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Abstract

We construct a succinct non-interactive publicly-verifiable delegation scheme for any log-
space uniform circuit under the sub-exponential Learning With Errors (LWE) assumption. For
a circuit C : {0, 1}N → {0, 1} of size S and depth D, the prover runs in time poly(S), the
communication complexity is D · polylog(S), and the verifier runs in time (D +N) · polylog(S).

To obtain this result, we introduce a new cryptographic primitive: lossy correlation-intractable
hash functions. We use this primitive to soundly instantiate the Fiat-Shamir transform for a large
class of interactive proofs, including the interactive sum-check protocol and the GKR protocol,
assuming the sub-exponential hardness of LWE.

By relying on the result of Choudhuri et al. (STOC 2019), we also establish the sub-
exponential average-case hardness of PPAD, assuming the sub-exponential hardness of LWE.
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1 Introduction

In the past decade there have been significant efforts in constructing succinct and efficiently
verifiable proofs. These efforts were motivated by the increasing popularity of cloud services and
block-chain technologies. The question that is asked is the following: Can one generate a short
certificate for the correctness of a long computation? In fact, succinct and efficiently verifiable
certificates are currently used in various blockchains (such as ZCash and StarkWare) to prove the
validity of transactions.

This task of constructing succinct proofs for long computations is believed to be impossible
information theoretically. Indeed, all works on succinct proofs rely on some computational as-
sumption and argue soundness of the scheme only against cheating provers who cannot break the
underlying assumption. Such computationally sound proofs are referred to as arguments [BCC88].

In this work we focus on constructing (publicly verifiable) succinct non-interactive arguments
(SNARGs).1 As in almost all prior work, we consider the CRS model, which assumes the existence
of a common reference string (CRS) known to all parties.2 Indeed, without a CRS it is impossible to
guarantee soundness against non-uniform cheating provers for schemes that are only computation-
ally sound. This is the case since (information theoretically) there exists a proof for an incorrect
statement, and thus without a CRS, a non-uniform adversary can simply hardwire such a cheating
proof. Our goal is to construct SNARGs under a standard cryptographic assumption. Despite
extensive work in this area (which we elaborate on in Section 1.2), there were previously no known
constructions under standard well-studied assumptions.

We construct a SNARG for bounded depth deterministic computations by provably instantiating
the Fiat-Shamir paradigm [FS86] applied to an interactive delegation scheme, in particular, to the
GKR protocol [GKR15] for delegating bounded depth computations. The Fiat-Shamir paradigm
is a general transformation for converting any public-coin interactive proof (or argument) to a
non-interactive argument in the CRS model. It is used extensively in practice for constructing
signature schemes [FS86], SNARGs [Mic94, BCS16], and non-interactive zero knowledge (NIZK)
proofs [WTS+18].

Loosely speaking, the Fiat-Shamir transform converts an interactive proof (P, V ) for a lan-
guage L to a non-interactive argument (P ′, V ′) for L in the CRS model. The CRS consists of
randomly chosen hash functions h1, . . . , h` from a hash familyH, where ` is the number of rounds
in (P, V ). To compute a non-interactive proof for x ∈ L, the prover P ′(x) generates a transcript
corresponding to (P, V )(x), denoted by (α1, β1, . . . , α`, β`), by emulating P (x) and replacing each
random verifier message βi by βi = hi(α1, β1, . . . , αi−1, βi−1, αi).3 The verifier V ′(x) accepts if and
only if V (x) accepts this transcript and βi = hi(α1, β1, . . . , αi−1, βi−1, αi) for every i ∈ [`].

This paradigm is extremely elegant and simple, and despite its abundant use in practice, its
soundness is poorly understood. The following is known for constant round public-coin protocols:
The Fiat-Shamir paradigm is sound in the Random Oracle Model (ROM) [BR93, PS96], yet at the
same time there are counterexamples that demonstrate its insecurity when applied to interactive
arguments [Bar01, GK03, BBH+19]. There have been several works that prove its soundness when
applied to interactive proofs [KRR17, CCRR18, HL18, CCH+19], albeit under extremely strong

1Typically in the literature, the term SNARG refers to NP computations, though the focus of this work is on determin-
istic computations.

2Our SNARG is in the common random string model. Namely, our CRS is a non-structured random string.
3Throughout this work, we assume w.l.o.g. that the first message is always sent by the prover, and the last one is sent

by the verifier (though this last verifier message is moot).
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assumptions. Recently, the work of Canetti et al. [CCH+19] and the followup work of Peikert and
Shiehian [PS19] prove the soundness of the Fiat-Shamir paradigm, assuming standard hardness of
the Learning With Errors (LWE) problem, when applied to a specific protocol: namely, (a variant
of) the three round zero-knowledge proof of graph Hamiltonicity. This result gave the first NIZK
argument from LWE.

This Work. The key focus of our work is on constructing SNARGs. In particular, our goal is to
prove soundness (under a standard cryptographic assumption) of the Fiat-Shamir paradigm when
applied to succinct interactive proofs. The work of Canetti et al. [CCH+19] proves the soundness of
the Fiat-Shamir paradigm when applied to the (succinct) GKR protocol, albeit under a very strong
assumption: the existence of a fully homomorphic encryption (FHE) scheme that has perfect circular
security, that is, every poly-size adversary, given Enc(sk), outputs sk with probability at most the
probability of guessing (i.e., probability at most poly(κ) · 2−κ, where κ is the security parameter).
By contrast, in our work we prove the soundness of the Fiat-Shamir paradigm when applied to the
GKR protocol assuming the sub-exponential hardness of LWE.

More generally, we prove that the Fiat-Shamir heuristic is sound when applied to a large class
of interactive proofs that we call FS-compatible. We elaborate on this class below, but mention that
it includes the (succinct) GKR protocol and the celebrated sum-check protocol [LFKN92, Sha92].
Specifically, we define the notion of a lossy correlation intractable hash family (which we elaborate
on below), and construct it based on the hardness of the LWE assumption. We then show that the
Fiat-Shamir transform, applied to any FS-compatible interactive proof, is sound when using any
sub-exponentially secure lossy correlation intractable hash family. In particular, this establishes
the soundness of the non-interactive GKR and sum-check protocols (obtained by applying the
Fiat-Shamir transform), assuming the sub-exponential hardness of LWE.

PPAD Hardness. Our results mentioned above have an important implication to the hardness of
the complexity class PPAD, as defined by Papadimitriou [Pap94]. The importance of this class, as
well as the motivation for studying its hardness, stems from the fact that the problem of finding a
Nash equilibrium is known to be PPAD-complete [DGP09, CDT09].

There has been significant interest in reducing the hardness of PPAD to that of various crypto-
graphic assumptions [AKV04, BPR15, GPS16, HY17, CHK+19a, CHK+19b, EFKP20, KPY20, LV20],
which we discuss in Section 1.2.2. The most relevant to us is the recent work of Choudhuri
et al. [CHK+19a], which shows average-case PPAD hardness assuming average-case #SAT hard-
ness and assuming adaptive soundness of the Fiat-Shamir transform applied to the sum-check
protocol. Combining our result on the soundness of the Fiat-Shamir transformation applied
to the sum-check protocol, with the result of Choudhuri et al. [CHK+19a], we conclude that the
sub-exponential hardness of LWE implies the sub-exponential average-case hardness of PPAD.4

Moreover, since LWE is believed to be sub-exponentially hard even for quantum computers, and
our proof (i.e., our reduction) only interacts with the adversary via black-box, straight-line access,
we obtain sub-exponential average-case quantum-hardness of the complexity class PPAD, assuming
sub-exponential quantum hardness of LWE.

4To obtain this conclusion we rely on the fact that sub-exponential hardness of LWE implies sub-exponential average-
case hardness of #SAT.
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1.1 Our Results

We next describe our results in more detail. Our first contribution is defining the notion of a lossy
correlation intractable hash family, and constructing it based on the LWE assumption. A lossy
correlation intractable hash family is a combination of a correlation intractable hash family and
a lossy trapdoor function family, introduced by the influential works of Canetti, Goldreich and
Halevi [CGH04], and Peikert and Waters [PW08], respectively.

At a high level, a hash family H is correlation intractable (CI) for a function family F , if for
every f ∈ F it is computationally hard, given a random hash key k, to find any input x such that
H(k, x) = f(x). Recently, the work of Canetti et. al [CCH+19], and the followup work of Peikert
and Shiehian [PS19], construct a CI hash family for the family of all functions computable by circuits
of an a priori fixed polynomial size (and the run-time of their CI hash functions grow with this
bound). As mentioned above, these works led to the first construction of NIZK proofs for NP from
LWE.

Lossy Correlation Intractable Hash Functions. We define and construct a lossy CI hash family
H that, in addition to being a CI hash family, has the following property: The hash keys can be
generated using an alternative mode, called the lossy mode, such that keys generated in the lossy
mode are indistinguishable from random hash keys.5 In addition, in the lossy mode, the output of
a CI hash function lies within a (sub-exponentially) small space of outcomes. We construct a lossy
CI hash family by combining a CI hash family with a lossy trapdoor function family [PW08], both
of which can be constructed from the LWE assumption.

Theorem 1.1 (Informal). Under the LWE assumption, there exists a lossy correlation intractable hash
family.

The formal definition and construction of a lossy CI hash family (from a CI hash family and
a lossy trapdoor function family) can be found in Section 3, and the high level overview can be
found in Section 2. We note that in the formal definition, a lossy CI hash family is associated with
parameters (T, T ′, ω), where T relates to the CI-security,6, T ′ relates to the lossy security,7 and ω
relates to the amount of information lost in the lossy mode.

We use a lossy CI hash family (with appropriate parameters) to soundly instantiate the Fiat-
Shamir heuristic for a class of interactive proofs, which we call FS-compatible, which as mentioned
above includes the sum-check protocol and the GKR protocol.

FS-Compatible Proofs. Loosely speaking, a public-coin interactive proof (for a language L) is
said to be FS-compatible if it satisfies the following two properties: (1) It is round-by-round sound as
defined by [CCH+19]. Loosely speaking, this means that every possible transcript prefix defines
a statement which is either true or false. If the statement is false, then a cheating prover cannot
expand it to an accepting transcript (except with negligible probability). If it is true, then it can
be expanded to an accepting transcript (with probability 1). This is formalized by requiring the
existence of a (not necessarily efficient) function State that takes as input an instance x and a

5In general, hash keys may not be random, rather they may be generated according to some key generation algorithm.
We neglect this in this high-level overview, but do consider this general case in the technical sections.

6T -CI security means that no poly(T ) adversary can break the CI requirement.
7T ′-lossy security means that no poly(T ′) adversary can distinguish a key generated byH.Gen from a key generated

byH.LossyGen.
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transcript prefix τ = (α1, β1, . . . , αi, βi) (for any round i), where α1, . . . , αi are the prover messages
and β1, . . . , βi are the verifier messages, and labels it as being accepting or rejecting, such that
if State(x, τ) = reject, then for every α, with overwhelming probability over the next verifier
message β, State(x, τ |α|β) = reject. In other words, “bad” verifier messages that go from a rejecting
transcript prefix to an accepting one, are extremely sparse. (2) The other property is that for any
instance x and a transcript prefix τ such that State(x, τ) = reject, there is a non-uniform advice
(which depends only on the verifier’s messages in τ ) such that there is an efficient (non-uniform)
function BAD that is given this advice and, on input a prover’s next message α, efficiently computes
a verifier’s next message β such that State(x, τ |α|β) = reject.

The formal definition of FS-comaptible proofs can be found in Section 4.1. We mention that the
formal definition is associated with parameters (T ′, d, ρ), where T ′ is the time it takes to compute the
function State, d is related to the probability of a random verifier message converting a transcript
prefix from being rejecting to being accepting (specifically, this probability is required to be at
most d/2λ, assuming each verifier message is in {0, 1}λ), and ρ is the (polynomial) time it takes to
compute the function BAD (given the non-uniform advice).

We prove that when we apply the Fiat-Shamir transform to any FS-compatible interactive
proof Π, w.r.t. a lossy CI hash family, we obtain a sound non-interactive argument, assuming the
parameters (T ′, d, ρ) of the FS-compatible proof Π and the parameters (T, T ′, ω) of the lossy CI hash
family satisfy a specific relationship.8 We refer the reader to Section 2 for a more detailed overview,
and to Section 4 for the formal treatment.

Theorem 1.2 (Informal). Applying the Fiat-Shamir transform to any FS-compatible interactive proof with
(arbitrary) parameters (T ′, d, ρ), w.r.t. a lossy CI hash family with parameters (T, T ′, ω), results in a sound
non-interactive argument, as long as T is large enough (depending on T ′, d, ω and on the protocol Π).

We also prove that the sum-check protocol and the GKR protocol are both FS-compatible with
appropriate parameters. This is done in Sections 5 and 6, respectively.

As a result we obtain the following two corollaries:

Corollary 1.3 (Informal). Under the sub-exponential hardness of LWE9, there exists a hash family H and a
polynomial p such that the Fiat-Shamir transform w.r.t. H is sound when applied to the sum-check protocol,
assuming the sum-check instance ∑

b1,...,b`∈B
g(b1, . . . , b`) = v

is over a field F such that log|F|≥ p(d, `, log|B|), where ` is the number of variables, d is the univariate
degree of g, and where B` is the set we are summing over.

Corollary 1.4 (Informal). Under the sub-exponential hardness of LWE, there exists a hash family H such
that the Fiat-Shamir transform w.r.t. H is sound when applied to the GKR protocol. For a log-space uniform
circuit C : {0, 1}N → {0, 1} of size S and depthD, the resulting non-interactive argument has the following
efficiency guarantees: the prover runs in time poly(S), the verifier runs in time (D +N) · polylog(S), and
the communication complexity is D · polylog(S).

8In particular, the parameter T ′ of the FS-compatible proof is equal to the parameter T ′ of the lossy CI hash family,
and therefore the same notation.

9By sub-exponential hardness of LWE, we mean that there exists a constant ε > 0 such that for T (λ) = 2λ
ε

, no
poly(T (λ))-size adversary can distinguish LWE samples of size λ from uniform, with advantage better than negl(T (λ)).
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We also show how to use Theorem 1.3 to obtain PPAD hardness (and more specifically CLS
hardness, for the class CLS ⊆ PPAD), following the blueprint of Choudhuri et al. [CHK+19a].

Corollary 1.5 (Informal). CLS is sub-exponentially hard on average,10 assuming the sub-exponential
hardness of LWE.

The formal theorem and proof can be found in Section 7, and a high-level overview can be
found in Section 2.

1.2 Related Work

In this section, we elaborate on related work, starting with related work on delegating computation
in Section 1.2.1, and continuing with related work on PPAD-hardness in Section 1.2.2.

1.2.1 Related Work on Delegating Computation

Many delegation schemes have been proposed in the literature. These schemes can be roughly
divided into three categories.

SNARGs. Extensive work, starting from the seminal work of Micali [Mic94] and continuing with
[Gro10, Lip12, DFH12, GGPR13, BCI+13, BCCT13, BCC+14], construct SNARGs for non-
deterministic computations. However, the soundness of these schemes is proved either in the
Random Oracle Model [BR93] or based on non-standard hardness assumptions known as
“knowledge assumptions.”11 Such assumptions have been criticized for being non-falsifiable
(as in [Nao03]) and for yielding non-explicit security reductions. We mention that some
of these works form the basis of several efficient implementations which are used in prac-
tice. Other schemes (for deterministic computations) are known based on non-standard
assumptions related to obfuscation [CHJV15, KLW15, BGL+15, CH16, ACC+16, CCC+16] or
multilinear maps [PR17].

Very recently, [KPY19] constructed a SNARG (for deterministic computations) based on an
efficiently falsifiable decisional assumption on groups with bilinear maps. While this assump-
tion seems reasonable, it is new to their work and has not been studied before. Moreover, it is
known to be broken with quantum attacks. Independently, [CCH+19] constructed a SNARG
for all bounded depth computations, assuming the existence of an FHE scheme with optimal
circular security – which appears to be an extremely strong assumption.

Designated verifier schemes. A line of works starting from [KRR13, KRR14] and continuing with
[KP16, BHK17, BKK+18, BK20] designed delegation schemes for deterministic computations
and a sub-class of non-deterministic computations, based on standard assumptions (such as
the hardness of LWE). These schemes, however, are not publicly verifiable. Rather, the CRS is
generated together with a secret key, which is needed in order to verify the proofs.

Interactive schemes. In the interactive setting, we can achieve publicly verifiable schemes, even
for non-deterministic computations, under standard assumptions. Kilian [Kil92] constructed

10By sub-exponential average-case hardness of CLS we mean that there is a problem in CLS and an efficiently
sampleable distribution over instances of this problem that is sub-exponentially hard on average.

11For example, the Knowledge-of-Exponent assumption [Dam92] asserts that any efficient adversary that is given two
random generators (g, h) and outputs (gz, hz) must also “know” the exponent z.
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a four message protocol for any NP language with polylog communication, assuming the
existence of a hash family that is collision-resistant w.r.t. sub-exponential time adversaries. It
has been shown that this scheme can be converted into a three message protocol assuming
a multi-collision resistant hash function [BKP18]. The work of [PRV12] constructs a two-
message delegation scheme in addition to a (hard to compute) CRS for low-depth circuits,
assuming an attribute-based encryption scheme.

Finally, we mention that in the interactive setting, we can achieve publicly verifiable schemes
even unconditionally. For example, [GKR15] and [RRR16] give interactive delegation schemes
for bounded depth and bounded space computations with unconditional soundness. As
mentioned above, in this work we build on the GKR protocol from [GKR15] to obtain our
SNARG.

Despite all the above works, constructing SNARGs under standard well-studied assumptions
has remained a major open problem.

1.2.2 Related Work on PPAD Hardness

Recently, there have been a proliferation of results proving the hardness of the class PPAD, which
was defined by Papadimitriou [Pap94]. In his original paper, Papadimitriou suggested proving the
hardness of PPAD under cryptographic assumptions. After two decades of little progress on the
question, a recent sequence of works [BPR15, GPS16, HY17, CHK+19a, Pie19, CHK+19b, EFKP20]
established the hardness of PPAD (and even that of a subclass known as CLS ⊆ PPAD) under strong
cryptographic assumptions. The first line of works, starting with that of Bitansky, Paneth and
Rosen [BPR15], assumes sub-exponentially secure indistinguishability obfuscation, or functional
encryption [GPS16, HY17].

The second line of works, which is more relevant to us, started with the work of Choud-
huri et al. [CHK+19a] and relies on unambiguous incrementally updateable proofs. The work of
[CHK+19a] assumes the adaptive soundness of the Fiat-Shamir transformation when applied to
the sum-check protocol (and assuming that #SAT is hard on average). They then use the work
of Canetti et al. [CCH+19], which proves adaptive soundness of the Fiat-Shamir transformation
applied to the sum-check protocol, to obtain PPAD hardness assuming the existence of a perfectly
secure FHE (and assuming that #SAT with polylog variables is hard on average). The work of
[Pie19] relies on the soundness of the Fiat-Shamir transformation when applied to Pietrzak’s in-
teractive proof for repeated squaring [Pie19] (and assuming the hardness of repeated squaring
modulo a composite).

Very recently, Lombardi and Vaikuntantanathan [LV20] proved soundness of the Fiat-Shamir
transform applied to Pietrzak’s interactive proof for repeated squaring, assuming LWE is 2λ

1−ε
-hard

(w.r.t. a hash function that takes time T (λ) = 2λ
ε

time to compute), thus obtaining average-case CLS
hardness under this assumption (and assuming that repeated squaring is 2λ

ε
-hard). Independently,

Kalai, Paneth, and Yang [KPY20] obtained average-case CLS hardness under a quasi-polynomial-
time assumption on groups with bilinear maps (and assuming SAT with log(n)1+ε variables is hard
on average). Independently, Bitansky and Gerichter [BG20] prove average case hardness of the
class PLS (which is not known to be contained in PPAD) under the same assumption.

Despite these works, obtaining PPAD hardness under a standard cryptographic assumption
has remained an important open problem.
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2 Technical Overview

We now outline our technical approach. We build on ideas from [CCH+19, PS19] to argue that the
Fiat-Shamir paradigm is sound when applied to a rich class of public-coin interactive proofs (and
in particular, when applied to the sum-check and the GKR protocols). In what follows, we first
discuss the hash functions constructed by [CCH+19, PS19] and explain the difficulties with directly
applying these hash functions to the sum-check (and to the GKR) protocol. We then explain our
key idea of using a lossy trapdoor function family to get around these difficulties.

Background: Correlation Intractable Hash Functions [CGH04]. At a high level, a hash family
H is correlation intractable (CI) for a relationR(x, y) if it is computationally hard, given a random
hash key k, to find any input x such that (x,H(k, x)) ∈ R. It was observed in [CGH04] that the
Fiat-Shamir transform is sound if the initial protocol is statistically sound and the hash family used
to reduce interaction is a CI hash family for all sparse relations.

Very recently, the beautiful works of [CCH+19, PS19] constructed a CI hash family for a restricted
class of relations, assuming circular-secure LWE, and subsequently, plain LWE. The relations
considered in these works are functions (i.e., for every x there is a single y such thatR(x, y) = 1) of
a priori bounded size. Specifically, for any polynomial ρ they consider the class F of all functions
computable by a ρ-size circuit. They construct a CI hash family H such that for any function f ∈ F
and any poly-size A:

Pr
k←Gen(1λ)

[A(k) = x : H(k, x) = f(x)] = negl(λ).

The works of [CCH+19, PS19] used the Fiat-Shamir paradigm, together with this hash family,
to obtain a NIZK proof for NP based on LWE. Their main conceptual observation, which is the
starting point of our work, is the following: There are several interesting interactive proofs for
which the “bad” verifier challenge, which allows a prover to cheat, can be computed by an efficient
(non-uniform) function.12 Therefore, replacing the verifier message by the output of a CI hash
function results in a verifier message that does not allow a prover to cheat, except with negligible
probability.

In this work, we focus on applying the Fiat-Shamir transformation to succinct protocols, such
as the sum-check and GKR protocols. In what follows, we first focus on the sum-check protocol,
and explain why the approach of [CCH+19, PS19] fails when applied to the sum-check protocol.
We then define a special CI hash family, which we call a lossy CI hash family. We show how this
overcomes the failure point above, and argue that the resulting non-interactive sum-check protocol,
obtained by applying the Fiat-Shamir transformation w.r.t. a lossy CI hash family, is sound. Then we
show how to construct such a lossy CI hash famiy from a CI hash family and a lossy trapdoor family.
Finally, we show that a lossy CI hash family can be used to securely instantiate the Fiat-Shamir
paradigm for a broader class of interactive proofs, which we refer to as FS-compatible protocols
(which includes the GKR protocol as well as the sum-check protocol). We end this overview with a
brief explanation of how we obtain our PPAD hardness result.

We start with a brief description of the sum-check protocol.

12We note that this non-uniform advice is not efficiently computable, which is what makes these interactive proofs
non-trivial.
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The Interactive Sum-Check Protocol. In the sum-check protocol, the prover convinces the veri-
fier that ∑

b1,...,b`∈B
g(b1, . . . , b`) = v,

for some known polynomial g of degree at most d in each variable over some large field F that
contains the subset B ⊂ F. The first message from the prover is the univariate polynomial

g1(·) =
∑

b2,...,b`∈B
g(·, b2, . . . , b`).

The verifier checks that g1 is of degree ≤ d and that
∑

b∈B g1(b) = v. If this is not the case, it rejects.
Otherwise, it sends to the prover a random t1 ← F, and the task is reduced to proving that∑

b2,...,b`∈B
g(t1, b2, . . . , b`) = g1(t1).

In the next round, the prover sends

g2(·) =
∑

b3,...,b`∈B
g(t1, ·, b3, . . . , b`).

The verifier checks that g2 is a univariate polynomial of degree ≤ d and that
∑

b∈B g2(b) = g1(t1).
If this is not the case, it rejects. Otherwise, it sends a random t2 ← F, and the task is reduces to
proving that ∑

b3,...,b`∈B
g(t1, t2, b3, . . . , b`) = g2(t2).

This continues for ` rounds, at the end of which the verifer checks on its own that g`(t`) =
g(t1, . . . , t`) for a random t` ← F.

Non-Interactive Sum-Check via Fiat-Shamir: First Attempt. We consider applying the Fiat-
Shamir transform [FS86] instantiated with a CI hash family (for all functions computable by
bounded size circuits) to the sum-check protocol, in order to get a non-interactive argument in the
CRS model. Specifically, the CRS contains ` hash keys, k1, . . . , k`, one for each verifier message, and
the prover non-interactively computes the i’th verifier message as H(ki, τi), which is the outcome
of the i’th hash function H(ki, ·) applied to the transcript so far.

Recall that in order to use the ideas from [CCH+19, PS19], we need to argue that there is an
efficient (non-uniform) function that computes the “bad” challenge, where a bad challenge is one
that allows the prover to cheat. Let us first understand what a bad challenge is in the context of
the sum-check protocol. Denote by g1, . . . , g` the messages of the honest prover in the sum-check
protocol, and denote by g∗1, . . . , g

∗
` the messages of a malicious prover. Note that if a malicious

prover (successfully) cheats, then it must be that g∗1 6= g1. The verifier sends a challenge t1 ← F,
which reduces the task of proving the original sum-check to the task of proving that∑

b2,...,b`∈B
g(t1, b2, . . . , b`) = g∗1(t1).

We say that t1 is a bad challenge if g∗1(t1) = g1(t1), since it converts a false statement to a true
statement, and thus allows the prover to cheat.
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The first issue we encounter is the following: The polynomial g∗1−g1 is of degree d and therefore
may have as many as d roots, which implies that there can be as many as d bad challenges. Recall
that the CI hash family defined and constructed in [CCH+19, PS19] avoids only a single, efficiently
computable bad challenge, whereas here we have d possible bad challenges that we must all avoid.

Fortunately, any CI hash family, as described above, that avoids only a single bad challenge
readily extends to avoid d possible bad challenges (as observed in [CCH+19]). Namely, if we let f
denote an efficiently computable function that outputs one of the d bad challenges at random, then
for any poly-size adversary A,

Pr
k←Gen(1λ)

[A(k) = x : H(k, x) = f(x)] = negl(λ).

This means that if f1(x), . . . , fd(x) are the d bad challenges, then for any poly-size A,

Pr
k←Gen(1λ)

[A(k) = x : H(k, x) ∈ {f1(x), . . . , fd(x)}] = d · negl(λ).

The next main obstacle is the following: in order to apply the CI hash family of [CCH+19,
PS19], we need the bad challenge function (that outputs a random bad challenge) to be efficiently
computable. It is quite straightforward to argue that the bad challenge function corresponding to
the first verifier challenge is efficiently computable: The non-uniform advice is the (true) function g1
and the function on input g∗1 outputs a random root of g∗1 − g1, which can be computed efficiently
(for example) via the Cantor-Zassenhaus algorithm [CZ81].

The problem kicks in after the first message. For a general round i ∈ [`], the bad challenges
are the roots of the polynomial g∗i − gi, for the same reason as for the first round: the prover
can transition from a false statement in round i to a true statement in round i + 1 if and only if
gi(ti) = g∗i (ti). It is tempting to simply hardwire gi as the non-uniform advice. However, recall that

gi(·) =
∑

bi+1,...,b`∈B
g(t1, . . . , ti−1, ·, bi+1, . . . , b`),

and thus, it depends on the first i− 1 challenges of the verifier t1, . . . , ti−1. In the non-interactive
setting these challenges depend on the previous prover messages, and thus cannot be a priori fixed
and hardwired as non-uniform advice. Moreover, computing this function gi (as opposed to taking
it as non-uniform advice) takes time O(|B|`−i), which may super polynomial in general.

As a first attempt, we consider guessing the first i− 1 values t1, . . . , ti−1, using these guesses
to (non-uniformly) compute gi, and hardwiring the resulting gi into the bad challenge function.
As before, on input g∗i , the bad challenge function f efficiently computes a random root of the
polynomial g∗i − gi via the Cantor-Zassenhaus algorithm [CZ81]. Now if the challenges t1, . . . , ti−1
were guessed correctly, the function f indeed outputs a random bad challenge.

Note that for every i ∈ [`], t1, . . . , ti−1 are guessed correctly with probability 1/|F|i−1. Unfortu-
nately, we cannot afford to have such a small probability of guessing correctly. We cannot even
afford our guess to be correct with probability 1/|F|, since our hash functions output hash values in
{0, 1}log|F| (they output elements t ∈ F). Thus we cannot hope to argue that a poly-size adversary
outputs a bad challenge with probability smaller than 1/|F| (since a random guess will be a bad
challenge with probability ≥ 1/|F|). However, we could afford guessing correctly with probability
2−(log|F|)

ε

(for a small enough constant ε > 0), and then rely on sub-exponential security of their
CI hash family (which in turn corresponds to relying on the sub-exponential hardness of the LWE
assumption).
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Lossy Correlation Intractable Hashing to the Rescue. In order to achieve the goal that the correct
polynomial gi is guessed and hardwired to the bad challenge function with probability at least
2−(log|F|)

ε

, we will make it possible to artificially decrease the output space of the hash function
family, so that t1, . . . , ti−1 are guessed correctly with probability at least 2−(log|F|)

ε

. To this end, we
define and construct a lossy correlation-intractable hash family, which in addition to satisfying the CI
property discussed above, has an extra lossy mode. In this mode, the space of outcomes (or image)
of the hash function is restricted to being of size at most 2(log|F|)

ε

for a small enough constant ε > 0.
To see why this is helpful, consider the non-interactive sum-check protocol obtained by applying

the Fiat-Shamir transform, where the CRS contains ` hash keys k1, . . . , k` corresponding to the
lossy CI hash family. Now suppose there exists a cheating prover P ∗ that successfully cheats in
the resulting non-interactive sum-check protocol with non-negligible probability. Recall that this
means there must be a round i ∈ [`] such that g∗i 6= gi and yet g∗i (ti) = gi(ti) (with non-negligible
probability).

In the analysis, one can consider an alternative distribution of hash keys k1, . . . , k`, where the
first i− 1 hash keys k1, . . . , ki−1 are generated using the lossy mode, and the rest of the keys are
generated as before (using the standard mode). Assuming that keys generated via the lossy mode
are (sufficiently) indistinguishable from keys generated using the standard mode, we conclude that
it will still be the case that g∗i 6= gi and yet g∗i (ti) = gi(ti) (with non-negligible probability). To be
more precise, we will assume that keys generated in the lossy mode are indistinguishable even for
poly(|B|`)-size adversaries – because gi can be computed in time poly(|B|`). At this point, we can
guess t1, . . . , ti−1 with probability (2−(log|F|)

ε
)i−1 ≥ 2−(log|F|)

2ε
assuming log|F|≥ `1/ε, and in turn

contradict the sub-exponential CI property of the underlying CI hash family.

Constructing Lossy CI Hash Functions. Our construction of a lossy CI hash family (for all
bounded-size circuits) combines a lossy trapdoor family [PW08] with a CI hash family (for all
bounded-size circuits) [PS19], both of which can be constructed based on the LWE assumption. As
mentioned above, we will need our lossy CI hash family to be sub-exponentially secure, and as a
result we rely on the sub-exponential hardness of LWE.

A lossy trapdoor family, defined and constructed by Peikert and Waters [PW08], is a keyed
family of functions where keys can be generated in two modes: an injective mode and a lossy
mode. The injective mode has a corresponding trapdoor which can be used to efficiently invert the
function. The lossy mode, in contrast, information theoretically loses information about its input.
More specifically, it is associated with a lossy parameter ω and the guarantee is that the size of the
function’s output space is bounded by 2n−ω, assuming the domain is {0, 1}n.

We construct lossy CI hash functions by concatenating CI hash functions with lossy trapdoor
functions. Each lossy CI hash key consists of a pair of keys (k, k) where k is a key for a (underlying)
CI hash function and k is a key for the lossy trapdoor function. In the normal mode of operation, k
is generated using the injective mode of the underlying lossy trapdoor family. In the lossy mode of
operation of our lossy CI hash function, k is generated using the lossy mode of the underlying lossy
trapdoor family. To evaluate a lossy CI hash function with keys (k, k) on input x, we first compute
the lossy trapdoor function with key k on input x to obtain a value y, and then evaluate the CI hash
function with key k on input y. Denoting the underlying CI hash family by H , the underlying lossy
family by G, and our resulting lossy CI hash family by H ′, we have that

H ′((k, k), x) , H(k,G(k, x)).
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We denote the standard key generation algorithm (which generates (k, k) where k is an injective
key) by Gen and the lossy one (where k is a lossy key) by LossyGen.

The indistinguishability of keys generated by Gen and keys generated by LossyGen, follows
from the security of the trapdoor hash family, which asserts that injective keys are indistinguishable
from lossy ones. Importantly, as we argue below, the Gen mode continues to satisfy correlation
intractability (for all functions computable by bounded-size circuits, though the bound here is
smaller than the bound for the underlying CI hash family H). Roughly speaking, this is due to the
trapdoor inversion algorithm, together with the fact that H is a CI hash family (for all functions
computable by bounded-size circuits). More specifically, fix any function f that is computable by a
bounded-size circuit. To argue that for every poly-size A

Pr
(k,k)←Gen(1λ)

[A(k, k) = x : H ′((k, k), x) = f(x)] = negl(λ),

it suffices to argue that for every poly-size A

Pr
(k,k)←Gen(1λ)

[A(k, k) = y : H(k, y) = f(Inv(td, y))] = negl(λ),

where Inv(td, ·) is the inversion algorithm that on input G(k, x) outputs x. The function ftd(·) ,
f(Inv(td, ·)) is computed by a bounded size circuit, and thus the equation above holds by the CI
property of H , assuming H is CI for the family of all functions computable by circuits of size ρ,
where ρ is such that f ◦ ftd can be computed by a circuit of size ρ.

It remains to notice that in LossyGen mode, the underlying lossy function is first applied to the
input x, which restricts the space of possible outcomes to 2n−ω, as desired. The formal definition,
construction and analysis of a lossy CI hash family can be found in Section 3.

FS-Compatible Interactive Proofs. So far we argued the soundness of the non-interactive sum-
check protocol, obtained by applying the Fiat-Shamir transformation w.r.t. a lossy CI hash family.
It may appear that we relied on many specific properties of the interactive sum-check protocol.
However, as we argue below, our techniques are quite general. Specifically, using a lossy CI hash
family and the template described above, we can eliminate interaction in any public-coin interactive
proof (for some language L) as long as it has the following two key properties.

The first property is round-by-round-soundness as defined by [CCH+19]. Loosely speaking,
this means that every possible transcript prefix defines a statement which is either true or false. If
the statement is false then a cheating prover cannot expand it to an accepting transcript (except with
negligible probability). If it is true then it can be expanded to an accepting transcript (with proba-
bility 1). The other property is that for any rejecting transcript prefix τ = (α1, β1, . . . , αi−1, βi−1),
where α1, . . . , αi−1 are the prover messages and β1, . . . , βi−1 are the verifier messages, there is a
non-uniform advice (which depends only on the verifier’s messages) such that there is an efficient
(non-uniform) function BAD that is given this advice, and on input a prover’s next message αi,
efficiently computes a verifier’s next message βi that converts the rejecting transcript prefix τ into
an accepting prefix τ |αi|βi. We describe these properties more formally below.

• Round-by-round soundness [CCH+19]. There is a (not necessarily efficient) algorithm State
that takes as input an instance x and a transcript prefix τ = (α1, β1, . . . , αi, βi), and outputs
accept or reject, such that for every (x, τ), if State(x, τ) = reject then for any next message of
the prover α, with overwhelming probability over the next verifier message β, it holds that
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State(x, τ |α|β) = reject. Moreover, for every x /∈ L, State(x, ∅) = reject, and for every x ∈ L
and honestly generated prefix τ , State(x, τ) = accept

• Efficient BAD function. For every x /∈ L and every i ∈ [`] (where ` denotes the number of
rounds), and every fixing of the first i− 1 verifier messages, denoted by β1, . . . , βi−1, there
exists a (non uniform) efficient randomized function BAD that takes the first i messages of
the prover, denoted by α1, . . . , αi, and outputs an element βi, such that if State(x, τ) = reject,
for τ = (α1, β1, . . . , αi−1, βi−1, αi), then βi is a random element in the (small) set

{β : State(x, τ |β) = accept}. (1)

Any interactive proof that has these two properties is said to be FS-compatible. More specifically,
we associate with each FS-compatible protocol parameters (T ′, d, ρ), where T ′ is the time it takes
to compute the function State,13 d is a bound on the number of bad challenges, i.e., a bound on
the size of the set defined in Equation (1),14 and ρ is a polynomial bound on the size of the circuit
computing the function BAD.

We prove that both the sum-check protocol and the GKR protocol are FS-compatible (w.r.t.
some parameters (T ′, d, ρ)). This is proven formally in Sections 5 and 6, respectively. Moreover,
we prove that applying the Fiat-Shamir transform w.r.t. a lossy CI hash family (for all functions
computable by a bounded-size circuit) to any FS-compatible interactive proof results in a sound non-
interactive argument. More specifically, if the interactive proof is (T ′, d, ρ) FS-comptible, then to
prove soundness, the lossy CI hash family needs to be (T, T ′, ω) secure for all functions computable
by ρ-size circuits (for a large enough T ), which means that the following three conditions hold:

• T ′-Key Indistinguishability. A poly(T ′)-size adversary cannot distinguish between lossy
keys (generated by LossyGen) and standard ones (generated by Gen).

• T -Correlation Intractability. For any poly(T )-size adversaryA, and any function f computed
by a ρ-size circuit,

Pr[A(k) = x : H(k, x) = f(x)] = negl(T ).

• ω-Lossiness. For every key k generated by LossyGen, the number of elements in the co-domain
of this hash family is 2n−ω, assuming the domain is {0, 1}n.

Moreover, T should be larger than the inverse probability of guessing all the verifier’s messages in
a protocol transcript, assuming the hash functions are generated in lossy mode.

Roughly speaking, the analysis of the non-interactive protocol is very similar to the analysis
for the sum-check protocol, and proceeds as follows: Assume that there exists a cheating prover
P ∗ who successfully cheats w.r.t. some instance x /∈ L. Denote the transcript by τ and denote the
transcript prefix corresponding to the first i rounds by τi. There must be a round i ∈ [`] such that
with non-negligible probability

State(x, τi−1) = reject ∧ State(x, τi) = accept.

In the analysis, we consider an alternative distribution of hash keys k1, . . . , k`, where the first
i − 1 hash keys k1, . . . , ki−1 are generated by LossyGen, and the rest of the keys are generated by

13This function is usually inefficient for the verifier to compute on his own.
14The parameter d can be super-polynomial, though for the sum-check and GKR protocols it is polynomial.
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Gen. The T ′-key indistinguishability property and the fact that State is computable in time T ′

imply that the above equation still holds with non-negligible probability. By the ω-lossy property,
we can guess β1, . . . , βi−1 with probability 2−(i−1)(n−ω). By the FS-compatibility property, there
exists a ρ-size function BAD such that BAD(α1, . . . , αi) outputs an element βi so that for τ =
(α1, β1, . . . , αi−1, βi−1, αi), if State(x, τ) = reject, then βi is a random element in the set defined in
Equation (1). Finally, we rely on the T -CI to argue that for every poly(T )-size adversary,

Pr[A(k) = α : H(k, α1, . . . αi) = BAD(α1, . . . , αi)] = negl(T )

This contradicts our assumption, as long as T ≥ 2`(n−ω). This proof sketch is oversimplified, and
we refer the reader to Section 4 for the precise theorem and proof.

Applying this to the GKR protocol implies that the resulting non-interactive GKR is sound.
However, the fact that T must be exponential in the number of rounds, which in the GKR protocol
corresponds to the depth of the computation being delegated, implies that the communication
complexity (as well as the verifier running time) becomes polynomial in the depth (as opposed
to linear in the depth). To obtain verification time that is linear in the depth of computation, we
consider a refined version of the above analysis, where we consider history-independent protocols,
which are protocols where the prover and verifier can forget the initial transcript, and only need to
memorize the last ν rounds (for some parameter ν). For such ν-history-independent protocols, we
are able to get better parameters, and in particular, need T ≥ 2ν(n−ω), where in the GKR protocol
ν does not depend on the depth, but rather depends only poly-logarithmically on the size of the
circuit being delegated. We refer the reader to Section 4 for details.

PPAD Hardness. To establish the sub-exponential hardness of Nash under sub-exponential LWE,
we rely on the beautiful work of Choudhuri et. al. [CHK+19a]. Specifically, [CHK+19a] showed that
adaptive unambiguous soundness of Fiat-Shamir for sum-check can be used to reduce #SAT instances to
rSVL instances, where rSVL is a problem in the class CLS ⊆ PPAD. Roughly, unambiguity requires
that it is (computationally) hard to find two different accepting proofs, even for a true statement. While
our non-interactive sum-check protocol does satisfy unambiguity due to the special structure of
the sum-check protocol, we unfortunately fall short of proving full-fledged adaptive soundness.
Loosely speaking, this is due to the fact that the multi-variate polynomial g needs to be known in
advance in order to precompute the true claims gi for each round i ∈ [`].

However, we observe that the proof in [CHK+19a] does not require full adaptivity over the
choice of g. Specifically, they require a weaker form of adaptive unambiguous soundness, which
we call prefix adaptive unambiguous soundness, where g is chosen non-adaptively but a prefix
σ1, . . . , σj can be chosen adaptively, and they require that the non-interactive sum-check proof of
the (partially adaptive) statement ∑

bj+1,...,b`∈B
g(σ1, . . . , σj , bj+1, . . . , b`)

satisfies soundness and unambiguity. We also observe that their proof only requires unambiguous
soundness to hold for prefixes σ1, . . . , σj for which each element σi in the prefix is either in the
support of the hash function or an element in [0, d].15

15We identify the set [0, d] with a set of d+ 1 field elements.

14



The proof techniques we developed allow us to prove such prefix adaptive unambiguous
soundness for the non-interactive sum-check protocol. We mention that the guarantee that the
prefix σ1, . . . , σj is in the image of the hash function (or is in [0, d]) is crucial for us, since otherwise
the adaptivity in σ would be too large for us to handle. Since we have the guarantee that these
elements are in the image of the hash function, in the analysis we can modify the hash keys to be
lossy and hence obtain the guarantee that σ1, . . . , σj each belong to a small set of size 2n−ω, which
is small enough for us to guess these values in order to prove unambiguous soundness of the
non-interactive sum-check protocol. We refer the reader to Section 7 for details.

Notation. Throughout this paper, for any probabilistic algorithm A and any input x, we use
the terminology “for every y ∈ A(x)” as a shorthand to say “for every y in the support of A(x)”.
Throughout this work, we consider interactive proofs Π = (P, V ), and make the following simplify-
ing assumptions:

1. Denoting by ` the number of rounds in Π, and we always assume for simplicity and w.l.o.g.
that each round consists of two messages, the first sent by the prover and the second sent
by the verifier. Thus a transcript of an `-round protocol is of the form τ = (α1, β1, . . . , α`, β`),
where (α1, . . . , α`) are the prover messages and (β1, . . . , β`) are the verifier messages. For
every i ∈ [`], we denote by τi the first i rounds of τ . Namely, τi , (α1, β1, . . . , αi, βi). For
every 1 ≤ i < j ≤ `, we denote by τ[i,j] , (αi, βi, . . . , αj , βj).

2. We assume w.l.o.g. that all of the verifier messages β1, . . . , β` are of the same length, and we
denote this length by λ = λ(|x|), where x is the input. Intuitively, this length determines the
soundness of the interactive proofs that we are interested in (FS-compatible ones).

We think of all the parameters (except |x|) as a function of λ, unless explicitly stated otherwise.
For example, we think of ` as a function of λ, as opposed to a function of |x|. This is useful
since we use a Fiat-Shamir hash function with security parameter λ(|x|), and thus bounding all the
parameters in terms of λ will be helpful when proving soundness of the Fiat-Shamir transformation.

3 Lossy Correlation Intractable Hash Functions

In this section we define and construct the lossy correlation intractable (lossy CI) hash family
that we use for instantiating the Fiat-Shamir paradigm. This is obtained by combining any lossy
trapdoor function family with any correlation intractable (CI) hash family for bounded size circuits.
In Section 3.1, we recall the notion of a lossy trapdoor function family and the notion of a CI
hash family. Then, in Section 3.2, we define our notion of a lossy CI hash family, and provide a
construction.

3.1 Preliminaries

3.1.1 Lossy Trapdoor Functions

Lossy trapdoor functions were first defined and constructed (based on LWE) in an influential work
of Peikert and Waters [PW08]. Loosely speaking, a lossy trapdor function family contains two types
of functions: injective ones and lossy ones, such that one cannot distinguish between a random
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injective function in the family and a random lossy function in the family. An injective function can
be generated together with a trapdoor, which allows one to efficiently invert the function, whereas
a lossy function “loses” most information about its preimage, since its image is much smaller than
its domain.

Definition 3.1 ((T, ω)-Lossy Trapdoor Family). A quadruple (InjGen, LossyGen,Eval, Inv) of PPT
algorithms is said to be a (T, ω)-lossy trapdoor function family if there exist polynomials n = n(λ),
n′ = n′(λ), s = s(λ) and t = t(λ) for which the following syntax and properties are satisfied:

• Syntax.

– InjGen(1λ) takes as input a security parameter 1λ and outputs a pair (k, td), where k ∈
{0, 1}s is a key corresponding to an injective function and td ∈ {0, 1}t is a corresponding
trapdoor.

– LossyGen(1λ) takes as input a security parameter 1λ and outputs a key k ∈ {0, 1}s
corresponding to a lossy function.

– Eval(k, x) takes as input a key k ∈ {0, 1}s and an element x ∈ {0, 1}n and outputs an
element y ∈ {0, 1}n′ .

– Inv(k, td, y) takes as input a key k ∈ {0, 1}s, a trapdoor td ∈ {0, 1}t, and an element
y ∈ {0, 1}n′ , and outputs an element x ∈ {0, 1}n ∪ {⊥}.

• Properties. The following properties hold:

– Injective Mode. For every λ ∈ N and every k ∈ InjGen(1λ) the function Eval(k, ·) is
injective. Furthermore, for every x ∈ {0, 1}n(λ), Pr[Inv(k, td,Eval(k, x)) = x] = 1.16

– ω-Lossiness. For every λ ∈ N and every k ∈ LossyGen(1λ) the function Eval(k, ·) has an
image of size 2n(λ)−ω(λ).

– T -Security. There exists a negligible function µ such that for every poly(T )-size adversary
A and for every λ ∈ N,∣∣∣ Pr

k←G.LossyGen(1λ)
[A(k) = 1]− Pr

k←G.InjGen(1λ)
[A(k) = 1]

∣∣∣ = µ(T (λ))

Theorem 3.2. [PW08, BDGM19, DGI+19]. Assuming the sub-exponential hardness of LWE, for every
constant 0 < δ < 1 and every polynomial n(λ), there exists a constant 0 < ε < 1 for which there exists a
(T, ω)-lossy function family for ω(λ) = n(λ)− λδ and T = 2λ

ε .

3.1.2 CI Hash Family

In this section, we recall the notion of a CI hash family. We start by recalling the notion of a hash
family.

Definition 3.3. A hash familyH is associated with two algorithms (H.Gen,H.Hash), and a parame-
ter n = n(λ), such that:

16Typically, this requirement is only required to hold with overwhelming probability. We require it to hold with
probability 1, only for the sake of simplifying the proof. This stronger requirement can be obtained assuming a leveled
FHE with perfect correctness, following the construction in [HO12, BDGM19].
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• H.Gen is a PPT algorithm that takes as input a security parameter 1λ and outputs a key k.

• H.Hash is a polynomial time computable (deterministic) algorithm that takes as input a key
k ∈ H.Gen(1λ) and an element x ∈ {0, 1}n(λ) and outputs an element y.

In this work we focus on hash families H such that for every λ ∈ N, every key k ∈ H.Gen(1λ)
and every x ∈ {0, 1}n(λ), the output y = H.Hash(k, x) is in {0, 1}λ. Throughout this work, we
always assume that this is the case.

In what follows when we refer to a hash family, we usually do not mention the domain
parameter n explicitly.

Definition 3.4 (T -Correlation Intractable). [CGH04] A hash familyH = (H.Gen,H.Hash) is said to
be T -correlation intractable (T -CI) for a function family F = {Fλ}λ∈N if the following two properties
hold:

• For every λ ∈ N, every f ∈ Fλ, and every k ∈ H.Gen(1λ), the functions f and H.Hash(k, ·)
have the same domain and the same co-domain.

• For every poly(T )-size A = {Aλ}λ∈N there exists a negligible function µ such that for every
λ ∈ N and every f ∈ Fλ,

Pr
k←H.Gen(1λ)
x←A(k)

[H.Hash(k, x) = f(x)] = µ(T (λ)).

The work of Canetti et al. [CCH+19] constructs a CI hash family for any function family F
that consists of functions computable by bounded size circuits (where the runtime of the CI hash
functions grows polynomially with this bound), assuming the existence of a sub-exponential
circular secure FHE scheme. Following their work, Peikert and Shiehian [PS19] overcome the
need to rely on circular security and obtain such a CI hash family from the sub-exponential LWE
assumption.

Theorem 3.5. [PS19] Assuming the sub-exponential hardness of LWE, there exists a constant 0 < ε < 1
such that for any polynomial S and any function family F = {Fλ}λ∈N, where Fλ consists of functions
that are computable by circuits of size S(λ), there exists a T -CI hash family H = (H.Gen,H.Hash) for F
(Definition 3.4), where T = 2λ

ε . Moreover, there exists a polynomial p such that for every λ ∈ N and every
k ∈ H.Gen(1λ), the functionH.Eval(k, ·) is computable by a circuit of size p(S(λ)).

3.2 Lossy CI Hash Functions

In this section we show how to take any CI hash family (Definition 3.4), together with any family of
lossy trapdoor functions (Definition 3.1), and obtain what we call a lossy CI hash family.

Definition 3.6 ((T, T ′, ω)-Lossy CI). A hash family

H = (H.Gen,H.LossyGen,H.Hash)

is said to be (T, T ′, ω)-lossy CI for a function family F if the following holds:

• (H.Gen,H.Hash) is a T -CI hash family for F (Definition 3.4).
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• The additional key generation algorithm H.LossyGen takes as input a security parameter λ
and outputs hash key k, such that the following two properties hold:

– T ′-Key Indistinguishability. For every poly(T ′)-size adversary A, there exists a negligi-
ble function µ such that for every λ ∈ N∣∣∣∣ Pr

k←H.LossyGen(1λ)
[A(k) = 1]− Pr

k←H.Gen(1λ)
[A(k) = 1]

∣∣∣∣ = µ(T ′(λ)).

– ω-Lossiness. For every λ ∈ N and every k ∈ H.LossyGen(1λ), denoting by n = n(λ) the
length of elements in the domain ofH.Hash(k, ·),

|{H.Hash(k, x)}
x∈{0,1}n(λ) |≤ 2n(λ)−ω(λ).

Theorem 3.7. There exists a (T, T ′, ω)-lossy CI hash family for F = {Fλ}λ∈N (Definition 3.4) assuming
the existence of the following primitives:

• A (T ′, ω)-lossy trapdoor function family G (Definition 3.1), such that for every λ ∈ N, f ∈ Fλ, and
k ∈ G.Gen(1λ), the domain of G.Eval(k, ·) is equal to the domain of f .

• A T -CI hash familyH (Definition 3.4) for the function family F ′, where the family F ′ = {F ′λ}λ∈N is
defined as follows: for each λ ∈ N, f ′ ∈ F ′λ if and only if there exists f ∈ Fλ, and (k, td) ∈ G.Gen(1λ)
such that f ′λ(·) = fλ(G.Inv(k, td, ·)).

Corollary 3.8. Assuming the sub-exponential hardness of LWE, there exists a constant 0 < ε1 < 1 and, for
every constant 0 < δ < 1, a constant 0 < ε2 < 1 such that for any polynomial S and any function family
F = {Fλ}λ∈N where Fλ consists of functions that are computable by circuits of size S(λ), there exists
a (T, T ′, ω)-lossy correlation intractable hash function family H for F (Definition 3.6). Here, T = 2λ

ε1 ,
T ′ = 2λ

ε2 , and ω = n− λδ, where n is the domain parameter associated withH (Definition 3.3).

Proof. Assume the sub-exponential hardness of LWE. Then by Theorem 3.5 there exists a constant
0 < ε1 < 1 such that for any polynomial S and any function family F ′ = {F ′λ}λ∈N, where F ′λ
consists of functions that are computable by circuits of size S(λ), there exists a T -CI hash family
for F ′, where T = 2λ

ε1 . Moreover, by Theorem 3.2 for every constant δ > 0, there exists 0 < ε2 < 1
such that there exists a (T ′, ω)-lossy trapdoor family for T ′(λ) = 2λ

ε2 and ω = n− λδ. The corollary
now follows from Theorem 3.7.

Proof of Theorem 3.7. Let F = {Fλ}λ∈N be a function family, and let

G = (G.InjGen,G.LossyGen,G.Eval,G.Inv)

be a (T ′, ω)-lossy trapdoor family, such that for every λ ∈ N, f ∈ Fλ, and k ∈ G.Gen(1λ), the domain
of G.Eval(k, ·) is equal to the domain of f . Let

H = (H.Gen,H.Hash)

be a T -CI hash function family for function family F ′ as defined in the theorem statement.
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Construction 3.9. We construct our (T, T ′, ω)-secure lossy CI hash function family

H′ = (H′.Gen,H′.LossyGen,H′.Hash)

as follows:

• H′.Gen(1λ):

– Sample k ← H.Gen(1λ).

– Sample (k, td)← G.InjGen(1λ).

– Output k′ = (k, k).

• H′.LossyGen(1λ):

– Sample k ← H.Gen(1λ).

– Sample k← G.LossyGen(1λ).

– Output k′ = (k, k).

• H′.Hash(k′, x):

– Parse k′ = (k, k).

– OutputH.Hash(k,G.Eval(k, x)).

H′ is a T -CI hash family forF . We first argue thatH′ is indeed a T -CI hash family forF . To this end,
note that for every λ ∈ N, f ∈ Fλ and (k, k) ∈ H′.Gen(1λ), the functions f andH′.Hash((k, k), ·) ,
H.Hash(k,G.Eval(k, ·)) have the same domain and co-domain. The equality of the domains follow
from our assumption that the domains of G.Eval(k, ·) and f are equal. The equalities of the co-
domains follow from our assumption that H is a T -CI hash function for F ′, which implies in
particular that the co-domain ofH.Hash(k, ·) is equal to the co-domain of f ′, which in turn is equal
to the co-domain of f , as desired.

Next we argue the T -CI property ofH′, from the T -CI property ofH and the injectivity of the
functions in G generated via the injective mode.

Suppose for the sake of contradiction that there exists a poly(T )-size adversary A = {Aλ}λ∈N
such that for every λ ∈ N, there is a function f ∈ Fλ and a non-negligible function ε such that

Pr
(k,k)←H′.Gen(1λ)

x←Aλ(k,k)

[H′.Hash((k, k), x) = f(x)] ≥ ε(T (λ)).

This, together with a simple averaging argument, implies that for every λ ∈ N there exists
(k, td) ∈ G.InjGen(1λ) such that

Pr
k←H.Gen(1λ)
x←Aλ(k,k)

[H′.Hash((k, k), x) = f(x)] ≥ ε(T (λ)). (2)

Recall that
H′.Hash((k, k), x) , H.Hash(k,G.Eval(k, x)).
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We use Aλ to define an adversary Bλ that breaks the T -CI property of H. Bλ depends (non-
uniformly) on (k, td) that satisfies equation (2). Given a key k ← H.Gen(1λ), Bλ runs Aλ on input
(k, k) to obtain x, and outputs y , G.Eval(k, x). By relying on the injective mode property of the
lossy trapdoor family (Definition 3.1), we conclude that

Pr
k←H.Gen(1λ)
y←Bλ(k)

[H.Hash(k, y) = f(G.Inv(k, td, y)] ≥ ε(T (λ)).

Setting f ′λ(·) , fλ(G.Inv(k, td, ·)), this implies that

Pr
k←H.Gen(1λ)
y←Bλ(k)

[H.Hash(k, y) = f ′(y)] ≥ ε(T (λ)).

This, together with the fact that B = {Bλ}λ∈N is of poly(T )-size, which in turn follows from the fact
that A is of poly(T )-size, contradicts the T -CI property ofH for F ′.
Properties ofH′.LossyGen. We will now argue thatH′ has the following properties:

• T ′-Key Indistinguishability. Suppose for the sake of contradiction that there exists a poly(T ′)-
size adversary A = {Aλ}λ∈N and a non-negligible function ε such that for every λ ∈ N,∣∣∣∣ Pr

(k,k)←H′.LossyGen(1λ)
[Aλ(k, k) = 1]− Pr

(k,k)←H′.Gen(1λ)
[Aλ(k, k) = 1]

∣∣∣∣ ≥ ε(T ′(λ)).

By a simple averaging argument this implies that for every λ ∈ N there exist k ∈ H.Gen(1λ)
such that ∣∣∣∣ Pr

k←G.LossyGen(1λ)
[Aλ(k, k) = 1]− Pr

k←G.InjGen(1λ)
[Aλ(k, k) = 1]

∣∣∣∣ ≥ ε(T ′(λ)). (3)

We use A = {Aλ}λ∈N to construct an adversary B = {Bλ}λ∈N that breaks the security of the
lossy trapdoor function. For every λ ∈ N, the adversary Bλ hardwires the key k for which
Equation (3) holds, and on input k it outputs Aλ(k, k). Equation (3), together with the fact
that B is of size poly(T ′), contradicts the T ′-security of the lossy trapdoor function family G.

• ω-Lossiness. The lossiness ofH′ follows from the lossiness of the underlying lossy trapdoor
family G, as follows: Fix any λ ∈ N and any (k, k) ∈ H′.LossyGen(1λ). By definition, it holds
that k ∈ G.LossyGen(1λ). Denoting by {0, 1}n the domain of G.Eval(k, ·), the ω-lossiness of the
underlying lossy trapdoor family implies that

|{G.Eval(k, x)}x∈{0,1}n |≤ 2n−ω,

which in turn implies that

|{H′.Hash((k, k), x}x∈{0,1}n |= |{H.Hash(k,G.Eval(k, x))}x∈{0,1}n |≤ 2n−ω.
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4 Soundness of the Fiat Shamir Paradigm

In this section we identify a class of interactive proofs for which the Fiat-Shamir transformation
is sound when applied with any lossy CI hash family (as defined in Section 3). We call such
interactive proofs FS-compatible, and define them formally in Section 4.1. In Section 4.2, we recall
the Fiat-Shamir transformation, and in Section 4.3 we prove its soundness when applied to a FS
compatible proof (w.r.t. a lossy CI hash family).

4.1 FS-Compatible Interactive Proofs

Loosely speaking, an interactive proof is said to be FS-compatible if it has two properties: The
first is “round-by-round” soundness [CCH+19], and the second is that there exists a non-uniform
advice that allows one to efficiently compute a “bad” verifier message that goes from a rejecting
transcript prefix to an accepting one.

The first condition, round-by-round soundness, is defined below. We note that our notion of
round-by-round soundness differs slightly from the one defined in [CCH+19].

Definition 4.1 (Round-by-Round Soundness). [CCH+19] Let Π = (P, V ) be a public-coin interac-
tive proof system for a language L. We say that Π is (T ′, d)-round-by-round sound if there exists a
deterministic function State that takes as input an instance x and a transcript prefix τ and outputs
either accept or reject, such that the following properties hold:

1. Let ∅ denote the empty transcript. Then for every x /∈ L it holds that State(x, ∅) = reject, and
for every x ∈ L it holds that State(x, ∅) = accept.

2. For every x and every transcript prefix τ = (α1, β1, . . . , αi−1, βi−1), if State(x, τ) = reject, then
for any (possibly unbounded) adversary A, it holds that17

Pr
α←A(x,τ)
β←{0,1}λ

[State(x, τ |α|β) = accept] ≤ d(λ) · 2−λ. (4)

3. For every complete transcript τ , if State(x, τ) = reject then V (x, τ) = 0, and if V (x, τ) = 1
then State(x, τ) = accept.

4. State is computable in time at most T ′(λ).18

The second condition for FS-compatibility is that the interactive proof admits an efficiently
computable randomized function BAD for every round i ∈ [`]. This function depends, possibly
inefficiently, on the instance x and all the verifier’s random challenges β1, . . . , βi−1 sent before round
i. It obtains as input the prover messages (α1, . . . , αi) and it outputs βi such that if State(x, τ) =
reject for τ , (α1, β1, . . . , αi−1, βi−1), then βi is a random element in the set

{β : State(x, τ |αi|β) = accept}.
17We point out that we modify the definition in [CCH+19] to replace negl(λ) with d(λ) · 2−λ on the right hand side of

Equation (4).
18This requirement did not exist in the definition in [CCH+19].
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Definition 4.2 (FS-Compatible Interactive Proofs). Let T ′ and d be functions (not necessarily
polynomial) and let ρ be a polynomial. A public-coin interactive proof (P, V ) for a language L that
has `(λ) rounds of interaction is said to be (T ′, d, ρ)-FS-compatible if the following two properties
hold:

1. (P, V ) is (T ′, d)-round-by-round sound w.r.t. a state function denoted by State (Definition 4.1).

2. For every x /∈ L, i ∈ [`] and β1, . . . , βi−1, there exists a (non-uniform19) randomized function
BAD that takes as input (α1, . . . , αi) and randomness r, runs in time ρ(λ), and its output
satisfies the following guarantee:

For every (α1, . . . , αi) such that State(x, τ) = reject, for τ , (α1, β1, . . . , αi−1, βi−1),
w.p. 1− negl(λ) (over r), BAD(α1, . . . , αi) outputs a uniformly random element in
the set B, where

B = {β : State(x, τ |αi|β) = accept}.

If B = ∅, BAD(α1, . . . , αi) outputs ⊥. Note that by Equation (4), |B|≤ d(λ).

In Sections 5 and 6 we prove that the sum-check protocol and the GKR protocol are FS-
compatible, respectively (for appropriate parameters). Jumping ahead, we note that generally
speaking, the number of rounds `(λ) in the GKR protocol can be super-polynomial, since typically
λ = polylog(S), where S is the size of the computation being delegated, whereas ` grows with the
depth of the computation, which in general can be much larger than polylog(S). Thus, it seems
that there is no hope to argue that BAD is computable in polynomial time ρ(λ) if its input length
(which is of order `(λ)) is super-polynomial. Luckily, this is only a syntactic problem, since the
function BAD corresponding to the GKR protocol does not depend on all the messages (α1, . . . , αi);
rather it depends only on the last ν(λ) = poly(λ) of them. We say that the GKR protocol is ν-history-
independent, which essentially means that each prover message is only a function of the last ν
rounds of communication. We formally define history-independence below.

Definition 4.3. A protocol Π = (P, V ) is said to be ν-history-independent if for every i > ν and for
every prefix transcript τi−1 = (α1, β1 . . . , αi−1, βi−1), the i’th prover message αi is computed by
αi = P (x, i, τ[i−ν,i−1]), where τ[i−ν,i−1] , (αi−ν , βi−ν , . . . , αi−1, βi−1).

In what follows, we define the notion of a ν-history-independent FS-compatible interactive
proof. This is done by restricting the functions State and BAD to be ν-history-independent.

Definition 4.4. We say that a (T ′, d, ρ)-FS-compatible interactive proof is ν-history-independent if it
is (T ′, d, ρ)-FS-compatible w.r.t functions State and BAD such that:

• There exists a function State′ computable in time ≤ T ′(λ) such that for every x, every i ∈
[ν + 1, `], every τi−1 = (α1, β1, . . . , αi−1, βi−1), it holds that

State(x, τi−1) = State′(x, i, τ[i−ν,i−1]).

• For every (x, β1, . . . , βi−1) (the non-uniform advice of) the function BAD depends only on
(x, i, βi−ν , . . . , βi−1), and it takes as input only αi−ν , . . . , αi.

19The non-uniformity depends on x, β1, . . . , βi−1.
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Formally, for every x, i ∈ [ν + 1, `] and every (βi−ν , . . . , βi−1) there exists a (non-uniform)
randomized function BAD′ of size ρ, that takes as input only αi−ν , . . . , αi, such for every
(β1, . . . , βi−ν−1), letting BAD denote the bad function that corresponds to (x, β1, . . . , βi−1), for
every (α1, . . . , αi−ν−1)

BAD′(αi−ν , . . . , αi) = BAD(α1, . . . , αi).

In Section 6 we prove that the GKR protocol is ν-history-independent FS compatible, for
ν(λ) ≤ poly(λ).

Note that if we let ν = `, any (T ′, d, ρ)-FS-compatible interactive proof is also `-history-
independent. Hence, any property of ν-history-independent FS-compatible interactive proofs
holds also for plain FS-compatible interactive proofs, by setting ν = `. In particular, in Section 4.3,
we prove the soundness of the Fiat-Shamir paradigm applied to FS-compatible proofs that are
ν-history independent. By setting ν = `, soundness holds for general FS-compatible proofs as well.

4.2 Preliminaries: The Fiat-Shamir Paradigm

Let Π = (P, V ) be any public-coin interactive proof for a language L. Let n = n(λ) denote the
communication complexity of Π. Let H = (H.Gen,H.Hash) be hash family such that, for every
security parameter λ ∈ N and every k ∈ H.Gen(1λ), H.Hash(k, ·) is a function with a domain
{0, 1}n(λ) and co-domain {0, 1}λ. We will also allow inputs toH.Hash(k, ·) that are shorter than n,
by padding all inputs with 0’s until the total length is n. We define the non-interactive protocol
ΠHFS = (P ′, V ′), obtained by applying the Fiat-Shamir transform to Π w.r.t. the hash family H, in
Figure 1.

The Non-Interactive Argument ΠHFS

Fix an input length |x| and let λ = λ(|x|).

• The common reference string CRS consists of ` keys {ki ← H.Gen(1λ)}i∈[`].

• The prover P ′ takes as input (CRS, x) and does the following:

1. Set i = 1 and τ0 = ∅.
2. Compute αi ← P (x, τi−1) and βi = H.Hash(ki, τi−1|αi).

3. Set τi = (τi−1|αi|βi).

4. If i = ` then output τi. Otherwise, set i = i+ 1 and go to Item 2.

• The verifier V ′ takes as input (CRS, x, τ) and does the following:

1. Parse CRS = (k1, . . . , k`) and τ = (α1, β1, . . . , α`, β`).

2. Accept if and only if V (x, τ) = 1 and for every i ∈ [`] it holds that βi = H.Hash(ki, τi−1|αi),
where τi−1 = (α1, β1, . . . , αi−1, βi−1).

Figure 1: The Non-Interactive Argument ΠHFS
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4.2.1 The Fiat-Shamir Paradigm for History-Independent Protocols

Suppose that Π is a ν-history-independent interactive proof (Definition 4.3).20 We consider the
following history-independent version of the Fiat-Shamir transformation, where we let n be the
communication complexity in ν + 1 rounds of the protocol Π. For every i ∈ [`], rather than
computing βi as the hash of the entire transcript so far, it is computed by hashing the most recent ν
rounds:

βi = H(ki, τ[i−ν,i−1]|αi),

The formal description is included in Figure 2.

ν-History-Independent Version of ΠHFS

Fix an input length |x| and let λ = λ(|x|).

• The common reference string CRS consists of ` keys {ki ← H.Gen(1λ)}i∈[`].

• The prover P ′ takes as input (CRS, x) and does the following:

1. Set i = 1 and τ0 = ∅.
2. Compute αi ← P (x, τ[i−ν,i−1]) and βi = H.Hash(ki, τ[i−ν,i−1]|αi).

3. Set τi = (τi−1|αi|βi).

4. If i = ` then output τi. Otherwise, set i = i+ 1 and go to Item 2.

• The verifier V ′ takes as input (CRS, x, τ) and does the following:

1. Parse CRS = (k1, . . . , k`) and τ = (α1, β1, . . . , α`, β`).

2. Accept if and only if V (x, τ) = 1 and for every i ∈ [`] it holds that βi =
H.Hash(ki, τ[i−ν,i−1]|αi).

Figure 2: The ν-History-Independent Version of ΠHFS

4.3 The Soundness of the Fiat-Shamir Paradigm for FS-Compatible Interactive Proofs

In this section, we prove that the (ν-history-independent) Fiat-Shamir paradigm is sound when
applied to (ν-history-independent) FS-compatible interactive proofs.

Theorem 4.5. Let Π = (P, V ) be a (T ′, d, ρ)-FS-compatible interactive proof (Definition 4.2) that is ν-
history-independent (Definition 4.4) for some language L, where ρ is a polynomial function. Let ` be an
arbitrary function such that Π has ` = `(λ) rounds. Denote the verifier’s messages by β1, . . . , β` ∈ {0, 1}λ,
denote the overall prover runtime by TP (λ) and the verification time by TV (λ).

Let n be an upper bound on the communication complexity of any ν + 1 rounds of Π. Suppose that
there exists a (T, T ′, ω)-lossy CI hash function family H = {Hλ}λ∈N (Definition 3.6) for the family F
consisting of all functions computable by circuits of size ρ(λ). Moreover, suppose that the functions inHλ
map inputs in {0, 1}n(λ) to outputs in {0, 1}λ, and that T ′(λ) ≥ `(λ) and T ≥ max{d, 2ν(n−ω), T ′}. Then

20Note that every Π is ν-history-independent for some ν ≤ `− 1.
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the resulting non-interactive protocol ΠHFS, obtained by applying the ν-history-independent Fiat-Shamir
transform to Π w.r.t. the hash familyH (Figure 2), has the following properties:

• Completeness. If Π has completeness 1, then ΠHFS also has completeness 1.

• T ′-Soundness. For any poly(T ′)-size cheating prover P ∗, there exists a negligible function µ such
that for every x∗ 6∈ L and λ = λ(|x∗|),

Pr
CRS←Setup(1λ)
τ∗←P ∗(CRS)

[(V HFS(CRS, x∗, τ∗) = 1)] = µ(T ′(λ)).

• Efficiency. There exists a polynomial p that depends on the lossy CI hash familyH such that the total
verifier runtime is `(λ) · p(ρ(λ)) + TV (λ) and the total prover runtime is `(λ) · p(ρ(λ)) + TP (λ).

The remainder of this section is devoted to the proof of Theorem 4.5.

Proof of Theorem 4.5. Fix an interactive proof Π = (P, V ) for a language L which is ν-history in-
dependent (T ′, d, ρ)-FS-compatible, and fix a (T, T ′, ω)-lossy CI hash family H for the family F
consisting of all functions computable by circuits of size ρ(λ). Assume that

T ′(λ) ≥ `(λ) and T ≥ max{d, 2ν(n−ω), T ′}.

Completeness. Completeness is easy to see and follows directly from the completeness of the
original protocol Π.

T ′-Soundness. Assume for the sake of contradiction that there exists a poly(T ′)-size prover P ∗, a
polynomial p′, and an infinite set X of x∗ 6∈ L such that for each x∗ ∈ X and λ = λ(|x∗|),

Pr
CRS←Setup(1λ)
τ∗←P ∗(CRS)

[(V HFS(CRS, x∗, τ∗) = 1)] ≥ 1

p′(T ′(λ))
.

We assume w.l.o.g. that for every distinct x1, x2 ∈ X it holds that λ(|x1|) 6= λ(|x2|). This gives an
infinite set Λ ⊆ N such that for every λ ∈ Λ, there is x∗λ 6∈ L such that λ = λ(|x∗λ|), and

Pr
CRS←Setup(1λ)
τ∗←P ∗(CRS)

[(V HFS(CRS, x∗λ, τ
∗) = 1)] ≥ 1

p′(T ′(λ))
.

Parse the proof that P ∗ outputs as τ∗ = (α∗1, β
∗
1 , . . . , α

∗
` , β
∗
` ). By the round-by-round soundness

property of the underlying interactive protocol Π, there exists a T ′-time computable function State
satisfying Definition 4.1. This, together with the equation above implies that for every λ ∈ Λ,

Pr
CRS←Setup(1λ)
τ∗←P ∗(CRS)

[(State(x∗λ, ∅) = reject) ∧ (State(x∗λ, τ
∗) = accept)] ≥ 1

p′(T ′(λ))
.
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In what follows, for every j ∈ [`(λ)] we denote τ∗j , (α∗1, β
∗
1 , . . . , α

∗
j , β
∗
j ). By a standard hybrid

argument, for every λ ∈ Λ, there exists i = i(λ) ∈ [`(λ)] such that

Pr
CRS←Setup(1λ)
τ∗←P ∗(CRS)

[(State(x∗λ, τ
∗
i−1) = reject) ∧ (State(x∗λ, τ

∗
i ) = accept)] ≥ 1

`(λ) · p′(T ′(λ))
.

Let p(T ′(λ)) = `(λ) · p′(T ′(λ)). Our assumption that T ′(λ) ≥ `(λ) implies that p is bounded by a
polynomial. Fix i = i(λ), and let Ei(x∗λ, τ∗) denote the event that

(State(x∗, τ∗i−1) = reject) ∧ (State(x∗, τ∗i ) = accept).

Thus, for every λ ∈ Λ,

Pr
CRS←Setup(1λ)
τ∗←P ∗(CRS)

[Ei(x∗λ, τ∗)] ≥
1

p(T ′(λ))
. (5)

Recall that Setup samples kj ← H.Gen(1λ) for j ∈ [`]. We define an alternative (non-uniform)
algorithm, Setup′ = {Setup′λ}λ∈N that generates the CRS as follows: For every λ ∈ Λ, Setup′λ has i(λ)
hardwired into it, and it samples kj ← H.LossyGen(1λ) for j ∈ [i− 1] and kj ← H.Gen(1λ) for j ∈
[i, `]. We let Setup′λ = Setup(1λ) for all λ ∈ N \ Λ.

The first thing we show is that we can switch from generating the CRS using Setup to using
Setup′, and the probability of event Ei(x∗λ, τ∗) occurring is still non-negligible.

Claim 4.6. For every large enough λ ∈ Λ,

Pr
CRS←Setup′λ
τ∗←P ∗(CRS)

[Ei(x∗λ, τ∗)] ≥
1

2p(T ′(λ))
.

Proof. Suppose for contradiction that there is an infinite set Λ0 ⊆ Λ such that for every λ ∈ Λ0,

Pr
CRS←Setup′λ
τ∗←P ∗(CRS)

[Ei(x∗λ, τ∗)] <
1

2p(T ′(λ))
.

This, together with Equation (5), implies that for every λ ∈ Λ0,

Pr
CRS←Setup(1λ)
τ∗←P ∗(CRS)

[Ei(x∗λ, τ∗)]− Pr
CRS←Setup′λ
τ∗←P ∗(CRS)

[Ei(x∗λ, τ∗)] >
1

2p(T ′(λ))
. (6)

For every λ ∈ Λ0 and for i = i(λ), consider the following series of alternative setup algorithms
{Setupλ,j}ij=0, where Setupλ,j generates the CRS as follows:

Setupλ,j : kι ← H.LossyGen(1λ) for ι ∈ [j − 1]

kι ← H.Gen(1λ) for ι ∈ [j, `].

Note that Setupλ,1 = Setup(1λ) and Setupλ,i = Setup′λ. Thus, Equation (6), together with a standard
hybrid argument, implies that for every λ ∈ Λ0 there exists j = j(λ) such that∣∣∣∣∣ Pr

CRS←Setupλ,j
τ∗←P ∗(CRS)

[Ei(x∗λ, τ∗)]− Pr
CRS←Setupλ,j+1

τ∗←P ∗(CRS)

[Ei(x∗λ, τ∗)]

∣∣∣∣∣ ≥ 1

2`(λ) · p(T ′(λ))
.
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Algorithm A = {Aλ}λ∈N is defined as follows: For every λ ∈ Λ, Aλ has the values j = j(λ)
and x∗λ hardwired. Aλ takes as input a key k (generated either by k ← H.LossyGen(1λ) or by
k ← H.Gen(1λ)) and does the following:

• Sample kι ← H.LossyGen(1λ) for ι ∈ [j − 1].

• Sample kι ← H.Gen(1λ) for ι ∈ [j + 1, `].

• Set CRS = (k1, . . . , kj−1, k, kj+1, . . . , k`).

• Compute τ∗ = P ∗(CRS).

• Output b = Ei(x∗λ, τ∗).

Figure 3: Algorithm A that breaks the T ′-key indistinguishability property ofH.

We construct a (non-uniform) adversary A that uses P ∗ to break the T ′-key indistinguishability
property of our lossy CI hash family (Definition 3.6). Algorithm A is defined in Figure 3.

Note that Aλ runs in time poly(T ′(λ)), since P ∗λ is of size poly(T ′(λ)) and Ei(x∗λ, τ∗) can be
checked in poly(T ′(λ)) time, since State is computable in time poly(T ′) (this follows from the fact
that Π is (T ′, d, ρ)-FS-compatible).

By the definition of A, for every λ ∈ Λ0,∣∣∣∣∣ Pr
k←Gen(1λ)

[A(k) = 1]− Pr
k←LossyGen(1λ)

[A(k) = 1]

∣∣∣∣∣
=

∣∣∣∣∣ Pr
CRS←Setupλ,j
τ∗←P ∗(CRS)

[Ei(x∗λ, τ∗)]− Pr
CRS←Setupλ,j+1

τ∗←P ∗(CRS)

[Eu(x∗λ, τ
∗)]

∣∣∣∣∣ ≥ 1

2`(λ) · p(T ′(λ))
.

This, together with our assumption that T ′(λ) ≥ `(λ), implies that A breaks the T ′-key indistin-
guishability property ofH, thus reaching a contradiction.

Next, we show that we can guess the values of β∗[i−ν,i−1] in the transcript such that the probability
that these values were guessed correctly and event Ei(x∗λ, τ∗) occurs is not too small (non-negligible
in T (λ)).

Claim 4.7. There exists a polynomial q, and for every λ ∈ Λ there exist k1, . . . , ki(λ)−1 ∈ H.LossyGen(1λ)
and values β[i−ν,i−1] = (βi−ν , . . . , βi−1), where βj ∈ H.LossyGen(kj , ·) for every j ∈ [i− ν, i− 1], such
that for every λ ∈ Λ and for i = i(λ),

Pr
ki,...k`←H.Gen(1λ)
τ∗←P ∗(k1,...,k`)

[
Ei(x∗λ, τ∗) ∧ (β∗[i−ν,i−1] = β[i−ν,i−1])

]
≥ 1

q(T (λ))
,

where we parse τ∗ = (α∗1, β
∗
1 , . . . , α

∗
` , β
∗
` ).
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Proof. This claim follows from Claim 4.6 and from the ω-lossiness ofH, as follows.
Claim 4.6, together with a standard averaging argument, implies that for every λ ∈ Λ, there

exist k1, . . . , ki−1 ∈ H.LossyGen(1λ) such that

Pr
ki,...k`←H.Gen(1λ)
τ∗←P ∗(k1,...,k`)

[Ei(x∗λ, τ∗)] ≥
1

2p(T ′(λ))
.

The ω-lossiness ofH implies that for every j ∈ [i− 1], the set {H.LossyGen(kj , x)}x∈{0,1}n is of size
≤ 2n−ω. This, together with the equation above, implies that there exists β[i−ν,i−1] = (βi−ν , . . . , βi−1),
where βj ∈ H.LossyGen(kj , ·) for every j ∈ [i− ν, i− 1], such that

Pr
ki,...k`←H.Gen(1λ)
τ∗←P ∗(k1,...,k`)

[
Ei(x∗λ, τ∗) ∧ (β∗[i−ν,i−1] = β[i−ν,i−1])

]
≥ 1

2p(T ′(λ))
· 1

2ν(n−ω)
.

Finally, from our assumption that T ≥ max{2ν·(n−ω), T ′}, there exists a polynomial q such that

1

2p(T ′(λ))
· 1

2ν(n−ω)
≥ 1

q(T (λ))
.

Finally, we use the T -CI property ofH (Definition 3.4) to reach a contradiction.

Claim 4.8. For every λ ∈ Λ, fix any values of k1, . . . , ki(λ)−1 ∈ H.LossyGen(1λ) and any β[i−ν,i−1] =
(βi−ν , . . . , βi−1), where βj ∈ H.LossyGen(kj , ·) for every j ∈ [i− ν, i− 1]. Then there exists a negligible
function µ such that for every λ ∈ Λ and i = i(λ),

Pr
ki,...k`←H.Gen(1λ)
τ∗←P ∗(k1,...,k`)

[
Ei(x∗λ, τ∗) ∧ (β∗[i−ν,i−1] = β[i−ν,i−1])

]
≤ µ(T (λ)),

where we parse τ∗ = (α∗1, β
∗
1 , . . . , α

∗
` , β
∗
` ).

Proof. This claim follows from the T -CI property of H, as follows. For every λ ∈ Λ, fix any
(k1, . . . , ki(λ)−1) and β[i−ν,i−1] as in the claim statement. Suppose for the sake of contradiction that
there exists a polynomial q′ and an infinite set Λ0 ⊆ Λ such that for every λ ∈ Λ0 and for i = i(λ),

Pr
ki,...k`←H.Gen(1λ)
τ∗←P ∗(k1,...,k`)

[
Ei(x∗λ, τ∗) ∧ (β∗[i−ν,i−1] = β[i−ν,i−1])

]
≥ 1

q′(T (λ))
. (7)

Recall that the event Ei(x∗λ, τ∗) occurs when

State(x∗λ, τ
∗
i−1) = reject ∧ State(x∗λ, τ

∗
i ) = accept.

This happens only if β∗i ∈ Bx∗λ,τ∗i−1|α∗i , where

Bx∗λ,τ∗i−1|α∗i = {β′i : State(x∗λ, τ
∗
i−1|α∗i |β′i) = accept}.
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Therefore, we can rewrite equation (7) as

Pr
ki,...k`←H.Gen(1λ)
τ∗←P ∗(k1,...,k`)

 (State(x∗λ, τ
∗
i−1) = reject)

∧ (β∗i ∈ Bx∗λ,τ∗i−1|α∗i )

∧ (β∗[i−ν,i−1] = β[i−ν,i−1])

 ≥ 1

q′(T (λ))
. (8)

In what follows, we construct a poly(T )-size adversary A and a function f = {fλ} computable
by a circuit of size ρ(λ), such that for every λ ∈ Λ0,

Pr
k←H.Gen(1λ)
x←A(k)

[H.Hash(k, x) = f(x)] ≥ 1

poly(T (λ))
,

contradicting the T -CI property of H. To this end, we use the ν-history-independent properties
of BAD and State (Definition 4.4). Recall that BADx∗λ,β∗[i−ν,i−1]

is a function that has hardwired
a non-uniform advice that is a deterministic (possibly inefficient) function of (x∗λ, β

∗
[i−ν,i−1]). It

takes as input (αi−ν , . . . , αi) and randomness r ← {0, 1}∗, and outputs an element β such that if
State(x∗λ, τi−1) = reject for

τi−1 = (αi−ν , β
∗
i−ν , . . . , αi−1, β

∗
i−1),

then with probability 1− negl(λ), β is a uniformly random element in the set

Bx∗λ,τi−1|αi = {βi : State(x∗λ, τi−1|αi|βi) = accept}.

We define for every randomness r ∈ {0, 1}∗ the (deterministic) function fr:

fr(αi−ν , . . . , αi) = BADx∗λ,β
∗
[i−ν,i−1]

(αi−ν , . . . , αi; r). (9)

By Definition 4.2, for every αi−ν , . . . , αi and every β ∈ Bx∗λ,τi−1|αi , and denoting

τi−1 = (αi−ν , β
∗
i−ν , . . . , αi−1, β

∗
i−1),

then

Pr
r←{0,1}∗

[fr(αi−ν , . . . , αi) = β | State(x∗λ, τi−1|αi|β) = accept] =
1− negl(λ)

d(λ)
.

This, combined with Equation (8), implies that

Pr
ki,...k`←H.Gen(1λ)
τ∗←P ∗(k1,...,k`)

r←{0,1}∗

 (State(x∗λ, τ
∗
i−1) = reject)

∧ (β∗i = fr(α
∗
i−ν , . . . , α

∗
i ))

∧ (β∗[i−ν,i−1] = β[i−ν,i−1])

 ≥ 1− negl(λ)

d(λ)
· 1

q′(T (λ))
.

Recall that it is assumed that d(λ) ≤ T (λ), which implies that there exists a polynomial q such that
the above probability is ≥ 1

q(T (λ)) .
This implies that there exists r∗ and thus fr∗ , which runs in time ρ(λ), such that

Pr
ki,...k`←H.Gen(1λ)
τ∗←P ∗(k1,...,k`)

 (State(x∗λ, τ
∗
i−1) = reject)

∧ (β∗i = fr∗(α
∗
i−ν , . . . , α

∗
i ))

∧ (β∗[i−ν,i−1] = β[i−ν,i−1])

 ≥ 1

q(T (λ))
. (10)
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Adversary A = {Aλ}λ∈N for breaking the T -CI property ofH.

The adversary Aλ has all the values k1, . . . , ki−1, β[i−ν,i−1] (which were fixed above) hardwired. Upon
receiving an input k, Aλ does the following:

1. For every j ∈ [i+ 1, `] choose at random kj ← H.Gen(1λ).

2. Set CRS = (k1, . . . , ki−1, k, ki+1, . . . , k`).

3. Compute τ∗ = P ∗(CRS).

4. Parse τ∗ = (α∗1, β
∗
1 , . . . , α

∗
` , β
∗
` ).

5. If β∗[i−ν,i−1] 6= β[i−ν,i−1], then abort.

6. Else output (α∗i−ν , β
∗
i−ν , . . . , α

∗
i−1, β

∗
i−1, α

∗
i ).

Figure 4: Breaking the T -CI property ofH

We next use P ∗ to construct an adversaryA that breaks the T -CI property ofHw.r.t. the function
fr∗ . To ensure that the domains of fr∗(·) and H.Hash(ki, ·) are equal, we think of fr∗ as taking as
input (αi−ν , βi−ν , . . . , αi−1, βi−1, αi), ignoring (βi−ν , . . . , βi−1), and outputting fr∗(αi−ν , . . . , αi).
The adversary A is defined in Figure 4.

By Equation (10), with probability 1/poly(T ′(λ)) the adversary Aλ(k) outputs

(α∗i−ν , β
∗
i−ν , . . . , α

∗
i−1, β

∗
i−1, α

∗
i )

such that

β∗i = H.Hash(k, α∗i−ν , β
∗
i−ν , . . . , α

∗
i−1, β

∗
i−1, α

∗
i ) = fr∗(α

∗
i−ν , β

∗
i−ν , . . . , α

∗
i−1, β

∗
i−1, α

∗
i ),

contradicting the T -CI property ofH.

Finally, we obtain our desired contradiction, by noting that Claims 4.7 and 4.8 are contradictory.

Efficiency. We note that the prover and verifier runtime in the protocol ΠHFS is at least as large as
their respective runtimes, TP (λ) and TV (λ), in the underlying protocol Π. The main difference is
that in ΠHFS both the prover and the verifier are required to compute the hash functionH.Hash for
each round of the protocol. Recall that the evaluation time of the hash function is polynomially
related to the size of the functions fr ∈ Fλ, which is identical to the size of the function BAD (see
Equation (9)), which is ρ(λ). Therefore, there exists a polynomial poly specified by the hash function
H such that the time needed to run theH.Hash algorithm is poly(ρ(λ)). We conclude that the overall
verifier runtime is ` · poly(ρ(λ)) + TV (λ) and the prover runtime is ` · poly(ρ(λ)) + TP (λ).

5 The Sum-Check Protocol is FS-Compatible

In this section we prove that the sum-check protocol is FS-compatible (Definition 4.2). We start by
recalling the sum-check protocol [LFKN92, Sha92].
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The Sum-Check Protocol. In the sum-check protocol, a (not necessarily efficient) prover takes as
input an `-variate polynomial g : F` → F of degree ≤ d in each variable over a finite field F,21 and a
subset B ⊂ F. Its goal is to convince a verifier that∑

(b1,...,b`)∈B`
g(b1, . . . , b`) = v

for some element v ∈ F. The verifier only has oracle access to g, and is given the constant v ∈ F. It
is required to be efficient in both its running time and its number of oracle queries. In Figure 5, we
review the sum-check protocol from [LFKN92, Sha92]. We denote this protocol by

(
PSC(g), V g

SC(v)
)
.

We always assume that the field operations can be performed in time polylog(|F|).

Sum-Check Protocol for
∑
b1,...,b`∈B g(b1, . . . , b`) = v

1. Set i = 1.

2. PSC computes the univariate polynomial gi : F→ F defined by

gi(·) ,
∑

bi+1,...,b`∈B

g(t1, . . . , ti−1, ·, bi+1, . . . , b`),

and sends gi to VSC.

3. VSC checks that gi is a univariate polynomial of degree at most d, and that

∑
b∈B

gi(b) =

{
v i = 1

gi−1(ti−1) i > 1.

If not, VSC rejects.

4. If i < `, VSC chooses a random element ti ∈R F and sends ti to PSC. Set i = i + 1 and go back to
step 2.

5. If i = `, VSC chooses a random element t` ∈R F and checks that

g`(t`) = g(t1, . . . , t`)

by querying the oracle at the point (t1, . . . , t`).

Figure 5: Sum-check protocol (PSC(g), V g
SC(v)) [LFKN92, Sha92]

Lemma 5.1. [LFKN92, Sha92] Let g : F` → F be an `-variate polynomial of degree d in each variable. The
sum-check protocol (PSC, VSC) described in Figure 5 satisfies the following properties.

• Completeness. If
∑

(b1,...,b`)∈B` g(b1, . . . , b`) = v then

Pr
[(
PSC(g), V g

SC(v)
)

= 1
]

= 1.

21Think of d as significantly smaller than |F|.
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• Soundness. If
∑

(b1,...,b`)∈B` g(b1, . . . , b`) 6= v then for every (unbounded) interactive prover P ∗,

Pr
[(
P ∗(g), V g

SC(v)
)

= 1
]
≤ `d

|F|
.

• Efficiency. VSC has oracle access to g : F` → F. The prover PSC(g) runs in time ≤ poly(|B|`, Tg),
where Tg is the time it takes to evaluate g.22 The verifier V g

SC(v) runs in time ≤ poly(|B|, log|F|, `, d),
and queries the oracle g at a single point. The communication complexity is ≤ poly(|B|, log|F|, `, d),
and the total number of bits sent from the verifier to the prover is O(` · log|F|). Moreover, this protocol
is public-coin; i.e., all the messages sent by the verifier are truly random and consist of the verifier’s
random coin tosses.

The Sum-Check Protocol is FS-compatible.

Theorem 5.2. Fix any ε > 0, and let T ′(λ) = 2λ
ε . Then there exists a polynomial ρ such that the interactive

sum-check protocol (Figure 5) is (T ′, d, ρ)-FS-compatible according to Definition 4.2, assuming the instances
are multi-variate polynomials of individual degree d over a field F, and assuming

log|F|≥ max{d, (` · log(|B|·d))2/ε}, (11)

where ` is the number of variables in the instance polynomial, and B is the set we sum over.

Proof. We define the functions State and BAD in the definition of FS compatibility.
To this end fix an input x = (g, v), where g : F` → F is an `-variate polynomial of individual

degree d, and where v ∈ F. Recall that each verifier message is a random field element ti ← F and
each prover message is a univariate polynomial gi : F→ F of degree d.

The function State. For every x = (g, v) and every τ = (g∗1, t1, . . . , g
∗
i , ti), where t1, . . . , ti ∈ F,

State(x, τ) ignores (g∗1, . . . , g
∗
i−1) and does the following:

1. If τ = ∅, perform the following check: If v =
∑

b1,...,b`∈B g(b1, . . . , b`) then output accept, and
otherwise output reject.

2. If g∗i is not a univariate degree at most d polynomial over F, output reject.

3. Compute
gi(·) =

∑
bi+1,...,b`∈B

g(t1, . . . , ti−1, ·, bi+1, . . . , b`). (12)

4. If gi(ti) = g∗i (ti), output accept, and otherwise output reject.

State is computable in time ≤ |B|`·Tg · poly(λ), where Tg is the time it takes to evaluate g and
λ , log|F|. Note that Tg ≤ d` · polylog(|F|) = d` · poly(λ), which implies that State is computable in
time

T ′(λ) = (|B|·d)` · poly(λ) ≤ 2λ
ε
,

as desired, where the latter inequality follows from the assumption that

λ , log|F|≥ (` · log(|B|·d))2/ε.

(T ′, d)-Round-by-round soundness is thus established by observing that State trivially satisfies
the other three conditions (Items (1)-(3) in the definition of round-by-round soundness).

22We assume that Tg is larger than d and log|F|.
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The function BAD. Given (x, t1, . . . , ti−1), where x = (g, v), compute the advice gi as in Equa-
tion (12). The function BADgi , on input (g∗1, . . . , g

∗
i ), ignores (g∗1, . . . , g

∗
i−1), and does the following:

1. If g∗i is not a univariate degree at most d polynomial over F then output ⊥.

2. Otherwise, output a random root of the polynomial gi − g∗i , using the Cantor-Zassenhaus
algorithm [CZ81].

Note that BADgi can be computed in time poly(d, log|F|) = poly(λ), which follows from the fact that
λ , log|F|≥ d.

It remains to argue that for every τ , (g∗1, t1, . . . , g
∗
i−1, ti−1) such that State(x, τ) = reject, and ev-

ery g∗i , with probability 1−negl(λ) (over the randomness of BADgi), it holds that BADgi(g
∗
1, . . . , g

∗
i ) =

BADgi(g
∗
i ) outputs a uniformly random element in the set

B = {ti : State(x, τ |g∗i |ti) = accept}.

To this end, note that by definition of State,

B = {t : gi(t) = g∗i (t)}

where gi is defined in Equation (12) above. Indeed by definition, BADgi(g
∗
i ) outputs a random

element in B with overwhelming probability,23 as desired.

Corollary 5.3. Assuming the sub-exponential hardness of LWE, there exists a hash family H such that
the non-interactive argument obtained by applying the Fiat-Shamir transform to the sum-check protocol,
with the hash family H, is sound assuming the field size in the sum-check protocol instance satisfies
Equation (11) (for a small enough constant ε > 0). The resulting non-interactive argument has the following
efficiency guarantees: the prover runs in time poly(|B|`, Tg),24 where Tg is the time it takes to compute the
`-variate polynomial g that we are summing over. The verifier runs in time poly(|B|, log|F|, `, d), and the
communication complexity is poly(|B|, log|F|, `, d).

Proof. Assume the sub-exponential hardness of LWE. By Corollary 3.8, there exists a constant
0 < ε1 < 1 and for every constant 0 < δ < 1 there exists a constant 0 < ε2 < 1 such that the
following holds: For any polynomial S and any hash family F consisting of functions computable
by circuits of size S, there exists a (T, T ′, ω)-lossy CI hash family for F , where T = 2λ

ε1 , T ′ = 2λ
ε2 ,

and ω = n− λδ.
Fix δ = ε1/2, which fixes ε2 above. Assume w.l.o.g. that ε2 ≤ ε1 (otherwise set ε2 = ε1). By

Theorem 5.2, applied with ε = ε2, there exists a polynomial ρ such that the sum-check protocol is
(T ′, d, ρ)-FS-compatible (assuming the field size satisfies Equation (11) w.r.t ε = ε2). By Theorem 4.5,
the non-interactive argument obtained by applying the Fiat-Shamir transform to the sum-check
protocol, with a (T, T ′, ω)-lossy CI hash family, is sound if T ′(λ) ≥ `(λ) and T ≥ max(d, 2ν(n−ω), T ′).
The former follows trivially from the fact that ` ≤ λε2 , which in turn follows from Equation (11))
together with the fact that λ = log|F|. The latter follows from the following calculations: The fact
that T ≥ d follows from Equation (11); the fact that T ≥ T ′ follows from our assumption that

23The negligible probability of error follows from the Cantor-Zassenhaus algorithm, which is a randomized algorithm
that has a negligible probability of error.

24We assume that Tg is larger than d and log|F|.
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ε1 ≥ ε2; the fact that T ≥ 2ν(n−ω) follows from the fact that λε1 ≥ ν(n− ω), which follows from the
fact that n − ω = λδ = λε1/2 together with the fact that ν = ` ≤ λε2/2 ≤ λε1/2 (where the former
inequality follows from Equation (11)).

The efficiency conditions follows from combining the efficiency guarantees of the sum-check
protocol given in Lemma 5.1 with the efficiency guarantees given in Theorem 4.5.

6 The GKR Protocol is FS-Compatible

In this section we prove that the GKR protocol is ν-history-independent FS-compatible (Defini-
tion 4.4) for a polynomial ν(λ) = poly(λ). We start by recalling the GKR protocol in Section 6.1. We
then prove that this protocol is ν-history-independent FS-compatible in Section 6.2.

6.1 The GKR Protocol

The GKR protocol is a publicly verifiable interactive proof for proving the correctness of log-space
uniform bounded depth computations. The main ingredient used in the GKR protocol is the
sum-check protocol (defined in Figure 5). It relies on the low-degree extension encoding, defined
below.

Low Degree Extension. Let F be a field and let B ⊆ F be a set. As in Section 5, we always assume
that field operations can be performed in time polylog(|F|). Fix an integer m ∈ N.

A basic fact is that for any function W : Bm → F, there exists a unique extension of W into a
function Ŵ : Fm → F which agrees with W on Bm (i.e. Ŵ |Bm≡ W ), such that Ŵ is an m-variate
polynomial of degree at most |B|−1 in each variable. This function Ŵ is called the low degree
extension of W . Moreover, the function Ŵ can be expressed as

Ŵ (t1, . . . , tm) =
∑

b1,...,bm∈B
ÊQ(t1, . . . , tm; b1, . . . , bm) ·W (b1, . . . , bm), (13)

where ÊQ : Fm × Fm → F is the low degree extension of the function EQ : Bm ×Bm → {0, 1} that,
on input (t1, . . . , tm; b1, . . . , bm), compares t = (t1, . . . , tm) with b = (b1, . . . , bm) and outputs 1 if
and only if t = b. We can explicitly write ÊQ as follows:

ÊQ(t1, . . . , tm; b1, . . . , bm) =
m∏
i=1

∑
α∈B

∏
β∈B\{α}

(β − ti)(β − bi)
(β − α)2

.

It’s not hard to check that ÊQ can be evaluated in time poly(m, |B|, log|F|), has degree at most |B|−1

in each variable, and, restricted to the domain Bm ×Bm, ÊQ(t; b) = 1 if t = b and 0 otherwise.

Proposition 6.1. Given a field F, a subset B ⊆ F, and an integer m, the 2m-variate polynomial ÊQ :

Fm × Fm → F can be constructed in time poly(m, |B|, log |F|). Furthermore, ÊQ can be evaluated in time
poly(m, |B|, log |F|).

Evaluating the low degree extension of a function can be done via Equation (13) by summing
over |B|m values.

Proposition 6.2. Given a field F, a subset B ⊆ F, an integer m, and a function W : Bm → F (given as a
truth-table), for any t ∈ Fm, the value of Ŵ (t) can be computed in time |B|m·poly(m, |B|, log|F|).
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6.1.1 The GKR Protocol.

The GKR protocol is a publicly verifiable interactive proof for proving the correctness of log-space
uniform bounded depth computations. Fix any log-space uniform circuit C : {0, 1}N → {0, 1} of
size S and depth D. Let B ⊆ F and m ∈ N, where F is an extension field of GF[2] for which addition
and multiplication in F can be done in time polylog(|F|), and where S ≤ |B|m≤ poly(S). A typical
choice is |B|= polylog(S) and m = logS

log log(S) , or |B|= 2 and m = logS.

Notations and Assumptions. We make the following assumptions (without loss of generality):

1. C is an arithmetic circuit over F.

2. C is a layered circuit of fan-in 2. Namely, the gates in C can be (uniquely) partitioned into
layers such that the inputs to a gate in layer i are the outputs of gates in layer i− 1. Layer 0 is
the input layer, and layer D is the output layer.

3. Each layer has exactly S gates (we pad all the layers which consist of less than S gates,
including the input and output layers).

For each layer i ∈ [D], we assign each of the S gates a distinct label in Bm. We associate with
each layer i ∈ [D] two functions

addi,multi : B3m → {0, 1},

where, for ω1, ω2, ω3 ∈ Bm, addi(ω1, ω2, ω3) = 1 if and only if ω1 is an addition gate in layer i
applied to gates ω2 and ω3, which are in layer i− 1. Similarly, multi(ω1, ω2, ω3) = 1 if and only if ω1

is a multiplication gate in layer i applied to gates ω2 and ω3 in layer i− 1.
It will be convenient to work with circuits for which there are (not necessarily lowest degree)

extensions ãddi, m̃ulti : F3m → F that agree with addi and multi onB3m, and which can be evaluated
quickly (in time poly(logS, log|F|)). It is not known if such extensions of addi and multi exist for
any given log-space uniform circuit C. But it was shown by Goldreich [Gol18] that any log-space
uniform circuit C can be converted into a slightly larger circuit C ′ computing the same function,
for which such extensions do exist.

Proposition 6.3. [Gol18] For any log-space uniform circuit C : {0, 1}N → {0, 1} of size S and depth D,
there is a circuit C ′ of size S′ = poly(S) and depth D′ = D · polylog(S), such that the following holds:

1. For every x ∈ {0, 1}N , C(x) = C ′(x).

2. For any B′ and m′ such that S′ ≤ B′m
′
≤ poly(S′), denote by

add′i,mult′i : B′
3m′ → {0, 1},

the functions corresponding toC ′,B′, andm′, as defined above. Then there exist degree≤ poly(m′, |B′|)
polynomials

ãdd′i, m̃ult′i : F3m′ → F

such that ãdd′i|B′3m′≡ add′i and m̃ult′i|B′3m′≡ mult′i, and both these polynomials can be evaluated by
arithmetic circuits that are constructible and evaluable in time poly(m′, |B′|, log|F|).
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In what follows, we only consider circuitsC for which ãddi and m̃ulti are both degree poly(m, |B|)
polynomials that are evaluable in time poly(m, |B|, log|F|), knowing that it is easy to convert any
log-space uniform circuit into such a circuit.

Fix an input x ∈ {0, 1}N . For each i ∈ {0, 1, . . . , D}, we associate a function

Vi : Bm → {0, 1}

so that Vi(ω) is the value of the gate ω in the i’th layer of the circuit C on input x. So, if ωout is the
output gate, we have that VD(ωout) = C(x). Let

V̂i : Fm → F

be the low-degree extension of Vi.

Overview of the GKR protocol. Suppose the prover wishes to prove that C(w) = 0, or equiva-
lently, that V̂D(ωout) = 0. This is done in D phases (where D is the depth of C). In the GKR protocol
(using the simplification from [Gol18]), in the i’th phase (1 ≤ i ≤ D) the prover reduces the task
of proving that V̂i(z) = v to the task of proving two equations: V̂i−1(z1) = v1 and V̂i−1(z2) = v2,
where z1, z2 are random elements in Fm determined by the random coin tosses of the verifier. This
is done by running the sum-check protocol.

In more detail, to go from layer i to layer i− 1, notice that for every p ∈ Bm,

V̂i(p) =
∑

ω1,ω2∈Bm
ãddi(p, ω1, ω2) ·

(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) ·

(
V̂i−1(ω1) · V̂i−1(ω2)

)
.

Thus, by Equation (13), for every z ∈ Fm,

V̂i(z) =
∑

p,ω1,ω2∈Bm
ÊQ(z; p) ·

 ãddi(p, ω1, ω2) ·
(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) ·

(
V̂i−1(ω1) · V̂i−1(ω2)

)
 .

For every z ∈ Fm, let fi,z : (Fm)3 → F be the function defined by

fi,z(p, ω1, ω2) , ÊQ(z; p) ·

 ãddi(p, ω1, ω2) ·
(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) ·

(
V̂i−1(ω1) · V̂i−1(ω2)

)
 . (14)

This means that for every z ∈ Fm,

V̂i(z) =
∑

p,ω1,ω2∈Bm
fi,z(p, ω1, ω2).

Note that fi,z is a 3m-variate polynomial of size ≤ poly(S) and degree ≤ poly(m, |B|). In the GKR
protocol, the prover and verifier run the sum-check protocol, and thus reduce the task of verifying
the statement V̂i(z) = v to verifying a statement of the form fi,z(p, ω1, ω2) = v′ for p, ω1, ω2 ∈ Fm
which are determined by the random coin tosses of the verifier.

Note that the verifier cannot compute the function fi,z on its own. However, by Proposition 6.1
and Proposition 6.3, he can compute efficiently the functions ÊQ, ãddi, and m̃ulti. Thus, to compute
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the value of fi,z(p, ω1, ω2), he only needs help in computing the values of V̂i−1(ω1) and V̂i−1(ω2).
Indeed, as mentioned above, the sum-check protocol reduces the task of verifying one claim of the
form V̂i(z) = v to verifying two claims of the form V̂i−1(w1) = v1 and V̂i−1(w2) = v2.

To avoid an exponential blowup in the number of equations that need to be checked, the task
of verifying that both V̂i−1(w1) = v1 and V̂i−1(w2) = v2 is reduced to the task of verifying a single
statement of the form V̂i−1(zi−1) = vi−1 by running a two-to-one protocol.

However, it was shown in [KPY18] that this two-to-one protocol is unnecessary. Rather, the
exponential blowup can be avoided by running two sum-check protocols in parallel, where the
verifier uses the same randomness in both sum-check protocols. More specifically, they show that
the task of proving two claims of the form V̂i(z

(1)
i ) = v

(1)
i and V̂i(z

(2)
i ) = v

(2)
i can be reduced to the

task of proving two claims of the form V̂i−1(z
(1)
i−1) = v

(1)
i−1 and V̂i−1(z

(2)
i−1) = v

(2)
i−1 , where z(1)i−1 and

z
(2)
i−1 are determined by the verifier’s random coin tosses. Finally, the verifier checks on its own

the value of V̂0 on two points z(1)0 and z(2)0 that are determined by the verifier’s randomness in the
sum-check protocols corresponding to the final layer, which can be done efficiently since it amounts
to computing two points on the low-degree extension of x.

We provide a formal description of this (slightly modified) GKR protocol in Figure 6.

Theorem 6.4. [KPY18] The GKR protocol described in Figure 6 has the following properties for any circuit
C : {0, 1}N → {0, 1} of size S and depth D, for which ãddi and m̃ulti are both degree poly(m, |B|)
polynomials that are evaluable in poly(m, |B|, log|F|) time.

• Completeness. For every w ∈ {0, 1}N such that C(w) = 0,

Pr[(PGKR, VGKR)(C,w) = 1] = 1.

• Soundness. For every w ∈ {0, 1}N such that C(w) 6= 0, and every P ∗,

Pr[(P ∗, VGKR)(C,w) = 1] ≤ poly(m · |B|) ·D
|F|

.

• Efficiency. The prover runs in time poly(S), the verifier runs in time (D + n) · polylog(S), and the
communication complexity is D · polylog(S), assuming log|F|= polylog(S).

Recall that Proposition 6.3 says that any log-space uniform circuit C can be converted into the
format necessarily for the above theorem statement (say, a to a circuit C ′), with a slight sacrifice
in circuit size and depth (S′ = poly(S) and D′ = D · polylog(S)). Thus, the GKR protocol gives a
delegation scheme for log-space uniform circuits as well, by running the GKR protocol on C ′.

6.2 The GKR Protocol is FS-Compatible

Theorem 6.5. Fix any ε > 0, and let T ′(λ) = 2λ
ε . Then there exists a polynomial ρ such that the interactive

GKR protocol (Figure 6) is ν-history-independent (T ′, d, ρ)-FS-compatible according to Definition 4.2, for
d ≤ poly(|B|,m) and ν = 6m, and assuming the extension field F satisfies that

log|F|≥ max{d, (logS)2/ε}, (15)

where S is the size of the circuit being delegated. We assume that this circuit satisfies the property that it has
degree ≤ poly(m, |B|) polynomials ãddi and m̃ulti that can be evaluated in poly(m, |B|, log|F|) time.25

25Recall that by Proposition 6.3 one can convert any log-space uniform circuit to one which has this property with
minimal blowup in parameters, and thus this assumption is practically without loss of generality.
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The GKR Protocol (PGKR, VGKR)(C,w)

Let F be an extension field of GF[2], let B ⊆ F and m ∈ N such that S ≤ |B|m= poly(S).
In this protocol, PGKR proves to VGKR that V̂D(ωout) = 0, where ωout ∈ Bm corresponds to the output wire.
This is done in D phases. For every i ∈ [D], in the i’th phase, the task of proving that V̂i(z

(b)
i ) = v

(b)
i for

b ∈ [2] is reduced to the task of proving that V̂i−1(z
(b)
i−1) = v

(b)
i−1 for b ∈ [2]. This is done as follows:

1. Set z(1)D = z
(2)
D = ωout and v(1)D = v

(2)
D = 0, and set i = D.

2. PGKR and VGKR run 2 sum-check protocols in parallel: (PSC(f
i,z

(b)
i

), V
f
i,z

(b)
i

SC (v
(b)
i )) for b ∈ [2], where

the verifier uses the same randomness in both sum-checks, and where for all i ∈ [D] and z ∈ Fm,
fi,z : F3m → F is defined as follows:

fi,z(p, ω1, ω2) = ÊQ(z, p) ·

 ãddi(p, ω1, ω2) ·
(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) ·

(
V̂i−1(ω1) · V̂i−1(ω2)

)
 ,

where p, ω1, ω2 ∈ Fm. Namely, the prover proves that for every b ∈ [2],

V̂i(z
(b)
i ) =

∑
p,ω1,ω2∈Bm

f
i,z

(b)
i

(p, ω1, ω2) = v
(b)
i .

At the end of this sum-check protocol, VGKR needs to check that for every b ∈ [2],

f
i,z

(b)
i

(p, ω1, ω2) = ρ
(b)
i ,

where p, ω1, ω2 ∈ Fm are random elements chosen by VSC in the sum-check protocol, and {ρ(b)i }b∈[2]
are values determined by the sum-check protocols.

3. VGKR asks the prover for the values of V̂i−1(ω1) and V̂i−1(ω2), and obtains values r1, r2.

4. VGKR checks that indeed for every b ∈ [2] it holds that

ρ
(b)
i = ÊQ(z

(b)
i , p) ·

(
ãddi(p, ω1, ω2) · (r1 + r2) + m̃ulti(p, ω1, ω2) · (r1 · r2)

)
,

by computing ÊQ(z
(b)
i , p), ãddi(p, ω1, ω2) and m̃ulti(p, ω1, ω2) on its own. If this is not the case it

rejects. Otherwise, if i ≥ 1, then go back to Item 2 with i = i− 1, with z(b)i = ωb and v
(b)
i = rb for

b ∈ {1, 2}.

5. If i = 0, VGKR checks on its own that indeed for every b ∈ {1, 2} it holds that V̂0(ωb) = rb, by
evaluating V̂0(ωb) =

∑
p∈[N ] ÊQ(ωb, p) · xp, where [N ] is the set of input wires.

Figure 6: The (slightly modified) GKR protocol (PGKR, VGKR) [GKR15, KPY18]

Proof. Fix any ε. Let d be the univariate degree of the polynomial fi,z as defined in Equation (14).
By the definition of fi,z , together with Proposition 6.3 and the definition of low-degree extension,
d ≤ poly(|B|,m). We prove that the GKR protocol is ν-history-independent (T ′, d, ρ)-FS-compatible,
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for ν = 6m, T ′(λ) = 2λ
ε
, d as above, and for ρ that will be determine below.26 To this end, we define

the functions State and BAD corresponding to the GKR protocol.
Fix an input x = (C,w), where w ∈ {0, 1}N and C is a circuit C : {0, 1}N → {0, 1} of size S and

depth D, where the polynomials ãddi and m̃ulti are degree ≤ poly(m, |B|) polynomials that can be
evaluated in poly(m, |B|, log|F|) time.

Recall that the GKR protocol is associated with parameters F, B,m, where F is an extension field
of GF[2], and B ⊆ F and m ∈ N are such that S ≤ |B|m≤ poly(S). The GKR protocol consists of D
sequential phases, where in the i’th phase, the prover and verifier run two sum-check protocols
in parallel, where the verifier uses the same randomness in both. Thus, each verifier message
is simply a random field element t ← F. Each of the sum-check protocols consist of 3m rounds
(since each polynomial fi,z is a 3m-variate polynomial), so the total number of rounds in the GKR
protocol is 3m · D.27 For every u ∈ [3m · D], parsing u = i · (3m) + j with i ∈ {0, 1, . . . , D} and
j ∈ {0, 1, . . . , 3m− 1}, denote by

τ = (τ̄1, . . . , τ̄i−1, (g
(b)
i,1 )b∈[2], ti,1, . . . , (g

(b)
i,j )b∈[2], ti,j), (16)

where for every α ∈ [i− 1]

τ̄α = ((g
(b)
α,1)b∈[2], tα,1, . . . , (g

(b)
α,3m)b∈[2], tα,3m, {r

(b)
D−α}b∈[2]),

and for every j′ ∈ [3m], (g
(b)
α,j′)b∈[2] are the two univariate polynomials that the prover sends in the

j’th round of the sum-checks in layer α of the GKR protocol, and tα,j′ is the random message sent
by the verifier in the j′ round of the same sum-checks. The elements {r(b)D−α}b∈[2] are the message
sent by the prover at the end of these sum-checks.

The function State. For any x = (C,w) and any transcript prefix τ as in Equation (16),

State(x, τ) = State(x, i, τi−1, (g
(b)
i,1 )b∈[2], ti,1, . . . , (g

(b)
i,j )b∈[2], ti,j)

does the following:

1. If i > 1 then let

z
(1)
D−(i−1) = (ti−1,m+1, . . . , ti−1,2m) ∈ Fm and z

(2)
D−(i−1) = (ti−1,2m+1, . . . , ti−1,3m) ∈ Fm

and let {r(b)D−(i−1)}b∈[2] be the prover’s last message in τi−1.

If i = 1 then let
z
(0)
D = z

(1)
D = ωout and r

(0)
D = r

(1)
D = 0.

2. If τ = (i, τi−1, ∅) then output accept if and only if for every b ∈ [2]

r
(b)
D−(i−1) = V̂D−(i−1)(z

(b)
D−(i−1)),

Otherwise output reject.
26The functions State and BAD, as we will describe below, will actually take in the most recent ≤ ν = 6m messages.

They can be viewed as functions of the last ν = 6m messages by disregarding the extra, unused messages.
27At the end of each sum-check, the prover will additionally send over a couple of values r(b)D−α. We can view this

additional prover message as being part of the first prover message for the next sum-check, so there are 3m rounds per
layer of the circuit C, rather than 3m+ 1.
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3. Recall that the inputs to the i’th phase (parallel) sum-checks are, for b ∈ [2],

V̂D−(i−1)(z
(b)
D−(i−1)) =

∑
p,ω1,ω2∈Bm

f
D−(i−1),z(b)

D−(i−1)

(p, ω1, ω2) = r
(b)
D−(i−1).

Otherwise, if j > 0, for every b ∈ [2], compute

gb(·) =
∑

bj+1,...,b3m∈B
fb(ti,1, . . . , ti,j−1, ·, bj+1, . . . , b3m). (17)

where
fb , f

D−(i−1),z(b)
D−(i−1)

. (18)

Accept if and only if for every b ∈ [2] it holds that gb(ti,j) = g
(b)
i,j (ti,j) and g(b)i,j is a univariate

polynomial of degree at most d.

Note that State only depends on the communication in the last two sum-checks, and thus is ν-
history-independent for ν = 6m. Moreover, note that it is computable in time 2|B|3m·Tf , where
Tf is the time it takes to compute f1 or f2. Recall that by definition λ = log|F|. Note that fb is
computable in time S ·polylog(|F|) and |B|m≤ poly(S), which imply that State is computable in time
poly(S).28 Together with the fact that log|F|≥ (logS)2/ε, this implies that T ′(λ) ≤ 2λ

ε
, as desired.

Round-by-round soundness is established by observing that State trivially satisfies the other
three conditions (Items (1)-(3) in the definition of round-by-round soundness).

The function BAD. Fix any (x, t̄), where

t̄ = (t̄1, . . . , t̄i−1, ti,1, . . . , ti,j)

for i ∈ {0, 1, . . . , D} and j ∈ {0, 1 . . . , 3m− 1}. For every α ∈ [i− 1],

t̄α = (tα,1, . . . , tα,3m),

denotes all of the verifier messages in the α’th phase of the GKR protocol, and ti,1, . . . , ti,j are the
first j verifier messages in the i’th layer of the GKR protocol. The function BAD depends only on
(x, i, t̄i−1, ti,1, . . . , ti,j), via advice (g1, g2), computed as follows:

1. If i > 1 then let

z
(1)
D−(i−1) = (ti−1,m+1, . . . , ti−1,2m) ∈ Fm and z

(2)
D−(i−1) = (ti−1,2m+1, . . . , ti−1,3m) ∈ Fm.

If i = 1 then let
z
(1)
D−(i−1) = z

(2)
D−(i−1) = ωout.

2. Output the advice (g1, g2), computed as in Equation (17).

The function BAD = BADg1,g2 , takes as input (ḡi−1, (g
(b)
i,1 )b∈[2], . . . , (g

(b)
i,j )b∈[2]), it ignores all its inputs

except for the last two polynomials (g∗1, g
∗
2) = (g

(1)
i,j , g

(2)
i,j ), and does the following:

28This follows from the fact that we always choose a field F such that log|F|< S.
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1. If g∗1 or g∗2 is not a univariate degree d polynomial over F then output ⊥.

2. Otherwise, for every b ∈ [2] let Rb denote the set of all roots of the polynomial gb − g∗b , and
output a random element in R1 ∩R2, using the Cantor-Zassenhaus algorithm [CZ81].

Note that BAD can be computed in time poly(d, logF) = poly(λ), where the latter equation follows
from the fact that λ , log|F|≥ d.

It remains to argue that for every partial transcript τ as in Equation (16) such that State(x, τ) =
reject, and for every (g∗1, g

∗
2) with probability 1 − negl(λ) (over the randomness of BADg1,g2),

BADg1,g2(g∗1, g
∗
2) outputs a uniformly random element in the set

B = {ti : State(x, τ |(g∗1, g∗2)|ti) = accept}.

To this end, note that by definition of State,

B = {t : ((g1(t), g2(t)) = (g∗1(t), g∗2(t))}

where g1 and g2 are defined in Equation (17). Indeed by definition, BADg1,g2(g∗1, g
∗
2) outputs a

random element in B with overwhelming probability,29 as desired.

Corollary 6.6. Assuming the sub-exponential hardness of LWE, there exists a hash familyH such that the
non-interactive argument, obtained by applying the Fiat-Shamir transform to the GKR protocol w.r.t. the
hash family H, is sound assuming the field size in the GKR protocol satisfies Equation (15) (for a small
enough constant ε > 0).

For a circuit C : {0, 1}N → {0, 1} of size S and depth D, for which ãddi and m̃ulti are both degree
poly(m, |B|) polynomials that are evaluable in poly(m, |B|, log|F|) time, the resulting non-interactive
argument has the following efficiency guarantees: the prover runs in time poly(S), the verifier runs in time
(D +N) · polylog(S), and the communication complexity is D · polylog(S).

Proof. Assume the sub-exponential hardness of LWE. By Corollary 3.8, there exists a constant
0 < ε1 < 1, such that for every constant 0 < δ < 1, there exists a constant 0 < ε2 < 1 such that the
following holds: For any polynomial S and any hash familyF consisting of functions computable by
circuits of size S, there exists a (T, T ′, ω)-lossy CI hash family forF , where T (λ) = 2λ

ε1 , T ′(λ) = 2λ
ε2 ,

and ω = n− λδ.
Fix δ = ε1/2, which fixes ε2 above. Assume w.l.o.g. that ε2 ≤ ε1 (otherwise set ε1 = ε2). By

Theorem 6.5, applied with ε = ε2, there exists a polynomial ρ such that the GKR protocol is ν-history
independent (T ′, d, ρ)-FS-compatible, for d = poly(|B|,m) and ν = 6m (assuming the field size
satisfies Equation (15) w.r.t. ε = ε2). By Theorem 4.5, the non-interactive argument obtained by
applying the Fiat-Shamir transform to the GKR protocol, with a (T, T ′, ω)-lossy CI hash family, is
sound if T ′ ≥ 3mD and T ≥ max(d, 2ν(n−ω), T ′). The former inequality holds by Equation (15)
together with the fact that λ = log|F|. The latter inequality holds via the following calculations: the
fact that T ≥ d follows from Equation (15); the fact that T ≥ T ′ follows from our assumption that
ε1 ≥ ε2; the fact that T ≥ 2ν(n−ω) follows from the fact that λε1 ≥ ν(n− ω), which follows from the
fact that n− ω = λδ = λε1/2 together with the fact that ν = 6m ≤ λε2/2 ≤ λε1/2 (where the former
inequality follows from Equation (15)).

29The negligible probability of error follows from the Cantor-Zassenhaus algorithm, which is a randomized algorithm
that has a negligible probability of error.
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In light of Proposition 6.3, this gives a non-interactive argument for any log-space uniform
circuit C : {0, 1}N → {0, 1} of size S and depth D, assuming the sub-exponential hardness of LWE.
This non-interactive argument is generated by computing a non-interactive argument as above for
the circuit C ′ : {0, 1}N → {0, 1} of size S′ = S · polylog(S) and depth D′ = D · polylog(S).

Corollary 6.7. Assuming the sub-exponential hardness of LWE, for any log-space uniform C : {0, 1}N →
{0, 1} of size S and depth D, there is a non-interactive argument for the language {x : C(x) = 0}. This
non-interactive argument has the following efficiency guarantees: the prover runs in time poly(S), the
verifier runs in time (D +N) · polylog(S), and the communication complexity is D · polylog(S).

7 PPAD Hardness

The main result of [CHK+19a] is that the class CLS ⊆ PPAD is hard, assuming that the Fiat-Shamir
transformation applied to the sum-check protocol is adaptively and unambiguously sound. While
our non-interactive sum-check protocol is not known to be adaptively and unambiguously sound,
we show that it satisfies weaker conditions, which we call prefix-adaptive soundness and prefix-adaptive
unambiguity, that are sufficient for PPAD hardness.

In what follows, we consider a non-interactive sum-check protocol over the set B = {0, 1}.
Furthermore, we denote by [0, d] a subset of F of size d+ 1. This can be chosen arbitrarily: we can
take [0, d] to be the first d+ 1 elements of F lexicographically.

The main theorem of [CHK+19a], restated with the prefix-adaptive versions of soundness and
unambiguity, is stated below.

Theorem 7.1. [CHK+19a] The complexity class CLS is sub-exponentially hard on average assuming
#SAT is sub-exponentially hard on average, and assuming that there exists a constant ε > 0, and for
every ` ∈ N there exists a field F = F` with log|F|≤ poly(`) and a non-interactive sum-check protocol
(niSC.Setup, PniSC, VniSC) for `-variate polynomials over F of individual degree d ≤ poly(`), which satisfies
the following guarantees:

• Prefix-Adaptive Soundness: For any poly(2`
ε
)-size cheating prover P ∗ = {P ∗` }`∈N, there is a

negligible function µ such that for every ` ∈ N and any `-variate polynomial g : F` → F of individual
degree d, and for λ = log|F| and CRS = (k1, . . . , k`)← niSC.Setup(1λ),

Pr


P ∗(CRS) = (j, σ1, . . . , σj , I, {ξi}i∈I , v, τ) :



0 ≤ j ≤ `
∧ I ⊆ [j]

∧ σi = H.Hash(ki, ξi) ∀i ∈ I
∧ σi ∈ [0, d] ∀i ∈ [j] \ I

∧
∑

b1,...,b`−j∈{0,1}

g(j)(b1, . . . , b`−j) 6= v

∧ V g(j)

niSC(v,CRS(j), τ) = 1




= µ(2`

ε
).

Here, g(j) is defined by

g(j)(b1, . . . , b`−j) , g(σ1, . . . , σj , b1, . . . , b`−j),

and CRS(j) = (kj+1, . . . , k`).
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• Prefix-Adaptive Unambiguity: For any poly(2`
ε
)-size cheating prover P ∗ = {P ∗` }`∈N, there is a

negligible function µ such that for every ` ∈ N and any `-variate polynomial g : F` → F of individual
degree d, and for λ = log|F| and CRS = (k1, . . . , k`)← niSC.Setup(1λ),

Pr


P ∗(CRS) = (j, σ1, . . . , σj , I, {ξi}i∈I , v, τ1, τ2) :



0 ≤ j ≤ `
∧ I ⊆ [j]

∧ σi = H.Hash(ki, ξi) ∀i ∈ I
∧ σi ∈ [0, d] ∀i ∈ [j] \ I

∧ V g(j)

niSC(v,CRS(j), τ1) = 1

∧ V g(j)

niSC(v,CRS(j), τ2) = 1

∧ τ1 6= τ2




= µ(2`

ε
),

where g(j) and CRS(j) are defined as above.

• Efficiency: VniSC runs in time poly(`).

We note that Theorem 7.1, as stated, differs from the corresponding theorem in [CHK+19a].
Specifically, in [CHK+19a] they require full adaptivity of soundness and unambiguity, and in
particular, they allow the cheating prover to choose the multivariate polynomial g(j) (on which it
outputs a non-interactive sum-check proof) completely adaptively. While we do not guarantee
that our non-interactive sum-check protocol has full adaptivity, upon inspecting their proof, we
notice that they do not need the full adaptivity of g(j) to obtain their PPAD hardness result (and
probably require it only for the sake of simplicity); rather, they only need the adaptivity in choosing
the prefix σ1, . . . , σj , which is chosen either in the support of the hash function or in the set [0, d].

The rest of this section is partitioned into two parts. In Section 7.1, we give a sketch of the proof
of Theorem 7.1. Then, in Section 7.2, we show that our non-interactive sum-check protocol satisfies
prefix-adaptive soundness and prefix-adaptive unambiguity. As for the efficiency condition of
Theorem 7.1, the fact that VniSC runs in poly(`) time follows straightforwardly from the efficiency of
the non-interactive sum-check verifier given in Corollary 5.3. Therefore, using the fact that the
sub-exponential hardness of LWE implies the sub-exponential average-case hardness of #SAT, we
obtain the following corollary:

Corollary 7.2. CLS is sub-exponentially hard on average assuming the sub-exponential hardness of LWE.

7.1 Sketch of Proof of Theorem 7.1

The proof of Theorem 7.1 in [CHK+19a] proceeds as follows. They first define the Relaxed-Sink-of-
Verifiable-Line (rSVL) problem, and prove that it is in the complexity class CLS. Then they show how
to reduce #SAT instances to rSVL instances. We start by defining the rSVL problem.

Definition 7.3. The Relaxed-Sink-of-Verifiable-Line (rSVL) problem (S,V, T ∗, s0) consists of a time
bound T ∗ ∈ N, a starting state s0 ∈ {0, 1}L, and poly(`)-sized functions S : {0, 1}L → {0, 1}L and
V : [0, T ∗]× {0, 1}L → {0, 1}with the guarantee that for all t ∈ [0, T ∗] and s ∈ {0, 1}L, if s = St(s0)
then V(t, s) = 1. The goal is to find one of the following:

• The sink: ST
∗
(s0).

• False positive: t ∈ [0, T ∗] and s ∈ {0, 1}L such that s 6= St(s0) but V(t, s) = 1.
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Proof sketch of Theorem 7.1. Beginning with a Boolean formula φ in ` variables x1, . . . , x`, the
task of the #SAT problem is to find the number of satisfying solutions to φ, or to evaluate∑

x1,...,x`∈{0,1}

φ(x1, . . . , x`).

We arithmetize φ to get an `-variate polynomial g of individual degree d ≤ poly(`). Then the
number of satisfying solutions to φ can be written also as∑

b1,...,b`∈{0,1}

g(b1, . . . , b`).

This computation can be delegated via the sum-check protocol to a poly(2`)-size prover who gives
a verifiable and unambiguous “proof”30 of correctness.

The main technical contribution of [CHK+19a] is that this proof can be computed in an incre-
mental and efficiently updatable manner. Namely, the summation above can be performed via a
sequence of poly(2`) steps, where going from step t to step t+1 can be done in poly(log|F|) ≤ poly(`)
time. More specifically, let st denote the state after the t’th computation step. Incremental verifiabil-
ity means that each intermediate state st includes a proof of its correctness, and the proof can be
updated and verified in time poly(log|F|). This incrementally verifiable counting procedure is used
to construct, given a #SAT instance, an instance of the rSVL problem.

The reduction from #SAT to rSVL, at a high level, is the following: The states correspond to the
incrementally updatable states of the computation, where the successor function S takes as input a
pair (t, st) and generates the next computational state (t+ 1, st+1). The verification procedure V
takes as input a pair (t, st) and either accepts or rejects.

Suppose that there exists a sub-exponential size adversary that solves the rSVL instance
corresponding to the computation ∑

b1,...,b`∈{0,1}

g(b1, . . . , b`).

It solves the instance by either finding the sink, which corresponds to successfully computing v
such that ∑

b1,...,b`∈{0,1}

g(b1, . . . , b`) = v

(i.e., solving #SAT), or by finding false positives, which corresponds to breaking the unambiguous
soundness of the underlying non-interactive sum-check argument.

We observe that the latter breaks, in fact, the prefix-adaptive soundness or prefix-adaptive unambi-
guity. In a nutshell, the polynomial g is fixed by the chosen #SAT instance, and the adaptivity is in
choosing (t, s) such that V(t, s) = 1. As we argue below, every state s is associated with a set of
prefixes (σ1, . . . , σj), such that for every i ∈ [j], σi is either in the image of the i’th Fiat-Shamir hash
function or in the set [0, d], and for each such prefix it contains a non-interactive sum-check proof
for the computation

∑
bj+1,...,b`

g(σ1, . . . , σj , bj+1, . . . , b`).

30We really mean “argument” here, generated according to our non-interactive sum-check protocol. We use the
terminology “proof” to be consistent with the terminology in [CHK+19a].
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Specifically, each intermediate state s is a small (poly-size) step towards the computation of the
sum

v0 =
∑

b1,...,b`∈{0,1}

g(b1, . . . , b`),

along with a proof τ = (α1, β1, . . . , α`, β`) (which is precisely the non-interactive sum-check proof)
for this computation. This is done, broadly, in the same fashion as the computation done by the
honest non-interactive sum-check prover. First, the univariate polynomial

α1(·) =
∑

b2,...,b`∈{0,1}

g(·, b2, . . . , b`)

is computed together with a corresponding certificate π1,31 and β1 is set to H.Hash(k1, α1). Next,
this same procedure is repeated for the (`− 1)-variate sum

v1 =
∑

b2,...,b`∈{0,1}

g(β1, b2, . . . , b`).

A polynomial
α2(·) =

∑
b3,...,b`∈{0,1}

g(β1, ·, b3, . . . , b`)

is computed together with a corresponding certificate π2, and β2 is set toH.Hash(k2, (α1, β1, α2)).
The same procedure is repeated for the (`− 2)-variate sum

v2 =
∑

b3,...,b`∈{0,1}

g(β1, β2, b3, . . . , b`),

and so on. At the end of ` such procedures, we will have the sequence of values

(α1, π1, β1, . . . , α`, π`, β`).

We now discard all the certificates πi, and keep only

τ = (α1, β1, . . . , α`, β`)

as the proof for the entire calculation
∑

b1,...,b`
g(b1, . . . , b`). The final state sT ∗ thus consists of the

sum v0 as well as the sum-check proof τ .
Note that the bulk of the calculative cost is in calculating (αi, πi), which takes time 2O(`−i) >>

poly(`). The calculation of (αi, πi) is thus broken up into recursive subprocesses. Specifically,
to calculate (αi, πi) (given the already calculated (α1, π1, β1, . . . , αi−1, πi−1, βi−1)), we recursively
compute for each γ ∈ [0, d] the value

vi,γ =
∑

bi+1,...,b`∈{0,1}

g(β1, . . . , βi−1, γ, bi+1, . . . , b`)

along with a sum-check proof τi,γ of the sum’s correctness. Then, we interpolate the d+ 1 points
{(γ, vi,γ)}γ∈[0,d] to get the polynomial αi, and we set the certificate πi = {τi,γ}γ∈[0,d].

31As we clarify below, this certificate is not a sum-check proof, but rather consists of a set of d+ 1 sum-check proofs.
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Any arbitrary state s is thus a partial computation of (v0, τ) and is associated with some

(α1, π1, β1, . . . , αi, πi, βi)

(which has already been computed) and some intermediate computation of (αi+1, πi+1). This
intermediate computation consists of a set {vi+1,γ , τi+1,γ}γ∈[0,d′−1] for some d′ ≤ d, where

vi+1,γ =
∑

bi+2,...,b`

g(β1, . . . , βi, γ, bi+2, . . . , b`)

and τi+1,γ is its proof, and a partial computation of (vi+1,d′ , τi+1,d′). This partial computation of
(vi+1,d′ , τi+1,d′) again consists of some

(αi+1,d′,1, πi+1,d′,1, βi+1,d′,1, . . . , αi+1,d′,i′ , πi+1,d′,i′ , βi+1,d′,i′)

and some intermediate computation of (αi+1,d′,i′+1, πi+1,d′,i′+1), which again is some set of finished
sum-check proofs and a partial computation of another, and so on. The algorithm V, on input (t, s),
checks that s is in the correct stage of computation (that corresponds to time t), that each of the
sum-check proofs in s verifies correctly, that the prover messages are interpolated correctly and the
corresponding β’s are the correct hash value.

Note that in the above procedure, we perform a recursive computation to compute the (`− j)-
variate sum ∑

bj+1,...,b`∈{0,1}

g(σ1, . . . , σj , bj+1, . . . , b`)

together with a corresponding proof for many different prefixes (σ1, . . . , σj). In fact, the entire
procedure is a recursive calculation for the empty prefix, which is done by calling the recursive
procedure for each prefix (γ) (for γ ∈ [0, d]), which allows us to compute (α1, π1, β1). Once β1 has
been computed, a recursive computation is done for each of the prefixes (β1, γ) for γ ∈ [0, d] to
compute (α2, π2) and thus β2. Once β2 is computed, a recursive computation is done for each of
the prefixes (β1, β2, γ) to compute (α3, π3), and so on.

On the other hand, inside the computation for the prefix (γ1) where γ1 ∈ [0, d], we recursively
compute the sum ∑

b2,...,b`∈{0,1}

g(γ1, b2, . . . , b`)

along with a sum-check proof (αγ1,1, βγ1,1, . . . , αγ1,`, βγ1,`). We compute αγ1,1 recursively, by com-
puting for every γ2 ∈ [0, d], the sum ∑

b3,...,b`∈{0,1}

g(γ1, γ2, b3, . . . , b`)

together with a sum-check proof. From all these sums and proofs one can efficiently compute
(αγ1,1, πγ1,1), and thus also efficiently compute βγ1,1. In order to compute (αγ1,2, πγ1,2, βγ1,2) we
have to perform the recursive computation for prefixes of the form (γ1, βγ1,1, γ), for every γ ∈ [0, d],
and so on. Observe that every prefix (σ1, . . . , σj) that we encounter must satisfy the property that
each σι for ι ∈ [j − 1] is either in the image of H.Hash(kι, ·) or in [0, d], and furthermore, the last
prefix item σj must be in [0, d].
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We want to be clear about what part of the transcript is hashed to compute a verifier message
βσ1,...,σj ,i. By βσ1,...,σj ,i, we mean the i’th verifier message in the sum-check proof for the sum

vσ1,...,σj =
∑

bj+1,...,b`∈{0,1}

g(σ1, . . . , σj , bj+1, . . . , b`)

corresponding to the prefix (σ1, . . . , σj). We assume we have already computed the first length
i− 1 transcript

(ασ1,...,σj ,1, βσ1,...,σj ,1, . . . , ασ1,...,σj ,i−1, βσ1,...,σj ,i−1).

To compute ασ1,...,σj ,i and βσ1,...,σj ,i, we first recursively compute the d+ 1 sums

vσ1,...,σj ,i,γ =
∑

bj+i+1,...,b`∈{0,1}

g(σ1, . . . , σj , βσ1,...,σj ,1, . . . , βσ1,...,σj ,i−1, γ, bj+i+1, . . . , b`)

for every γ ∈ [0, d] along with proofs τσ1,...,σj ,i,γ , then interpolate these values {(γ, vσ1,...,σj ,i,γ)}γ∈[0,d]
to get a polynomial ασ1,...,σj ,i. The corresponding certificate πσ1,...,σj ,i is set to {τσ1,...,σj ,i,γ}γ∈[0,d].
Finally, to compute βσ1,...,σj ,i, we hash the entire transcript so far for the prefix (σ1, . . . , σj),32 that is,

βσ1,...,σj ,i = H.Hash(kj+i, (ασ1,...,σj ,1, βσ1,...,σj ,1, . . . , ασ1,...,σj ,i−1, βσ1,...,σj ,i−1, ασ1,...,σj ,i)).

This leads us to our conditions of prefix-adaptive soundness and unambiguity. Finding a false
positive for rSVL requires finding a partial computation state for which at least one of its calcu-
lations, which consist of some prefix (σ1, . . . , σj) followed by a sum-check proof τσ1,...,σj for the
corresponding sum, is different from the honest computation. This happens precisely when τσ1,...,σj
is either not unique (i.e., a second, different τσ1,...,σj is efficiently computable) or τσ1,...,σj is an
accepting proof for an incorrect statement. But our conditions of prefix-adaptive unambiguity and
soundness, respectively, prevent precisely these possibilities.33

For further details about this reduction, we refer the reader to the original paper [CHK+19a],
which contains this proof in much more detail.

7.2 Prefix-Adaptive Soundness and Unambiguity of the Non-Interactive Sum-Check

In what follows, we prove that, under the sub-exponential hardness of LWE, there exists a hash
familyH such that the non-interactive sum-check protocol, obtained by applying the Fiat-Shamir
transform w.r.t. H, satisfies prefix-adaptive soundness and prefix-adaptive unambiguity from
Theorem 7.1 (assuming the field size is large enough).

Theorem 7.4. Assuming the sub-exponential hardness of LWE, there exists a constant ε′ > 0 and a hash
family H, such that applying the Fiat-Shamir transform w.r.t. H to the sum-check protocol results in a

32In the original work [CHK+19a], the hash functionsH.Hash(ki, ·) took as input only part of the preceding transcript.
Due to the way we defined the Fiat-Shamir paradigm in this paper, in particular the fact that the hash functions take as
input the entire preceding transcript, this modification to the PPAD reduction is necessary. We could have avoided this
change by defining the Fiat-Shamir hash functions to take as input only the preceeding prover message, as opposed to
the entire transcript.

33The conditions of prefix-adaptive soundness and unambiguity as defined in Theorem 7.1 actually give a slightly
stronger guarantee, since they require soundness and unambiguity for prefix (σ1, . . . , σj) for which σj is either in [0, d]
or in the image ofH.Hash(kι, ·), while it suffices for the reduction to restrict to σj to be in [0, d].
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non-interactive argument (niSC.Setup, PniSC, VniSC) with the prefix-adaptive soundness and unambiguity
guarantees from Theorem 7.1, assuming the underlying multi-variate polynomial is over a field F of size

log|F|≥ max{d, (` · log(2 · d))2/ε
′}, (19)

where ` is the number of variables in the polynomial and d ≤ poly(`) is its univariate degree, and assuming
that the summation is over {0, 1}`.34 Namely, there exists a constant ε > 0 such that for any poly(2`

ε
)-size

cheating prover P ∗ = {P ∗` }`∈N, there is a negligible function µ such that for every ` ∈ N and every `-variate
polynomial g : F` → F of individual degree d, and for λ = log|F| and CRS← niSC.Setup(1λ),35

Pr



P ∗(CRS) = (j, σ1, . . . , σj , I, {ξi}i∈I , v, τ1, τ2) :



0 ≤ j ≤ `
∧ I ⊆ [j]

∧ σi = H.Hash(ki, ξi) ∀i ∈ I
∧ σi ∈ [0, d] ∀i ∈ [j] \ I

∧ V g(j)

niSC(v,CRS(j), τ1) = 1

∧ V g(j)

niSC(v,CRS(j), τ2) = 1

∧

 (τ1 6= τ2) ∨

(v 6=
∑

b1,...,b`−j

g(j)(b1, . . . , b`−j))







= µ(2`
ε
).

Proof. By Theorem 5.2, for every constant ε′ > 0 and for T ′(λ) = 2λ
ε′

, there exists a polynomial ρ
such that the interactive sum-check protocol (Figure 5) is (T ′, d, ρ)-FS-compatible (Definition 4.2),
assuming the instances are multi-variate polynomials of individual degree d over a field F = F`
that satisfies Equation (19), and assuming the summation is over {0, 1}` (i.e., assuming B = {0, 1}).

By Corollary 3.8 , assuming the sub-exponential hardness of LWE, there exists a constant
0 < ε1 < 1 such that for every constant 0 < δ < 1, and in particular for δ = ε1/2, there exists a
constant 0 < ε2 < 1 such that the following holds: Let F be the function family of all functions that
are computable by circuits of size ρ(λ) (where ρ is the function corresponding to ε′ = ε2). Then
there exists a (T, T ′, ω)-lossy correlation intractable hash function familyH for F (Definition 3.6),
where T = 2λ

ε1 , T ′ = 2λ
ε2 , and ω = n − λδ, where n is the domain parameter associated with H

(Definition 3.3).
We prove Theorem 7.4 (i.e., prefix-adaptive soundness and unambiguity) w.r.t. this family

H, with ε′ = ε2 and ε such that 2`
ε ≤ 2λ

ε2 . Note that since λ ≤ poly(`), we can take ε to be a
constant. To this end, for every ` ∈ N, fix an `-variate polynomial g : F` → F of individual
degree d ≤ poly(`), where F = F` is a finite field of size at most poly(`) satisfying Equation (19). Fix
any poly(2`

ε
)-size cheating prover P ∗ = {P ∗` }`∈N, and suppose for the sake of contradiction that

34This assumption is only for the sake of simplicity, and to be consistent with Theorem 7.1.
35Note that the written condition captures both prefix-adaptive soundness and prefix-adaptive unambiguity.
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there is a non-negligible function η such that for every ` ∈ N,

Pr



P ∗(CRS) = (j, σ1, . . . , σj , I, {ξi}i∈I , v, τ1, τ2) :



0 ≤ j ≤ `
∧ I ⊆ [j]

∧ σi = H.Hash(ki, ξi) ∀i ∈ I
∧ σi ∈ [0, d] ∀i ∈ [j] \ I

∧ V g(j)

niSC(v,CRS(j), τ1) = 1

∧ V g(j)

niSC(v,CRS(j), τ2) = 1

∧

 (τ1 6= τ2) ∨

(v 6=
∑

b1,...,b`−j

g(j)(b1, . . . , b`−j))







≥ η(2`
ε
),

(20)

where the probability is over CRS = (k1, . . . , k`) generated by sampling k1, . . . , k` ← H.Gen(1λ), for
λ , log|F|.

A standard hybrid argument implies that for every ` ∈ N there exists j = j(`) such that
Equation (20) holds with this fixed j = j(`), with probability ≥ η(2`

ε
)/`. Denote this fixed j by

j∗ = j∗(`). The fact that τ1 and τ2 are either distinct or are a proof of a false statement implies that
if all the conditions in Equation (20) hold, then there must exist j′ ∈ [1, `− j∗] and b ∈ {0, 1} such
that for x∗ = (g(j

∗), v) and τ∗ = τb,

State(x∗, τ∗j′−1) = reject ∧ State(x∗, τ∗j′) = accept,

where τ∗i denotes the first i rounds in τ∗.
This, together with a standard hybrid argument, implies that for every ` ∈ N and the fixed

j∗ ∈ [`], there exists j′ ∈ [1, `− j∗] and a poly(2`
ε
)-size cheating prover P ∗ = {P ∗` }`∈N such that

Pr


P ∗(CRS) = (j, σ1, . . . , σj , I, {ξi}i∈I , v, τ∗) :



j = j∗

∧ I ⊆ [j]

∧ σi = H.Hash(ki, ξi) ∀i ∈ I
∧ σi ∈ [0, d] ∀i ∈ [j] \ I

∧ V g(j)

niSC(v,CRS(j), τ∗) = 1

∧ State(x∗, τ∗j′−1) = reject

∧ State(x∗, τ∗j′) = accept




≥ η(2`

ε
)

2`2
,

(21)

where the probability is over CRS = (k1, . . . , k`) generated by sampling k1, . . . , k` ← H.Gen(1λ), for
λ , log|F|.

We next argue that there exists a negligible function µ′ such that the equation above holds with

probability at least η(2
`ε )

2`2
− µ′(2`ε), even if we choose CRS = (k1, . . . , k`) as follows:

ki ← H.LossyGen(1λ) ∀i ∈ [j∗ + j′ − 1] and ki ← H.Gen(1λ) ∀i ∈ [j∗ + j′, `].
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To see this, we will argue that the difference in probabilities when we choose CRS in the two ways
is negligible in 2`

ε
. Since 2`

ε ≤ T ′(λ), it will suffice to argue that the difference in probabilities
is negligible in T ′(λ). This follows from the T ′-key indistinguishability property of the lossy CI
hash family, which says that a key generated byH.LossyGen(1λ) and a key generated byH.Gen(1λ)
are indistinguishable by poly(T ′(λ))-size adversaries, except with probability negligible in T ′(λ).
Note that the condition in the equation above can be checked in time poly(T ′(λ)), since State can be
computed in time poly(T ′(λ)).

By a standard averaging argument, this implies that for every ` ∈ N there exist (fixed)
k1, . . . , kj∗+j′−1 ∈ H.LossyGen(1λ), where λ = log|F|, and there exists a poly(2`

ε
)-size cheating

prover P ∗ = {P ∗` }`∈N and a non-negligible function η′ such that for every ` ∈ N,

Pr


P ∗(CRS) = (j, σ1, . . . , σj , I, {ξi}i∈I , v, τ∗) :



j = j∗

∧ I ⊆ [j]

∧ σi = H.Hash(ki, ξi) ∀i ∈ I
∧ σi ∈ [0, d] ∀i ∈ [j] \ I

∧ V g(j)

niSC(v,CRS(j), τ∗) = 1

∧ State(x∗, τ∗j′−1) = reject

∧ State(x∗, τ∗j′) = accept




≥ η′(2`ε),

(22)

where the probability is over kj∗+j′ , . . . , k` ← H.Gen(1λ), for λ = log|F|. Here we view CRS =
(k1, . . . , k`) where k1, . . . , kj∗+j′−1 are fixed (as outputs ofH.LossyGen(1λ)).

The fact that k1, . . . , kj∗ are ω-lossy, together with the fact that ω = n− λδ, implies that for each
i ∈ [j∗], there are at most 2λ

δ+1 possibilities for σi (there are d + 1 possibilities in [0, d] and ≤ 2λ
δ

values in the image ofH.Hash(ki, ·), and note that d+ 1 ≤ 2λ
δ
). Let (β∗1 , . . . , β

∗
j′−1) denote the first

j′ − 1 verifier messages in τ∗. The fact that kj∗+1, . . . , kj∗−j′−1 are ω-lossy implies that if the verifier
accepts τ∗, then for every i ∈ [j′ − 1], β∗i is in the image ofH.Hash(kj∗+i, ·)), and hence there are at
most 2λ

δ
possibilities for each β∗i .

Thus, we conclude that there are at most 2(j
∗+j′−1)·λδ+j∗ ≤ 2`λ

δ
possibilities for

(σ1, . . . , σj∗ , β
∗
1 , . . . , β

∗
j′−1).

Therefore, by a standard averaging argument, for every λ ∈ N, there exist (σ1, . . . , σj∗ , β1, . . . , βj′−1)
such that the probability above holds, w.r.t. these fixed (σ1, . . . , σj∗ , β1, . . . , βj′−1), with probability
at least η′(2`

ε
)·2−`λδ . By a similar calculation as was done in Section 5 (see the proof of Corollary 5.3),

one can argue that this value is a non-negligible function of T (λ), which we will denote by ζ(T (λ)).36

Note that the fixing of σ1, . . . , σj∗ fixes the (`− j∗)-variate polynomial g(j
∗). In what follows,

we denote this polynomial by g∗, and denote by β[1,j′−1] , (β1, . . . , βj′−1). Moreover, rather than
thinking of λ as a function of `, we think of ` as a function of λ. Namely, for every λ ∈ N, if there
exists ` such that λ = log|F`|, then `(λ) = ` (and if there are multiple `’s then `(λ) outputs the

36To recap, note that in order to argue that η′(2`
ε

) · 2−`λ
δ

is a non-negligible function of T (λ) = 2λ
ε1 , it suffices to

argue that 2`
ε

≤ 2λ
ε2 ≤ 2λ

ε1 , which follows from ε2 ≤ ε1, and that λε1 ≥ ` ·λδ , which follows from the fact that δ = ε1/2
and from the fact that ` ≤ λε2/2 ≤ λε1/2, which in turn follows from Equation (19) together with the assumption that
ε2 ≤ ε1.
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smallest one), and if λ 6= log|F`| for every ` ∈ N then we let `(λ) = ⊥.) We abuse notation and
denote by P ∗λ = P ∗`(λ), and if `(λ) = ⊥ then P ∗λ simply outputs⊥. Thus there exists a poly(T ′(λ))-size
adversary P ∗ such that for every λ ∈ N,

Pr

P ∗(CRS) = (v, τ∗) :


β∗[1,j′−1] = β[1,j′−1]

∧ State(x∗, τ∗j′−1) = reject

∧ State(x∗, τ∗j′) = accept


 ≥ ζ(T (λ)),

where the probability is over kj∗+j′ , . . . , k` ← H.Gen(1λ), and we view CRS = (kj∗+1, . . . , k`), where
kj∗+1, . . . , kj∗+j′−1 are fixed. We also remind the reader that β∗[1,j′−1] denotes the first j′ − 1 verifier
messages in τ∗.

Next, we would like to argue that such a prover contradicts correlation intractability ofH. To
this end, we would like to use Claim 4.8 to derive a contradiction. We note however that Claim 4.8
assumes that the instance x∗ = (g∗, v) is fixed (independent of the CRS), whereas in our setting g∗

is indeed fixed, but v is chosen adaptively as a function of the CRS.
Despite the fact that a priori it is not clear that Claim 4.8 extends to this setting where v can

be chosen adaptively, upon examining its proof, we observe that it does (without any change to
the proof). The reason is that the fact that x∗ and β∗[1,j′−1] are fixed is only used to fix the function
BADx∗,β∗

[1,j′−1]
, which in turn is used to fix a function fr∗ that is used to break the T -CI property of

the hash functionH.
In our setting, since x∗ is not fixed, it may seem that the function BADx∗,β∗

[1,j′−1]
is not fixed,

and therefore it is not clear that we can contradict the T -CI property. We recall, however, that
the sum-check protocol has the property that for x∗ = (g∗, v), BADx∗,β∗

[1,j′−1]
does not depend

on v, rather it only depends on g∗ and β∗[1,j′−1] (see the definition of BAD in Section 5). Therefore,
BADx∗,β∗

[1,j′−1]
is fixed, and thus the proof of Claim 4.8 goes through as is, implying a contradiction.
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