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Abstract. In this paper we show several quantum chosen-plaintext at-
tacks (qCPAs) on contracting Feistel structures. In the classical setting,
a d-branch r-round contracting Feistel structure can be shown to be
PRP-secure when d is even and r ≥ 2d− 1, meaning it is secure against
polynomial-time chosen-plaintext attacks. We propose a polynomial-time
qCPA distinguisher on the d-branch (2d − 1)-round contracting Feistel
structure, which solves an open problem by Dong et al. In addition, we
show a polynomial-time qCPA that recovers the keys of the d-branch
r-round contracting Feistel structure when each round function F

(i)
ki

has

the form F
(i)
ki

(x) = Fi(x⊕ki) for a public random function Fi. This is ap-
plicable to the Chinese block cipher standard SM4, which is a special case
where d = 4. Finally, in addition to quantum attacks under single-key
setting, we also show related-key quantum attacks on balanced Feistel
structures in the model that adversaries can only control part of the
key difference in quantum superposition. Our related-key attacks on bal-
anced Feistel structures can easily be extended to ones on contracting
Feistel structures.

Keywords: symmetric-key cryptography · quantum cryptanalysis · con-
tracting Feistel structures · SM4 · related-key attacks.

1 Introduction

These days, due to recent progress in the development of quantum computers,
many cryptographic researchers, developers and users are increasingly paying
more attention to post-quantum security of cryptosystems. It is well known
that quantum computers will efficiently break the most widely used public-key
cryptosystems. As a result, NIST launched in late 2017 a multi-year process



for the standardization of public-key cryptosystems to replace the current stan-
dards [21].

Recent studies revealed that there exist non-trivial quantum attacks not only
on public-key cryptosystems but also on symmetric-key cryptosystems. Surpris-
ingly, some symmetric-key schemes that are proven to be classically secure can
be broken in polynomial time when adversaries are allowed to make quantum
superposition queries to keyed oracles [15,16,14], by using Simon’s period finding
algorithm [23]. Among these, one of the most interesting results is the quantum
distinguishing attack on the 3-round (balanced) Feistel structure by Kuwakado
and Morii [15].

Balanced Feistel structure. The Feistel structure is one of two fundamen-
tal design constructions of block ciphers. Many schemes such as DES [19] and
Camellia [1] use the balanced Feistel structure.

Given r keyed functions F
(i)
ki

: Fn2 → Fn2 (1 ≤ i ≤ r), the i-th round state

update function R
(i)
ki

of the r-round 2-branch6 balanced Feistel structure (or,
just simply the r-round Feistel structure) is defined as the mapping

R
(i)
ki

: xL||xR 7→ xR||(xL ⊕ F (i)
ki

(xR)), (1)

where xL, xR ∈ Fn2 . The encryption of the r-round Feistel structure Enck1,...,kr
is defined by Enck1,...,kr (xL||xR) := (R

(r)
kr
◦ · · · ◦R(1)

k1
)(xL||xR).

When the round functions F
(i)
ki

(x) are defined as

F
(i)
ki

(x) := F (i)(x⊕ ki) (2)

for a public function F (i), we call the r-round Feistel structure an r-round Feistel-
KF structure; see Figure 2. When the round functions are not necessarily rep-
resented as in Equation 2, we sometimes call the r-round Feistel structure an
r-round Feistel-F structure to explicitly indicate that we do not assume any
specific structure on the round functions; see Figure 17.

F
(i)
ki

xL xR

⊕

xLF
(i)
ki

(xR)⊕xR

Fig. 1: 1-round Feistel-F

F (i)

xL xR

⊕ ⊕

ki

xLF (i)(xR ⊕ ki)⊕xR

Fig. 2: 1-round Feistel-KF

6 Feistel structures divide internal states into some words and update the states iter-
atively by applying word-wise operations. Each word is referred to as a branch and
depicted as a single wire in the figures.

7 In this work, we adopt the Feistel structure notation used in [13].
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When the keyed F-functions for each round only differ by the round key ki,

and assuming there is no ambiguity, we will simply denote Fi = F
(i)
ki

(x).
In the classical setting, it has been proved that a 2-branch balanced Feistel-F

structure becomes a secure pseudo random permutation (PRP) for r ≥ 3 and a

secure strong pseudo random permutation (SPRP) for r ≥ 4, when F
(1)
k1
, . . . , F

(r)
kr

are secure PRFs, and k1, . . . , kr are chosen independently and uniformly at ran-
dom [18]8.

However, in the quantum setting Kuwakado and Morii showed that the 3-
round balanced Feistel structure can be distinguished in polynomial time by
quantum chosen-plaintext attacks (qCPAs). That is, the 3-round balanced Feistel
structure is not a quantum pseudo-random permutation (qPRP).

Several subsequent works extended Kuwakado and Morii’s distinguisher. For
instance, some have developed quantum key-recovery attacks on balanced Feistel
structures [9,12], and have showed quantum attacks on generalised Feistel struc-
tures [8,11,20]. In addition, a polynomial-time qCCA distinguisher is constructed
on 4-round balanced Feistel structures in [13]. However, very few researchers have
so far focused on an important variant of Feistel construction: the contracting
Feistel structure9.

Contracting Feistel structure. A contracting Feistel structure is a class of
unbalanced Feistel structure with d ≥ 3 branches of same word size n. In each
round, only one of the branches is updated by a PRF, where the input to the
PRF is the XOR of all other d− 1 branches. When the number of branches is 2,
the contracting Feistel structures exactly match the balanced Feistel structures.
We use the terminology contracting Feistel-F and contracting Feistel-KF in the
same way as we do for balanced Feistel structures (see Figure 3).

F⊕

Xi−4

⊕

Xi−3 Xi−2 Xi−1

ki

Xi−3 Xi−2 Xi−1 Xi

Fig. 3: One round of a 4-branch Feistel-KF structure (SM4).

One of the most prominent representation for 4-branch contracting Feistel-
KF structure is SM4 [7], the block cipher for Chinese National Standard for

8 A keyed permutation is said to be a secure PRP (resp., SPRP) if it cannot be dis-
tinguished from a random permutation by polynomial-time chosen-plaintext attacks
(CPAs) (resp., chosen-ciphertext attacks (CCAs)).

9 We note that a previous work [3] has shown a quantum attack on a contracting
Feistel structure (GMiMC-crf), but the attack only works when all the round keys
are identical.
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Wireless LAN Wired Authentication and Privacy Infrastructure (WAPI), it is
formerly known as SMS4. We sometimes refer to the 4-branch contracting Feistel-
KF structure and 4-branch contracting Feistel-F structure as SM4 and SM4-like
structure, respectively.

Zhang and Wu proved that, for d even, a d-branch r-round contracting
Feistel-F structure becomes a secure PRP against polynomial-time CPAs when
r ≥ 2d − 1, and a secure SPRP against polynomial-time CCAs when r ≥
3d − 2 [24]. In particular, a 7-round SM4 and SM4-like structure is PRP-secure.
They also showed that if d is odd, then a contracting Feistel-F structure will
never be pseudorandom. Therefore, our analysis only focus on Feistel structures
which have an even number of branches.

The open problem by Dong et al. In [8], Dong et al. mentioned that they found a
quantum distinguisher under CPA on a 5-round SM4-like structure. However, this
does not break the classical security claim that the 7-round SM4-like structure
is PRP-secure. The authors left finding a quantum distinguisher on 7 or more
rounds as an open problem.

Related-key setting. Let EncK denote the encryption function of a block ci-
pher. Rötteler and Steinwandt showed that, when an adversary can obtain the ci-
phertext EncK⊕∆(P ) for arbitrary plaintext P and arbitrary value (differential)
∆, and is allowed to make queries on both of P and ∆ in quantum superposition,
the adversary can recover the secret key K in polynomial time [22].

To the best of our knowledge, there has been no studies in the setting where
an adversary can choose only a part of the differences on the key in quantum
superposition10.

1.1 Our Contributions

Our paper contains two main contributions.

Contracting Feistel structure attacks. We show a polynomial-time qCPA
distinguisher and a polynomial-time key-recovery attack on the 7-round SM4(-
like structure), which solves the open problem posed by Dong et al. [8]. More
precisely, we show a polynomial-time quantum distinguishing attack on the 7-
round contracting Feistel-F structure, and a polynomial-time key-recovery attack
on the 7-round contracting Feistel-KF structure.

Our attacks can be further extended to the general case, polynomial-time
distinguisher on the d-branch (2d−1)-round contracting Feistel-F structure and
a polynomial-time key-recovery attack on the d-branch (2d−1)-round contracting
Feistel-KF structure.

10 A previous work (Section 6.1 of [4]) does study a related-key attack in the quantum
setting where an adversary can choose only a part of the differences on the key.
However that attack does not make superposition queries to keyed oracles.
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Related-key attacks. We also show the distinguishing attacks and key-recovery
attacks on balanced and contracting Feistel-KF structures can be extended to
related-key attacks.

We introduce a related-key attack model that allows adversaries to insert
differences into the k-bit secret key K for particular ` bits (` < k), and conjecture
that the generic key-recovery attack will require Ω(2(k−`)/2) time.

In Rötteler and Steinwandt’s related-key attack model, the generic attack
breaks arbitrary block cipher in polynomial time. Hence meaningful dedicated
quantum attacks are impossible in their model. On the other hand, in our model,
the generic attack requires exponential time and meaningful dedicated quantum
attacks may be possible. In particular, if a polynomial-time dedicated attack
breaks a cipher in our model, it demonstrates that the cipher has an exploitable
non-ideal property.

We first show attacks on balanced Feistel-KF structures, and then extend
some of them to attacks on contracting Feistel-KF structures. The number of
attacked rounds varies depending on which part of the key the adversary is
allowed to choose differences.

For example, we show that there exists a polynomial-time qCPA distinguisher
on the d-branch (3d − 1)-round contracting Feistel-KF structure when the ad-
versary can arbitrarily choose the n-bit difference for the d-th round key (in
addition to plaintexts) in quantum superposition. Since the generic quantum
attack requires Ω(2(3d−2)n/2) time11 to recover the key in this related-key set-
ting (under the assumption that our conjecture holds), our attack achieves an
exponential speed-up.

For simplicity, in both the single-key and related-key attacks, we assume that
the round functions are random. That is, we assume that the round function

F
(i)
ki

in Feistel-F structures is a random function for each key ki, and the public

function F (i) in Feistel-KF structures is a random function. In addition, we
assume that all round keys are chosen independently at random.

1.2 Paper Organization

Section 2 explains the basic notation and definitions that will be used through-
out the paper. Section 3 gives an overview of previous works. In Section 4 we
describe our quantum single-key attacks on contracting Feistel structures. Sec-
tion 5 extends the single-key attacks from Section 4 to related-key attacks. We
close our paper in Section 6 with a discussion of future work.

2 Preliminaries

In this section we define the notation adopted in our paper and review the
two main quantum algorithms of interest (including variants), which we use to
derive our results. We assume that readers have basic knowledge on quantum
algorithms.

11 Here, n denotes the branch size and the round key size.
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2.1 Notation

We identify the set {0, 1}n with the vector space Fn2 . For x, y ∈ Fn2 , let x · y
denote their inner product, i.e. x · y = (x1y1)⊕ · · · ⊕ (xnyn).

2.2 Grover’s Algorithm

Consider the following problem.

Problem 1. Let f : {0, 1}n → {0, 1} be a Boolean function, and suppose that
there exists a unique x0 ∈ {0, 1}n such that f(x0) = 1. Given an oracle access
to f , find x0.

The problem above can be seen as a search problem over an unordered set of
2n elements, to find the unique element x0 satisfying a particular condition. In
the classical setting, solving this problem requires one to make O(2n) queries to
the oracle. However, Grover showed that with access to a quantum oracle for
f , there is an algorithm which solves the problem by making O(2n/2) quantum
queries [10]. In the context of cryptography, Grover’s algorithm can be used to
mount an exhaustive key search attack on a k-bit secret key in time O(2k/2)
in the quantum setting. In this paper we will employ Grover’s algorithm as a
black-box, and therefore we will not discuss its details in what follows; we refer
the reader to [10] for full details on how the algorithm works.

2.3 Simon’s Algorithm and its Generalisations

Let n be a positive integer. Now consider the following problem.

Problem 2. Let s ∈ {0, 1}n \ {0n}, and f : {0, 1}n → {0, 1}n be a function that
satisfies the following two conditions: (1) f(x⊕s) = f(x) for all x ∈ {0, 1}n, and
(2) if f(x) = f(x′), then either x′ = x or x′ = x ⊕ s. Given an oracle access to
f , find s.

The first condition is equivalent to function f being periodic, with period s 6= 0n.
Therefore we call the above problem (black-box) period-finding problem.

While one can show that any classical algorithm requires exponentially many
queries to solve the problem, Simon showed that there exists a quantum algo-
rithm that solves the problem in polynomial time [23]. See Section A.1 for details
on how Simon’s algorithm works.

Application of Simon’s algorithm to symmetric-key cryptanalysis. A
quantum attack on a symmetric-key scheme S based on Simon’s algorithm needs
first to derive a periodic function f from the scheme’s keyed oracles – for example,
the encryption and decryption oracles if S is a block cipher – in such a way that
the period contains some secret information. The attack can then apply Simon’s
algorithm on f to recover this secret information.

We note that the function f derived from a symmetric-key scheme usually
does not satisfy the second condition in Problem 2. However Kaplan et al. [14]
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showed that Simon’s algorithm still usually works (in particular, the failure
probability can be made exponentially small on n) even if the second condition
is relaxed to the following variant:

(2’) Prx←${0,1}n [f(x⊕ s̃) = f(x)] ≤ 1/2 holds for any s̃ ∈ {0, 1}n \ {0n, s}12.

Intuitively, this condition says that there does not exist any s̃ 6= 0n (other than
s) such that “f is almost periodic on s̃”.

Getting rid of intermediate measurements. To combine a quantum algo-
rithm with another quantum algorithm, it is convenient (or, likely necessary)
that the algorithm does not need to perform any intermediate measurements.
Simon’s original period-finding algorithm requires intermediate measurements,
but it can be converted into an algorithm without intermediate measurements
by running subroutines in parallel. The details are explained in Section A.2,
following the idea by Leander and May [17].

Simon’s algorithm on functions with multiple periods. Suppose that a
function f : {0, 1}n → {0, 1}n has multiple periods, i.e., there exists a linear
subspace V ⊂ {0, 1}n such that f(x ⊕ s) = f(x) holds for all s ∈ V and x ∈
{0, 1}n.13 Even in this case, we can compute V in polynomial time with Simon’s
algorithm given the quantum oracle of f . See Section A.3 for more details.

Strictly speaking, if we wish to apply Simon’s algorithm on a periodic func-
tion f , we need to check that f satisfies the condition (2’), as discussed above14.
However, for each periodic function in later sections, it can be shown that the
condition will hold (when round functions of Feistel structures are random) once
we write down the description of the periodic function. Hence, to simplify our dis-
cussions, in what follows we focus on showing how periodic functions are derived
from symmetric-key schemes in such a way that the period contains some secret
information of interest, and we do not explicitly mention that the condition (2’)
is satisfied for each periodic function.

2.4 Models of Related-Key Attacks in the Quantum Setting

In this section we describe our attack model for quantum related-key attacks.
Since our attack model is an extension of the one by Rötteler and Steinwandt [22],
we first give an overview on their attack model. Throughout the section we
assume that k is in Θ(n).

12 We can use any constant p such that 0 < p < 1 as the threshold instead of 1/2. We
use the value 1/2 just for convenience.

13 The set of multiple periods of f forms a linear space because, if s and s′ are periods
of f , s⊕ s′ is also a period of f .

14 If f has multiple periods, we have to consider a generalization of (2’). See Section A.3
for details.
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Rötteler and Steinwandt’s model. Let E be an n-bit block cipher with
k-bit keys. Rötteler and Steinwandt introduced a model for related-key attacks
in the quantum setting that allows adversaries to access the quantum oracle of
the functions OK and O−1K defined by OK : (x,M) 7→ Ex⊕K(M) and O−1K :
(x,C) 7→ E−1x⊕K(C). In their model, intuitively, the adversary can flip the bits of
the secret key K arbitrarily, and query both of bit-flip patterns and messages in
quantum superpositions.

Rötteler and Steinwandt showed that, in their attack model, an adversary
can recover the secret key in polynomial time even if E is an ideally random
block cipher: Let f : {0, 1}k → {0, 1}n be the function defined by f(x) :=
OK(x,M) ⊕ Ex(M) = Ex⊕K(M) ⊕ Ex(M), where M is an arbitrarily chosen
plaintext. Obviously f is a periodic function with period K; moreover there does
not exist s̃ such that s̃ 6∈ {0k,K} and Prx←${0,1}k [f(x⊕ s̃) = f(x)] > 1/2 when
E is an ideally random block cipher. Hence we can recover K in polynomial time
by using Simon’s algorithm.

In other words, the generic attack recovers the secret key in polynomial time
in Rötteler and Steinwandt’s model. Thus it seems less interesting to study
quantum attacks in this exact same model.

Our attack model. Our attack model is similar to Rötteler and Steinwandt’s,
except that we impose restrictions on bit-flip patterns that adversaries can
choose.

More precisely, let b = b1|| · · · ||bk be a fixed k-bit string, and let Maskb :=
{x = x1|| · · · ||xk ∈ {0, 1}k | xi = 0 if bi = 0}. In our attack model, we allow
adversaries to access the quantum oracles of OK(x,M) and O−1K (x,M), but we
assume that adversaries can choose x only from Maskb.

The generic attack. In our model, Rötteler and Steinwandt’s polynomial-time
attack no longer works due to the restriction of bit-flip patterns (when b 6=
11 · · · 1). Nevertheless, we can mount a simple quantum key-recovery attack by
using the technique by Leander and May which combines Grover’s and Simon’s
algorithms [17].

Lemma 1. Suppose that the Hamming weight of b (the bit-flip pattern) is w,
and w is in Ω(log n). In our quantum related-key attack model, there exists a
quantum attack that recovers the secret key in time Õ(2(k−w)/2).

The proof of the lemma is given in Section A.4.
It seems that there is no quantum attack that is significantly faster than

our attack for ideally random block ciphers. Therefore we pose the following
conjecture.

Conjecture 1. In our quantum related-key attack model, when the Hamming
weight of b (bit-flip pattern) is w, and w is in Ω(log n), there is no key recovery
attack15 that runs in time o(2(k−w)/2).

15 It is desirable to show that the conjecture holds, but proving quantum query lower
bounds is quite difficult when quantum queries are made to both of E and E−1.
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Under the assumption that this conjecture holds, theoretically then it is worth
studying dedicated quantum attacks on concrete block ciphers that run in time
o(2(k−w)/2): if there exists such an attack on a block cipher E, it follows that E
does not behave like an ideally random block cipher in the quantum setting. In
later sections we introduce such dedicated quantum related-key attacks on some
Feistel structures.

We refer the reader to Section A.5 for more details on attack models.

3 Previous Works

This section gives an overview of previous works and results on quantum query
attacks against Feistel structures.

3.1 Kuwakado and Morii’s Quantum Distinguisher on the 3-round
Feistel Structure

Kuwakado and Morii showed a quantum chosen-plaintext attack that distin-
guishes the 3-round Feistel-F structure from a 2n-bit random permutation in
polynomial time [15]. LetO denote the quantum encryption oracle of the 3-round
Feistel-F structure. In addition, let OL(xL, xR) and OR(xL, xR) be the most and
least significant n-bits of O(xL, xR), respectively. Kuwakado and Morii’s distin-
guisher works as follows.

First, let α0 and α1 be fixed n-bit strings such that α0 6= α1. Define a function

f : F2 × Fn2 → Fn2 by f(b, x) := OL(x, αb) ⊕ αb = F
(2)
k2

(F
(1)
k1

(αb) ⊕ x).Then

f((b, x) ⊕ (1, s)) = f(b, x) holds for all (b, x) ∈ F2 × Fn2 , where s = F
(1)
k1

(α0) ⊕
F

(1)
k1

(α1), i.e., f is a periodic function and the period is (1, s). Thus, when the
quantum oracle of O is available, we can apply Simon’s algorithm on f and
recover the period (1, s).

Remark 1. It is shown in [12] that the quantum oracle of OL (i.e., the truncation
of O) can be implemented by making one query to the quantum oracle of O be-
cause O |xL〉 |xR〉 |y〉 |+n〉 = |xL〉 |xR〉 |y ⊕OL(xL, xR)〉 |+n〉 holds for arbitrary
xL, xR, y ∈ Fn2 , where |+n〉 := H⊗n |0n〉.

On the other hand, when we make a function f in the same way by using
a 2n-bit random permutation instead of the 3-round Feistel-F structure, the
function is not periodic with an overwhelming probability. In particular, even if
we apply Simon’s algorithm on the function, the algorithm fails to find a period
(since the function does not have any period).

Therefore, we can distinguish the 3-round Feistel-F structure from a ran-
dom permutation in polynomial time by checking the function f (made from
the given quantum oracle that is either of the 3-round Feistel-F structure or a
random permutation as f(b, x) := OL(x, αb)⊕αb has a period, by using Simon’s
algorithm.

Later, the distinguishing attack was extended to a polynomial-time quantum
chosen-ciphertext distinguishing attack on the 4-round Feistel-F structure [13].
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In addition, it has been shown that the keys of a 3-round Feistel-KF structure
can be recovered by a polynomial time qCPA [6].

3.2 Extension of the Distinguishers to Key Recovery Attacks with
the Grover Search

Generally, classical distinguishing attacks on block ciphers can be extended to
key recovery attacks. Here, we give an overview on how we can also extend the
quantum chosen-plaintext distinguishing attack by Kuwakado and Morii to a
quantum chosen-plaintext key recovery attack by using Grover’s algorithm, as
shown by Hosoyamada and Sasaki [12] and Dong and Wang [9]. The time com-
plexity of their attack on the r-round Feistel structure is in Õ(2(r−3)n/2) when
the round keys k1, . . . , kr are randomly chosen from {0, 1}n. The basic strategy
is to apply the combination of Grover’s algorithm and Simon’s algorithm shown
by Leander and May [17]: guess the partial keys k4, . . . , kr by using Grover’s
algorithm, and check whether the guess is correct by applying Kuwakado and
Morii’s algorithm on the first three rounds.

Suppose that the quantum encryption oracle O of the r-round Feistel struc-
ture is given (r ≥ 4), and let k1, . . . , kr be the round keys that we want to
recover. Then, we can check whether a guess k′4, . . . , k

′
r for the 4-th, . . . , r-th

round keys is correct as follows.

1. Implement the quantum oracle of O′ := (R
(4)
k′4
◦· · ·◦R(r)

k′r
)−1◦O. The O′ oracle

performs the encryption with O and then the partial decryption by using
k′4, . . . , k

′
r. If the guess is correct, then O′ matches the partial encryption

R
(1)
k1
◦ R(2)

k2
◦ R(3)

k3
with the first three rounds. If the guess is incorrect, O′ is

expected to behave like a random permutation.
2. Run Kuwakado and Morii’s quantum distinguisher on O′. If we can distin-

guish the 3-round Feistel structure, with very high probability the key guess
is correct. Otherwise, the key guess is incorrect.

Since Simon’s algorithm can be implemented without any intermediate mea-
surements (see Section 2.3 for details), we can implement a quantum circuit to
calculate the Boolean function

G : (k′4, . . . , k
′
r) 7→

{
1 (if (k′4, . . . , k

′
r) = (k4, . . . , kr))

0 (if (k′4, . . . , k
′
r) 6= (k4, . . . , kr))

with a small error. By applying Grover’s algorithm on G, we can then recover
the round keys k4, . . . , kr in time Õ(2(r−3)n/2). The remaining keys k1, k2, and
k3 can be easily recovered once k4, . . . , kr are known.

The above key-recovery attack is a quantum chosen-plaintext attack that
is based on the 3-round chosen-plaintext distinguisher. If both the quantum
encryption and decryption oracles are available, a quantum chosen-ciphertext
attack recovers the keys in time Õ(2(r−4)n/2) in the same way by using the
4-round chosen-ciphertext distinguisher [13].
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3.3 Quantum Advanced Slide Attack and Nested Simon’s Algorithm

Consider the special case that there is a public random function F : {0, 1}n →
{0, 1}n and each round function F

(i)
ki

of the r-round Feistel structure is defined
as

F
(i)
ki

(x) := F (x⊕ ki) (3)

for all 1 ≤ i ≤ r. Assume also that the number of rounds r is divisible by
4, and the cyclic key-schedule is such that ki = ki+4 holds for each i is used
(k1, k2, k3, k4 are chosen independently and uniformly at random). In the classi-
cal setting, Biryukov and Wagner showed a chosen-ciphertext attack that recov-
ers the keys with time O(2n/2) in this case [2]. In the quantum setting, Bonnetain
et al. showed that the classical attack by Biryukov and Wagner can be expo-
nentially sped up by nesting Simon’s algorithm [5], proposing a quantum attack
that recovers keys in polynomial time. This section gives an overview on how
Bonnetain et al.’s quantum chosen-ciphertext key-recovery attack works when
r = 4.

Let O and O−1 be the quantum encryption and decryption oracles of the 4-
round Feistel structure of which the round functions are defined as in (3). In addi-
tion, let OL(xL, xR) (resp., O−1L (xL, xR)) and OR(xL, xR) (resp., O−1R (xL, xR))
denote the left and right n bits of O(xL, xR) (resp., O−1(xL, xR)), respectively.

First, suppose that we can simulate the quantum oracle of the function

g(x) := F (x⊕ k1)⊕ k2 ⊕ k4. (4)

Then, since F is a public function, we can evaluate the function H : Fn2 → Fn2
defined by H(x) := F (x)⊕ g(x) in quantum superposition, and can thus recover
the key k1 by Simon’s algorithm on H because H(x) = F (x)⊕F (x⊕k1)⊕k2⊕k4
holds, and k1 is a period of H.

Now, the problem is how to simulate the quantum oracle of such a function
g(x) by using the quantum oracles of O and O−1. For each fixed x ∈ Fn2 , define
a function Gx : F2 × Fn2 → Fn2 by

Gx(b, y) :=

{
O−1R (y, x) if b = 0,

OR(y, x) if b = 1.

Then, straightforward calculations show that Gx((b, y) ⊕ (1, g(x))) = Gx(b, y)
holds for all (b, y) ∈ F2 × Fn2 , i.e., Gx is a periodic function and the period
is (1, g(x)), for arbitrarily fixed x. Therefore, by performing Simon’s algorithm
on Gx without measurement (see Section 2.3 for details), we can implement a
quantum circuit that evaluates g(x) in quantum superposition with some small
error.

In summary, we can recover k1 as follows:

1. Implement a quantum circuit Cg that simulates the quantum oracle of g
with some small error. This can be done by applying Simon’s algorithm on
Gx for each |x〉.
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2. Implement a quantum circuit that simulates the quantum oracle of H(x) by
using Cg, and apply Simon’s algorithm on H to recover k1.

Note that Simon’s algorithm is nested in the above attack: when we apply Si-
mon’s algorithm onH, another instance of Simon’s algorithm is called to evaluate
the function H. Once we recover k1, other subkeys k2, k3, k4 can be recovered
easily. Eventually, we can recover all the keys in polynomial time.

A polynomial-time key recovery attack on the 3-round Feistel struc-
ture. Later, we use the technique of nested Simon’s algorithm to mount various
attacks. Here we explain that Kuwakado and Morii’s distinguishing attack in
Section 3.1 can easily be extended to a polynomial-time qCPA that recovers the
key of the 3-round Feistel-KF structure, as another example on application of
nested Simon’s algorithm, so that the readers will grasp the basic idea of the
technique better16.

When Kuwakado and Morii’s attack in Section 3.1 is applied to the 3-round

Feistel-KF structure, it recovers the value F
(1)
k1

(α0) ⊕ F
(1)
k1

(α1) = F (1)(α0 ⊕
k1)⊕F (1)(α1 ⊕ k1), where α0 and α1 are arbitrarily chosen constants such that
α0 6= α1. Now, choose x ∈ {0, 1}n\{0n} arbitrarily, and set α0 := x and α1 := 0n.
Then, given the quantum oracle of the 3-round Feistel-KF structure, Kuwakado
and Morii’s attack allows us to compute the value fk1(x) := F (1)(x ⊕ k1) ⊕
F (1)(k1) for each x 6= 0n. In particular, we can evaluate the function fk1(x)
in quantum superpositions by using Simon’s algorithm without intermediate
measurements (note that fk1(0n) = 0n holds). Next, define a function Gk1(x)
by Gk1(x) := fk1(x)⊕F (1)(x). Then, since F (1) is a public function and we can
evaluate fk1(x) in quantum superpositions, we can also evaluate the function
Gk1(x) in quantum superpositions. In addition, it is easy to check that Gk1(x) =
Gk1(x⊕k1) holds for all x ∈ {0, 1}n, i.e., Gk1 is a periodic function and the period
is k1. Hence we can recover the value k1 by applying Simon’s algorithm to Gk1 .
Once we recover k1, the remaining keys k2 and k3 can be recovered easily.

4 Contracting Feistel Structures

In this section we show the following theorem.

Theorem 1. There exists a (single-key) quantum chosen-plaintext attack that
distinguishes SM4-like structure (resp., recovers the key of SM4) in polynomial
time. More generally, there exists a polynomial-time quantum chosen-plaintext
attack that distinguishes (resp., recovers the key of) (2d − 1)-round d-branch
contracting Feistel-F (resp., Feistel-KF) structures for even d.

First, we present a 7-round quantum distinguisher for SM4-like structure under
CPA setting in polynomial time. We further extend it to a polynomial time

16 The previous polynomial-time qCPA on 3-round Feistel-KF structure [6] recovers
the keys without nested Simon’s algorithm.
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Table 1: Polynomial-time qCPAs on contracting Feistel structures. The key-
recovery attacks are applicable only to Feistel-KF structures.

Rounds Branch Attack type Complexity Ref.

3 2 distinguisher poly(n) [15]

3 2 key-recovery poly(n) [6]

7 4 distinguisher poly(n) Section 4.2

7 4 key-recovery poly(n) Section 4.3

2d− 1 d (even) distinguisher poly(n) Section 4.4

2d− 1 d (even) key-recovery poly(n) Section 4.5

quantum key-recovery attack on 7-round SM4. Then we show the attacks can be
generalised to attacks on (2d− 1)-round d-branch contracting Feistel structures.
See Table 1 for a summary of the results in this section.

4.1 Specification

We denote the i-th round function SM4-like as follows:

Xi = Xi−4 ⊕ Fi(Xi−3 ⊕Xi−2 ⊕Xi−1), (5)

where Fi’s are keyed functions, the input plaintext is (X−3, X−2, X−1, X0) and
the output ciphertext after r rounds is (Xr−3, Xr−2, Xr−1, Xr).

Let Or denote the r-round SM4-like quantum oracle, and OrΛ(xA, xB , xC , xD)
denote the branch xΛ of Or(xA, xB , xC , xD), where Λ ∈ {A,B,C,D}.

4.2 SM4-like Structure 7-round Distinguisher under CPA setting

Idea of the attack. The most important point of the quantum distinguishing
attack on the 3-round balanced Feistel structure in Section 3.1 is that, given the
encryption oracle, we can compute F2(x ⊕ βa) for arbitrary x by appropriately
choosing plaintexts. Here, βa (a = 0, 1) is the constant such that we do not know
its exact value and β0 6= β1. Since the function f : F2 × Fn2 → Fn2 defined by
f(a, x) := F2(x⊕βa) has the period (1, β0⊕β1), we can mount the distinguishing
attack by applying Simon’s algorithm on f .

The basic strategy of our attack on SM4-like structure is similar. We try to
compute the value Fi(x⊕βa) for arbitrary x for some i. After some consideration
we found that, given the encryption oracle of 7-round SM4-like structure, we can
compute F4(x⊕ βa) by setting X−3 = X−2 = X−1 = x and X0 = αa, where α0

and α1 are distinct constants.

Details of the attack. Let X−3 = X−2 = X−1 = x and X0 = αa, where αa, a =
0, 1 are distinct constants. The branch values of each round function are as
follows.
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Table 2: Values of branch Xi for 4-branch contracting Feistel-F structure.
Round Xi Notation

-3 ∼ -1 x

0 αa

1 x⊕ g1,a g1,a = F1(αa)

2 x⊕ g2,a g2,a = F2(αa ⊕ g1,a)

3 x⊕ g3,a g3,a = F3(αa ⊕ g12,a), g12,a = g1,a ⊕ g2,a
4 αa ⊕ g4,a(x) g4,a(x) = F4(x⊕ g123,a), g123,a = g12,a ⊕ g3,a
5 x⊕ g1,a ⊕ g5,a(x) g5,a(x) = F5(αa ⊕ g23,a ⊕ g4,a(x)), g23,a = g2,a ⊕ g3,a
6 x⊕ g2,a ⊕ g6,a(x) g6,a(x) = F6(αa ⊕ g13,a ⊕ g4,a(x)⊕ g5,a(x)), g13,a = g1,a ⊕ g3,a
7 x⊕ g3,a ⊕ g7,a(x) g7,a(x) = F7(αa ⊕ g12,a ⊕ g4,a(x)⊕ g5,a(x)⊕ g6,a(x))

From Table 2, we see that the 7-round ciphertext is (X4, X5, X6, X7). Define
a function f7 : F2 × Fn2 → Fn2 by

f7(a, x) := O7
A(x, x, x, αa)⊕ αa (6)

= F4(x⊕ g123,a)

Then f7((a, x) ⊕ (1, s)) = f7(a, x) holds for all (a, x) ∈: F2 × Fn2 , where
s = g123,0 ⊕ g123,1. One can see that

f7(a⊕ 1, x⊕ g123,0 ⊕ g123,1) = F4(x⊕ g123,0 ⊕ g123,1 ⊕ g123,a⊕1)

= F4(x⊕ g123,a) (7)

= f7(a, x).

Thus, when the quantum oracle of O7 is available, we can apply Simon’s algo-
rithm on f7 and recover the period (1, s)17.

4.3 7-round SM4 Key-recovery under CPA setting

Recall that SM4 is a Feistel-KF structure. In other words, it deploys as round
function

Fi(x) = F (x⊕ ki),
where F is a public function18 and ki is the round key.

The key-recovery attack is similar as the distinguisher described in the previ-
ous section, except that we introduce 3 more variables and additional constraints
on these variables. Let X−3 = x⊕βa, X−2 = x⊕γa, X−1 = x⊕δa and X0 = αa,
where a ∈ {0, 1}. For all symbols Λ ∈ {α, β, γ, δ}, we set Λ0 = Λ ∈ Fn2 \ {0n}
and Λ1 = 0n.

Table 3 shows the value Xi at various round. Like before, although we con-
sider 7-round SM4-like Feistel, we only need to know the value of X4.

17 To be more precise, we have to simulate O7
A (truncation) by using O7. This can be

done by using the technique explained in Remark 1.
18 Here, we assume it to be the same public function for all rounds. In fact, every round

can be an arbitrary public function and the attack still works.

14



Table 3: Values of branch Xi for 4-branch contracting Feistel-KF structure.
Round Xi Notation

-3 x⊕ βa
-2 x⊕ γa
-1 x⊕ δa
0 αa

1 x⊕ βa ⊕ g1,a g1,a = F (αa ⊕ γa ⊕ δa ⊕ k1)

2 x⊕ γa ⊕ g2,a g2,a = F (αa ⊕ βa ⊕ δa ⊕ g1,a ⊕ k2)

3 x⊕ δa ⊕ g3,a g3,a = F (αa ⊕ βa ⊕ γa ⊕ g1,a ⊕ g2,a ⊕ k3)

4 αa ⊕ F (x⊕ h4(a)) h4(a) = βa ⊕ γa ⊕ δa ⊕ g1,a ⊕ g2,a ⊕ g3,a ⊕ k4

Define a function f7 : F2 × Fn2 → Fn2 by

f7(a, x) := O7
A(x⊕ βa, x⊕ γa, x⊕ δa, αa)⊕ αa (8)

= F (x⊕ h4(a))

Then f7((a, x) ⊕ (1, s)) = f7(a, x) holds for all (a, x) ∈ F2 × Fn2 , where
s = h4(0)⊕ h4(1). One can see that

f7(a⊕ 1, x⊕ h4(0)⊕ h4(1)) = F (x⊕ h4(0)⊕ h4(1)⊕ h4(a⊕ 1))

= F (x⊕ h4(a)) = f7(a, x)

Thus, when the quantum oracle of O7 is available, we can apply Simon’s algo-
rithm on f7 and recover the period (1, h4(0)⊕h4(1)). In addition, this allows us
to compute the value h4(0)⊕ h4(1).

Let Λ4 := (α, β, γ, δ) and T(Λ4) := β ⊕ γ ⊕ δ ⊕ g1(Λ4) ⊕ g2(Λ4) ⊕ g3(Λ4),
where g1(Λ4) := F (α ⊕ γ ⊕ δ), g2(Λ4) := F (α ⊕ β ⊕ δ ⊕ g1(Λ4)) and g3(Λ4) :=
F (α⊕ β ⊕ γ ⊕ g1(Λ4)⊕ g2(Λ4)). Then h4(0) = T(Λ4 ⊕ key) and h4(1) = T(key)
hold, where key = (k1 ⊕ k2 ⊕ k3, k2 ⊕ k3 ⊕ k4, k1 ⊕ k3 ⊕ k4, k1 ⊕ k2 ⊕ k4). In
addition, let H(Λ4) := T(Λ4 ⊕ key)⊕ T(key)⊕ T(Λ4). Then H can be computed
in quantum superposition since T((α, β, γ, δ) ⊕ key) ⊕ T(key) = h4(0) ⊕ h4(1)
can be computed by using Simon’s algorithm on f7 as above, and T(Λ4) does
not depend on keys.

Now, it is straightforward to check that the following conditions for s′ ∈ (Fn2 )4

are equivalent19:

1. s′ is in the vector space V ⊂ (Fn2 )4 that is spanned by key and (0, η, η, η) for
η ∈ Fn2 .

2. H(Λ4 ⊕ s′) = H(Λ4) holds for all Λ4 = (α, β, γ, δ) ∈ (Fn2 )4.

Thus, by applying Simon’s algorithm on H, we can compute the vector space
V . Once we determine the space V , we can recover the keys k1, k2, and k3 since
k1 = αs ⊕ γs ⊕ δs, k2 = αs ⊕ βs ⊕ δs, and k3 = αs ⊕ βs ⊕ γs hold for arbitrary
(αs, βs, γs, δs) ∈ V with αs 6= 0n. Once we have these round keys, the remaining
round keys k4, k5, k6, k7 can be recovered easily.

19 To be more precise, the conditions become equivalent with an overwhelming proba-
bility when the round function F is a random function.
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4.4 Generic (2d − 1)-round Distinguisher on even branches
Contracting Feistel Structures under CPA setting

As mentioned earlier, the authors of [24] proved that when d is even, a d-branch
r-round contracting Feistel-F structure is PRP-secure when r ≥ 2d− 1 rounds.
Here, we show that it is not qPRP for r = 2d− 1 rounds for any even d.

Let Or denote the r-round d-branch contracting Feistel-F quantum oracle.
In addition, let OrΛ(b1, . . . , bd) denote the branch bΛ of Or(b1, . . . , bd), where
Λ ∈ {1, 2, . . . , d}.

We denote the value of each branch as a recursive function

Xi = Xi−d ⊕ Fi(Xi−(d−1) ⊕ · · · ⊕Xi−1), (9)

where the input is (X1−d, . . . , X0) and output after r rounds is (Xr−(d−1), . . . , Xr).
The distinguisher is a generalisation of what is described in Section 4.2. In a

nutshell, we show that if we let X1−d = · · · = X1 = x and X0 = αa, where α0

and α1 are distinct constants, and define a function f2d−1 : F2 × Fn2 → Fn2 by

f2d−1(a, x) := O2d−1
1 (x, . . . , x, αa)⊕ αa (10)

= Xd ⊕ αa

we can apply Simon’s algorithm on f2d−1 and find a period, hence a distin-
guisher. The following theorem is the key observation to show the periodicity of
f2d−1.

Theorem 2. Given a d-branch contracting Feistel structure, where d is even.
Now let X1−d = · · · = X1 = x and X0 = αa, where αa is constant. Then for
1 ≤ i ≤ d− 1, we have Xi = x⊕ Ti(αa). Here, Ti(αa) denotes a constant value
that consists of fixed keyed functions Fi and αa, and does not contain variable
x.

See Section B for a proof. From Theorem 2, we can compute

Xd = X0 ⊕ Fd(X1 ⊕ · · · ⊕Xd−1)

= αa ⊕ Fd(x⊕ · · · ⊕ x︸ ︷︷ ︸
d−1 times

⊕T$(αa)) = αa ⊕ Fd(x⊕ T$(αa))

where T$(αa) = T1(αa)⊕ · · · ⊕ Td−1(αa).
Going back to Eq.(10), we have f2d−1(a, x) = Fd(x⊕T$(αa)). Therefore, it is

trivial to see that f2d−1((a, x)⊕(1, s)) = f2d−1(a, x) holds for all (a, x) ∈ F2×Fn2 ,
where s = T$(α0)⊕ T$(α1).

4.5 Generic (2d − 1)-round Key-recovery on even branches
Contracting Feistel-KF Structures under CPA setting

The key-recovery attack described in Section 4.3 can be easily extended to any
even branches contracting Feistel-KF structures. The number of introduced vari-
ables, the analysis and recovered round keys will simply scale up linearly with
the number of branches. For the sake of brevity, we omit the details of the
key-recovery attack for the generic case.
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Table 4: Attack complexity of qCPAs on balanced Feistel-KF structures.
Rounds Key model Attack type Complexity Ref.

3 (0, 0, 0) distinguisher poly(n) [15]

3 (0, 0, 0) key-recovery poly(n) [6]

4 (∆,∆,∆,∆) key-recovery poly(n) [22]

4 (∆, 0, 0, 0) key-recovery poly(n) This section

5 (0,∆, 0, 0, 0) distinguisher poly(n) This section

5 (∆, 0,∆, 0, 0) key-recovery poly(n) This section

r (0, . . . , 0) key-recovery 2(r−3)n/2 [9,12]

r (∆, . . . ,∆) key-recovery poly(n) [22]

r (∆, 0, . . . , 0, 0, 0)
key-recovery

(only the first round key)
poly(n) This section

r (∆, . . . ,∆, 0, 0, 0) key-recovery poly(n) This section

r (0, . . . , 0,∆, 0, 0, 0) key-recovery 2(r−5)n/2 This section

2`+ 3 ((0,∆)`, 0, 0, 0) distinguisher poly(n) This section

2`+ 2 ({0, }(∆, 0)`, 0{, 0}) distinguisher poly(n) This section

5 Related-Key Attacks

We first show related-key attacks on the balanced Feistel-KF structures in Sec-
tion 5.1, and then extend some of them to contracting Feistel-KF structures in
Section 5.2. The related-key attacks on contracting Feistel-KF structures (espe-
cially, the distinguishing attack) are based on the single-key attacks in Section 4.

5.1 Related-Key Attacks on the Balanced Feistel-KF Structures

Recall that a bit-mask pattern is specified in our related-key setting. Adversaries
do not know any information of the key itself, but can add an arbitrary value
that is consistent with the bit-mask pattern when they make encryption queries
(in quantum superposition).

The focus of this subsection is related-key attacks on r-round Feistel-KF
structures, which have rn-bit keys. Each key is denoted as (k1, . . . , kr) ∈ Frn2 ,
where ki is the i-th round key.

In our attacks, we fix a set of indices 1 ≤ i1 < i2 < · · · < iu ≤ r, and
assume that adversaries can add any value in {0, 1}n to kij for all 1 ≤ j ≤ u (in
quantum superpositions). For instance, we will consider an attack on the 4-round
Feistel-KF structure where adversaries can add n-bit values to the first round
key k1. For ease of notation, we denote this related-key setting by (∆, 0, 0, 0).
Other related-key settings are denoted in the same way: the related-key setting
on the 5-round Feistel-KF structure where adversaries can add values to k1 and
k3 are denoted by (∆, 0, ∆, 0, 0). Note that the pattern (0, . . . , 0) corresponds to
the single-key setting, and (∆,∆, . . . ,∆) corresponds to the previous related-key
setting by Rötteler and Steinwandt. See Table 4 for the summary of the results
in this subsection and a comparison with other attacks.
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We denote the most and least significant n bits of a 2n-bit string X by XL

and XR, respectively.

Polynomial-time 5-round qCPA distinguisher for pattern (0, ∆, 0, 0, 0).
Here we show the following proposition.

Proposition 1. There exists a polynomial-time related-key qCPA that distin-
guishes the 5-round balanced Feistel-KF structures from a random permutation
for the related-key pattern (0, ∆, 0, 0, 0).

Assume that the quantum oracle of

O5,(0,∆,0,0,0) : Fn2 × Fn2 × Fn2 → Fn2 × Fn2 , (L,R,∆) 7→ Enck1,k2⊕∆,k3,k4,k5(L,R)

is available to adversaries. Here, Enc is the encryption of the 5-round Feistel-
KF structure or an ideally random cipher such that Enck1,...,k5 is a random
permutation for each key (k1, . . . , k5). The goal of an adversary is to distinguish
whether Enc is the 5-round Feistel-KF structure or an ideally random cipher.

DefineG : Fn2 → Fn2 byG(x) := O5,(0,∆,0,0,0)
L (x, α0, x)⊕O5,(0,∆,0,0,0)

L (x, α1, x).
If Enc is the 5-round Feistel-KF structure, we have

G(x) = α0 ⊕ α1 ⊕ F (2)(k2 ⊕ F (1)(k1 ⊕ α0))⊕ F (2)(k2 ⊕ F (1)(k1 ⊕ α1))

⊕ F (4)(k4 ⊕ x⊕ F (1)(k1 ⊕ α0)⊕ F (3)(k3 ⊕ α0 ⊕ F (2)(k2 ⊕ F (1)(k1 ⊕ α0))))

⊕ F (4)(k4 ⊕ x⊕ F (1)(k1 ⊕ α1)⊕ F (3)(k3 ⊕ α1 ⊕ F (2)(k2 ⊕ F (1)(k1 ⊕ α1)))).

In particular, G is a periodic function and s := F (3)(k3⊕α0⊕F (2)(k2⊕F (1)(k1⊕
α0)))⊕F (3)(k3⊕α1⊕F (2)(k2⊕F (1)(k1⊕α1)))⊕F (1)(k1⊕α0)⊕F (1)(k1⊕α1)
is the period. On the other hand, when Enc is an ideally random cipher, G is
not periodic with overwhelming probability.

Hence the 5-round Feistel function can be distinguished from an ideally ran-
dom cipher in polynomial time by checking whether G(x) is periodic, if the
quantum related-key oracle of the pattern (0, ∆, 0, 0, 0) is given to adversaries.

Remark 2. The above attack can also be used to mount a 4-round polynomial-
time qCPA related-key distinguisher for the pattern (∆, 0, 0, 0).

Polynomial-time qCPA distinguisher for the pattern ((0, ∆)`, 0, 0, 0).
The polynomial-time 5-round distinguisher for the related-key pattern (0, ∆, 0, 0, 0)
can easily be extended to a polynomial-time r-round qCPA distinguisher for the
pattern ((0, ∆)`, 0, 0, 0), where r = 2`+ 3 for some ` ≥ 2. That is, the following
proposition holds.

Proposition 2. There exists a polynomial-time related-key qCPA that distin-
guishes the (2`+ 3)-round balanced Feistel-KF structures from a random permu-
tation for the related-key pattern ((0, ∆)2`, 0, 0, 0).

See Section C.1 for details.

Remark 3. The attack can also be used to mount a (2`+ 2)-round polynomial-
time qCPA related-key distinguisher for pattern omitting either the first or last
round (denoted in parenthesis) ({0, }(∆, 0)`, 0{, 0}).
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Polynomial-time r-round qCPA key-recovery attack for related-key
pattern (∆, 0, . . . , 0). Here we show the following proposition.

Proposition 3. There exists a polynomial-time related-key qCPA that recovers
the key of the r-round balanced Feistel-KF structure for the related-key pattern
(∆, 0, . . . , 0). The attack recovers all the keys when r = 4, and only the first
round key when r > 4.

Let Enc
(r)
k1,...,kr

denote the encryption function of the r-round Feistel-KF
structure with the key (k1, . . . , kr) ∈ Frn2 . Assume that the quantum oracle

of Or,(∆,0,...,0) : Fn2 × Fn2 × Fn2 → Fn2 × Fn2 , (L,R,∆) 7→ Enc
(r)
k1⊕∆,k2,...,kr (L,R) is

available to adversaries.
Define a function G : Fn2 → Fn2 × Fn2 by G(x) := Or,(∆,0,...,0)L (F (1)(x), 0, x).

Then G(x) = Enc
(r)
k1⊕x,k2,...,k4(F (1)(x), 0) = Enc

(r−1)
k2,...,kr

(0, F (1)(x)⊕F (1)(x⊕k1))
holds. In particular, G(x) is periodic function with the period k1. Thus we can
recover the key k1 in polynomial time by applying Simon’s algorithm on G(x).

When r = 4, once we recover k1, other subkeys k2, k3, k4 can be recovered
easily by using the 3-round key-recovery attack in Section 3.3. Since the generic
key-recovery attack in this related-key setting requires time Õ(23n/2) (under the
assumption that Conjecture 1 holds), our attack is exponentially faster than the
generic attack.

Remark 4. By iteratively applying the above attack, we can also recover all the
keys of r-round Feistel-FK structure in polynomial time when the related-key
oracle of pattern (∆, . . . ,∆, 0, 0, 0) is available.

Polynomial-time 5-round qCPA key-recovery attack for the pattern
(∆, 0, ∆, 0, 0). On the 5-round Feistel-KF structure and the related-key pat-
tern (∆, 0, ∆, 0, 0), the following proposition holds.

Proposition 4. There exists a polynomial-time related-key qCPA that recovers
the key of the 5-round balanced Feistel-KF structure for the related-key pattern
(∆, 0, ∆, 0, 0).

See Section C.2 for details.

Attack on more rounds with Grover’s algorithm. The polynomial-time
attacks introduced above can be used to mount key-recovery attacks on more
rounds with the technique in Section 3.2, which converts key-recovery attacks
and distinguishers into key-recovery attacks on more rounds by using the Grover
search.

For instance, assume that we are given the r-round related-key oracle of
the pattern (0, . . . , 0, ∆, 0, 0, 0). Then, by guessing the first (r − 5) round keys
k1, . . . , kr−5 with the Grover search, and applying the polynomial-time 5-round
distinguisher for the pattern (0, ∆, 0, 0, 0) on the remaining 5-rounds, we can
recover k1, . . . , kr−5 in time Õ(2(r−5)n/2). Once we recover k1, . . . , kr−5, we can
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recover kr−4 in time Õ(2n/2) by applying the Grover search to guess kr−4 and
the 4-round distinguisher for the pattern (∆, 0, 0, 0) on the last 4-rounds (see
Remark 2). The remaining keys kr−3, . . . , kr can be recovered in polynomial
time by using the 4-round key-recovery attack for the pattern (∆, 0, 0, 0) on the
last 4-round. Eventually, all the keys can be recovered in time Õ(2(r−5)n/2).

5.2 Related-Key Attacks on the Contracting Feistel Structures

For contracting Feistel-KF structures, let us use the same notation (0, ∆, 0, 0, 0)
to denote related-key patterns under consideration, as in Section 5.1. Since con-
tracting Feistel structures are much more complex than balanced Feistel struc-
tures, we focus on the setting that inserting differential is allowed for only a single
round-key (that is, we do not consider the patterns such as (∆, 0, ∆, 0, 0)). To
avoid the awkward long notations for related-key patterns, we use an abbrevi-
ated notation as follows: we denote the pattern (0, ∆, 0, 0, 0) by ∆d,2/5, where “d”
means that we are considering d-branch contracting Feistel structure, “5” means
that we are considering 5-round construction, and “2” means that differentials
are inserted into the second round key. Then, we can show that:

1. The polynomial-time qCPA related-key distinguisher on the 5-round bal-
anced Feistel structure for the related-key pattern (0, ∆, 0, 0, 0) can be ex-
tended to a polynomial-time qCPA related-key distinguisher on the d-branch
(3d− 1)-round contracting Feistel structure for the pattern ∆d,d/3d−1.

2. The polynomial-time related-key qCPA that recovers the first round key
k1 of the r-round balanced Feistel structure for the related-key pattern
(∆, 0, . . . , 0) can be extended to a polynomial-time related-key qCPA that
recovers the first round key k1 of the d-branch (3d − 1)-round contracting
Feistel structure for the related-key pattern ∆d,1/r.

That is, we can show that the following proposition holds.

Proposition 5. Let d > 0 be an even integer. There exists a polynomial-time
qCPA related-key distinguisher on the d-branch (3d−1)-round contracting Feistel-
KF structure for the pattern ∆d,d/3d−1. In addition, there exists a polynomial-
time related-key qCPA that recovers the first round key k1 of the d-branch (3d−1)-
round contracting Feistel-KF structure for the related-key pattern ∆d,1/r.

Since it is straightforward to show the above extensions, we refrain from writing
the full proofs here. We refer the reader to Section C.3 for details. As in Section 4,
it is also assumed that the number of the branch d is even.

Attack on more rounds with Grover’s algorithm. The polynomial-time
attacks introduced above can be used to mount key-recovery attacks on more
rounds with the technique in Section 3.2, as well as the attacks on balanced
Feistel structures in Section 5.1.
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6 Future Work

Over and over again, we have seen polynomial-time quantum distinguisher break-
ing the classical PRP bound [15,8] (as well as the classical SPRP bound [13])
for Feistel structures. Our intuition is that the classical PRP or SPRP bounds
represent the minimum number of rounds necessary for the last distinguishable
branch to be masked by some pseudorandom value through a direct XOR. This
is sufficient for the classical setting. However, in the quantum setting and with
the right configuration and control over the input branches, we see that Simon’s
algorithm is often able to find this masking value in polynomial time. Therefore
we feel inclined to conjecture that if r is the minimum number of rounds for
a Feistel structure to be classical PRP (resp. SPRP) secure, then there exists a
r-round polynomial-time qCPA (resp. qCCA) distinguisher for that Feistel struc-
ture. Having said that, it would be interesting see if we can find (3d− 2)-round
polynomial-time qCCA distinguisher for d-branch contracting Feistel structure.
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A Missing Details on Basics on Quantum Attacks

We use the traditional Dirac notation to represent size-n quantum states

|ψ〉 =
∑

x∈{0,1}n
ax |x〉 ,

with
∑
|ax|2 = 1. For x ∈ {0, 1}, we define the single-qubit Hadamard operator

H as

H |x〉 :=
∑

x′∈{0,1}

(−1)x·x
′

√
2
|x′〉 .

For a positive integer n, we denote by H⊗n the n-tensor product H⊗. . .⊗H, and
by In the identity operator, both operating on n-qubit quantum states. Finally,
for a function f : {0, 1}m → {0, 1}n, we denote by Uf the quantum oracle of f
operating on (m+ n)-qubit states as follows:

Uf : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 .

A.1 Details on Simon’s Algorithm

Here we explain how Simon’s algorithm works. The algorithm runs the following
procedure:

Simon’s algorithm.

1. Let c ≥ 3 be a constant positive integer. Then repeat the following procedure
cn times to obtain the vectors u1, . . . , ucn ∈ {0, 1}n:
(a) Apply the operator H⊗n ⊗ In to |0n〉 |0n〉 to obtain the quantum state ∑

x∈{0,1}n

1√
2n
|x〉

⊗ |0n〉 . (11)

(b) Query the quantum oracle of f , i.e. apply the unitary operator Uf to the
quantum state) above, to obtain∑

x∈{0,1}n

1√
2n
|x〉 |f(x)〉 . (12)
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(c) Apply apply the unitary operator H⊗n ⊗ In to the resulting quantum
state to obtain ∑

x,u∈{0,1}n

(−1)x·u

2n
|u〉 |f(x)〉 . (13)

(d) Measure the most significant n qubits to obtain a (classical) bit string
ui ∈ {0, 1}n.

2. Compute the dimension d of the vector space spanned by u1, · · · , ucn.
If d 6= n − 1, return 0n (which means that the algorithm failed to find the
period s 6= 0n).
If d = n− 1, proceed to the next step.

3. Compute the bit string s′ ∈ {0, 1}n \ {0n} such that s′ · ui = 0 for all
1 ≤ i ≤ cn. If d = n− 1, there exists exactly one such string s′ 6= 0n. Return
s′ as the period of f .

It is evident that the above algorithm runs in polynomial time, making O(n)
queries to the quantum oracle for f (we are assuming that an evaluation of f
in quantum superposition can be done in a constant time). Steps (a)-(d) can be
viewed as a sampling procedure in which classical bit strings ui ∈ {0, 1}n are
chosen according to a distribution D on {0, 1}n. One can show that in fact D
is the uniform distribution on s⊥, the orthogonal complement of the subspace
generated by s. In particular, it can be shown that the vectors u1, . . . , ucn span
the space s⊥ and the algorithm returns the period s′ = s with an overwhelming
probability.

A.2 Simon’s Algorithm without Intermediate Measurements

Here we briefly explain below how to make Simon’s algorithm measurement-free,
following the idea proposed by Leander and May [17], who showed how we may
combine Simon’s algorithm with Grover’s algorithm.

First, let us define UfSSub := (H⊗n⊗ In) ·Uf · (H⊗n⊗ In). Then Steps (a)-(d)
in Simon’s algorithm can be summarised as:

Subroutine SSub. Measure the first register (the most significant n qubits)

of the quantum state UfSSub(|0n〉 |0n〉).

Now, note that we can get the vectors u1, . . . , ucn all at once by running cn
copies of the subroutine SSub in parallel instead of sequentially running it cn
times. In addition, since Steps 2 and 3 of Simon’s algorithm are just determin-
istic classical computations, we can perform them in quantum superpositions
of |u1〉 , . . . , |ucn〉. Thus, we can modify Simon’s algorithm so that it does not
perform any intermediate measurements as follows:

Simon’s algorithm without intermediate measurements.
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1. Compute the state
⊗cn

i=1

(
UfSSub |0n〉 ⊗ |0n〉

)
. Note that

cn⊗
i=1

(
UfSSub |0

n〉 ⊗ |0n〉
)

=
∑

u1,...,ucn
y1,...,ycn

αu1,...,ucn,y1,...,ycn |u1〉 |y1〉 · · · |ucn〉 |ycn〉

holds for some complex number αu1,...,ucn,y1,...,ycn .
2. Compute the state∑

u1,...,ucn
y1,...,ycn

αu1,...,ucn,y1,...,ycn |u1〉 |y1〉 · · · |ucn〉 |ycn〉 ⊗ |s′(u1, . . . , ucn)〉 ,

where s′(u1, . . . , ucn) is 0n if the dimension of the vector space V spanned by
u1, . . . , ucn is not (n − 1), and s′(u1, . . . , ucn) is the unique non-zero vector
that is orthogonal to V if dim(V ) = n− 1.

When we measure the |s′(u1, . . . , ucn)〉 register, we obtain the period s with an
overwhelming probability. Moreover, by appropriately performing uncomputa-
tions20, we can run Simon’s algorithm (without intermediate measurements) as
a subroutine of another quantum algorithm.

Remark 5. Simon’s algorithm may fail to return the period with a probability in
O(2n(3/4)cn). In particular, Simon’s algorithm as a quantum subroutine always
contains an error ε, and the error accumulates to O(Nε) when it is repeatedly
called N times (without intermediate measurements) in another quantum algo-
rithm. Some readers may be concerned that, when a quantum algorithm such as
Grover’s algorithm calls Simon’s algorithm exponentially many times as a sub-
routine (e.g., N = 2O(n)), the accumulated error Nε may become significantly
large. However, we can still ensure that Nε is exponentially small by setting the
parameter c to be in Θ(n) even if N is in 2O(n).

A.3 Details on Simon’s Algorithm for Multiple Periods

Consider the following problem.

Problem 3. Let d be a fixed integer such that 1 ≤ d ≤ n, f : {0, 1}n → {0, 1}n
be a function, and V ⊂ {0, 1}n be a vector space of dimension d. Suppose that
the following conditions hold:

(1m) f(x⊕ s) = f(x) for all x ∈ {0, 1}n and s ∈ V .
(2m) There does not exist s̃ such that Prx←${0,1}n [f(x⊕ s̃) = f(x)] > 1/2
and s̃ 6∈ V .

Given access to the quantum oracle of f , find the vector space V .

20 Roughly speaking, for a computational step that is represented with a unitary oper-
ation U , the computation represented with its conjugate U∗ is called uncomputation
of U .
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Here, the condition (1m) corresponds to the condition (1) in Problem 2, while
the condition (2m) corresponds to the condition (2’) (which is the relaxed version
of (2) in Problem 2).

When f is a function with a single period s, i.e., when V = {0n, s}, and we
apply Step 1 of Simon’s algorithm on f , we obtain a vector u ∈ {0, 1}n such
that u ⊥ s. Now, even if f has multiple periods (i.e., when dim(V ) > 1), we will
also obtain a vector u ∈ {0, 1}n such that u ⊥ V when we apply Step 1 of the
algorithm.

Moreover, recall that when f has a single period s, the condition (2’) guar-
antees that we will obtain vectors u1, u2, . . . that span the vector space s⊥ with
an overwhelming probability by applying Step 1 of Simon’s algorithm at most
polynomially many times. Similarly, when f has multiple periods, by using the
condition (2m) it can be shown that we will also obtain u1, u2, . . . that span
the vector space V ⊥ with an overwhelming probability by applying Step 1 of Si-
mon’s algorithm at most polynomially many times21, which means that we can
compute V in polynomial time. Note that in this variant, the success condition
in Step 2 of Simon’s algorithm should be that the dimension of the vector space
spanned by u1, u2, · · · is n − d. A basis for this space can then be used in Step
3 to construct an underdefined system of linear equations (n− d equations on n
variables), which we solve to recover a basis of V .

A.4 Proof of Lemma 1

The technique used below is essentially the same as the one by Leander and
May [17].

Proof (of Lemma 1). It suffices to show the claim when b1 = · · · = bw = 1 and
bw+1 = · · · = bk = 0. Let f : {0, 1}w × {0, 1}k−w → {0, 1}n be the function de-
fined by f(y, x) := OK(x||0k−w,M)⊕Ex||y(M) = E(x||0k−w)⊕K(M)⊕Ex||y(M),
where M is an arbitrarily chosen plaintext. Note that we can evaluate the func-
tion f in quantum superpositions in our attack model. Let KL and KR be
the most significant w bits and the least significant (k − w) bits of K, respec-
tively. Then, the function f(·, y) : {0, 1}w → {0, 1}n is an almost random func-
tion if y 6= KR. On the other hand, if y = KR, f(·, y) is a periodic function
with the period KL, and we can expect that there does not exist s̃ such that
s̃ 6∈ {0k,KL} and Prx←${0,1}k [f(x⊕ s̃, KR) = f(x,KR)] > 1/2 when E is an ide-
ally random block cipher. In particular, by applying Simon’s algorithm (without
measurement), we can implement a quantum circuit of the Boolean function
F : {0, 1}k−w → {0, 1} such that F (y) = 1 if and only if f(·, y) is periodic
(which is equivalent to y = KR). Since the Grover search on F finds y = KR

with O(2(k−w)/2) evaluations of F and one evaluation of F (y) (one application
of Simon’s algorithm on f(·, y)) can be done in a polynomial time, we can re-
cover KR in time Õ(2(k−w)/2). Once we recover KR, we can easily recover KL

by applying Simon’s algorithm on f(·,KR). ut
21 This can be shown in the same way as Kaplan et al. showed Theorem 1 in [14].
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A.5 Details on Attack Models

This section provides formal models and definitions of distinguishing attacks
and key-recovery attacks on block-ciphers for both of single-key and related-
key settings. We consider only the adversaries that use quantum computers of
polynomial size, and do not take parallelized computations into account. All
queries to keyed oracles are performed in quantum superposition. We denote the
quantum oracle of a function F by the same symbol F .

Let E : {0, 1}k × {0, 1}n → {0, 1}n denote an n-bit block cipher with k-bit
keys (i.e., EK(·) := E(K, ·) is an n-bit permutation for each key K ∈ {0, 1}k).
Let Perm(n) denote the set of permutations on {0, 1}n. Let BC(k, n) denote the
set of n-bit block ciphers with k-bit keys.

Single-Key Settings.

Distinguishing Attacks. In distinguishing attacks, adversaries are given an oracle
access to EK or a random permutation P , and their goal is to distinguish EK
from P .

Let A be an oracle-aided quantum algorithm. Define the advantage of A on
(single-key) distinguishing attack on E by

Advdist-sE (A) :=

∣∣∣∣∣∣ Pr
K

$←−{0,1}k

[
1← AEK(·)

]
− Pr
P

$←−Perm(n)

[
1← AP (·)

]∣∣∣∣∣∣ .
We say that A distinguishes E in time T if A runs in time T and Advdist-sE (A) is
in Θ(1).

Key-Recovery Attacks. In key-recovery attacks, adversaries are given an oracle
access to EK , and their goal is to recover the key K.

Define the advantage of A on (single-key) key-recovery attack on E by

Advkr-sE (A) := Pr
K

$←−{0,1}k

[
K ′ ← AEK(·)() : K = K ′

]
. (14)

We say that A recovers the key in time T if A runs in time T and Advkr-sE (A) is
in Θ(1).

Related-Key Settings. Let b = b1|| · · · ||bk be a fixed k-bit string (bit-mask
pattern in Section 2.4). Let w be the Hamming weight of b and i1, . . . , iw be the
bit positions of b of which value is set to be 1 (i.e., bij = 1 for 1 ≤ j ≤ w). Let
R : {0, 1}w → {0, 1}k denote the map such that bit ij of R(x) is equal to bit j
of x for 1 ≤ j ≤ w and bit u of R(x) is always 0 for u ∈ {1, . . . , k} \ {i1, . . . , iw}.
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Distinguishing Attacks. In distinguishing attacks, adversaries are given an oracle
access to E(K⊕R(·), ·) : {0, 1}w×{0, 1}n → {0, 1}n or Π(K ⊕ R(·), ·) : {0, 1}w×
{0, 1}n → {0, 1}n, where Π is chosen from BC(k, n) uniformly at random, and
their goal is to distinguish EK from Π (Π is an ideally random block cipher).

Let A be an oracle-aided quantum algorithm. Define the advantage of A on
(related-key) distinguishing attack on E for the bit-mask pattern b by

Advdist-rE (A) :=

∣∣∣∣∣∣∣∣∣ Pr
K

$←−{0,1}k

[
1← AE(K⊕R(·),·)

]
− Pr
Π

$←−BC(k,n)

K
$←−{0,1}k

[
1← AΠ(K⊕R(·),·)

]∣∣∣∣∣∣∣∣∣ .

We say that A distinguishes E in time T if A runs in time T and Advdist-rE (A) is
in Θ(1).

Key-Recovery Attacks. In key-recovery attacks, adversaries are given an oracle
access to E(K ⊕ R(·), ·) : {0, 1}w×{0, 1}n → {0, 1}n and their goal is to recover
the key K.

Let A be an oracle-aided quantum algorithm. Define the advantage of A on
(related-key) key-recovery attack on E for the bit-mask pattern b by

Advkr-rE (A) := Pr
K

$←−{0,1}k

[
K ′ ← AE(K⊕R(·),·) : K = K ′

]
. (15)

We say that A recovers the key in time T if A runs in time T and Advkr-rE (A) is
in Θ(1).

Remark 6. In Section 5, simplified notations are used to denote bit-mask pat-
terns, but models and definitions on the related-key attacks are essentially the
same. In addition, some key-recovery attacks in Section 5 recover only a part of
the key. For such attacks, the advantage of A is defined to be the probability
that A outputs the part of the correct key.

B Proof of Theorem 2

Proof (of Theorem 2). We prove by mathematical induction. For i = 1, we have

X1 = X1−d ⊕ F1(X2−d ⊕ · · · ⊕X0)

= x⊕ F1(x⊕ · · · ⊕ x︸ ︷︷ ︸
d−2 times

⊕αa)

= x⊕ F1(αa)

= x⊕ T1(αa)

Recall that d is even, hence the even copies of x terms cancel each other out.
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Suppose it is true for i = k, where 1 ≤ k ≤ d− 2, that is to say

Xj =

x 1− d ≤ j ≤ −1
αa i = 0
x⊕ Tj(αa) 1 ≤ j ≤ k

We show that it is also true for i = k + 1, we have

Xk+1 = Xk+1−d ⊕ Fk+1(Xk+2−d ⊕ · · · ⊕Xk)

= x⊕ Fk+1(x⊕ · · · ⊕ x︸ ︷︷ ︸
d−2 times

⊕T∗(αa)⊕ αa)

= x⊕ Fk+1(T∗(αa)⊕ αa)

= x⊕ Tk+1(αa)

where T∗(αa) is a collection of constants Ti(αa).
This is because among the d−1 terms {Xk+2−d, . . . , Xk}, when 1 ≤ k ≤ d−2,

exactly 1 term is X0 = αa while other d − 2 terms are either x or x ⊕ Ti(αa).
Therefore, it is true for 1 ≤ i ≤ d− 1. ut

C Detailed Discussions on Related-Key Attacks

C.1 Polynomial-time qCPA distinguisher for the pattern (0, ∆, . . . ,
0, ∆, 0, 0, 0)

Here we explain details on how to extend the polynomial-time 5-round distin-
guisher for the related-key pattern (0, ∆, 0, 0, 0) to a polynomial-time r-round
qCPA distinguisher for the pattern (0, ∆, . . . , 0, ∆, 0, 0, 0), where r = 2` + 3 for
some ` ≥ 2.

Assume that the quantum oracle of Or,(2,4,...,2`) : (Fn2 )2 × (Fn2 )` → (Fn2 )2

defined by

Or,(2,4,...,2`)((L,R), (∆2, . . . ,∆2`)) = Enck1,k2⊕∆2,...,k2`−1,k2`⊕∆2`,k2`+1,k2`+2,k2`+3
(L,R)

is available to adversaries. Here, Enc is the encryption of the r-round Feistel-KF
structure or an ideally random cipher such that Enck1,...,kr is a random permu-
tation for each key (k1, . . . , kr). Here, the goal of an adversary is to distinguish
whether Enc is the r-round Feistel-KF structure or an ideally random cipher.

Define G : Fn2 → Fn2 by

G(x) := Or,(2,4,...,2`)L ((x, α0), (x, . . . , x))⊕Or,(2,4,...,2`)L ((x, α1), (x, . . . , x)).

Here, α0 and α1 are distinct n-bit constants, and Or,(2,4,...,2`)L denotes the most
significant n bits of the output of Or,(2,4,...,2`).

Suppose that Enc is the r-round Feistel-KF structure, and we encrypt the
message (αb, x) when x is added to k2, . . . , k2`. Then, for 1 ≤ i ≤ `, the

state of the cipher after the 2i-th round becomes (x, αb) ⊕
(
β
(2i)
b , γ

(2i)
b

)
, where
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β
(2i)
b and γ

(2i)
b (b = 0, 1) are constants that are dependent on αb and β

(2i)
0 6=

β
(2i)
1 ∧ γ(2i)0 6= γ

(2i)
1 . Therefore, Or,(2,4,...,2`)L ((x, αb), (x, . . . , x)) = αb ⊕ γ

(2`)
b ⊕

F (r−1)
(
kr−1 ⊕ x⊕ β(2`)

b ⊕ F (r−2)(kr−2 ⊕ αb ⊕ γ(2`)b )
)

holds. In particular, G(x)

becomes a periodic function with the period β
(2`)
0 ⊕F (r−2)

(
kr−2 ⊕ α0 ⊕ γ(2`)0

)
⊕

β
(2`)
1 ⊕ F (r−2)

(
kr−2 ⊕ α1 ⊕ γ(2`)1

)
. On the other hand, when Enc is an ideally

random cipher, G is not periodic with an overwhelming probability.
Hence we can distinguish r = (2` + 3)-round Feistel structure from an ide-

ally random cipher in polynomial time by checking whether G(x) is periodic, if
the quantum related-key oracle of the pattern (0, ∆, . . . , 0, ∆, 0, 0, 0) is given to
adversaries.

C.2 Details on the Attack on the Balanced Feistel Structure for the
Pattern (∆, 0, ∆, 0, 0)

Assume that the quantum oracle of

O5,(∆,0,∆,0,0) : Fn2 × Fn2 × F2n
2 → Fn2 × Fn2 , (L,R, (∆,∆′)) 7→ Enck1⊕∆,k2,k3⊕∆′,k4(L,R)

is available to adversaries, where Enck1,...,k5 denotes the encryption function of
the 5-round Feistel-KF structure with the key (k1, k2, k3, k4, k5) ∈ F5n

2 .
Let α0, α1, β0, β1 ∈ Fn2 be constants such that α0 6= α1 and β0 ⊕ β1 = 1.

For each fixed x, y ∈ Fn2 , define a function Gx,y : Fn2 → Fn2 by Gx,y(z) :=
O5
L(y, 0, (x⊕ α0, z ⊕ β0))⊕O5

L(y, 0, (x⊕ α1, z ⊕ β1)). Then

Gx,y(z) = F (4)(k4 ⊕ y ⊕ F (1)(k1 ⊕ x⊕ α0)⊕ F (3)(k3 ⊕ z ⊕ β0 ⊕ F (2)(k2 ⊕ y ⊕ F (1)(k1 ⊕ x⊕ α0)))))

⊕ F (4)(k4 ⊕ y ⊕ F (1)(k1 ⊕ x⊕ α1)⊕ F (3)(k3 ⊕ z ⊕ β1 ⊕ F (2)(k2 ⊕ y ⊕ F (1)(k1 ⊕ x⊕ α1)))))

⊕ F (2)(y ⊕ k2 ⊕ F (1)(k1 ⊕ x⊕ α0))⊕ F (2)(y ⊕ k2 ⊕ F (1)(k1 ⊕ x⊕ α1))

holds. In particular, Gx,y is a periodic function with multiple periods: Gx,y(z⊕
s) = Gx,y(z) holds for all z ∈ Fn2 and s ∈ V := {0, β0⊕β1, F (2)(k2⊕y⊕F (1)(k1⊕
x ⊕ α0)) ⊕ F (2)(k2 ⊕ y ⊕ F (1)(k1 ⊕ x ⊕ α1)), β0 ⊕ β1 ⊕ F (2)(k2 ⊕ y ⊕ F (1)(k1 ⊕
x⊕ α0))⊕ F (2)(k2 ⊕ y ⊕ F (1)(k1 ⊕ x⊕ α1))}.

Since β0 ⊕ β1 = 1, by applying Simon’s algorithm on Gx,y(z) without inter-
mediate measurements, for each x ∈ Fn2 we can compute the function Hx : Fn2 →
Fn−12 defined by

Hx(y) =
[
F (2)(k2 ⊕ y ⊕ F (1)(k1 ⊕ x⊕ α0))⊕ F (2)(k2 ⊕ y ⊕ F (1)(k1 ⊕ x⊕ α1))

]
msb(n−1)

in quantum superposition, where [X]msb(n−1) denotes the most significant (n−1)
bits for X ∈ Fn2 .

Hx(y) is also periodic with a period F (1)(k1 ⊕ x ⊕ α0) ⊕ F (1)(k1 ⊕ x ⊕ α1)
for each x. Since Hx(y) can be evaluated in quantum superposition, we can also
compute the function I(x) := F (1)(k1⊕ x⊕α0)⊕F (1)(k1⊕ x⊕α1) in quantum
superposition by using Simon’s algorithm without intermediate measurements.
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Since F (1) is a public function, we can compute the function J(x) := I(x)⊕
F (1)(x⊕α0)⊕F (1)(x⊕α1) in quantum superposition. Now, we can recover the
key k1 by applying Simon’s algorithm on J because J(x ⊕ s) = J(x) for all
x ∈ Fn2 and s ∈ {0, k1, α0 ⊕ α1, k1 ⊕ α0 ⊕ α1}.

Remark 7. Note that Simon’s algorithm is nested into three layers in the above
attack.

On the other hand, with the knowledge of k1, one can recover k2 by evaluating
the function

P (b, y) =

{
Hx(y) (b = 0),[
F (2)(y ⊕ F (1)(k1 ⊕ x⊕ α0))⊕ F (2)(y ⊕ F (1)(k1 ⊕ x⊕ α1))

]
msb(n−1) (b = 1).

It is clear that P (b, y) has a period (1, k2), therefore, the recovery of k2 can be
achieved in polynomial time as well.

Once k1 and k2 are recovered, the remaining subkeys k3, k4, k5 can be recov-
ered easily by using the 3-round key-recovery attack in Section 3.3.

C.3 Details on Related-Key Attacks on Contracting Feistel-KF

Here we show the details on how the related-key attacks on balanced Feistel-KF
structures are extended to those on contracting Feistel-KF structures.

Polynomial-time qCPA distinguisher for the pattern ∆d,d/3d−1. Here
we show a polynomial-time related-key qCPA that distinguishes the d-branch
(3d−1)-round contracting Feistel-KF structures from a random permutation for
the related-key pattern ∆d,d/3d−1. The attack is a simple extension of the dis-
tinguishing attack on the 5-round balanced Feistel-KF structure for the pattern
(0, ∆, 0, 0, 0) in Section 5.1. The existence of this attack shows that, compared
to the single-key attack in Section 4.4, we can increase the number of attacked
rounds by d when adversaries are allowed to insert differentials into a single
round key.

Assume that the quantum oracle of O∆d,d/3d−1 : (Fn2 )d × Fn2 → (Fn2 )d that
maps ((X−(d−1), . . . , X0), ∆) to Enck1,...,kd−1,kd⊕∆,kd+1,...,k3d−1

(X−(d−1), . . . , X0)
is available to adversaries. Here, Enc is the encryption of the d-branch (3d− 1)-
round contracting Feistel-KF structure or an ideally random cipher such that
Enck1,...,k3d−1

is a random permutation for each key (k1, . . . , k3d−1). Here, the
goal of an adversary is to distinguish whether Enc is the contracting Feistel
structure or an ideally random cipher.

Let α0 and α1 be distinct n-bit constants, and define G : Fn2 → Fn2 by G(x) :=

O∆d,d/3d−1

msb(n) ((x, . . . , x, α0), x)⊕O∆d,d/3d−1

msb(n) ((x, . . . , x, α1), x), where O∆d,d/3d−1

msb(n) de-

notes the most significant n-bits of O∆d,d/3d−1 . Suppose that O∆d,d/3d−1 is the
related-key oracle of the contracting Feistel structure. Then, the following claim
holds.
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Claim. For all (b, x) ∈ Fn2 × Fn2 ,

O∆d,d/3d−1

msb(n) ((x, . . . , x, αb), x) = F (2d)(x⊕ k2d ⊕ βb)⊕ γb (16)

holds. Here, β0, β1, γ0, γ1 are n-bit constants such that β0 6= β1 and γ0 6= γ1.

Proof. We show the equation for the case d = 4. That is, we consider the situa-
tion that the message (x, x, x, αb) is encrypted with the key (k1, . . . , kd−1, kd ⊕
x, kd+1, . . . , k3d−1). Other cases (d ≥ 6) can be shown in the same way.

First, it is easy to confirm that, after the first 3-rounds (=(d− 1)-rounds) of
the encryption, the state of the cipher changes from (x, x, x, αb) to (αb, x, x, x)⊕
(0, η′b, η

′′
b , η
′′′
b ), where η′b, η

′′
b , η
′′′
b are n-bit constants, and each of them depend on

the round keys and αb. Thus, after the 4th round (= the d-th round), the state
becomes (x, x, x, αb)⊕ (η′b, η

′′
b , η
′′′
b , ζb), where ζb = F (4)((k4⊕x)⊕ (x⊕ η′b)⊕ (x⊕

η′′b )⊕(x⊕η′′′b )) = F (4)(k4⊕η′b⊕η′′b ⊕η′′′b ) is a constant that depend on the round
keys and αb. (Recall that the difference x is inserted into kd = k4.)

Now, the state (x, x, x, αb)⊕(η′b, η
′′
b , η
′′′
b , ζb) after the fourth round (=the d-th

round) is the sum of the plaintext (x, x, x, αb) and a constant. Hence, we can sim-
ilarly show that the state after the 7th round (= the (2d−1)-th round) becomes
(αb, x, x, x) ⊕ (ξb, ξ

′
b, ξ
′′
b , ξ
′′′
b ) for n-bit constants ξb, ξ

′
b, ξ
′′
b , ξ
′′′
b that dependent on

the round keys and αb.
Now, the least significant n bits of the state after the 8th round (=2d-th

round) becomes F8(x ⊕ k8 ⊕ βb) ⊕ γb, where βb and γb are dependent on the
round keys and αb. Since βb and γb (non-linearly) depends on αb and α0 6= α1,
we have β0 6= β1 and γ0 6= γ1. In addition, since the least significant n bits of the
state after the 8th round (=the 2d-th round) is equal to the most significant n
bits of the state after the 11th round (=the (3d− 1)-st, final round), the desired
equation holds. ut

From the above claim, it follows that G(x) is a periodic function when O∆d,d/3d−1

is the related-key oracle of the contracting Feistel structure. On the other hand,
G becomes an almost random function when O∆d,d/3d−1 is the related-key oracle
of an ideally random cipher.

Hence we can distinguish the contracting Feistel structure from the ideally
random cipher by applying Simon’s algorithm on G.

Polynomial-time qCPA key-recovery attack for the pattern ∆d,1/r.
Here we show a polynomial-time related-key qCPA that recovers the key of the
d-branch r-round contracting Feistel-F/-KF structure for the related-key pattern
∆d,1/r for any r. The attack is a simple extension of the key-recovery attack on
the r-round balanced Feistel structure for the pattern (∆, 0, . . . , 0) in Section 5.1.
Our attack recovers all the keys when r = 2d, and only the first round key when
r > 2d.

Assume that the quantum oracle of O∆d,1/r : (Fn2 )d × Fn2 → (Fn2 )d that

maps ((X−(d−1), . . . , X0), ∆) to Enc
(r)
k1⊕∆,k2,...,kr (X−(d−1), . . . , X0) is available to
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adversaries. Here, Enc
(r)
k1,...,kr

denotes the encryption function of the (d-branch)
r-round contracting Feistel-KF structure under the key (k1, k2, . . . , kr).

Define a function G : Fn2 → (Fn2 )d by G(x) = O∆d,1/r ((F (1)(x), 0, . . . , 0), x).
Then we have that

G(x) = Enc
(r)
k1⊕x,k2,...,kr (F (1)(x), 0, . . . , 0)

= Enc
(r−1)
k2,...,kr

(0, . . . , 0, F (1)(x)⊕ F (1)(x⊕ k1))

holds. In particular, G(x) is a periodic function with the period k1. Therefore
we can recover the key k1 in polynomial time by applying Simon’s algorithm on
G(x).

When r = 2d, once k1 is recovered, the remaining keys k2, . . . , kr can be
recovered with the polynomial-time key recovery attack in Section 4.4.
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