
Constant Time Montgomery Ladder

Kaushik Nath and Palash Sarkar

Applied Statistics Unit

Indian Statistical Institute

203, B. T. Road

Kolkata - 700108

India

{kaushikn r,palash}@isical.ac.in

Abstract

In this work various approaches for constant time conditional branching in Montgomery ladder have been

studied. A previous method appearing in a code for implementing X25519 has been formalized algorithmi-

cally. This algorithm is based on a conditional select operation. We consider a variant of this algorithm which

groups together operations in a more convenient manner. Further, we provide a new implementation of the

conditional select operation using the cmov operation such that cmov works only on registers. This provides

a better guarantee of constant time behavior.

Keywords: Montgomery ladder, Diffie-Hellman protocol, constant time implementation, elliptic curve cryp-

tography, Curve25519, Curve448

1 Introduction

Suppose p is a prime and Fp be the finite field of p elements. A Montgomery form elliptic curve
MA,B is specified by two parameters A ∈ Fp \ {2,−2} and B ∈ Fp \ {0}, and is given by an equation
MA,B : By2 = x3 +Ax2 +x. For i ≥ 1, the Fpi-rational points of MA,B are points (x, y) ∈ F2

pi satisfying
the equation of the curve.

The DH shared secret computation on MA,B requires performing the following computation. Let P
be a point in G and n be a secret scalar. Suppose the x-coordinate of P is xP . Given xP and n, it is
required to compute the x-coordinate of the point nP . Montgomery [6] introduced a particularly efficient
way of performing this computation which has since then come to be known as the Montgomery ladder.
The basic structure of the Montgomery ladder and a single ladder step are shown in Algorithms 1 and 2.

A requirement for secure implementation of any cryptographic primitive is that the run time should
not depend on any secret value. Note that the Montgomery ladder shown in Algorithm 1 has a conditional
instruction where the condition is based on a secret bit. So, a straightforward implementation of the
ladder algorithm will not be constant time and has the potential to leak the secret bit. This problem
has been addressed in the literature and several constant time implementations are known.

Our Contributions

In the first part of the paper, we provide an overview of various approaches for constant time conditional
branching in the Montgomery ladder. One of the algorithms is a formalization of a method used in
a code to implement Curve25519. This algorithm is based on a conditional select operation which we
denote by CSelect. It turns out that assembly code of CSelect requires a lesser number of data movement
operations compared to previous assembly code using a conditional swap operation.

We consider a modified version of the algorithm using conditional select, where the instructions are
grouped together in a more convenient manner. The proposed grouping of instructions helps to compute
the Montgomery ladder more efficiently. Further, we provide a different assembly implementation of the
CSelect operation. Both the new and the previous assembly implementation of CSelect are based on
the cmov instruction. In our code, we ensure that cmov works only on registers whereas in the previous
code, one of the operands of cmov was a memory location. Arguably, using cmov only on registers
provides a better guarantee of constant time execution1. The new assembly code requires some extra

1This observation is based on a comment by Daniel J. Bernstein in an email communication

1

data movement instructions to load from memory to registers. We consider this to be a small trade-off
for achieving better guarantee of constant-time behavior.

2 The Montgomery Ladder

Let MA,B : By2 = x3+Ax2+x be a Montgomery curve over a field Fp. Let P be a point on a Montgomery
form curve and n be a scalar. The operation of computing nP is called a scalar multiplication. Following
the terminology in [5], scalar multiplication on Curve25519 (resp. Curve448) is called X25519 (resp.
X448).

Algorithm 1 Montgomery ladder

1: function MontLadder(xP , n)
2: input: An m-bit scalar n and the x-coordinate xP of a point P .
3: output: (XnP , ZnP), with xnP = XnP /ZnP .

4: X1 ← xP ;X2 ← 1;Z2 ← 0;X3 ← xP ;Z3 ← 1
5: for i← m− 1 down to 0 do
6: if the bit at index i of n is 1 then
7: (X3, Z3, X2, Z2)← LadderStep(X1, X3, Z3, X2, Z2)
8: else
9: (X2, Z2, X3, Z3)← LadderStep(X1, X2, Z2, X3, Z3)

10: end if
11: end for

12: return (X2, Z2)
13: end function.

Algorithm 2 Montgomery ladder step

1: function LadderStep(X1, X2, Z2, X3, Z3)

2: T1 ← X2 + Z2

3: T2 ← X2 − Z2

4: T3 ← X3 + Z3

5: T4 ← X3 − Z3

6: T5 ← T 2
1

7: T6 ← T 2
2

8: T2 ← T2 · T3

9: T1 ← T1 · T4

10: T1 ← T1 + T2

11: T2 ← T1 − T2

12: X3 ← T 2
1

13: T2 ← T 2
2

14: Z3 ← T2 ·X1

15: X2 ← T5 · T6

16: T5 ← T5 − T6

17: T1 ← ((A + 2)/4) · T5

18: T6 ← T6 + T1

19: Z2 ← T5 · T6

20: return (X2, Z2, X3, Z3)
21: end function.

For Montgomery curves, scalar multiplication is done using the Montgomery ladder. The standard
description of the Montgomery ladder is given in Algorithm 1. In the algorithm, m = dlg pe, n is
the scalar and it is required to compute the scalar multiplication nP . Following the idea of clamping
introduced in [1], we will assume that the (m − 1)-th bit of the scalar n is set to 1. This ensures that
the number of iterations is the same for all scalars. Another option to achieve a constant number of
iterations is mentioned in Section 5.3 of [4]. A single step of the ladder is described in Algorithm 2. For
details of the background theory and correctness of these algorithms we refer to [6, 3, 4].

2

3 Constant Time Montgomery Ladder

As has been noted earlier, the Montgomery ladder has a conditional statement. A secure implementation
of the ladder requires a constant time implementation of this conditional statement. This problem is
well known in the literature and several methods have been suggested for constant time implementation
of the conditional statement. We discuss these below.

Conditional swap. Algorithm 1 can be made to run in constant time by using an idea known as
conditional swapping of field elements. At a top level, a description of the Montgomery ladder which
uses the idea is given in Algorithm 3. This algorithm uses a subroutine CSwap which performs a constant
time conditional swap as follows: CSwap(X2, Z2, X3, Z3, swap) swaps the pair of field elements (X2, Z2)
and (X3, Z3) if swap = 1, else not. We mention two methods for implementing CSwap which have been
described in the literature. Algorithm 4 describes a method given in [4] whereas Algorithm 5 describes
a method given in [3].

Algorithm 3 Constant time Montgomery ladder using conditional swap

1: function MontLadderCSwap(xP , n)
2: input: An m-bit scalar n and the x-coordinate xP of a point P .
3: output: (XnP , ZnP), with xnP = XnP /ZnP .

4: X1 ← xP ;X2 ← 1;Z2 ← 0;X3 ← xP ;Z3 ← 1
5: prevbit := 0
6: for i← m− 1 down to 0 do
7: bit ← bit at index i of n
8: swap ← bit ⊕ prevbit

9: prevbit ← bit

10: (X2, Z2, X3, Z3)← CSwap(X2, Z2, X3, Z3, swap)
11: (X2, Z2, X3, Z3)← LadderStep(X1, X2, Z2, X3, Z3)
12: end for

13: return (X2, Z2)
14: end function.

Algorithm 4 Conditional swap using the operators and and xor

1: function CSwap1(X2, Z2, X3, Z3, b)
2: input: X2, Z2, X3, Z3 are field elements encoded as m-bit strings and b is a bit.
3: output: The pairs (X2, Z2) and (X3, Z3) are swapped if b = 1, else not.

4: mask← (bb . . . b)m
5: T1 ← mask and (X2 xor X3)
6: T2 ← mask and (Z2 xor Z3)
7: T3 ← T1 xor X2

8: T4 ← T2 xor Z2

9: T5 ← T1 xor X3

10: T6 ← T2 xor Z3

11: return (T3, T4, T5, T6)
12: end function.

Conditional selection. Suppose X[0..1] is an array consisting of two field elements and b is a bit.
Further suppose that the value of X[b] is required. Bernstein [1] proposed that X[b] be obtained as
(1− b)X[0] + bX[1]. While this method of selecting between X[0] and X[1] is more time consuming than
simply accessing X[b], the advantage is that it can be executed in constant time.

We consider a variant of the above problem. Let X and Y be two variables and let b be a bit.
Define CSelect(X,Y, b) to be a procedure which performs the following task. If b = 0, then X retains its
value and if b = 1, then X gets the value of Y . It is possible to rewrite the Montgomery ladder using
CSelect. This has been done in the code accompanying [7]. We formalize the method used in the code
as Algorithm 6. The correctness of the algorithm is easy to verify. Further, assuming that CSelect can
be executed in constant time, the entire ladder algorithm can also be computed in constant time.

3

Algorithm 5 Conditional swap using the operators +, - and ·
1: function CSwap2(X2, Z2, X3, Z3, b)
2: input: X2, Z2, X3, Z3 are field elements encoded as m-bit strings and b is a bit.
3: output: The pairs (X2, Z2) and (X3, Z3) are swapped if b = 1, else not.

4: T1 ← b · (X3 −X2) + X2

5: T2 ← b · (Z3 − Z2) + Z2

6: T3 ← (1− b) · (X3 −X2) + X2

7: T4 ← (1− b) · (Z3 − Z2) + Z2

8: return (T1, T2, T3, T4)
9: end function.

Algorithm 6 Constant time Montgomery ladder using conditional selection

1: function MontLadderCSelect(xP , n)
2: input: An m-bit scalar n and the x-coordinate xP of a point P .
3: output: (XnP , ZnP), with xnP = XnP /ZnP .

4: X1 ← xP ;X2 ← 1;Z2 ← 0;X3 ← xP ;Z3 ← 1
5: prevbit ← 0
6: for i← m− 1 down to 0 do
7: bit ← bit at index i of n
8: swap ← bit ⊕ prevbit

9: prevbit ← bit

10: T1 ← X2 + Z2

11: T2 ← X2 − Z2

12: T3 ← X3 + Z3

13: T4 ← X3 − Z3

14: T5 ← T1 · T4

15: T6 ← T2 · T3

16: CSelect(swap, T1, T3)
17: CSelect(swap, T2, T4)
18: T1 ← T 2

1

19: T2 ← T 2
2

20: X3 ← T5 + T6

21: Z3 ← T5 − T6

22: X3 ← X2
3

23: Z3 ← Z2
3

24: X2 ← T2

25: Z2 ← T1 − T2

26: T2 ← ((A + 2)/4) · Z2

27: T2 ← T2 + X2

28: X2 ← X2 · T1

29: Z2 ← Z2 · T2

30: Z3 ← Z3 ·X1

31: end for

32: return (X2, Z2)
33: end function.

Following Bernstein’s suggestion mentioned above, CSelect(X,Y, b) can be executed in constant time
in the following manner. X ← (1 − b)X + bY . Later, we consider the issue of implementing CSelect in
constant time using the cmov instruction available on Intel processors.

Remark: There is an implementation2 of constant time conditional branching for micro-controllers
which works by swapping the pointers to field elements instead of swapping the field elements themselves.
The advantage of this approach is that the number of data movement operations is substantially less.
On the other hand, such an approach does not necessarily lead to constant time behavior3 on processors

2https://munacl.cryptojedi.org/curve25519-cortexm0.shtml
3This issue was pointed out to us by Daniel J. Bernstein and Diego Aranha.

4

which have cache memory.

3.1 Assembly Implementations of CSwap and CSelect Using cmov

Intel processors support the cmov instruction. There are a number of variants of this instruction. We
mention the manner in which the instruction is relevant in the present context. Suppose, A, B, C are
64-bit registers or memory locations. Further suppose that A stores the value of a bit b. Consider the
following sequence of instructions.

cmp $1, A
cmov B, C

The effect of the above two instructions is the following. If A contains the value 0 (i.e., b = 0), then C

retains its value, otherwise (i.e., if b = 1) the content of B is copied to C. So, in effect the two instructions
provide an implementation of CSelect(B, C, b). The cmov instruction is supposed to take constant time.
We comment on this issue later.

Implementation of CSwap. Consider the CSwap based ladder given in Algorithm MontLadderCSwap.
The concrete implementation of CSwap that we discuss here is from the amd64-64 implementation4 of
Curve25519 accompanying the work [2]. For 64-bit implementation, the elements of F2255−19 have 4-limb
representations. Consider the 4 limbs of the field elements X2, Z2, X3, Z3 to be stored at the memory
locations mentioned below. Also, let the register rsi hold the value of swap.

X2 : 0(%rdi), 8(%rdi), 16(%rdi), 24(%rdi)

Z2 : 32(%rdi), 40(%rdi), 48(%rdi), 56(%rdi)

X3 : 64(%rdi), 72(%rdi), 80(%rdi), 88(%rdi)

Z3 : 96(%rdi), 104(%rdi), 112(%rdi), 120(%rdi)

The assembly instructions for swapping used in the amd64-64 [2] implementation are shown in Fig-
ure 1. Except the cmp, the effect of all the other instructions in the first column of Figure 1 is to perform
a conditional swap between X2 and X3. Similarly, the instructions in the second column perform a
conditional swap between Z2 and Z3. The assembly code in Figure 1 has 32 movq, 8 mov and 16 cmov

operations.

Implementation of CSelect. Consider the CSelect based ladder given in Algorithm MontLadderCSelect.
The 64-bit implementation of Curve255195 provided with [7] has an implementation of CSelect. The inline
assembly code taken from the implementation of [7] is provided in the left column and the generated
assembly is shown in the right column of Figure 2. From the generated assembly it can be observed that
the registers r9, r8, rsi, rax hold the limb value of X for the subroutine CSelect(swap, X, Y). The
register values are conditionally overwritten with the limb values of Y through the cmovnz instruction
after the value of swap is tested using the test instruction.

The assembly code shown in Figure 2 implements one CSelect operation. So, implementation of the
two CSelect operations in Algorithm 2 requires a total of 16 movq and 8 cmovnz operations. It follows
that the number of data movement instructions to implement the 2 CSelect operations in Algorithm 6
is significantly smaller than the number of data movement operations to implement the CSwap operation.

Remark. In the 64-bit implementation of Curve4486 provided with [7], the conditional selection has
been implemented using a high level ’C’ function. The logic used for the conditional selection is similar
to the logic used in Algorithm 4. The generated assembly does not use any conditional move instructions
and the number of instructions required to implement the conditional branching is fairly large.

4 Modified Algorithm for Constant Time Conditional Branching

We rearrange the sequence of steps given in Algorithm MontLadderCSelect and formalize a variant of it,
which we denote as MontLadderCSelectNew and is shown in Algorithm 7. The new algorithm has lesser
number of temporary variables and the copy statement in Step 24 has been omitted. The correctness of
MontLadderCSelectNew follows from the correctness of MontLadderCSelect.

4https://github.com/floodyberry/supercop/blob/master/crypto_scalarmult/curve25519/amd64-64/work_cswap.s

(accessed on August 5, 2020).
5https://github.com/armfazh/rfc7748_precomputed/blob/master/src/x25519_x64.c (accessed on August 5, 2020).
6https://github.com/armfazh/rfc7748_precomputed/blob/master/src/x448_x64.c (accessed on August 5, 2020).

5

https://github.com/floodyberry/supercop/blob/master/crypto_scalarmult/curve25519/amd64-64/work_cswap.s
https://github.com/armfazh/rfc7748_precomputed/blob/master/src/x25519_x64.c
https://github.com/armfazh/rfc7748_precomputed/blob/master/src/x448_x64.c

cmp $1, %rsi

movq 0(%rdi), %rsi

movq 64(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 0(%rdi)

movq %rdx, 64(%rdi)

movq 8(%rdi), %rsi

movq 72(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 8(%rdi)

movq %rdx, 72(%rdi)

movq 16(%rdi), %rsi

movq 80(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 16(%rdi)

movq %rdx, 80(%rdi)

movq 24(%rdi), %rsi

movq 88(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 24(%rdi)

movq %rdx, 88(%rdi)

movq 32(%rdi), %rsi

movq 96(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 32(%rdi)

movq %rdx, 96(%rdi)

movq 40(%rdi), %rsi

movq 104(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 40(%rdi)

movq %rdx, 104(%rdi)

movq 48(%rdi), %rsi

movq 112(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 48(%rdi)

movq %rdx, 112(%rdi)

movq 56(%rdi), %rsi

movq 120(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 56(%rdi)

movq %rdx, 120(%rdi)

Figure 1: Assembly code to implement constant time conditional swap.
Taken from the amd64-64 implementation of [2].

static inline void cselect(uint8_t bit,

uint64_t *const px, uint64_t *const py) {

__asm__ __volatile__(

"test %4, %4 ;"

"cmovnzq %5, %0 ;"

"cmovnzq %6, %1 ;"

"cmovnzq %7, %2 ;"

"cmovnzq %8, %3 ;"

: "+r"(px[0]), "+r"(px[1]), "+r"(px[2]),

"+r"(px[3])

: "r"(bit), "rm"(py[0]), "rm"(py[1]),

"rm"(py[2]), "rm"(py[3])

: "cc"

);

}

(a) Inline assembly code of CSelect

movq 0(%rsi), %r9

movq 8(%rsi), %r8

movq 16(%rsi), %rcx

movq 24(%rsi), %rax

test %dil, %dil

cmovnzq 0(%rdx), %r9

cmovnzq 8(%rdx), %r8

cmovnzq 16(%rdx), %rcx

cmovnzq 24(%rdx), %rax

movq %r9, 0(%rsi)

movq %r8, 8(%rsi)

movq %rcx, 16(%rsi)

movq %rax, 24(%rsi)

(b) Generated assembly code of CSelect

Figure 2: Assembly code to implement constant time conditional select for Curve25519.
Taken from the implementation of [7].

6

Algorithm 7 Constant time Montgomery ladder using conditional selection

1: function MontLadderCSelectNew(xP , n)
2: input: A scalar n and the x-coordinate xP of a point P .
3: output: (XnP , ZnP), with xnP = XnP /ZnP .

4: X1 ← xP ;X2 ← 1;Z2 ← 0;X3 ← xP ;Z3 ← 1
5: prevbit ← 0
6: for i← m− 1 down to 0 do
7: T1 ← X2 + Z2

8: T2 ← X2 − Z2

9: T3 ← X3 + Z3

10: T4 ← X3 − Z3

11: Z3 ← T2 · T3

12: X3 ← T1 · T4

13: bit ← bit at index i of n
14: select ← bit ⊕ prevbit

15: prevbit ← bit

16: CSelect(T1, T3, select)
17: CSelect(T2, T4, select)

18: T2 ← T 2
2

19: T1 ← T 2
1

20: X3 ← X3 + Z3

21: Z3 ← X3 − Z3

22: Z3 ← Z2
3

23: X3 ← X2
3

24: T3 ← T1 − T2

25: T4 ← ((A + 2)/4) · T3

26: T4 ← T4 + T2

27: X2 ← T1 · T2

28: Z2 ← T3 · T4

29: Z3 ← Z3 ·X1

30: end for

31: return (X2, Z2)
32: end function.

New assembly implementation of CSelect. Figure 2 showed the previous assembly implementation
of CSelect. We would like to highlight a difference in the manner in which the cmov instructions have
been used in Figure 1 and the cmovnz instructions have been used in Figure 2. In Figure 1, all the cmov

instructions have their operands to be registers, while in Figure 2 all the cmovnz instructions have one
operand to be a memory location while the other is a register. We prefer to have an implementation
of CSelect using cmov where both the operands are registers7. This requires loading an element from
the memory to registers before applying cmov. Such a strategy increases the number of mov operations.
We consider this to be a small trade-off for increased assurance of constant-time execution of the cmov

instruction. The modified assembly implementation of cmov is shown in Figure 3. This requires a total
of 24 movq and 8 cmov instructions.

Acknowledgement

We are grateful to Daniel J. Bernstein, Diego Aranha and Adam Langley for comments on a previous
work which helped clarify our understanding of constant time execution of Montgomery ladder.

References

[1] Daniel J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Moti Yung, Yevgeniy Dodis, Aggelos
Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC 2006, 9th International Conference on

7In an email communication, Bernstein indicated that there are no known variable-time problems with the cmov in-
struction that is purely based on registers.

7

cmp $1, %rcx

movq 0(%rsp), %r8

movq 8(%rsp), %r9

movq 16(%rsp), %r10

movq 24(%rsp), %r11

movq 64(%rsp), %r12

movq 72(%rsp), %r13

movq 80(%rsp), %r14

movq 88(%rsp), %r15

cmov %r12, %r8

cmov %r13, %r9

cmov %r14, %r10

cmov %r15, %r11

movq %r8, 0(%rsp)

movq %r9, 8(%rsp)

movq %r10, 16(%rsp)

movq %r11, 24(%rsp)

movq 32(%rsp), %r8

movq 40(%rsp), %r9

movq 48(%rsp), %r10

movq 56(%rsp), %r11

movq 96(%rsp), %r12

movq 104(%rsp), %r13

movq 112(%rsp), %r14

movq 120(%rsp), %r15

cmov %r12, %r8

cmov %r13, %r9

cmov %r14, %r10

cmov %r15, %r11

movq %r8, 32(%rsp)

movq %r9, 40(%rsp)

movq %r10, 48(%rsp)

movq %r11, 56(%rsp)

Figure 3: Assembly code to implement CSelect for X25519.

Theory and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings,
volume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006.

[2] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems
- CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings,
volume 6917 of Lecture Notes in Computer Science, pages 124–142. Springer, 2011.

[3] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the Montgomery ladder. In Joppe W. Bos and
Arjen K. Lenstra, editors, Topics in Computational Number Theory inspired by Peter L. Montgomery, pages
82–115. Cambridge University Press, 2017.

[4] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic - the case of large characteristic
fields. J. Cryptographic Engineering, 8(3):227–240, 2018.

[5] Adam Langley and Mike Hamburg. Elliptic curves for security. Internet Research Task Force (IRTF), Request
for Comments: 7748, https://tools.ietf.org/html/rfc7748, 2016. Accessed on 16 September, 2019.

[6] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of
Computation, 48(177):243–264, 1987.

[7] Thomaz Oliveira, Julio López Hernandez, Hüseyin Hisil, Armando Faz-Hernández, and Francisco Rodŕıguez-
Henŕıquez. How to (pre-)compute a ladder - improving the performance of X25519 and X448. In Carlisle
Adams and Jan Camenisch, editors, Selected Areas in Cryptography - SAC 2017 - 24th International Confer-
ence, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers, volume 10719 of Lecture Notes in
Computer Science, pages 172–191. Springer, 2017.

8

https://tools.ietf.org/html/rfc7748

	Introduction
	The Montgomery Ladder
	Constant Time Montgomery Ladder
	Assembly Implementations of CSwap and CSelect Using cmov

	Modified Algorithm for Constant Time Conditional Branching

