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Abstract. In 2017, Ward Beullens et al. submitted Lifted Unbalanced Oil and
Vinegar [2], which is a modification to the Unbalanced Oil and Vinegar Scheme
by Patarin. Previously, Ding et al. proposed the Subfield Differential Attack [7]
which prompted a change of parameters by the authors of LUOV for the sec-
ond round of the NIST post quantum standardization competition [1].
In this paper we propose a modification to the Subfield Differential Attack
called the Nested Subset Differential Attack which fully breaks half of the pa-
rameter sets put forward. We also show by experimentation that this attack is
practically possible to do in under 210 minutes for the level I security param-
eters and not just a theoretical attack. The Nested Subset Differential attack is
a large improvement of the Subfield differential attack which can be used in
real world circumstances. Moreover, we will only use what is called the "lifted"
structure of LUOV, and our attack can be thought as a development of solving
"lifted" quadratic systems.

1 Introduction

1.1 Signature Schemes and the NIST Post Quantum Standardization

Signature schemes allow one to digitally sign a document. These were first theoret-
ically proposed by Whitfield Diffie and Martin Hellman using public key cryptogra-
phy in [19]. The first and still most commonly used scheme is that of RSA made by
Rivest, Shamir, and Adleman [16]. As technology and long distance communication
become increasingly more a part of everyone’s life, it becomes vital that one can ver-
ify who sent them a message and sign off on any message they intend to send. How-
ever, Shor’s algorithm and the potential advent of real quantum computer threaten
the security of the RSA scheme and many others now in use [18]. Thus, NIST put
out a call for proposals in 2016 for post-quantum cryptosystems for standardization.
These cryptosystems, though using classical computing in their operations, would
resist quantum attacks [12]. We are currently in the second round of the "competi-
tion," with many different types of schemes being proposed. One of these is multi-
variate cryptography.
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1.2 Multivariate Cryptography

Signature schemes rely on a trapdoor function, one which is very difficult to invert
except if one has special knowledge about the specific function. Multivariate cryp-
tography bases its trapdoors on the difficulty of solving a random system of m poly-
nomials in n variables over a finite field. For efficiency these polynomials are gener-
ally of degree 2. This has been proven to be NP hard [8], and thus is a good candidate
for a public key cryptosystem. Moreover, working over these finite fields is often more
efficient than older, number theory based methods like RSA. The difficulty lies in the
fact that, as these systems must be invertible for the user and thus require a trap-
door, they are not truly random and must have a specific form which undermines
the supposed NP hardness of solving them. Generally their special form is hidden by
composition by invertible affine maps.

The first real breakthrough for multivariate cryptography was the MI or C∗ cryp-
tosystem proposed by Matsumoto and Imai in 1988 [11]. Their insight was to use
the correspondence ψ between a n dimensional vector space kn over a finite field k
and a n degree extension K over k. They constructed their univariate trapdoor func-
tion F : K → K over the large field which they were able to solve due to its special
shape, and then composed it with two invertible affine maps S ,T : kn → kn hid-
ing its structure. Their public key is then P = S ◦ψ ◦F ◦ψ−1 ◦T . Though broken
today, the MI cryptosystem is the inspiration for all "big field" schemes which have
their trapdoor over a larger field. But the attack against MI is the inspiration for what
are called oil and vinegar schemes, which LUOV is a extension of. The Linearization
Equation Attack was developed by Patarin [13]. To be brief, Patarin discovered that
plain-text/cipher-text pairs (x,y) will satisfy equations (called the linearization equa-
tions) of the form ∑

αi j xi y j +
∑
βi xi +

∑
γi yi +δ= 0

Collecting enough such pairs and plugging them into the above equation pro-
duces linear equations in the αi j ’s, βi ’s, γi ’s, and δ which then can be solved for.
Then for any cipher-text y, its corresponding plain-text x will satisfy the linear equa-
tions found by plugging in y into the linearization equations. This will either solve
for the x directly if enough linear equations were found or at least massively increase
the efficiency of other direct attacks of solving for x. So a quadratic problem becomes
linear and thus easy to solve.

1.3 Oil and Vinegar Schemes

Inspired by the Linearization Equation Attack, Patarin introduced the Oil and Vine-
gar scheme [14]. The key idea is to reduce the problem of solving a quadratic system
of equations into solving a linear system by separating the variables into two types,
the vinegar which can be guessed for and the oil which will be solved for. Let F be
a (generally small) finite field, m and v be two integers, and n = m + v . The central
map F : Fn → Fm is a quadratic map whose components f1, . . . , fm are in the form

fk (X ) =
v∑

i=1

n∑
j=i

αi , j ,k xi x j +
n∑

i=1
βi ,k xi +γk
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where each coefficient is in F. Here the set of variables V = {x1, . . . , xv } are called the
vinegar variables, and the set O = {xv+1, . . . , xn} are the oil variables. While the vinegar
variables are allowed to be multiplied to any other variables, there are no oil times
oil terms. Hence, if we guess for the vinegar variables we are left with a system of m
linear equations in m variables. This has a high probability of being invertible (and
one can always guess again for the vinegar variables if it is not). By composing with
an affine transformation T : Fn → Fn one gets the trapdoor function P = F ◦T .
This is indeed a trapdoor as by composing with T , the oil and vinegar shape of the
polynomials is lost and they appear just to be random. Thus for a oil and vinegar
system the public key is P and the private key is (F ,T ). To sign a document Y , one
first computes F−1(Y ) = Z by guessing the vinegar variables until F is an invertible
linear system. Then one computes T −1(Z ) = W . One verifies that W is a signature
for Y by noting that P (W ) = Y .

Patarin originally proposed that the number of oil variables would equal the num-
ber of vinegar variables. Hence the original scheme is now called Balanced Oil and
Vinegar. However, Balanced Oil Vinegar was broken by Kipnis and Shamir using the
method of invariant subspaces [9]. This attack, however, is thwarted by making the
number of vinegar variables sufficiently greater than the number of oil variables.
Generally this is between 2 and 4 times as many vinegar variables to oil variables.
Thus modern oil and vinegar schemes are called Unbalanced Oil and Vinegar (UOV)
The other major attack using the structure of UOV is the Oil and Vinegar Reconcilia-
tion attack proposed by Ding et al. However, with appropriate parameters this attack
can be avoided as well [5]. UOV remains unbroken to this day, and offers competitive
signing and verifying times compared to other signatures schemes. Its main flaw is
its rather large key size. Thus there have been many modifications to UOV designed
to reduce the key size. One, due to Petzoldt, is to use a pseudo-random number gen-
erator to generate large portions of the key from a smaller seed which is easier to
store [15]. Other schemes use the basic mathematical structure of UOV, but modify
it in a way to increase efficiency. However, any changes can generate weakness for
the system as can be seen from the first round contender of the NIST competition
HIMQ-3 [17] which was broken by the Singularity Attack from Ding et al. [6]. Two of
the nine signature schemes left in the second round of the competition are also based
on UOV. Rainbow, originally proposed in 2005, gains efficiency by forming multiple
UOV layers where the oil variables in the previous layers are the vinegar variables in
the latter layers [5]. The other scheme first proposed in [2] is Lifted Unbalanced Oil
and Vinegar (LUOV) whose core idea is to reduce its key size by selecting all the coef-
ficients of its polynomials from F2 = {0,1}. However, LUOV signs its messages in some
extension field F2r . LUOV was attacked by Ding et al. using the Subfield Differential
Attack (SDA) in [7]. SDA uses the lifted form of the polynomials to always work in a
smaller field and thus increase efficiency of direct attacks (those which try to solve
the quadratic system outright) against LUOV. The authors of LUOV have amended
their parameters in order to prevent SDA. However, in this paper we will show that
LUOV is still vulnerable to a modified form of SDA which we will call the Nested Sub-
set Differential Attack (NSDA).
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1.4 Lifted Unbalanced Oil and Vinegar (LUOV)

The LUOV, proposed in [2], is a UOV scheme with three main modifications. Let F2r

be an extension of F2, m and v be positive integers, and n = m+v . The central maps
F : Fn

2r → Fm
2r is a system of quadratic maps F (X ) = (F (1)(X ), . . . ,F (m)(X )) whose

components are in oil and vinegar form

F (k)(X ) =
v∑

i=1

n∑
j=i

αi , j ,k xi x j +
n∑

i=1
βi ,k xi +γk .

The first modification is that each F (k) is "lifted," meaning that the coefficients
are taken from the prime field F2. Messages are still taken over the extension field,
hence the name Lifted Unbalanced Oil Vinegar. The second modification is that the
affine map T has the easier to store and computationally faster to sign form[

1v T
0 1o

]
.

This was first proposed by Czypek [4]. This does not affect security as for any
given UOV private key (F ′,T ′) there is highly likely an equivalent private key (F ,T )
where T is of the form above [21]. The third modification is that LUOV uses Petzdolt’s
method of generating the keys from a PRNG instead of storing them directly [15].

1.5 Our Contributions

In this paper we will first present the original SDA and then NSDA which is a modified
version of the SDA attack which will defeat fully half of the new parameter sets used
by LUOV. These parameters will fall well short of their targeted NIST security levels.
We will also document an attack against one of these parameters sets which we were
able to perform in under 210 minutes. Our attack does not rely on the oil and vinegar
structure of LUOV, and can be seen as a way to solve "lifted" polynomial equations
in general.

2 A Lemma on Random Maps

For both the Subfield Differential Attack and the Nested Subset Differential Attack
we will require a short lemma on random maps which, under the assumption that
quadratic systems of polynomials act like random maps, will allow us to say when it
is possible to forge signatures.

Lemma 1. Let A and B be two finite sets and Q : A → B be a random map. For each
b ∈ B, the probability that Q−1(b) is non-empty is approximately 1−e−|A|/|B |.

Proof. As the output of each element of A is independent, it is elementary that the
probability for there to be at least one a ∈ A such that Q(a) = b is
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1−Pr(Q(α) 6= b,∀α ∈ A) = 1− ∏
α∈A

Pr(Q(α) 6= b)

= 1−
(
1− 1

|B |
)|A|

= 1−
(
1− 1

|B |
)|B | |A||B |

.

Using lim
n→∞

(
1− 1

n

)n

= e−1, we achieve the desired result.

3 The Subfield Differential Attack

3.1 Transforming the Public Key into Better Form

In this section we recall the Subfield Differential Attack proposed in [7]. Let P : Fn
2r →

Fm
2r be a LUOV public key. Let X = (x1, . . . , xn) ∈ Fn

2r be an indeterminate point. Then

P (X ) =



P (1)(X ) =
n∑

i=1

n∑
j=i

αi , j ,1xi x j +
n∑

i=1
βi ,1xi +γ1

P (2)(X ) =
n∑

i=1

n∑
j=i

αi , j ,2xi x j +
n∑

i=1
βi ,2xi +γ2

...

P (m)(X ) =
n∑

i=1

n∑
j=i

αi , j ,m xi x j +
n∑

i=1
βi ,m xi +γm

where for each i , j ,k we have αi , j ,k ,βi ,k ,γk ∈ F2. Due to this special structure we are
able to transform P to be over a subfield of F2r which, depending on the parameters,
will allow us to forge signatures.

First we recall for every positive integer d which divides r we may represent F2r

as a quotient ring
F2r ∼= F2d [t ]/〈g (t )〉

where g (t ) is a irreducible degree s = r /d polynomial. For details see [10]. Let X =
(x1, . . . , xn) ∈ Fn

2d be an indeterminate point and X ′ = (x ′
1, . . . , x ′

n) ∈ Fn
2r be a random

fixed point. So P̃ (X ) := P (X + X ′) : Fn
2d → Fm

2r . Further this map is of a special form.

Examining the kth component of P̃ (X )

P̃ (k)(X ) =
n∑

i=1

n∑
j=i

αi , j ,k (xi +x ′
i )(x j +x ′

j )+
n∑

i=1
βi ,k (xi +x ′

i )+γk .

Expanding the above and separating the quadratic terms leads to

P̃ (k)(X ) =
n∑

i=1

n∑
j=i

αi , j ,k (x ′
i xi +x ′

j x j +x ′
i x ′

j )

+
n∑

i=1
βi ,k (xi +x ′

i )+γk +
n∑

i=1

n∑
j=i

αi , j ,k xi x j .
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We see that, due to αi , j ,k ∈ F2, the coefficients of the quadratic terms xi x j are all
in the prime field. However, as the x ′

i are random elements from F2r , the coefficients
of the linear xi terms will contain all the powers of t up to s −1. This means that, by
grouping by the various powers of t , we may rewrite P̃ (X ) as

P̃ (X ) =



P̃ (1)(X ) =Q1(X )+
s−1∑
i=1

Li ,1(X )t i

P̃ (2)(X ) =Q2(X )+
s−1∑
i=1

Li ,2(X )t i

...

P̃ (m)(X ) =Qm(X )+
s−1∑
i=1

Li ,m(X )t i

3.2 Forging a Signature

Now suppose we wanted to forge a signature for a message Y . First decompose Y
into the sum of vectors

Y = Y0 +Y1t +·· ·+Ys−1t s−1

where for each i , Yi = (yi ,1, . . . , yi ,m) ∈ Fm
2d .

First one finds the solution space S for the system of linear equations

A =
{

Li , j (X ) = yi , j : 1 ≤ i ≤ s −1,1 ≤ j ≤ m
}

.

As A is essentially a random system of linear equations, it will have a high probability
to be full rank (s −1)m (or n if (s −1)m ≥ n). So the dimension of S will be

dim(S) = max{n − (s −1)m,0}.

Next, one tries to solve the system of m quadratic equations

B = {
Qi (S) = y0,i : 1 ≤ i ≤ m

}
.

If S is of large enough dimension, which depends on the choice of d , n, and m, The
solution X to B yields P̃ (X ) = Y which implies that P (X + X ′) = Y . Hence X + X ′ is
the signature we seek. As the most costly step is solving the m quadratic equations
of B over F2d , we always choose d to be as small as possible for the S to likely have a
solution according to Lemma 1.

4 Nested Subset Differential Attack

4.1 The Change of Parameters for LUOV

In response to the Subfield Differential Attack, the authors of LUOV proposed the size
of the extension r should be made prime so that the only subfield will be the prime
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Table 1. The New Parameter Sets for LUOV

Name Security Level (r,m, v,n)

LUOV-7-57-197 I (7,57,197,254)
LUOV-7-83-283 III (7,83,283,366)
LUOV-7-110-374 V (7,110,374,484)
LUOV-47-42-182 I (47,42,182,224)
LUOV-61-60-261 III (61,60,261,321)
LUOV-79-76-341 V (79,76,341,417)

field F2 [1]. They claim that given their new parameters, Fn
2 will be far too small for a

signature to exist for any given differential with any probability. The new parameters
are in Table 1. We note that they are for different NIST security levels than before.

Indeed, by Lemma 1 the Subfield Differential Attack will not work without mod-
ification, but it is the claim of this paper that such a modification, which we will call
the Nested Subset Differential Attack (NSDA), is indeed possible for the three cases
for which r = 7. In fact for the level I security level the complexity will be brought
into the range where the attack is not theoretical but possible in practice in under
210 minutes as we will later show. This is due to the special construction of lifted
polynomials given by the following lemma.

4.2 A Lemma on Lifted Polynomials

Lemma 2. Let

f̃ (X ) =
n∑

i=1

n∑
j=i

αi , j xi x j +
n∑

i=1
βi xi +γ

be a lifted polynomial and A0, A1, · · · , A`−1 ∈ Fn
2 with

Ai =
(
ai ,1, · · · , ai ,n

)
.

Set A = A0 + A1t + A2t 2 +·· ·+ A`−1t`−1. We have that for f̃
(
A+X t`

)
all the quadratic

terms are coefficients of t 2`, the linear terms are coefficients of t`, t`+1, · · · , t 2`−1, and
the coefficients of t h depends only on αi , j ,βi , and Ak for k ≤ h and X for h ≥ `.

Proof. This follows from the following calculation and the fact that for each i , j ∈
{1, . . . ,n}, αi , j ,βi ∈ F2.
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f (A+X t`) =
n∑

i=1

n∑
j=i

αi , j

(
`−1∑
k=0

ak,i t k +xi t`
)(

`−1∑
k=0

ak, j t k +x j t`
)

+
n∑

i=1
βi

(
`−1∑
k=0

ak,i t k +xi t`
)
+γ

=
n∑

i=1

n∑
j=i

αi , j

(
xi x j t 2`+xi

`−1∑
k=0

ak, j t k+`+x j

`−1∑
k=0

ak,i t k+`
)

+
n∑

i=1
βi xi t`+

n∑
i=1

n∑
j=i

αi , j

2`−2∑
h=0

 ∑
0≤k,k ′≤`
k+k ′=h

ak,i ak ′, j t h


+

n∑
i=1

βi

( ∑̀
k=0

ak,i t k

)
+γ.

4.3 s-Truncation

It will also be convenient later to define the concept of s-truncation for an element
of the extension field. For 0 ≤ s ≤ r −1, we define the s-truncation of a element

a =
r−1∑
i=0

ai t i to be as =
s∑

i=0
ai t i .

Similarly for a polynomial

f (X ) =
n∑

i=1

n∑
j=i

ai , j xi x j +
n∑

i=1
bi xi + c

we define the s-truncation to be term by term

f
s
(X ) =

n∑
i=1

n∑
j=i

ai , j
s xi x j +

n∑
i=1

bi
s
xi + c s .

Finally, for a system of polynomials

G (X ) =
(
g1(X ), g2(X ), . . . , gm(X )

)
we define the s-truncation to by truncating each polynomial individually

G
s
(X ) =

(
g1

s (X ), g2
s (X ), . . . , gm

s (X )
)

.

4.4 The Attack

Let P : Fn
2r → Fm

2r be a LUOV public key with r = 7 and suppose we want to forge a

signature for a message Y ∈ Fm
2r . We will denote by X = (x1, . . . , xn) an indeterminate

in Fn
2 and decompose the message Y into the sum of vectors

Y = Y0 +Y1t +·· ·+Yr−1t r−1
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where for each i , Yi = (yi ,1, . . . , yi ,m) ∈ Fm
2 .

Consider the set of polynomials in F2[t ]/〈g (t )〉 which are truncated to the third
power

E := {
a3 : a ∈ F2r

}
.

Table 2 calculates the probability that there will exist a signature for Y in E n for the
relevant parameters using Lemma 1.

Table 2. Probability that a Signature Exists in E n

Name Probability

LUOV-7-57-197 1−exp(−2617)
LUOV-7-83-283 1−exp(−2883)
LUOV-7-110-374 1−exp(−22366)

We thus see that it is very likely that we need to only consider signatures from E n

when we attempt to forge. Similar to SDA’s usage of the differential X ′ to transform
the direct attack into solving equations over a subfield, we do not need to look over all
of E n at once but can instead construct a signature piece by piece using differentials.
However, instead of choosing the differentials randomly, we will instead solve for
them in such a manner that will eventually construct a signature. For our attack to
be efficient, we will want to always solve no more than m quadratic equations over
F2 with at least as many variables as equations. This can be done in four steps using
Lemma 2.

First we see that

P
0

(X ) =



Q0,1(X )

Q0,2(X )

...

Q0,m(X )

where each Q0,i (X ) is a quadratic polynomial over F2. So we may solve the system of

m equations in n variables P
0

(X ) = Y0 using a direct attack method like brute force,
a variant of XL (eXtended Linerization), or a Groebner Basis method like F4/F5. We
will forestall discussion of which algorithm to use until section 4.6. Let us call the
solution we found A0.

For the second step, let us examine P
1

(A0+X t ). By the definition of s-truncation,
this will be a system of polynomials of degree at most 1 in t . Following from Lemma
2, the coefficients of the t 1 terms will be linear in the variables X . Furthermore, the

coefficients of the t 0 terms will depend only on A0. As P
0

(A0) = Y0, we see that
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P
1

(A0 +X t ) =



y0,1 +L1,1(X )t

y0,2 +L1,2(X )t

...

y0,m +L1,m(X )t

where each L1,i (X ) is a linear polynomial over F2 in the variables X . Now find a solu-
tion A1 to the system of linear equations

{
L1.i (X ) = y1,i : 1 ≤ i ≤ m

}
.

Then we have P
1

(A0 + A1t ) = Y0 +Y1t .

For the third step, examine P
2

(A0+ A1t +X t 2). Again the s-truncation will make
this a system of polynomials of degree 2 in t . Lemma 2 states that the coefficients
of the t 2 terms will be linear in the variables X . The coefficients of the t 0 terms will
depend only on A0, and the coefficients of the t 1 will depend only on A0 and A1. But
by construction of A0 and A1 we see that

P
2

(A0 + A1t +X t 2) =



y0,1 + y1,1t +L2,1(X )t 2

y0,2 + y1,2t +L2,2(X )t 2

...

y0,m + y1,m t +L2,m(X )t 2

where each L2,i (X ) is a linear polynomial over F2 in the variables X . Again find a
solution A2 to the system of linear equations

{
L2.i (X ) = y2,i : 1 ≤ i ≤ m

}
.

Then we have P
2

(A0 + A1t + A2t 2) = Y0 +Y1t +Y2t 2.

As a final step, we drop the need for s-truncation and look at P (A0+A1t +A2t 2+
X t 3). We note that this will be a system of polynomials of degree 6 in t , the highest
degree for polynomials in F2[t ]/〈g (t )〉 as r = 7. Further, by Lemma 2, only the coeffi-
cients of the t 6 terms will be quadratic in X . The coefficients of the t 3, t 4 and t 5 terms
will be linear in X . Finally, the coefficients of the t 0, t 1, t 2 terms depend only on A0,
A0 and A1, and A0 A1 and A2 respectively. Let A = A0 + A1t + A2t 2. By construction
of A0, A1, and A2 we see that
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P (A+X t 3) =



y0,1 + y1,1t + y2,1t 2 +L3,1(X )t 3 +L4,1(X )t 4

+L5,1(X )t 5 +Q6,1(X )t 6

y0,2 + y1,2t + y2,2t 2 +L3,2(X )t 3 +L4,2(X )t 4

+L5,2(X )t 5 +Q6,2(X )t 6

...

y0,m + y1,m t + y2,m t 2 +L3,m(X )t 3 +L4,m(X )t 4

+L5,m(X )t 5 +Q6,m(X )t 6

Now we proceed largely in the same manner as the last step in the SDA attack.
Find the solution space S for the system of linear equations

A =
{

Li , j (X ) = yi , j : 3 ≤ i ≤ 5,1 ≤ j ≤ m
}

.

As A will most likely be full rank 3m, the dimension of S will have high probability of
being n −3m. Thus, the system of m quadratic equations

B = {
Q6, j (S) = y6, j : 1 ≤ j ≤ m

}
has a high probability of having a solution given the parameter sets of LUOV which
we record in Table 3.

Table 3. Probability of Success for NSDA

Name Probability

LUOV-7-57-197 1−exp(−226)
LUOV-7-83-283 1−exp(−234)
LUOV-7-110-374 1−exp(−2344)

Find a solution A3 to B by a direct method like XL. Then we see that

P (A0 + A1t + A2t 2 + A3t 3) = Y

and thus σ= A0 + A1t + A2t 2 + A3t 3 is a forged signature for Y .

4.5 Hiding the Signature

It might be argued that signatures that come from E n are in a very special shape and
thus can be rejected as obviously forged. However, it is possible to hide the shape of
the signatures generated from the NSDA attack. Due to the special shape of the lifted
polynomials, it is possible to know about preimages of a more generic form which
are connected to the preimages we can find. Let P be a LUOV public key so that
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P (X ) =



P (1)(X ) =
n∑

i=1

n∑
j=i

αi , j ,1xi x j +
n∑

i=1
βi ,1xi +γ1

P (2)(X ) =
n∑

i=1

n∑
j=i

αi , j ,2xi x j +
n∑

i=1
βi ,2xi +γ2

P (m)(X ) =
n∑

i=1

n∑
j=i

αi , j ,m xi x j +
n∑

i=1
βi ,m xi +γm

Suppose we wanted to forge a signature for a message Y = (y1, . . . , ym) ∈ Fm
2r . As we are

in a finite field of characteristic 2, we may take square roots of any element. Define a
vector Z = (z1, . . . , zm) =p

Y by which we mean that zi =p
yi for each i . Now let X =

(x1, . . . , xn) ∈ E n be a signature for Z so that P (X ) = Z . Define X 2 = (x2
i , . . . , x2

n). Then
examining the kth component of P (X 2) we see that due to the freshman’s lemma
and the fact that the coefficient of P are in F2

P (k)(X 2) =
n∑

i=1

n∑
j=i

αi , j ,k x2
i x2

j +
n∑

i=1
βi ,k x2

i +γk

=
(

n∑
i=1

n∑
j=i

αi , j ,k xi x j +
n∑

i=1
βi ,k xi +γ1

)2

= z2
k = yk .

As the elements of X are degree three polynomials in F2[t ]/〈g (t )〉, X 2’s elements
will appear to be generic degree six polynomials.

4.6 Complexity

The complexity of our attack is determined by solving the two quadratic systems of
m equations over F2. The overhead from solving the linear systems we may ignore.
We first use the method of Thomae and Wolf to reduce the number of equations.

Theorem 1 (Thomae and Wolf ). By a linear change of variables, the complexity of
solving an under-determined quadratic system of m equations and n =ωm variables
can be reduced to solving a determined quadratic system of m − bωc + 1 equations.
Furthermore, provided bωc|m the complexity can be further reduced to the complexity
of solving a determined quadratic system of m −bωc equations [20].

After this reduction to m′ quadratic equations and as we only want a single solu-
tion in each case, we may guess all but m′+2 variables to ensure that a solution will
exist by Lemma 1. Hence we have to solve quadratic systems of m′+2 variables in m′
equations. The complexity of this is approximately 2m′+2. In Table 4 we compute the
complexity for solving these quadratic systems.

As the classical log2 classical gate operations for NIST security level I is 143, III
is 207, and V is 272 [12], we see that LUOV falls short in every category for these
parameters. Moreover, the actual complexity for NSDA is possible in practice as we
show with experimental results.
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Table 4. Complexity in Terms of Number of Bit Operations

Name log2 NSDA’s Complexity (NIST Requirement)

LUOV-7-57-197 56 (143)
LUOV-7-83-283 82 (207)
LUOV-7-110-374 106 (272)

4.7 Experimental Results

We furthermore performed practical experiments on the LUOV parameter set LUOV-
7-57-197.

For the hardware, we used a field-programmable gates array cluster from Sci-
engines, a "Rivyera S6-LX150" with 64 Xilinx Spartan 6 LX150 FPGAs chips. The LX150
were so named because each contains nearly "150,000 gate equivalent units". They
were driven on 8 PCI express cards in a chassis containing a Supermicro mother-
board, an Intel Xeon(R) CPU (E3-1230 V2). When new in 2012, the machine cost
55,000 EUR. Although not directly comparable, a machine with current FPGAs cost-
ing the same 55,000 EUR today will probably have at least 2× as much computing
power and cost less in electricity.

We use a variant of the "forcepq_fpga" algorithm from the paper [3], using the in-
put format of the Fukuoka MQ Challenge. We processed the early parts of our LUOV
attack using the computer algebra system Magma and output the resulting system
in this format, which is basically binary quadratic systems with zero-one coefficients
lined up in graded reverse lexicographic order.

The "forcemp_fpga" implementation allows us to test 210 input vectors per cycle
(at 200MHz) per FPGA chip. In general this lets us solve a 48× 48 MQ system in a
maximum of slightly less than 23 minutes using one single chip, or find a solution to
n×m quadratic equations, where n ≥ m, in 2m−48 ×23 minutes. We could accelerate
this somewhat if we can implement a variation of the Joux-Vitse algorithm.

For a 55-equation system, using all 64 FPGAs, the maximum is 46 minutes. In
general it is a little shorter. The expectation is half of that or 23 minutes. For a 57-
equation system, it is 4 times that, hence about 3 hours, expectation is about half of
that or 92 minutes. When we solved the 59-variable, 57-equation system in practice,
the run ended after 105 minutes. This, like all our runs in this experiment, happened
to be slightly unlucky.

As there are two quadratic systems to solve, we can forge a signature in under 210
minutes.

5 Conclusion

We have proposed a modified version of the Subfield Differential Attack called Nested
Subset Differential Attack which fully breaks half the parameters set forward by the
round 2 version of Lifted Unbalanced Oil and Vinegar. We reduced attacking these
parameters sets to the problem of solving quadratic equations over the prime field
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F2. This makes our attack effective enough to be performed practically. As our at-
tack did not use the Unbalanced Oil and Vinegar Structure of LUOV, it can be seen as
a method of solving lifted quadratic systems in general. We feel that more research
into solving these type of quadratic systems using the NSDA attack is needed. We
also performed experimental attacks on actual LUOV parameters and were able to
forge a signature in under 210 minutes.
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