gaussian distribution over the lattice Λ with center c and parameter s can then be defined as
DΛ,s,c(x) = ρs,c(x)/ρs,c(Λ) for any x ∈ Λ. Note that we usually omit c if c is 0.

2.3 Rings and NTRU Lattices
Here, we briefly introduce rings and NTRU lattices, as formulated in previous studies [LPR10, LPR13]. Let N be
a power of 2. The ring can then be defined as R = Z[x]/Φm(x), where ΦN (x) = xN + 1. Furthermore, for some

integer q, we use Rq to denote R/qR = Z[x]/(q,ΦN (x)). For two polynomials f =

N−1∑
i=0

fix
i and g =

N−1∑
i=0

gix
i,

fg denotes polynomial multiplication in Q[x] and f ∗ g is defined as the convolution product of f and g, i.e.,
f ∗ g , fg mod (xN + 1). Additionally, bfe denotes the coefficient-wise rounding of f .

The first NTRU-based public-key encryption is introduced in 1996 by Hoffstein et al. [HPS98], and later Stehlé
and Steinfeld [SS11] presents a new variant that has been proven to be secure in the worst-case lattice problem.
Compared with integer lattices, the operations of NTRU are based on the ring of polynomialsR, and can be defined
as follows.

Definition 2 (Anticirculant Matrix [DLP14]). An N -dimensional anticirculant matrix of f is the following Toeplitz
matrix:

AN (f) =


f0 f1

. . . fN−1

−fN−1 f0
. . . fN−2

. . .
. . .

. . .
. . .

−f1 −f2
. . . f0

 =


(f)

(x ∗ f)
...

(xN−1 ∗ f)

 .

Definition 3 (NTRU Lattices [BOY20]). For prime integer q and f, g ∈ R, h = g ∗ f−1 mod q, the NTRU lattice
with h and q is Λh,q = {(u, v) ∈ R2|u+ v ∗ h = 0 mod q}. Here, Λh,q is a full-rank lattice generated by the rows

of Ah,q =

(
−AN (h) IN
qIN ON

)
, where I is an identity matrix.

As mentioned by Hoffstein et al. [HHP+03], although one can generate the lattice from basis Ah,q by using a
single polynomial h ∈ Rq , Ah,q has a large orthogonal defect and therefore inefficiency in standard lattice operation.

Therefore, to solve the issue, They further showed that another short basis Bf,g =

(
AN (g) −AN (f)
AN (G) −A(F )

)
generates

the same lattice Λh,q as Ah,q , where f, g, F,G ∈ R and f ∗G− g ∗ F = q.

5



Definition 4 (Statistical Distance [ABB10]). Given two random variables X and Y taking values in a finite set S,
the statistical distance is defined as:

∆(X,Y ) = 1
2

∑
s∈S
|Pr[X = s]− Pr[Y = s]|.

Due to the efficient of NTRU, Ducas et al.’s introduced a NTRU-based IBE scheme. In their scheme,
they provided an algorithm that can efficiently obtain the pair of basis (h,Bf,g), as shown in Algo-
rithm 1. Additionally, since Bf,g is a short basis, based on [GPV08] and [DLP14], there exist an algorithm
Gaussian_Sampler(B, σ, c) that can sample a vector v without leaking any information of the basis Bf,g such
that ∆(DΛ(B),σ,c,Gaussian_Sampler(B, σ, c)) ≤ 2−λ, where σ > 0 and c ∈ ZN .

Algorithm 1 Basis_Generation [DLP14]
Input: N, q
Output: h ∈ Rq,Bf,g ∈ Z2N×2N

q .
Initialisation : σf = 1.17

√
q

2N .
1: f, g ← DN,σf

.

2: Norm← max
(
‖g,−f‖ ,

∥∥∥ gf̄
f∗f̄+g∗ḡ ,

gḡ
f∗f̄+g∗ḡ

∥∥∥).
3: if (Norm > 1.17

√
q) then

4: Go to Step 1.
5: end if
6: Using extended Euclidean algorithm, compute ρf , ρg ∈ R and Rf , Rg ∈ Z such that −ρf · f = Rf and
−ρg · g = Rg .

7: if (GCD(Rf , Rg) 6= 1 or GCD(Rf , q) 6= 1) then
8: Go to Step 1.
9: end if

10: Using extended Euclidean algorithm, compute u, v ∈ Z such that u · Rf + v · Rg = 1, and F ← qvρg, Q ←
−quρf .

11: Compute k =
⌊
F∗f̄+G∗ḡ
f∗f̄+g∗ḡ

⌉
∈ R, and compute F ← F − k ∗ f and G← G− k ∗ g.

12: Compute h = g ∗ f−1 mod q and Bf,g =

(
AN (g) −AN (f)
AN (G) −A(F )

)
.

13: return h and Bf,g.

3 Building Blocks
In this section, we recall three crucial cryptographic primitives, namely identity-independent 2-tier IBKEM, IBE,
and PRG, which are used as the building blocks in our generic construction.

3.1 Identity-independent 2-tier IBKEM
An identity-independent 2-tier IBKEM Ω comprises the five algorithms: (Setup,Extract,Enc1,Enc2,Dec) along
with an identity space IDS, ciphertext space CS, and symmetric key space KS. These algorithms are described as
follows.

• Setup(1λ) → (msk,mpk): This is the setup algorithm that takes the security parameter 1λ as its input and
outputs a master private key msk and a master public key mpk.

• Extract(msk, id ∈ IDS)→ skid: This is the extraction algorithm that takes the two inputs of a master private
key msk and identity id ∈ IDS and outputs a private key skid for the identity.

• Enc1(mpk)→ (ct, r): This is the first encapsulation algorithm that takes the input of a master public key mpk
and outputs a ciphertext ct ∈ CS and a randomness r.

6



• Enc2(mpk, id, r) → k/⊥: This is the second encapsulation algorithm that takes the three inputs of a master
public key mpk, identity id, and randomness r and outputs either a symmetric key k ∈ KS or the reject symbol
⊥.

• Dec(skid, id, ct) → k/⊥: This is the decryption algorithm that takes the three inputs of a private key skid,
identity id, and ciphertext ct and outputs either symmetric key k ∈ KS or a reject symbol ⊥.

Definition 5 (Correctness). An identity-independent 2-tier IBKEM Ω is correct if for all security parameters 1λ, all
master key pairs (msk,mpk) output by Setup(1λ), all private keys skid for identity id output by Extract(msk, id), all
(ct, r) pairs output by Enc1(mpk), and all k values output by Enc2(mpk, id, r), the following equation holds:

Pr[Dec(skid, id, ct) = k] = 1− negl(λ).

The basis security requirement of identity-independent 2-tier IBKEM is IND-ID-CPA, which ensures that no
PPT adversary can distinguish whether the challenge ciphertext is generated from the Enc1 and Enc2 algorithm or is
randomly chosen from the ciphertext space CS. This security requirement can be modeled by the following security
game played between an adversary A and a challenger B.

Game - IND-ID-CPA:

• Initialization. The challenger B first runs (msk,mpk)← Setup(1λ). B then sends the master public key mpk
to A and keeps the master private key msk secret.

• Phase 1. The adversaryA is given access to query the extract oracle with any identity id, and B returns a valid
private key skid for identity id by using Extract algorithm.

• Challenge. A submits B an identity id∗ that has not been queried to extract oracle in Phase 1. B randomly
selects a bit b ∈ {0, 1}. If b = 0, B generate a true ciphertext by using Enc1 and Enc2. Otherwise, B randomly
selects a ciphertext from the ciphertext space. B then returns the ciphertext as a challenge to A.

• Phase 2. A can continue querying the extract oracle as Phase 1. The only restriction is that A cannot query
the extract oracle with the identity id∗.

• Guess. A outputs a bit b′ ∈ {0, 1}.

The advantage of A is defined as

AdvIND-CPA
Ω,A (λ) = |Pr[b = b′]− 1

2 |.

Definition 6 (IND-ID-CPA Security). An identity-independent 2-tier IBKEM scheme Ω is IND-ID-CPA secure if for
all PPT adversaries A, AdvIND-CPA

Ω,A (λ) is negligible.

3.2 IBE
An IBE scheme Ψ comprises four algorithms (Setup,Extract,Enc,Dec) along with an identity space IDS, cipher-
text space CS, and plaintext space PS, described as follows.

• Setup(1λ) → (msk,mpk): This is the setup algorithm that takes the security parameter 1λ as its input and
outputs a master private key msk and master public key mpk.

• Extract(msk, id)→ skid: This is the extraction algorithm that takes the two inputs of a master private key msk
and identity id ∈ IDS and outputs a private key skid for the identity.

• Enc(mpk, id,m) → ctid: This is the encryption algorithm that takes the three inputs of a master public key
mpk, identity id, and plaintext m ∈ PS and outputs a ciphertext ctid ∈ CS.

• Dec(skid, ctid) → m: This is the decryption algorithm that takes the two inputs of a private key skid (for
identity id) and ciphertext ctid and outputs a plaintext m ∈ PS.

7



Definition 7 (Correctness of IBE). An IBE Ψ is correct if, for all security parameters 1λ, all master key pairs
(msk,mpk) output by Setup(1λ), all private keys skid for identity id output by Extract(msk, id), and all ciphertexts
(ctid) output by Enc(mpk, id,m), the following equation holds:

Pr[Dec(skid, ctid) = m] = 1− negl(λ).

The basis requirement of IBE is IND-ID-CPA security which is similar with the IND-ID-CPA game of
identity-independent 2-tier IBKEM in Section 3.1. The difference is as follows: In Challenge phase, A sends
(id∗,m∗0,m

∗
1) to B instead of only a challenged identity id∗, where m0,m1 are two messages with the same

length. Then, according to the bit b, B returns ct∗ ← Enc(mpk, id∗,m∗b). However, our instantiation requires a
stronger security requirement called indistinguishability and anonymity against chosen plaintext and chosen identity
attacks (IND-ANON-ID-CPA). IND-ANON-ID-CPA security ensures that no PPT adversary can retrieve any in-
formation pertaining to the identity and the message from a challenge ciphertext, as modelled by the following game.

Game - IND-ANON-ID-CPA:

• Initialization. The challenger B first runs (msk,mpk) ← Setup(1λ) and then sends the master public key
mpk to A and keeps master private key msk secret.

• Phase 1. The adversaryA is given access to query the extract oracle with any identity id, and B returns a valid
private key skid for identity id by using the Extract algorithm.

• Challenge. A submits B two messages m∗0,m
∗
1 and two identities id∗0, id

∗
1 that have not been queried to extract

the oracle. B randomly chooses a bit b ∈ {0, 1} and then computes ct∗ ← Enc(mpk, id∗b ,m
∗
b). Finally, B

returns the challenge ciphertext ct∗ to A.

• Phase 2. A can continue querying the oracle per Phase 1. The only restriction is that A cannot query the
extract oracle with id∗0 and id∗1.

• Guess. A outputs a bit b′ ∈ {0, 1}.

The advantage of A is defined as

AdvIND-ANON-ID-CPA
Ψ,A (λ) = |Pr[b = b′]− 1

2 |.

Definition 8 (IND-ANON-ID-CPA Security of IBE). An IBE scheme Ψ is IND-ANON-ID-CPA secure if
AdvIND-ANON-ID-CPA

Ψ,A (λ) is negligible for all PPT adversaries A.

For analytical convenience, in this work, we consider an IBE to be anonymous if the IBE is IND-ANON-ID-CPA
secure.

3.3 Pseudorandom Generator (PRG)
Informally, suppose that a distribution D is pseudorandom if no PPT distinguisher that can distinguish a string s is
either selected from the distribution D or randomly selected from a uniform distribution. We provide the following
definition of the pseudorandom generator in [KL14].

Definition 9 (Pseudorandom Generator). Let F : {0, 1}n → {0, 1}m be a deterministic PPT algorithm, where
n′ = poly(n) and m > n. We say that F is a pseudorandom generator the following two conditions are satisfied:

• Expansion: For every n, it holds that m > n.

• Pseudorandomness: For all PPT distinguishers D,

|Pr[D(r) = 1]− Pr[D(F (s)) = 1]| ≤ negl(n),

where r ← {0, 1}m and seed s← {0, 1}n.

8



Figure 2: System model for the proposed PAEKS scheme.

4 PAEKS
In this section we introduce the system model and the security requirements of PAEKS.

4.1 System Model
A PAEKS has four entities: a trusted authority, data sender, data receiver, and cloud server (Fig 2). In practice, the
data sender and data receiver register their identity with the trusted authority and obtain their public/private key pairs.
A PAEKS scheme Π comprises six algorithms: (Setup, KeyGenS,KeyGenR,PAEKS,Trapdoor,Test) together with
a keyword space W , which are detailed as follows.

• Setup(1λ)→ (pp,msk): This is the setup algorithm that takes the security parameter 1λ as input, and outputs
a system parameter pp and a master private key msk. Note that the master private key is hold by trusted
authority.

• KeyGenS(pp,msk, idS)→ (pkS, skS): This is the data sender key generation algorithm that interacts between
data sender and trusted authority. It takes a system parameter pp, master private key msk, and an identity idS
as input, and outputs data sender’s public key pkS and private key skS.

• KeyGenR(pp,msk, idR) → (pkR, skR): This is the data receiver key generation algorithm that interacts be-
tween data receiver and trusted authority. It takes a system parameter pp, master private key msk, and an
identity idR as input, and outputs data receiver’s public key pkR and private key skR.

• PAEKS(pp, pkS, skS, pkR, kw) → ct: This is the authenticated encryption algorithm that takes a system pa-
rameter pp, data sender’s public key pkS and private key skS, data receiver’s public key pkR, and a keyword
kw ∈W , and outputs a searchable ciphertext ct.

• Trapdoor(pp, pkR, skR, pkS, kw)→ tw: This is the trapdoor algorithm that takes a system parameter pp, data
receiver’s public key pkR and private key skR, data sender’s public key pkS, and a keyword kw ∈ W, and
outputs a trapdoor tw.

9



• Test(pp, ct, tw) → 1/0: This is the test algorithm that takes a system parameter pp, searchable ciphertext ct,
and a trapdoor tw, and outputs 1 if ct and tw correspond the same keyword; outputs 0, otherwise.

Definition 10 (Correctness of PAEKS). A PAEKS scheme Π is correct if, for all security parameters 1λ,
all system parameter/master private key pairs (pp,msk) output by Setup(1λ), all data sender idS’s key
pairs (pkS, skS) output by KeyGenS(pp,msk, idS), all data receiver idR’s key pairs (pkR, skR) output by
KeyGenR(pp,msk, idR), all searchable ciphertexts ct output by PAEKS(pp, pkS, skS, pkR, kw), and all trapdoors
tw output by Trapdoor(pp, pkR, skR, pkS, kw), the following equation holds:

Test(pp, ct, tw) =

{
1, if ct, tw contains the same kw;

0, otherwise.

4.2 Security Requirements
The basic secure requirement of the PAEKS scheme is IND-CKA and IND-IKGA. Specifically, IND-CKA and
IND-IKGA security ensures that no PPT adversary can obtain any information regarding the keyword from the
searchable ciphertext and keyword, respectively. We follow the method of [NE19] to model the aforementioned
two security requirements in the multi-user context by using two security games featuring interaction between the
adversary A and challenger B. Because the malicious insider has more power than the malicious outsider has, we
only consider the IND-IKGA in this work. Here we note that to capture multi-user context, we use idU, pkU, and
skU to denote some user U’s identity, public key, and private key, respectively. In addition, oracle OPAEKS(kw, pkU)
means that A wants to obtain a ciphertext that is authenticated by the sender S and can be tested by the user U’s
trapdoors; oracleOTrapdoor(kw, pkU) means thatA wants to obtain a trapdoor generated by the receiver R where this
trapdoor can test a ciphertext authenticated by the user U and encrypted for the receiver R.

Game - IND-CKA:

• Initialization. The challenger B first runs (pp,msk)← Setup(1λ). The algorithm then chooses two identities
idS, idR and runs (pkS, skS) ← KeyGenS(pp,msk, idS) and (pkR, skR) ← KeyGenR(pp,msk, idR). Finally, B
sends the system parameter pp, data sender’s public key pkS, and data receiver’s public key pkR to A while
keeping secret the master private key msk, data sender’s private key skS, and data sender’s private key skR.

• Phase 1. A can make polynomially many queries to oraclesOPKGenS ,OPKGenR ,OPAEKS, andOTrapdoor, B then
responds as follows.

– OPKGenS(idU): B runs (pkU, skU) ← KeyGenS(pp,msk, idU). Then, B returns pkU to A, and keeps skU
secret.

– OPKGenR(idU): B runs (pkU, skU) ← KeyGenR(pp,msk, idU). Then, B returns pkU to A, and keeps skU
secret.

– OPAEKS(kw, pkU): B computes ct← PAEKS(pp, pkS, skS, pkU, kw) and returns ct to A.

– OTrapdoor(kw, pkU): B computes tw← Trapdoor(pp, pkR, skR, pkU, kw) and returns tw to A.

• Challenge. After the end of Phase 1, A outputs two keywords kw∗0, kw
∗
1 ∈ W with the following re-

striction: for i = 0, 1, (kw∗i , pkR) and (kw∗i , pkS) have not been queried to oracles OPAEKS and OTrapdoor

in Phase 1, respectively. B then chooses a random bit b ∈ {0, 1} and returns ct∗ = (Ψ.ct∗, h) ←
PAEKS(pp, pkS, skS, pkR, kw

∗
b) to A.

• Phase 2. A can continue to make queries, as was the case in Phase 1. The only restriction is that A cannot
make any query to OPAEKS on (kw∗i , pkR) and to OTrapdoor on (kw∗i , pkS) for i = 0, 1.

• Guess. A outputs its guess b′ ∈ {0, 1}.
The advantage of A is defined as

AdvIND-CKA
Π,A (λ) = |Pr[b = b′]− 1

2 |.

10



Definition 11 (IND-CKA security of PAEKS). A PAEKS scheme Ω is IND-CKA secure if for all PPT adversaries
A, AdvIND-CKA

Π,A (λ) is negligible.

Game - IND-IKGA:

• Initialization. The challenger B first runs (pp,msk) ← Setup(1λ) and then runs (pkS, skS) ←
KeyGenS(pp,msk) and then runs (pkR, skR) ← KeyGenR(pp,msk). Finally, B sends the system parame-
ter pp, data sender’s public key pkS, and data receiver’s public key pkR to A while keeping secret the master
private key msk, data sender’s private key skS, and data sender’s private key skR.

• Phase 1. A can make polynomially many queries to oraclesOPKGenS ,OPKGenR ,OPAEKS, andOTrapdoor, B then
responds as follows.

– OPKGenS(idU): B runs (pkU, skU) ← KeyGenS(pp,msk, idU). Then, B returns pkU to A, and keeps skU
secret.

– OPKGenR(idU): B runs (pkU, skU) ← KeyGenR(pp,msk, idU). Then, B returns pkU to A, and keeps skU
secret.

– OPAEKS(kw, pkU): B computes ct← PAEKS(pp, pkS, skS, pkU, kw) and returns ct to A.

– OTrapdoor(kw, pkU): B computes tw← Trapdoor(pp, pkR, skR, pkU, kw) and returns tw to A.

• Challenge. After the end of Phase 1, A outputs two keywords kw∗0, kw
∗
1 ∈ W with the following restriction:

for i = 0, 1, (kw∗i , pkR) and (kw∗i , pkS) have not been queried to oracles OPAEKS and OTrapdoor in Phase 1,
respectively. B then selects a random bit b ∈ {0, 1} and returns tw∗ ← Trapdoor(pp, pkR, skR, pkS, kw

∗
b) to

A.

• Phase 2. A can continue to make queries, as was the case in Phase 1. The only restriction is that A cannot
make any query to OPAEKS on (kw∗i , pkR) and to OTrapdoor on (kw∗i , pkS) for i = 0, 1.

• Guess. A outputs its guess b′ ∈ {0, 1}.
The advantage of A is defined as

AdvIND-IKGA
Π,A (λ) = |Pr[b = b′]− 1

2 |.

Definition 12 (IND-IKGA security of PAEKS). A PAEKS scheme Ω is IND-IKGA secure if for all PPT adversaries
A, AdvIND-IKGA

Π,A (λ) is negligible.

5 Generic PAEKS Construction
Abdalla et al. [ABC+08] have proposed a generic construction that allows any anonymous IBE to be converted
to a PEKS scheme. In their construction, they take each keyword as an identity and use “identity” to generate
ciphertext; while take the trapdoor as the identity’s private key. If the cloud server can use the trapdoor to “decrypt”
the ciphertext, that means that the trapdoor and the ciphertext are associated with the same keyword. Unfortunately,
schemes constructed in this way cannot withstand IKGAs because the malicious cloud server can adaptively generate
ciphertext with any keyword. Inspired by [ABC+08], we construct our generic PAEKS to further against IKGA.
Specifically, we demonstrate how a PAEKS scheme can be constructed by combing an anonymous IBE, PRG, and
identity-independent 2-tier IBKEM.

The core conception of our construction to resist IKGAs is that we use identity-independent 2-tier IBKEM to
let data sender and data receiver can obtain a shared key without interaction. If they can obtain a share key, we
say that they authenticate each other. Since the malicious cloud server cannot obtain any information of the share
key, he/she cannot generate a valid ciphertext to perform IKGAs. The following we describe our strategy. The data
sender and data receiver each use this shared key to extend the keyword to a high-entropy randomness by using PRG.
Rather than using the original keyword, the data sender and data receiver use the extended keyword to generate a
ciphertext and trapdoor, respectively. Following the idea of [ABC+08], the data sender takes the randomness as an
“identity” to generate a ciphertext for the data receiver by using an anonymous IBE. The data receiver can extract

11



a private key for this identity and take this private key as the corresponding trapdoor. By using this trapdoor, the
cloud server can search for the ciphertext containing keywords which is the same as in the trapdoor. In addition,
because the ciphertext and trapdoor are using the output of PRG as the identity and because the IBE is anonymous,
PPT adversaries cannot obtain any information regarding the keyword from the ciphertext and trapdoor.

To construct a PAEKS scheme Π = (Setup, KeyGenS, KeyGenR, PAEKS, Trapdoor, Test) with the keyword
space W , we use the following cryptosystems as the building block. Let Ψ = (Setup, Extract, Enc, Dec) be an
anonymous IBE scheme with the identity space Ψ.IDS, ciphertext space Ψ.CS, and plaintext space Ψ.PS. Let
Ω = (Setup,Extract,Enc1,Enc2,Dec) be an identity-independent 2-tier IBKEM scheme with the identity space
Ω.IDS, ciphertext space Ω.CS, and symmetric key space Ω.KS. In addition, let F : X → Y be a PRG that maps
X to Y , where X = {kw‖shk | kw ∈ W ∧ shk ∈ Ω.KS} and Y = Ψ.IDS. The generic construction is detailed
in the subsequent section. Note that although our construction is based on identity-based cryptosystems, the entire
construction remains in the public key setting.

• Setup(1λ)→ (pp,msk): Given a security parameter 1λ, this algorithm runs as follows.

1. Choose a proper PRG F : X → Y .

2. Choose a secure hash function H : {0, 1}α → {0, 1}β , where α, β ∈ Z+.

3. Generate (Ω.msk,Ω.mpk)← Ω.Setup(1λ).

4. Output system parameter pp := (λ,Ω.mpk,H,F) and master private key msk := Ω.msk. Note that msk
is kept secret by the trusted authority.

• KeyGenS(pp,msk, idS)→ (pkS, skS): Given a system parameter pp = (λ,Ω.mpk,H,F), a master private key
msk = Ω.msk, and a data sender’s identity idS ∈ Ω.IDS, data sender and trusted authority interact as follows.

1. The data sender first computes (Ω.ctS,Ω.rS) ← Ω.Enc1(Ω.mpk), and registers identity idS with Ω.ctS
to trusted authority.

2. The trusted authority then returns Ω.skidS ← Ω.Extract(Ω.msk, idS) to the data sender.

3. Data sender outputs his/her public key pkS := (idS,Ω.ctS) and private key skS := (Ω.skidS ,Ω.rS).

• KeyGenR(pp,msk, idR) → (pkR, skR): Given a system parameter pp = (λ,Ω.mpk,H,F), a master private
key msk = Ω.msk, and a data receiver’s identity idR ∈ Ω.IDS, data receiver and trusted authority interact as
follows.

1. The data receiver first computes (Ω.ctR,Ω.rR)← Ω.Enc1(Ω.mpk), and registers identity idR with Ω.ctR
to trusted authority.

2. The trusted authority then returns Ω.skidR ← Ω.Extract(Ω.msk, idR) to the data receiver.

3. Data receiver computes (Ψ.mpk,Ψ.msk)← Ψ.Setup(1λ).

4. Finally, data receiver outputs data receiver’s public key pkR := (idR,Ω.ctR,Ψ.mpk) and private key
skR := (Ω.skidR ,Ω.rR,Ψ.msk).

• PAEKS(pp, pkS, skS, pkR, kw) → ct: Given a system parameter pp = (λ,Ω.mpk,H,F), a data sender’s
public key pkS = (idS,Ω.ctS) and private key skS = (Ω.skidS ,Ω.rS), a data receiver’s public key pkR =
(Ω.idR,Ω.ctR,Ψ.mpk), and a keyword kw ∈W , data sender works as follows.

1. Compute kS,idS,idR ← Ω.Dec(Ω.skidS , idS,Ω.ctR).

2. Compute kS,idR,idS ← Ω.Enc2(Ω.mpk, idR,Ω.rS).

3. Compute shkS ← kS,idS,idR ⊕ kS,idR,idS , where ⊕ is an operation compatible with the key space.

4. Compute fS ← F(kw‖shkS).

5. Choose a random ξ ← Ψ.PS and compute Ψ.ctkw ← Ψ.Enc(Ψ.mpk, fS, ξ).

6. Compute h = H(Ψ.ctkw, ξ).

7. Output a searchable ciphertext ct := (Ψ.ctkw, h).

12



• Trapdoor(pp, pkR, skR, pkS, kw) → tw: Given a system parameter pp = (λ,Ω.mpk,H,F), a data receiver’s
public key pkR = (idR,Ω.ctR,Ψ.mpk) and private key skR = (Ω.skidR ,Ω.rR,Ψ.msk), a data sender’s public
key pkS = (idS,Ω.ctS), and a keyword kw ∈W , data receiver works as follows.

1. Compute kR,idR,idS ← Ω.Dec(Ω.skidR , idR,Ω.ctS).

2. Compute kR,idS,idR ← Ω.Enc2(Ω.mpk, idS,Ω.rR).

3. Compute shkR ← kR,idR,idS ⊕ kR,idS,idR , where ⊕ is an operation compatible with the key space.

4. Compute fR ← F(kw‖shkR).

5. Compute Ψ.skkw ← Ψ.Extract(Ψ.msk, fR).

6. Output a trapdoor tw := Ψ.skkw for keyword kw.

• Test(pp, ct, tw): Given a system parameter pp = (λ,Ω.mpk,H,F), a searchable ciphertext ct = (Ψ.ctkw, h),
and a trapdoor tw = Ψ.skkw for keyword kw, cloud server works as follows.

1. Compute ξ′ ← Ψ.Dec(Ψ.skkw,Ψ.ctkw).

2. Output 1 if H(Ψ.ct, ξ′) = h; outputs 0, otherwise.

Correctness. Notably, the data sender and data receiver rely on the underlying identity-independent 2-tier IBKEM to
exchange an extended keyword and the extended keyword acts as an identity in the underlying IBE scheme. There-
fore, the proposed construction is correct if and only if the underlying anonymous IBE and identity-independent
2-tier IBKEM are correct.

6 Security Proofs
The following provides two security proofs to show that our generic construction is IND-CKA secure and IND-IKGA
secure under standard model.

Theorem 1. The proposed PAEKS scheme Π is IND-CKA secure if the underlying IBE scheme Ψ is IND-ANON-ID-
CPA secure.

Proof of Theorem 1. If adversary A can win the IND-CKA game with a non-negligible advantage, then challenger
B can win the IND-ANON-ID-CPA game of the underlying IBE scheme Ψ with a non-negligible advantage. Their
interaction is as follows.

• Initialization. Given the security parameter 1λ, B first chooses the proper secure hash function H and pseu-
dorandom generator F and invokes the IND-ANON-ID-CPA game of Ψ to obtain Ψ.mpk. Next, B executes
the following steps.

– Compute (Ω.msk,Ω.mpk)← Ω.Setup(1λ).

– Choose idS and idR from Ω.IDS.

– Compute Ω.skidS ← Ω.Extract(Ω.msk, idS) and Ω.skidR ← Ω.Extract(Ω.msk, idR).

– Compute (Ω.ctS,Ω.rS)← Ω.Enc1(mpk) and (Ω.ctR,Ω.rR)← Ω.Enc1(mpk).

Finally, B sends the data sender’s public key pkS = (idS,Ω.ctS), data receiver’s public key pkR =
(idR,Ω.ctR,Ψ.mpk), and system parameter pp = (λ,Ω.mpk,H,F) to A, and keeps (Ω.msk,Ω.skidS ,Ω.skidR)
secret.

• Phase 1. A can make polynomially many queries to oracles OPKGenS(idU), OPKGenR(idU), OPAEKS(kw, pkU),
and OTrapdoor(kw, pkU), B then responds as follows.

– OPKGenS(idU): B first computes Ω.skidU ← Ω.Extract(Ω.msk, idU) and (Ω.ctU,Ω.rU)← Ω.Enc1(mpk).
B then returns pkU = (idU,Ω.ctU) to A and keeps skU = (Ω.skidU , rU) secret.

13



– OPKGenR(idU): B first computes Ω.skidU ← Ω.Extract(Ω.msk, idU) and (Ω.ctU,Ω.rU)← Ω.Enc1(mpk).
B also computes (Ψ.mpk,Ψ.msk)← Ψ.Setup(1λ). Finally, B returns pkU = (idU,Ω.ctU,Ψ.mpk) to A
and keeps skU = (Ω.skidU ,Ω.rU,Ψ.msk) secret.

– OPAEKS(kw, pkU): B first computes kS,idS,idU ← Ω.Dec(Ω.skidS , idS,Ω.ctU) and kS,idU,idS ←
Ω.Enc2(Ω.mpk, idU,Ω.rS). Then, B computes shkS ← kS,idS,idU ⊕ kS,idU,idS and computes fS ←
F(kw‖shkS). Next, B randomly chooses ξ ← {0, 1}∗, computes Ψ.ctkw ← Ψ.Enc(Ψ.mpk, fS, ξ) and
computes h = H(Ψ.ctkw, ξ). Finally, B returns ct = (Ψ.ctkw, h) to A.

– OTrapdoor(kw, pkU): B first computes kR,idR,idU ← Ω.Dec(Ω.skidR , idR,Ω.ctU) and kR,idU,idR ←
Ω.Enc2(Ω.mpk, idU,Ω.rR). Then, B computes shkR ← kR,idR,idU ⊕ kR,idU,idR and computes fR ←
F(kw‖shkR). Next, B invokes Ψ.Extract oracle of the IND-ANON-ID-CPA game on fR, and is given
Ψ.skkw. Finally, B returns a trapdoor tw = Ψ.skkw to A.

• Challenge. After the end of Phase 1, A outputs two keywords kw∗0, kw
∗
1 ∈ W with the following restriction:

for i = 0, 1, (kw∗i , pkR) and (kw∗i , pkS) have not been queried to oracles OPAEKS and OTrapdoor in Phase 1,
respectively. B then selects a bit b ∈ {0, 1} and runs the subsequent steps.

1. Compute kS,idS,idR ← Ω.Dec(Ω.skidS , idS,Ω.ctR).

2. Compute kS,idR,idS ← Ω.Enc2(Ω.mpk, idR,Ω.rS).

3. Compute shkS ← kS,idS,idR ⊕ kS,idR,idS .

4. Compute fS,0 ← F(kw∗0‖shkS) and fS,1 ← F(kw∗1‖shkS).

5. Invoke the Challenge phase of the IND-ANON-ID-CPA game on (fS,0, fS,1, ξ), where ξ is randomly
chosen from {0, 1}∗, and is given Ψ.ct∗.

6. Compute h = H(Ψ.ct∗, ξ).

7. Return ct∗ = (Ψ.ct∗, h) to A.

• Phase 2. A can continue to make queries, as was the case in Phase 1. The only restriction is that A cannot
make any query to OPAEKS and OTrapdoor regarding (kw∗i , pkR) and (kw∗i , pkS), respectively.

• Guess. A outputs its guess b′. Then, B follows A’s answer and outputs b′.

Regardless of whether Ψ.ct∗ is generated from fS,0 or fS,1, from A’s perspective, ct∗ = (Ψ.ct∗, h) is a valid
searchable ciphertext. Thus, A can whether distinguish Ψ.ct∗ is generated from fS,0 or fS,1 and win the IND-
CKA game with non-negligible advantage. Then, B can follow A’s answer to win the IND-ANON-ID-CPA of the
underlying IBE scheme Ψ with the non-negligible advantage. Therefore, we have

AdvIND-CKA
Π,A (λ) ≤ AdvIND-ANON-ID-CPA

Ψ,B (λ).

This completes the proof.

Theorem 2. The proposed PAEKS scheme Π is IND-IKGA secure if the underlying pseudorandom generator F
satisfies pseudorandomness and identity-independent 2-tier IBKEM is IND-ID-CPA secure.

Proof of Theorem 2. Let A be a PPT adversary that attacks the IND-IKGA security of the PAEKS scheme Π with
advantage AdvIND−IKGA

Π,A (λ). We prove Theorem 2 through the following three games, where we define Ei to be the
event that A wins Gamei.

Game0: This is the original IND-IKGA game, defined in Section 4. By the definition,

AdvIND−IKGA
Π,A (λ) =

∣∣Pr[E0]− 1
2

∣∣.
Game1: This game is identical to Game0, except that kR,idS,idR is randomly chosen from the output range of

Ω.Enc2.

Lemma 1. For all PPT algorithms,A01, |Pr[E0]−Pr[E1]| is negligible if the underlying identity-independent 2-tier
IBKEM scheme Ω is IND-ID-CPA secure.

14



Proof of Lemma 1. Suppose there exists an adversary A01 such that |Pr[E0]− Pr[E1]| is non-negligible, then there
exists another challenger B01 that can win the IND-ID-CPA game of the underlying identity-independent 2-tier
IBKEM with non-negligible advantage.

• Initialization. Given a security parameter λ, B01 first chooses two identities idS, idR, a proper secure hash
function H, and pseudorandom generator F. B01 runs (Ψ.mpk,msk) ← Ψ.Setup(1λ). Then, B01 invokes
the IND-ID-CPA game of Ω with idR to obtain (Ω.mpk,C∗,K∗). B01 then computes (Ω.ctS,Ω.rS) ←
Ω.Enc1(mpk,⊥). Additionally, B invokes Ω.Extract oracle of the IND-ID-CPA game on idS, and given
Ω.skidS . Finally, B01 sends the data sender’s public key pkS = (idS,Ω.ctS), data receiver’s public key
pkR = (idR,Ω.ctR = C∗,Ψ.mpk), and system parameter pp = (λ,Ω.mpk,H,F) to A01, and keeps
(Ψ.msk,Ω.rS,K

∗) secret.

• Phase 1. A01 can make polynomially many queries to oracles as was the case in a previous game, B01 responds
as follows.

– OPKGenS(idU): B01 first invokes Ω.Extract oracle of the IND-ID-CPA game on idU, and given Ω.skidU .
Then, B01 runs (Ω.ctU,Ω.rU) ← Ω.Enc1(mpk). Finally, B01 returns pkU = (idU,Ω.ctU) to A01 and
keeps skU = (Ω.skidU , rU) secret.

– OPKGenR(idU): B01 first invokes Ω.Extract oracle of the IND-ID-CPA game on idU, and given Ω.skidU .
Then, B01 runs (Ω.ctU,Ω.rU) ← Ω.Enc1(mpk). B01 also computes (Ψ.mpk,Ψ.msk) ← Ψ.Setup(1λ).
Finally, B01 returns pkU = (idU,Ω.ctU,Ψ.mpk) to A01 and keeps skU = (Ω.skidU ,Ω.rU,Ψ.msk) secret.

– OPAEKS(kw, pkU): B01 first computes kS,idU,idS ← Ω.Dec(Ω.skidU , idU,Ω.ctS) and kS,idS,idU ←
Ω.Enc2(Ω.mpk, idS,Ω.rU). Then, B01 computes shkS ← kS,idU,idS ⊕ kS,idS,idU and computes fS ←
F(kw‖shkS). Next, B01 randomly chooses ξ ← {0, 1}∗, computes Ψ.ctkw ← Ψ.Enc(Ψ.mpk, fS, ξ)
and computes h = H(Ψ.ctkw, ξ). Finally, B01 returns ct = (Ψ.ctkw, h) to A01.

– OTrapdoor(kw, pkU): B01 first computes kR,idU,idR ← Ω.Dec(Ω.skidU , idU,Ω.ctR) and kR,idR,idU ←
Ω.Enc2(Ω.mpk, idR,Ω.rU). Then, B01 computes shkR ← kR,idU,idR ⊕ kR,idR,idU and computes fR ←
F(kw‖shkR). Next, B01 computes Ψ.skkw ← Ψ.Extract(Ψ.msk, fR). Finally, B01 returns a trapdoor
tw = Ψ.skkw to A01.

• Challenge. After the end of Phase 1,A01 outputs two keywords kw∗0, kw
∗
1 ∈W with the following restriction:

for i = 0, 1, (kw∗i , pkR) and (kw∗i , pkS) have not been queried to oracles OPAEKS and OTrapdoor in Phase 1,
respectively. B01 then runs the following steps:

1. Random choose a bit β ∈ {0, 1}.
2. Compute kR,idR,idS = Ω.Enc2(mpk, idR,Ω.rS).

3. Set kR,idS,idR ← K∗.

4. Compute shkR ← kR,idR,idS ⊕ kR,idS,idR , where ⊕ is an operation compatible with the key space.

5. Compute fR ← F(kwβ‖shkR).

6. Return a challenge trapdoor tw∗ ← Ψ.Extract(Ψ.msk, fR) to A01.

• Phase 2. A01 can continue to make queries, same as in Phase 1. The only restriction is that A01 cannot make
any query to OPAEKS on (kw∗i , pkR) and OTrapdoor on (kw∗i , pkS), for i = 0, 1.

• Guess. A01 outputs its guess b′.

If kR,idS,idR = K∗ is generated from Ω.Enc2(Ω.mpk, idS,Ω.rR), B01 provides the view of Game0 to A01; if K∗ is
a random string sampled from the output range of Ω.Enc2 algorithm, then B01 provides the view of Game1 to A01.
Hence, if |Pr[E0]−Pr[E1]| is non-negligible, B01 has a non-negligible advantage against the IND-ID-CCA game of
the underlying identity-independent 2-tier IBKEM scheme. Therefore, the advantage of A01 is

|Pr[E0]− Pr[E1]| ≤ AdvIND−ID−CPA
Ω,B01

(λ).

15



Game2: In this game, we make the following minor conceptual change to the aforementioned game. In the
challenge phase, the challenger B substitutes the value tw∗ ← Ψ.Enc(pkR, fR, ξ) with tw∗ ← Ψ.Enc(pkR, f

′
R, ξ),

where f ′R is randomly selected from the output space Y of the underlying pseudorandom generator Y .

Lemma 2. For all PPT algorithms A12, |Pr[E1]− Pr[E2]| is negligible if the underlying pseudorandom generator
F satisfies pseudorandomness.

Proof of Lemma 2. If A12 can win the IND-IKGA game with non-negligible advantage, then there exists a chal-
lenger B12 that can win the pseudorandom game of the underlying pseudorandom generator with non-negligible
advantage. B12 constructs a hybrid game, interacting with A12 as follows. Given a challenge string T ∈ Y and the
description of a pseudorandom generator F′, B constructs a hybrid game, interacting with A12 as follows.

• Initialization. B12 chooses the public parameter following the proposed construction, with the following ex-
ception: rather than selecting a proper pseudorandom generator from the pseudorandom generator family, B12

sets F′ as a system parameter. B12 then follows the previous game to generate the system parameter params,
data sender’s key pair (pkS, skS), and data receiver’s key pair (pkR, skR). Finally, B12 sends (pp, pkS, pkR) to
A12 and keeps (msk, skS, skR) secret.

• Phase 1. A12 can make polynomially many queries to oracles as was the case in Game0.

• Challenge. After the end of Phase 1,A12 outputs two keywords kw∗0, kw
∗
1 ∈W with the following restriction:

for i = 0, 1, (kw∗i , pkR) and (kw∗i , pkS) have not been queried to oracles OPAEKS and OTrapdoor in Phase 1,
respectively. B12 then runs the subsequent steps.

1. Set f∗ = T .

2. Compute tw∗ = Ψ.Extract(Ψ.msk, f∗).

3. Return tw∗ to A12.

• Phase 2. A12 can continue to make queries, same as in Phase 1. The only restriction is that A12 cannot make
any query to OPAEKS on (kw∗i , pkS) and OTrapdoor on (kw∗i , pkR), for i = 0, 1.

• Guess. A12 outputs its guess b′.

If T is generated from F′, B12 provides the view of Game0 toA12; if T is a random string sampled from Y , then
B12 provides the view of Game1 to A12. Hence, if |Pr[E1] − Pr[E2]| is non-negligible, B12 has a non-negligible
advantage against the pseudorandom generator security game. Therefore, the advantage of A12 is

|Pr[E1]− Pr[E2]| ≤ AdvPRG
F,B12

(λ).

Lemma 3. Pr[E2] = 1
2 .

Proof of Lemma 3. The proof of this lemma is intuitive. Because the trapdoor tw∗ contains no information regarding
the keyword, the adversary can only return b′ by guessing.

Combining Lemmas 1, 2, , and 3, we can conclude that the advantage of A in winning the IND-IKGA game is

AdvIND−IKGA
Π,A (λ) =

∣∣∣∣Pr[E0]− 1

2

∣∣∣∣
=

∣∣∣∣ |Pr[E0]− Pr[E1]|+ |Pr[E1]− Pr[E2]|

+ |Pr[E2]− 1

2
|
∣∣∣∣

≤
∣∣∣AdvIND−ID−CPA

Ω,B01
(λ) + AdvPRG

F,B12
(λ)
∣∣∣ .

This completes the proof.

16



Table 2: Comparison of Security Properties with Other PAEKS Schemes

Schemes IKGAs Qua.-res. Security

HL17 [HL17] 7 7 ROM
HMZKL17 [HMZ+18] 3 7 ROM
NE18 [NE19] 3 7 ROM
LHSYS19 [LHS+19] 3 7 ROM
WZMKH19 [WZM+19] 3 7 ROM
LLYSTH19 [LLY+19] 3 7 ROM
QCHLZ20 [QCH+20] 3 7 ROM
PSE20 [PSE20] 3 7 ROM

Ours 3 3 SM∗

3: the scheme supports the corresponding feature.
7: the scheme fails in supporting the corresponding feature.
ROM: random oracle model
SM: standard model.
Qua.-res.: Quantum-resistance
∗Our generic construction supports standard model, while our instantiation only supports ROM since the underlying
scheme [DLP14] only proved ROM.

Table 3: Notations of Operations and Their Running Time (ms)

Notations Operations Time

TH Hash-to-point 47.312
TBP Bilinear pairing 30.829
TGM General multiplication over point 0.098
TEX Modular exponentiation 20.352
TPA Addition over point 0.006
THA General hash function 0.072
TPRG Pseudorandom generation 0.047
TPRM Multiplication over polynomial ring 0.309
TPRA Addition over polynomial ring 0.027
TSAM Gaussian_Sampler function 2.847

Table 4: Experimentation Platform Information

Description Data

CPU ARMv7 Processor rev 4 1.2GHz
CPU processor number 4
Operation system Raspbian GNU/Linux 8
Linux kernel version raspberrypi 4.4.34-v7+
Random access memory 1GB
Solid state disk 16GB

17



Table 5: Comparison of Needing Operations with Other PAEKS Schemes

Schemes Ciphertext generation Trapdoor generation Testing

[HL17] TH + 3TEX + TGM TH + TBP + TEX 2TBP + TGM

[HMZ+18] TH + 3TBP + 5TEX + 2TPA + 2THA TH + TBP + 3TEX + 2TPA + 2THA
2TBP + 2TEX
+ TGM + 2TPA + 2THA

[NE19] TH + 3TEX + TGM TH + TBP + TEX 2TBP + TGM
[LHS+19] 2TH + 2TBP + 3TEX 4TH + TBP + TGM 2TBP + TGM + 2TEX

[WZM+19] TH + 6TEX + 2TPA + 2THA TH + TBP + 9TEX + 4TPA + THA
2TBP + +5TEX
+2TPA + THA

[LLY+19] TH + 3TEX + TPA TH + TBP + 4TEX + 2TPA
2TBP + 2TEX + TGM
+2TPA

[QCH+20] 3TH + 2TBP + 3TEX + THA 3TH + TBP + 2TEX TH + TBP
[PSE20] TH + TBP + 3TEX + 2THA TH + TBP + TEX + THA TEX + THA

Ours 3THA + TPRG + 4TPRM + 5TPRA THA + TPRG + 2TPRM + 2TPRA + TSAM THA + TPRA + TPRM

108.466

241.715

108.466

217.338

169.58

231.082 233.893

139.341

98.493

139.353

98.493

220.175

261.405

159.561

213.469

98.565

61.756

102.472

61.756

102.46

210.742

102.472

78.141

20.424

1.634

3.638

0.408

0

0.5

1

1.5

2

2.5

3

3.5

4

0

50

100

150

200

250

HL17 HMZKL17 NE18 HLSYS19 WZMKH19 LLYSTH19 QCHLZ20 PSE20 OUR

T
im

e
 f

o
r 

o
u

r 
sc

h
em

e
 (

m
s)

T
im

e
 f

o
r 

o
th

e
r
s 

sc
h

em
e
s 

(m
s)

Schemes

Ciphertext generation Trapdoor generation Test

Figure 3: Comparison of computational costs with other PAEKS schemes.

18



Table 6: Comparison of Communication Costs with Other PAEKS Schemes

Schemes Ciphertext Trapdoor

[HL17] 2|G1| |GT |
[HMZ+18] |G1| |GT |
[NE19] |G1| |GT |
[LHS+19] 2|G1|+ |GT | |G1|+ |GT |
[WZM+19] 2|G1| 2|G1|+ |GT |
[LLY+19] |G1| |GT |
[QCH+20] |G1|+ |r| |GT |
[PSE20] 2|G1| |GT |
Ours 2N |q|+N N |q|

N : lattice dimension.
G1,GT : cyclic group.
r: group order.
q: module.

7 Concrete Instantiation
In this section we give a concrete instantiation by adopting Ducas et al.’s IBE [DLP14], which is secure under
the NTRU assumption and has proved anonymous by [BOY20]. More preciously, following the idea in [BC18],
we tweak [DLP14] to obtain a NTRU-based identity-independent 2-tier IBKEM. Then, we combine this IBKEM
scheme with Ducas et al.’s anonymous IBE [DLP14] to instantiate a quantum-resistant PAEKS scheme.

• Setup(1λ): Given a security parameter 1λ, this algorithm runs as follows.

1. Select N = poly(λ), and a large prime q.

2. Compute (h,B)← Basis_Generation(N, q).

3. Choose a proper PRG F and two secure hash functions H1 : {0, 1}∗ → ZNq and H2 : {0, 1}∗ → ZNq .

4. Outputs pp = (N, q, h,F,H1,H2) and master private key msk = B. Note that msk is kept secret by the
trusted authority.

• KeyGenS(pp,msk, idS): Given a system parameter pp, a master private key msk, and an identity idS ∈ {0, 1}∗,
data sender and trusted authority interact as follows.

1. Data sender first chooses rS, eS ← {−1, 0, 1}N , vS ← Rq , and computes uS ← rS ∗h+eS ∈ Rq . Then,
he/she registers his/her identity idS with (uS, vS) to trusted authority. The trusted authority computes the
following steps.

(a) Compute tS ← H1(idS) ∈ ZNq .
(b) Compute (sS,1, sS,2)← (tS, 0)− Gaussian_Sampler(B, σ, (tS, 0)), such that sS,1 + sS,2 ∗ h = tS.
(c) Return (sS,1, sS,2) to data sender.

2. Data sender outputs his/her public key pkS = (idS, uS, vS) and keeps private key skidS = (sS,1, sS,2, rS)
secret.

• KeyGenR(pp,msk, idR): Given a system parameter pp, a master private key msk, and an identity idR ∈ {0, 1}∗,
data receiver and trusted authority interact as follows.

1. Data receiver first chooses rR, eR ← {−1, 0, 1}N , vR ← Rq , and computes uR ← rR ∗ h + eR ∈
Rq . Then, he/she registers his/her identity idR with (uR, vR) to trusted authority. The trusted authority
computes the following steps.

(a) Compute tR ← H1(idR) ∈ ZNq .

19



(b) Compute (sR,1, sR,2)← (tR, 0)− Gaussian_Sampler(B, σ, (tR, 0)), such that sR,1 + sR,2 ∗ h = tR.
(c) Return (sR,1, sR,2) to data receiver.

2. Data receiver then computes (hR,BR)← Basis_Generation(N, q).

3. Data receiver outputs his/her public key pkR = (idR, uR, vR, hR) and keeps private key skR =
(sR,1, sR,2, rR,BR) secret.

• PAEKS(pp, pkS, skS, pkR, kw): Given a system parameter pp, data sender’s public key pkS and private key
skS, data receiver’s public key pkR, and a keyword kw ∈ {0, 1}∗, data sender runs the following steps.

1. kS,idS,idR = b(2/q) · (vR − uR ∗ sS,2)e.
2. kS,idR,idS = b(2/q) · (vS − rS ∗ H1(idR))e.
3. shkS ← kS,idS,idR ⊕ kS,idR,idS .

4. Compute fS ← F(kw‖shkS).

5. Choose a random ξ ← {0, 1}N , and randoms r, e1, e2 ← {−1, 0, 1}N ;

6. Compute ukw ← r ∗ hR + e1 ∈ Rq .
7. Compute vkw ← r ∗ H1(fS) + e2 + bq/2c · ξ ∈ Rq .
8. Compute h = H2(ukw, vkw, ξ).

9. Output a searchable ciphertext ct = (ukw, vkw, h).

• Trapdoor: Given a system parameter pp, data receiver’s public key pkR and private key skR, data sender’s
public key pkS, and a keyword kw ∈ {0, 1}∗, data receiver runs the following steps.

1. kR,idR,idS = b(2/q) · (vS − uS ∗ sR,2)e.
2. kR,idS,idR = b(2/q) · (vR − rR ∗ H(idS))e.
3. shkR ← kR,idR,idS ⊕ kR,idS,idR .

4. Compute fR ← F(kw‖shkR).

5. Compute (skw,1, skw,2)← (H1(fR), 0)− Gaussian_Sampler(BR, σ, (H1(fR), 0)).

6. Output a trapdoor tw = skw,2.

• Test: Given a system parameter pp, a searchable ciphertext ct = (ukw, vkw, h), and a trapdoor tw = skw,2,
cloud server works as follows.

1. Compute ξ′ = b(2/q) · (vkw − ukw ∗ skw,2)e.
2. If H2(ukw, vkw, ξ

′) = h, output 1; otherwise, output 0.

Lemma 4. Our concrete instantiation is correct if the parameter q is large enough to remove the noise items.

Proof. First of all, we show that kS,idS,idR = kR,idS,idR and kS,idR,idS = kR,idR,idS :

kS,idS,idR = b(2/q) · (vR − uR ∗ sS,2)e
= b(2/q) · (vR − (rR ∗ h+ eR) ∗ sS,2)e
= b(2/q) · (vR − rR ∗ h ∗ sS,2 − eR ∗ sS,2)e
= b(2/q) · (vR − rR ∗ (H1(idS)− sS,1)− eR ∗ sS,2)e
= b(2/q) · (vR − rR ∗ H1(idS) +rR ∗ sS,1 − eR ∗ sS,2︸ ︷︷ ︸

noise

)e

= b(2/q) · (vR − rR ∗ H1(idS))e
= kR,idS,idR (1)

20



kS,idR,idS = b(2/q) · (vS − rS ∗ H1(idR))e
= b(2/q) · (vS − rS ∗ (sR,1 + sR,2 ∗ h))e
= b(2/q) · (vS − rS ∗ sR,1 − rS ∗ sR,2 ∗ h)e
= b(2/q) · (vS − rS ∗ sR,1 − (uS ∗ sR,2 − eS ∗ sR,2)e
= b(2/q) · (vS − uS ∗ sR,2−rS ∗ sR,1 + eS ∗ sR,2︸ ︷︷ ︸

noise

)e

= b(2/q) · (vS − uS ∗ sR,2)

= kR,idR,idS (2)

Then, if the keywords kw in ct and tw are the same, since Eq. (1) and Eq. (2) are holds, we have:

fS = F(kw‖shkS) = F(kw‖(kS,idS,idR ⊕ kS,idR,idS))

= F(kw‖(kR,idS,idR ⊕ kR,idR,idS)) = F(kw‖shkR)

= fR (3)

With the result of Eq. (3), we have:

ξ′ = b(2/q) · (vkw − ukw ∗ skw,2)e
= b(2/q) · (r ∗ H1(fS) + e2 + bq/2c · ξ
− r ∗ hR ∗ skw,2 − e1 ∗ skw,2)e

= b(2/q) · (r ∗ H1(fS) + e2 + bq/2c · ξ
− r ∗ (H1(fR)− skw,1)− e1 ∗ skw,2)e

= b(2/q) · (r ∗ H1(fS)− r ∗ H1(fR) + bq/2c · ξ
+ e2 − r ∗ skw,1 − e1 ∗ skw,2)e

= b(2/q) · (bq/2c · ξ+e2 − r ∗ skw,1 − e1 ∗ skw,2︸ ︷︷ ︸
noise

)e

= ξ

Therefore, H2(ukw, vkw, ξ
′) = ξ is holds.

8 Comparison and Analysis
To the best of our knowledge, there is no quantum-resistant PAEKS currently. Although existing PAEKS
schemes [HMZ+18, LLY+19, NE19, PSE20, QCH+20, LHS+19, WZM+19] can defend against IKGAs, these
schemes cannot defend against quantum attacks because the security of these schemes are based on the discrete
logarithm assumption. In this section, we first compare our proposed instantiation with these existing schemes
with respect to their security properties. We then compared these schemes with respect to their computational and
communication complexities.

Table 2 lists the results of our comparison between our instantiation and its counterpart PAEKS schemes with
respect to their security properties. Because our instantiation inherits the security of [DLP14], it can be considered
to be based on the lattice hard assumption. In other words, only our instantiation has the ability to resist quantum
attacks and IKGAs simultaneously.

We subsequently conducted such a comparison with respect to computational complexity when generating
searchable ciphertexts and trapdoors and testing. For simplicity, we only considered the time-consuming operations
listed in Table 3. Experiments simulating these operations were performed on an IoT device (Raspberry Pi 3 Model
B) where the specification of the device is detailed in Table 4. In particular, the operations of TH , TBP , TGM , TEX ,

21



and TPA were obtained by using a pairing-based cryptography library (PBC)—under Type-A pairing with a 160-bit
group order, 512-bit base field, and 1024-bit group element for G1 and GT [Lyn14]. As for TSAM , TPRM , TPRA,
we simulated it by using SAFEcrypto project1 [OOM+16] that implementing [DLP14] with the its suggested pa-
rameters, i.e., N = 512, q = 4206593, l = 18, and N th root of unity = 990. Moreover, TPRG was obtained using
the AES-256 algorithm2, and THA was simulated using the SHA3-256 algorithm3. The computational costs for
the methods are compared in Table 5. The results indicate that our instantiation took the least time to generate the
ciphertext and trapdoor as well as to perform tests (only take 1.634, 3.638, 0.408 (ms), respectively); such speed was
due to our method not requiring any time-consuming operations, such as hash-to-point, bilinear pairing, and modular
exponentiation.

Additionally, we also conducted such a comparison with respect to communication complexity (which was in-
dicated by the size of the ciphertext and trapdoor). The comparison results are detailed in Table 6. For the pairing-
based schemes, the pairing operation is represented by e : G1 × G1 → GT , where G1 and GT are 1024-bit
elements. Moreover, because the group order of the pairing r is 160 bit; therefore, |r| = 512. For our instantiation,
N = 512, |q| = 23. To ensure security, our instantiation must be set in high dimensions. Therefore, in contrast to its
counterpart schemes, our instantiation yielded larger ciphertext and trapdoor sizes, which are 2N |q| + N = 24064
bits and N |q| = 11776 bits, respectively.

9 Conclusion
In this work, we introduced a new method for constructing a generic PAEKS scheme, which is secure against IND-
CKA and IND-IKGAs under multi-user context in standard model, if the underlying building blocks are secure under
standard model. In addition, we provided a lattice-based concrete instantiation based on the lattice hard assumption
which is secure under ROM. Compared with current PAEKS schemes, our instantiation is not only the first PAEKS
scheme that is quantum-resistant but also the most efficient scheme with respect to computational cost.

Acknowledgment
This research was supported by the Ministry of Science and Technology, Taiwan (ROC), under Project Numbers
MOST 108-2218-E-004-001-, MOST 108-2218-E-004-002-MY2, MOST 109-2218-E-011-007-, MOST 109-2221-
E-004-011-MY3, and MOST 109-3111-8-004-001-.

References
[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak

Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum Supremacy using
a Programmable Superconducting Processor. Nature, 574(7779):505–510, 2019.

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model.
In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Monaco / French Riviera,
May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 553–
572. Springer, 2010.

[ABC+08] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Con-
sistency properties, relation to anonymous ibe, and extensions. J. Cryptol., 21(3):350–391, 2008.

1https://github.com/safecrypto/libsafecrypto
2https://github.com/kokke/tiny-AES-c
3https://github.com/brainhub/SHA3IUF

22

https://github.com/safecrypto/libsafecrypto
https://github.com/kokke/tiny-AES-c
https://github.com/brainhub/SHA3IUF


[BC18] Olivier Blazy and Céline Chevalier. Non-interactive key exchange from identity-based encryption.
In Sebastian Doerr, Mathias Fischer, Sebastian Schrittwieser, and Dominik Herrmann, editors, Pro-
ceedings of the 13th International Conference on Availability, Reliability and Security, ARES 2018,
Hamburg, Germany, August 27-30, 2018, pages 13:1–13:10. ACM, 2018.

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryp-
tion with keyword search. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology
- EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in
Computer Science, pages 506–522. Springer, 2004.

[BOY20] Rouzbeh Behnia, Muslum Ozgur Ozmen, and Attila Altay Yavuz. Lattice-based public key searchable
encryption from experimental perspectives. IEEE Trans. Dependable Secur. Comput., 17(6):1269–
1282, 2020.

[BRPL06] Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon Lee. Off-line keyword guessing
attacks on recent keyword search schemes over encrypted data. In Willem Jonker and Milan Petkovic,
editors, Secure Data Management, Third VLDB Workshop, SDM 2006, Seoul, Korea, September 10-
11, 2006, Proceedings, volume 4165 of Lecture Notes in Computer Science, pages 75–83. Springer,
2006.

[CMY+15] Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo, and Xiaofen Wang. A new general framework
for secure public key encryption with keyword search. In Ernest Foo and Douglas Stebila, editors,
Information Security and Privacy - 20th Australasian Conference, ACISP 2015, Brisbane, QLD, Aus-
tralia, June 29 - July 1, 2015, Proceedings, volume 9144 of Lecture Notes in Computer Science, pages
59–76. Springer, 2015.

[CMY+16a] Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo, Xinyi Huang, Xiaofen Wang, and Yongjun
Wang. Server-aided public key encryption with keyword search. IEEE Trans. Inf. Forensics Secur.,
11(12):2833–2842, 2016.

[CMY+16b] Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo, and Xiaofen Wang. Dual-server public-key
encryption with keyword search for secure cloud storage. IEEE Trans. Inf. Forensics Secur., 11(4):789–
798, 2016.

[CWZH19] Biwen Chen, Libing Wu, Sherali Zeadally, and Debiao He. Dual-server public-key authenticated
encryption with keyword search. IEEE Trans. Cloud Comput., early access, 2019.

[CXWT19] Yu-Chi Chen, Xin Xie, Peter Shaojui Wang, and Raylin Tso. Witness-based searchable encryption
with optimal overhead for cloud-edge computing. Future Gener. Comput. Syst., 100:715–723, 2019.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based encryption over NTRU
lattices. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 -
20th International Conference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture
Notes in Computer Science, pages 22–41. Springer, 2014.

[EIO20] Keita Emura, Katsuhiko Ito, and Toshihiro Ohigashi. Secure-channel free searchable encryption with
multiple keywords: A generic construction, an instantiation, and its implementation. J. Comput. Syst.
Sci., 114:107–125, 2020.

[FSGW09] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. A secure channel free public key
encryption with keyword search scheme without random oracle. In Juan A. Garay, Atsuko Miyaji, and
Akira Otsuka, editors, Cryptology and Network Security, 8th International Conference, CANS 2009,
Kanazawa, Japan, December 12-14, 2009. Proceedings, volume 5888 of Lecture Notes in Computer
Science, pages 248–258. Springer, 2009.

23



[FSGW13] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. Public key encryption with keyword
search secure against keyword guessing attacks without random oracle. Inf. Sci., 238:221–241, 2013.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 197–206. ACM,
2008.

[HHP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and William Whyte.
NTRUSIGN: digital signatures using the NTRU lattice. In Marc Joye, editor, Topics in Cryptology
- CT-RSA 2003, The Cryptographers’ Track at the RSA Conference 2003, San Francisco, CA, USA,
April 13-17, 2003, Proceedings, volume 2612 of Lecture Notes in Computer Science, pages 122–140.
Springer, 2003.

[HL17] Qiong Huang and Hongbo Li. An efficient public-key searchable encryption scheme secure against
inside keyword guessing attacks. Inf. Sci., 403:1–14, 2017.

[HMZ+18] Debiao He, Mimi Ma, Sherali Zeadally, Neeraj Kumar, and Kaitai Liang. Certificateless public key
authenticated encryption with keyword search for industrial internet of things. IEEE Trans. Ind. Infor-
matics, 14(8):3618–3627, 2018.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosys-
tem. In Joe Buhler, editor, Algorithmic Number Theory, Third International Symposium, ANTS-III,
Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume 1423 of Lecture Notes in Computer
Science, pages 267–288. Springer, 1998.

[HT17] Kaibin Huang and Raylin Tso. Provable secure dual-server public key encryption with keyword search.
In IEEE 2nd International Verification and Security Workshop, IVSW 2017, Thessaloniki, Greece, July
3-5, 2017, pages 39–44. IEEE, 2017.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition. CRC
Press, 2014.

[LHS+19] Hongbo Li, Qiong Huang, Jian Shen, Guomin Yang, and Willy Susilo. Designated-server identity-
based authenticated encryption with keyword search for encrypted emails. Inf. Sci., 481:330–343,
2019.

[LLW21] Yang Lu, Jiguo Li, and Fen Wang. Pairing-free certificate-based searchable encryption supporting
privacy-preserving keyword search function for iiots. IEEE Trans. Ind. Informatics, 17(4):2696–2706,
2021.

[LLY+19] Xueqiao Liu, Hongbo Li, Guomin Yang, Willy Susilo, Joseph Tonien, and Qiong Huang. Towards
enhanced security for certificateless public-key authenticated encryption with keyword search. In Ron
Steinfeld and Tsz Hon Yuen, editors, Provable Security - 13th International Conference, ProvSec
2019, Cairns, QLD, Australia, October 1-4, 2019, Proceedings, volume 11821 of Lecture Notes in
Computer Science, pages 113–129. Springer, 2019.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Monaco / French
Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science,
pages 1–23. Springer, 2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. J. ACM, 60(6):43:1–43:35, 2013.

[LTT20] Zi-Yuan Liu, Yi-Fan Tseng, and Raylin Tso. Cryptanalysis of "fs-peks: Lattice-based forward secure
public-key encryption with keyword search for cloud-assisted industrial internet of things". IACR
Cryptol. ePrint Arch., 2020:651, 2020.

24



[LTTM21] Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo. Designated-ciphertext searchable
encryption. J. Inf. Secur. Appl., 58:102709, 2021.

[Lyn14] B Lynn. Pbc library the pairing-cryptography library, 2014.

[LZWT14] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-an Tan. Search Pattern Leakage in Searchable
Encryption: Attacks and New Construction. Inf. Sci., 265:176–188, 2014.

[MFGW19] Yaojun Mao, Xingbing Fu, Chen Guo, and Guohua Wu. Public key encryption with conjunctive
keyword search secure against keyword guessing attack from lattices. Trans. Emerg. Telecommun.
Technol., 30(11), 2019.

[MMSY18] Sha Ma, Yi Mu, Willy Susilo, and Bo Yang. Witness-based searchable encryption. Inf. Sci., 453:364–
378, 2018.

[NE19] Mahnaz Noroozi and Ziba Eslami. Public key authenticated encryption with keyword search: revisited.
IET Inf. Secur., 13(4):336–342, 2019.

[OOM+16] Máire O’Neill, Elizabeth O’Sullivan, Gavin McWilliams, Markku-Juhani O. Saarinen, Ciara Moore,
Ayesha Khalid, James Howe, Rafaël Del Pino, Michel Abdalla, Francesco Regazzoni, Felipe Valen-
cia, Tim Güneysu, Tobias Oder, Adrian Waller, Glyn Jones, Anthony Barnett, Robert Griffin, Andrew
Byrne, Bassem Ammar, and David Lund. Secure architectures of future emerging cryptography SAFE-
crypto. In Gianluca Palermo and John Feo, editors, Proceedings of the ACM International Conference
on Computing Frontiers, CF’16, Como, Italy, May 16-19, 2016, pages 315–322. ACM, 2016.

[PSE20] Nasrollah Pakniat, Danial Shiraly, and Ziba Eslami. Certificateless authenticated encryption with
keyword search: Enhanced security model and a concrete construction for industrial iot. J. Inf. Secur.
Appl., 53:102525, 2020.

[QCH+20] Baodong Qin, Yu Chen, Qiong Huang, Ximeng Liu, and Dong Zheng. Public-key authenticated en-
cryption with keyword search revisited: Security model and constructions. Inf. Sci., 516:515–528,
2020.

[RPSL10] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. Trapdoor security in a search-
able public-key encryption scheme with a designated tester. J. Syst. Softw., 83(5):763–771, 2010.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th An-
nual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November
1994, pages 124–134. IEEE Computer Society, 1994.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-
tum computer. SIAM Rev., 41(2):303–332, 1999.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.
In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May
15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages 27–47. Springer,
2011.

[WZM+19] Libing Wu, Yubo Zhang, Mimi Ma, Neeraj Kumar, and Debiao He. Certificateless searchable public
key authenticated encryption with designated tester for cloud-assisted medical internet of things. Ann.
des Télécommunications, 74(7-8):423–434, 2019.

[ZCH20] Mingwu Zhang, Yu Chen, and Jiajun Huang. SE-PPFM: A searchable encryption scheme supporting
privacy-preserving fuzzy multikeyword in cloud systems. IEEE Syst. J., early access, 2020.

[ZLW+21] Ke Zhang, Jiahuan Long, Xiaofen Wang, Hong-Ning Dai, Kaitai Liang, and Muhammad Imran.
Lightweight searchable encryption protocol for industrial internet of things. IEEE Trans. Ind. In-
formatics, 17(6):4248–4259, 2021.

25



[ZXW+21] Xiaojun Zhang, Chunxiang Xu, Huaxiong Wang, Yuan Zhang, and Shixiong Wang. FS-PEKS: lattice-
based forward secure public-key encryption with keyword search for cloud-assisted industrial internet
of things. IEEE Trans. Dependable Secur. Comput., 18(3):1019–1032, 2021.

26


	Introduction
	Our Contribution
	Related Work
	Organization of the Paper

	Preliminary
	Lattices
	Discrete Gaussian Distributions
	Rings and NTRU Lattices

	Building Blocks
	Identity-independent 2-tier IBKEM
	IBE
	Pseudorandom Generator (PRG)

	PAEKS
	System Model
	Security Requirements

	Generic PAEKS Construction
	Security Proofs
	Concrete Instantiation
	Comparison and Analysis
	Conclusion

