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Abstract

Election verifiability aims to ensure that the outcome produced by electronic voting systems correctly
reflects the intentions of eligible voters, even in the presence of an adversary that may corrupt various
parts of the voting infrastructure. Protecting such systems from manipulation is challenging because of
their distributed nature involving voters, election authorities, voting servers and voting platforms. An
adversary corrupting any of these can make changes that, individually, would go unnoticed, yet in the
end will affect the outcome of the election. It is, therefore, important to rigorously evaluate whether the
measures prescribed by election verifiability achieve their goals.

We propose a formal framework that allows such an evaluation in a systematic and automated way. We
demonstrate its application to the verification of various scenarios in Helios and Belenios, two prominent
internet voting systems. For Helios, our analysis is the first one to be, at the same time, fully automated
(with the Tamarin protocol prover) and to precisely capture its end-to-end verifiability guarantees, allow-
ing us to derive new security proofs and new attacks on deployed versions of it. For Belenios, similarly,
we capture precisely the end-to-end verifiability guarantees when all election authorities are corrupted,
which is outside the scope of previous formal definitions. We also find new attacks that apply in weaker
corruption scenarios that are expected to be secure. In general, our framework allows a unified analy-
sis and comparison of cryptographic voting protocols, corruption scenarios and verifiability procedures
towards ensuring the end goal of election integrity.
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1 Introduction
Considering the importance of elections in modern societies, it is crucial to ensure the security of voting
systems underlying them. More and more, these systems become electronic, bringing numerous benefits,
but also increasing the scope for attacks. Indeed, concrete attacks are always being discovered by researchers
on deployed electronic voting systems. See for example [62, 61, 59, 41, 35], showing that even recent
systems, prepared by governments to run real-world elections, are vulnerable to attacks, in spite of the fact
that secure electronic voting is a decades-old problem [39, 24, 17]. A crucial property that is the target
of attacks is election integrity, where we need to ensure that the choice of each eligible voter is correctly
reflected in the final outcome, and that no additional votes can be introduced by attackers.

In order to better protect election integrity, various notions like software independence, ballot casting
assurance, voter-verifiable and universally-verifiable elections have been proposed [55, 17, 19, 18, 8, 25,
51, 44, 21]. The main idea is that the voting system should output sufficient information such that election
integrity can be anchored in two main assumptions: (i) voters perform basic verification steps to ensure that
their ballots are correctly recorded by a public bulletin board (individual verifiability); (ii) by running certain
audit procedures on the bulletin board, any party can ensure that the published outcome correctly represents
the recorded ballots (universal verifiability). Security relies on the fact that individual and universal verifia-
bility procedures are public, transparent and can be performed on any platform, independent of the platforms
that run the election, or of any particular software implementation. The underlying cryptographic proto-
col should ensure that, putting together individual and universal verifiability checks, one obtains a strong
notion of end-to-end verifiability, guaranteeing a global property of election integrity. However, as shown
by Küsters et al [48, 49, 47], these local verifiability properties do not always imply a global notion of
verifiability, and this gap may be exploited by corrupted parties to compromise election integrity. For ex-
ample, for Helios [5, 6, 7], a prominent internet voting system used in real-world elections with significant
stakes, [49] shows that, relying on so-called clash attacks, an adversary corrupting some election authorities
and the voting platforms can replace votes from eligible voters with arbitrary votes without being detected
by individual and universal verifiability procedures. Clash attacks are not specific to Helios and have been
shown on a series of systems [49, 54].

These attacks do not invalidate the general idea of deriving election integrity from a minimal set of
trusted software components and cryptographic verification procedures. Rather, they show the need for
usable, systematic and rigorous methods to evaluate if proposed protocols and notions indeed achieve the
stated goal of end-to-end verifiability. There are two main aspects to consider, as well as their interplay:

• protocol security: given a specification of an e-voting protocol - vote encoding, ballot casting, tally
computation, verification procedures, etc - does it formally follow that no adversary from a given
class (defined by computational and corruption abilities) can compromise election integrity?

• software security: are the verification procedures that are prescribed by the protocol securely imple-
mented?

The attacks from above can be mapped to one of these two classes (against the protocol, or against
the software), but sometimes they exploit implicit assumptions in the protocol that are not ensured by the
corresponding software implementation, e.g. [35]. Therefore we need a precise specification language, with
an appropriate level of abstraction, that can be shared by protocol designers and developers to facilitate
complete protocol specifications and minimize inconsistencies between design and implementation.

There are two well-established methods for proving protocol security: computational [23, 16, 13] and
symbolic [2, 38, 3] - and soundness results connecting the two [4, 34, 14]. The computational approach
captures fine-grained details of the underlying cryptographic primitives, while the symbolic approach as-
sumes perfect cryptography - represented by a set of abstract equations and processes - and aims for auto-
mated verification. Prominent automated tools for symbolic verification are for example ProVerif [22] and
Tamarin [50]. For election verifiability, there are several computational models that allow precise modelling
of the desired properties [31, 30, 26, 47, 19, 45]. The focus of our paper are symbolic models and automated
verification. One defining feature of this setting is that, to be handled by automated tools like ProVerif and
Tamarin, the security properties need to be expressed as a set of logical properties relating events along the
execution trace of a voting system. The main challenge is to identify a set of properties that is at the same
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time general (allowing to capture a wide range of protocols and corruption scenarios) and sound (it entails
a multiset-based notion of end-to-end verifiability).
Symbolic election verifiability. The symbolic model that comes closest to the above-mentioned goals is the
one by Cortier et al [28], designed to prove verifiability for a variant of Belenios [33]. While their model
achieves the goal of soundness (end-to-end verifiability), it has several limitations in terms of generality:
− distinct corruption scenarios relating to election authorities (server, registrar) are covered by distinct
symbolic verifiability definitions, and there is no formal way to connect these, making it hard to directly
adopt the model for analysing new protocols.
− to obtain soundness, their model disallows dynamic corruption of voters and, somehow intuitively, it does
not provide end-to-end verifiability guarantees for corrupted voters; however, the formal notion of corrup-
tion (i.e. leaked voter credentials) may, in practice, cover several different scenarios (e.g. credentials leaked
by a storage device); appropriate procedures may allow effective verifiability even for such inadvertently
corrupted voters, or for voters subject to dynamic corruption, e.g. after voting.
− their model does not take into account revoting - which, we will show, can be exploited by adversaries.
− the absence of clash attacks is not formally implied by symbolic verifiability in [28]; instead, it follows
from additional restrictions on the execution trace, which vary according to the scenario that is considered
(corrupted server or corrupted registrar), and are justified mainly by the fact that one of the corresponding
parties is trusted. More generally, these restrictions together with symbolic verifiability are shown to imply
end-to-end verifiability. Intuitively, any verifiable electronic voting system should ensure the absence of
clash attacks, and we will show that making it explicitly part of symbolic verifiability requirements can
entail end-to-end verifiability, without restrictions specific to various corruption scenarios.

An earlier, type-based symbolic model, applied to Helios, is proposed by Cortier et al in [27]. The asso-
ciated notion of end-to-end verifiability is weaker than [28]: it only states that the multiset of verified votes
for honest voters should be part of the final outcome. In general, we need a complete characterisation of the
outcome, which also limits the multiset of adversarially cast votes, depending on the corruption abilities of
the adversary. We stress that this characterisation should be provided even for systems like Helios, which
may be considered to provide weaker verifiability than Belenios. A first reason is that Helios can, in fact,
achieve a verifiability property as strong as Belenios, if one makes the assumption that neither the voting
server nor the registrar is corrupted (Belenios assumes that one of these two parties is not corrupted). A
second reason is that, as we show in the paper, even for Helios where both of these parties are corrupted, we
can still achieve a meaningful, complete notion of end-to-end verifiability, which does provide significant
guarantees in practice. Concerning clash attacks, [27] considers a no clash property ensuring that ballots
constructed by distinct honest voters are distinct. This captures only a particular aspect of clash attacks in-
troduced in [49], ignoring the ballot verification part. However, we will show that clash attacks are possible
even when ballots for distinct voters are distinct, exploiting the structure of the bulletin board and verifica-
tion mechanisms when revoting is allowed. These attacks are out of the scope of [27] since, like [28], they
do not consider revoting and only one ballot per voter may be cast on the bulletin board.

The first general symbolic model for election verifiability was proposed by Kremer et al [46]. However,
the scenarios to which their model applies are restricted to the case when all voters are honest and verify
their votes. Moreover, although the protocol models in [46] are symbolic - in the sense of being specified in
an abstract process algebra - the formulas used for specifying the security properties are, in some sense, not
symbolic enough for automated verification with ProVerif/Tamarin. They are global properties referring
to an unbounded number of events in a trace, and are closer to multiset-based end-to-end verifiability. The
challenge for symbolic verifiability is, relying on universal quantification over events in a trace, to capture
end-to-end verifiability within the standard class of trace formulas accepted by ProVerif/Tamarin.
Our contributions. We propose a general symbolic definition for election verifiability that improves on
current definitions as follows:
− it allows a unified, modular framework to test different versions of the same protocol with respect to
various corruption abilities of the adversary; it has in its scope a general class of voting protocols and is, at
the same time, suitable for automated protocol verification tools.
− it takes into account revoting;
− it captures classic clash attacks, as well as a more general class of clash attacks, where the clash is only
on public credentials, without requiring a clash on ballots, as we explain below;
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− it implies end-to-end verifiability in a generic framework, without requiring scenario-specific trust as-
sumptions as in [28]. The implication relies on a minimal set of restrictions that are justifiable by public
audits on a bulletin board, and it provides end-to-end verifiability guarantees even in presence of dynamic
corruption, assuming voters have successfully verified their vote.

We demonstrate the application of our definition for multiple scenarios in Helios and Belenios. For
Belenios, in addition to the two paradigmatic scenarios mentions above, our analysis is the first one to cover
the case when both the server and the registrar are corrupted. For Helios, instantiating our definition with
different parameters, we perform a refined analysis considering different (i) versions of the bulletin board;
(ii) sets of corrupted components and parties; (iii) individual verification procedures. For both Helios and
Belenios, we show new attacks and new security proofs, illustrating some tradeoffs between usability and
security. Proofs and attacks are automatically completed with the Tamarin prover.

A particular class of attacks that we study are clash attacks, where the individual verifiability mechanism
of the system can be subverted so that ballots and the public credentials of two voters clash, leading for one
single vote to be cast in their name, and leaving room for adversarial ballot stuffing [49]. We show that
against some versions of Helios, including the one currently deployed and used in many elections, a clash
attack can be performed by a significantly weaker adversary than the one of [49]. In particular, we show
that a successful adversary neither has to corrupt the voting platform nor (fully control) the voting server. It
is sufficient to corrupt the authority that assigns public credentials and the component that performs voter
authentication, and to rely on the way revote ballots are processed and verified by honest parties in the
system.

In Belenios, when the voting server is honest, it performs some consistency checks between voter identi-
ties and public credentials, in order to ensure, in particular, that a clash attack is not possible. However, our
analysis shows that these checks are not as effective as expected. They can be subverted in order to mount
clash attacks, ballot reordering attacks and ballot stuffing attacks. The main problem comes, again, from
revoting and also from the fact that corrupt voters can choose to submit ballots for any public credential.
Together with a corrupt registrar, the adversary can then cast any ballot for a desired public credential.
Paper structure. In section 2 we review Helios, present the clash attack of [49], and our new class of clash
attacks. We also propose somemitigations against these attacks. Section 3 contains preliminaries for formal
verification of (e-voting) protocols with Tamarin. Section 4 contains our formal framework and definitions
for election verifiability, which are applied to Helios in section 5 and to Belenios in section 6.

2 Helios voting system and clash attacks
2.1 Protocol description
Our description of Helios follows [49, 7, 6] and also our observations on the version deployed online [5].
Apart from voters (V), the parties in the protocol are:

• Administrator (A): determines the list eligible candidates and the list of eligible voters.
• Trustees (T): generate election secret key, publish the corresponding public key, compute the final

outcome.
• Registrar (VR): assigns to every eligible voter a public credential, also called an alias, which is

published on the bulletin board; it may also generate passwords for voter authentication.
• Voting Server (VS): receives ballots cast by authenticated voters and publishes them on BB.
• Bulletin Board (BB): public ledger containing election information: the public key, the list of can-

didates, the list of public credentials for eligible voters, the list of cast ballots, the final outcome
and proofs of correctness. We denote by BBx the portion of the bulletin board corresponding to a
particular element x. For example, BBcast represents the published list of cast ballots.

• Voting Platform (VP): constructs ballots for voter choices, authenticates and transmits them toVR∕VS.
• Election Auditors (EA): perform audit and verification of proofs on the bulletin board.
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VR and VS may be closely connected, possibly maintained by the same party. The voter authentication
task may also be shifted from VR to VS. We note that, while the clash attack of [49] assumes {VP,VR,VS}
are corrupted, it is sufficient to corrupt {VP,VR} if VR takes care of both alias generation and authentication
as in [49, 7].
Setup phase. A determines the list of eligible voters id1,… , idn, and sends it to VR and VS. They choose
corresponding public identities, passwords, and communicate these to voters. We have:

BBkey ∶ pk; BBcand ∶ v1,… , vk; BBreg ∶ cr1,… , crn

on the bulletin board and each voter idi obtains credentials (idi, cri, pwdi) after the registration. We denote
this by Reg(idi, cri, pwdi).
Voting phase. In this phase, voters interact with their voting platform VP to construct a ballot, authenticate
and post it to VR∕VS, which cast it on BB. A ballot is simply an encryption of the vote along with its hash
to facilitate tracking, and possibly a zero-knowledge proof if homomorphic tally is used. We have:

VP ∶ c = enc(v, pk, r); b = ⟨h(c), c⟩; a = h(⟨id, pwd, b⟩),
VR∕VS ∶ receive ⟨id, b, a⟩ and match it with (id, pwd, cr),
BBcast ∶ (cr, b).

Individual verification procedures. They allow voters to ensure that their ballot correctly encodes their vote
and it is correctly cast on BB. A first part of individual verifiability allows voters to audit their VP, leading
the randomness in their ballot b to be revealed, which allows to check whether b does indeed encode their
desired vote v [18]. In that case, a new ballot needs to be constructed for vote casting. In a second part, after
casting their vote, voters can verify BBcast, to check wether b is indeed recorded next to their credential cr
[8]. For usability purposes, voters actually check the hash associated to the ballot, that we call a receipt, and
by public audits it can be ensured that the hash does indeed match the corresponding ciphertext published
on BBcast. We note that, in case revoting is allowed, there are a few deployment options for BBcast and
individual verification to consider:

– Show only the last ballot cast. If a voter with public credential cr casts ballots b1,… , bm, then BBcast
will display (cr, bm), i.e. the last ballot cast by the voter. This is the version currently deployed online
[5].

– Show all ballots cast. For a cr as above, BBcast will show all ballots that were cast by cr. We have:
BBcast ∶ (cr, b1),… , (cr, bm),

and it should be clear for the voter which ballot is considered to be the last one cast for the corre-
sponding cr.

– Verify anytime. Voters can inspect BBcast anytime after voting to ensure it contains their ballot. This
is the version currently deployed online [5].

– Verify after voting ends. Voters are instructed to verify the bulletin board only after the voting phase
has ended. The VS can publish and update BBcast dynamically during the voting phase, or publish it
only when the voting phase has ended.

We show that some of these deployment choices, combined with appropriate individual verification pro-
cedures, offer better security for election integrity, e.g. better protection against clash attacks, than the
currently deployed options.
Tally phase. The ballots which will be tallied are selected and marked as input for the tally procedure.
Selection typically chooses the last valid ballot cast by each cri. We have:

BBtally ∶ (cr1, b1),… , (crn, bn),
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where bi = ⊥ if no ballot was cast for cri. The ciphertexts corresponding to non-empty ballots on BBtally
are extracted for decryption by trustees. Before decryption, in order to protect vote-privacy, based on the
homomorphic properties of ElGamal encryption [37, 42], the ciphertexts are combined into a ciphertext c
containing the sum of the corresponding votes. In this case, each ballot should also contain a proof that the
corresponding ciphertext encodes a valid vote. Alternatively, as described in the original Helios paper [6],
decryption can be performed after passing ciphertexts through a verifiable mixnet [56, 60]. In both cases,
the trustees (and the mixnet if one is used) publish non-interactive cryptographic proofs that can be checked
by external parties to ensure that the claimed outcome indeed corresponds to votes which were encoded to
the ballots in BBtally. This is traditionally called universal verifiability.

2.2 End-to-end verifiability and clash attacks
Intuitively, the combination of individual verification procedures and universal verifiability as above should
ensure end-to-end verifiability, i.e. each individual vote is correctly captured in the final outcome. However,
as shown in [48, 49], this is not always the case, and a more general, global account of verifiability needs to
be considered [47]. Moreover, we need to explicitly state what are the corruption abilities of the adversary,
and aim towards a set of minimal assumption regarding the parties or infrastructure that needs to be trusted.
Classic clash attack on Helios. The so-called clash attack of [49] works as follows. Assume VR, VS and
VP are corrupted (if VR does both the generation of aliases and voter authentication, then VS does not need
to be corrupted). By corrupted VP, we mean the adversary corrupts the platforms of a few honest voters.
For illustration, we consider a simple scenario with three eligible voters id1, id2, id3, where id1 and id2 votefor A, while id3 votes for B. We show that corrupted parties can convince all other parties that votes are
correctly counted, while making the outcome be A,B,B instead of A,A,B.

Since ballots may be audited before being cast, the voting platform VP cannot simply change a vote for
A to a vote for B without taking the risk of being detected. Therefore, a constraint for the adversary is to
mount this attack while computing correct encryptions of votes onVP. Assume VR∕VS publishes the public
identities cr1, cr2, cr3 as corresponding to eligible voters. Then, corrupted parties do:

VR ∶ Reg(id1, cr1, _),Reg(id2, cr1, _),Reg(id3, cr3, _),that is, cr1 is communicated to both id1 and id2 as their credential,
VP ∶ c1 = enc(A, pk, r) with same r for both id1 and id2,
VR∕VS ∶ cast b1 = ⟨h(c1), c1⟩ as corresponding to cr1,
VR∕VS ∶ cast a ballot b2 for cr2 encoding a vote for B.

Assuming that b1 is the ballot provided by VP to both id1 and id2, and b3 is the ballot cast by id3, we have:
BBcast ∶ (cr1, b1), (cr2, b2), (cr3, b3),

corresponding to the outcome A,B,B. Moreover, no honest party can detect cheating: although there is
only one ballot cast for id1 and id2, they cannot detect this, since they have the same pair (cr1, b1) assignedto them, and it is present on BBcast as expected. The adversary does not have to compromise the decryption
process or the mixnet: the ciphertexts c1, c2, c3 that are to be tallied represent the corrupted outcome desired
by the adversary.
New clash attacks. The attack above relies on the fact that the adversary controls the voting platform VP
of both id1 and id2. Moreover, id1 and id2 have to vote for the same candidate A and, if one of id1 and
id2 audits the ballot, it is assumed that the other party will do the same, or that voters do not notice if the
same ballot is repeatedly reused by VP. Given this, it may be considered that the chances of successfully
mounting the attack are small. In fact, we show that, if we consider the individual verification procedures
that are currently deployed online [5], and if revoting is allowed, then the adversary can mount a successful
clash attack without having to control VP and without having to make strong assumptions related to voter
behaviour.

Among the deployment options for individual verifiability sketched above, we consider the version
where BBcast only shows the last ballot cast for each cr, where voters can check their ballot on BBcast any
time after voting. We then consider the following typical voter behaviour: the voters perform individual
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verification of BBcast immediately after casting their ballot. In the scenario described above, consider the
sequence where first id1 casts a ballot b and then id2 casts a ballot b′. Then

1. BBcast first includes (cr1, b).
2. When id2 casts a vote for any candidate, (cr1, b) is replaced on BBcast with (cr1, b′).

The voter id1 successfully verifies the ballot b after step (1). The voter id2 also successfully verifies the
ballot b′ after step (2). To an external observer, the replacement of b by b′ looks like revoting performed
by cr1, so the attack is publicly undetectable.We note that other deployment options also suffer from similar attacks. For example, assume all ballots
cast by each voter are published on the bulletin board. Then, adapting the above scenario, after id2 casts b′we have:

BBcast ∶ … , (cr1, b),… , (cr1, b′),…

The voter id2 has a chance to spot that there is a problem related to cr1. However, depending on how the
bulletin board is presented to id2 and on the actual voter instruction, the attack may still be undetected, even
if all voters verify their ballots at the end of the voting phase.
Clash attack on abstaining voters. An interesting version of this attack is when id1 and id2 choose to abstain.In that case, they can still verify the bulletin board to ensure that there is no ballot cast in their name. A
corrupted registrar giving the same cr to id1, id2 can, again, cast an adversarial ballot. Remarkably, this
attack is more difficult to detect and prevent rather than the case where voters cast ballots. In our analysis,
we show that some procedures that help against the latter attack are still vulnerable to this empty ballot
attack.

Although in hindsight this class of attacks is simple, we note that we discovered it only after developing
the formal models that we describe in section 4 and attempting to perform the proofs with Tamarin. In
section 5, we instantiate our framework with different scenarios (parameterised by corrupted parties and
verification procedures), in order to systematically find such weaknesses in the protocol, or to automatically
prove some of its variants secure. Importantly, we show that security with respect to the formal models that
we propose indeed entails a global notion of end-to-end verifiability, ensuring that the outcome correctly
captures the intent of honest voters.
New individual verification procedures. To obtain stronger E2E security guarantees, we propose two sim-
ple ways of improving the individual verifiability procedure, which we prove to be secure. We note that
more research is needed to assess their usability and deployment in practice. Formal specifications for each
procedure are in subsequent sections. As a first solution, we propose that: (i) the bulletin board should
contain the list of all ballots cast by each cr; (ii) the voters should be able to easily access the list of all
cast ballots for a given cr, compare them with ballots the voter knows to have cast, and complain if there is
a mismatch. In general, if revoting is allowed, then voters should check their ballots only after the voting
phase has finished. Otherwise, independently of clash attacks, a dishonest server may replace their ballot
with a corrupted one.

The solution above would protect against the new class of clash attacks, where VP is not corrupted.
However, if all of VR,VS,VP are corrupted, the original clash attack would still be applicable. The coun-
termeasure that [49] proposes is for voters to contribute to the randomness in the ballot, this way ensuring
that two different voters will, with high probability, have different ballots. However, in this case, our new
clash attack still holds, since the two different ballots may be verified at different times or different places
on BBcast. This does not contradict the security proof of [49]: their proof considers a scenario without
revoting where BBcast is published and verified at the end of the election. In that case, it can be publicly
ensured that no two distinct ballots can be verified for the same credential.

To prevent both types of clash attack, we propose a solution which ensures that the credentials of two
distinct voters who successfully verify their ballots are distinct. This requires to include a credential ver-
ification step by voters at some point in the protocol. Instead of being randomly chosen by the registrar,
we require that each cri is equal to h(⟨idi, pwdi⟩), where h is a collision-resistant hash function and pwdi isthe password for idi. Then, voters verify that the cr communicated to them does indeed satisfy the required
relation with respect to their id and pwd. Note that:
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• This check should be performed on the same device that voters use to audit or verify their ballots,
preventing a potentially corrupted VP to subvert the verification of the cr.

• We assume that the id of each voter is unique, and this relies on a trusted administrator, or a pre-
existent identity infrastructure.

Since both idi and pwdi are private, we assume that their combination contains enough entropy to prevent
a brute-force search for pwdi from the public cri. We leave as future work the search of solutions with better
security as well as usability against brute-force attacks.

3 Formal verification preliminaries
Symbolic verification assumes the cryptographic primitives are perfect and represents them relying on a
term algebra. First we review the general model of Tamarin, and then we describe specific abstractions that
are required for symbolic verification of voting protocols.

3.1 Modeling and verifying protocols in Tamarin
We present the (multiset) rewriting framework as instantiated by Tamarin, referring to [50, 57] for more
details. To represent cryptographic primitives and messages, we consider a set of function symbols 
endowed with a set of equations  . A message (also called a term) is built by applying functions symbols
from  to variables from an infinite set  , constants from  , names from an infinite set  or, iteratively,
to other messages built in this way. Certain names may be specified to be fresh and private in an execution
trace, as explained below. Equalities between terms are implicitly interpreted as being modulo  .
Example 1. Let  = {pk, enc, dec, h, ver} and :

dec(enc(x, pk(y), z), y) = x,
(∀ i) ver(enc(xi, y, z), y, ⟨x1,… , xk⟩) = ok.

A term enc(m, pk(k), r) represents a ciphertext wherem represents the corresponding plaintext, k represents
a private key, whose public counterpart is pk(k), and r represents the randomness used by the encryption
algorithm. k and r are typically fresh (private) names, while m may be a public name or a more complex
message.

The first equation in  specifies that standard decryption property of asymmetric encryption. Cryp-
tography is assumed perfect: there is no other way to derive messages other than applying function symbols
and equations. In particular, h(m) does not reveal m and we have h(m1) ≠ h(m2) for any m1 ≠ m2. The
second set of equations models the verification of a zero-knowledge proof showing that the corresponding
plaintext is within a certain range x1,… , xk and that the public encryption key is equal to y. We assume
the proof is part of the encryption, therefore, we do not use an explicit term for it.

The set of symbols is extended with fact symbols to represent adversarial knowledge, protocol state,
freshness information, etc. A fact is represented by F (t1,… , tk), where F is a fact symbol and t1,… , tk areterms. There are the following special fact symbols: K - for attacker knowledge; Fr - for fresh data; In and
Out - for protocol inputs and outputs. Other symbols may be added as required, e.g. for representing the
protocol state. Facts can be persistent (used in the execution any number of times) or linear (used at most
once). The notation !F is used in Tamarin to distinguish persistent facts, but all facts in our models can be
assumed persistent, so we do not use this notation in the paper to avoid clutter.

A multiset rewriting rule is defined by [L]−−[M ]→[N], where L,M,N are multisets of facts called
respectively premises, actions and conclusions. To ease protocol specification, we extend the syntax of
multiset rules with variable assignments and equality constraints, i.e. we can write rules of the form
[L]−−[ E,M ]→[N] where L may contain epressions x = t to define local variables and E is a set of equa-
tions of the form u ≈ v. For two multisets of factsM0,M1 and rule R = [L]−−[ E,M ]→[N] we say that
M1 can be obtained fromM0 by applying the ruleR, instantiated with a substitution � if: (1) every equalityin E� is true; (2) every fact in L� is included inM0; (3)M1 is obtained fromM0 by removing linear facts

8



included in L� and adding all facts from N�. There are three special classes of rules in Tamarin: network
deduction rules specify that the adversary obtains protocol outputs, provides protocol inputs, knows public
data and does not know fresh data; intruder deduction rules allow the adversary to apply functions and
exploit their equational properties; protocol rules allow to specify the behaviour of honest parties.
Example 2. Consider the set of rules Qkeys:

(i) [ Fr(k) ]−−[ Key(k) ]→[ Pk(pk(k)), Sk(k),Out(pk(k)) ],
(ii) let c = enc(x, y, r) in

[ Sk(x), Pk(y), Fr(r) ]−−[ Enc(c) ]→[ Out(c) ],
(iii) [ Sk(x), In(y) ]−−[ Dec(y) ]→[ Out(dec(y, x)) ].

The first rule models the generation of a fresh secret key k, which is stored for later use in Sk(k), while its
public counterpart is also stored and output to the network. The second rule outputs encryptions of stored
secret keys. The third rule specifies that any received message may be decrypted with a stored secret key.
The action facts Key(k), Enc(c) and Dec(y) record the respective events in the execution trace. We use the
Tamarin let … in notation for assignments.

Traces and properties. For a ruleR, we let act(R) be the action facts ofR. For a set of rules P , an execution
trace is defined by a sequence of multisets of factsM0,M1,… ,Mn and a sequence of rulesR1,… , Rn ∈ Psuch that, for every i ∈ {1,… , n}, Mi can be obtained from Mi−1 by applying Ri instantiated with a
substitution �i. We define:

• facts(�, i) = act(Ri)�i if Ri is a protocol or network deduction rule. This represents the fact that
certain actions took place at timepoint i.

• facts(�, i) = {K(v�i)} if Ri is an intruder deduction rule with conclusion {K(v)}. This represents thefact that the adversary knows the message v�i at timepoint i.
We consider a set of timepoint variables, denoted by i, j, l,…, which will be interpreted over rational

numbers. A trace atom is either a term equality t1 = t2, or a timepoint ordering i ≺ j, or a timepoint equality
i = j, or an action fact F@i for a fact F and timepoint i. A trace formula is a first-order logic formula
obtained from trace atoms by applying the usual quantification and logical connectives. The satisfaction
relation � ⊧ Φ, for a trace � and a trace formula Φ, whose all variables are bounded, is defined recursively
as expected, with the following notable case: � ⊧ F@i if and only if F ∈ facts(�, i). For a set of rules P ,
we let tr(P ) be the set of traces of R. For trace formulas Ψ,Φ, we let:

P ⊧ Φ iff ∀� ∈ tr(P ). � ⊧ Φ,
P ; Ψ ⊧ Φ iff ∀� ∈ tr(P ). � ⊧ Ψ ⇒ Φ.

For verification of security properties, (P ; Ψ) is typically a protocol specification and Φ the property to be
verified. Having the component Ψ in a protocol specification can help to express in a concise way some
properties that protocol parties should ensure along an execution trace.
Example 3. Continuing Example 2, the formula Φsec ∶ ∀x, i. Key(x)@i ⇒ ¬∃j. K(x)@j says that, if a
term x is a secret key generated by the first rule, then there is no timepoint at which the intruder knows
it. We have Qkeys ̸⊧ Φsec, since the third rule in Qkeys may decrypt messages published by the second
rule. The restriction Ψkeys ∶ ∀x, i. Dec(x)@i ⇒ ¬(∃j. Enc(x)@j) models a global check performed by the
decrypting party ensuring that the message x that is received was not produced by the second rule, and
then we have (Qkeys; Ψkeys) ⊧ Φsec.

Notation. To simplify presentation, we adopt ProVerif notation that omits connectives ∃, ∀, @. A sim-
plified formula F1(x1, x2) ⇒ F2(y1, y2) represents ∀x1, x2, i. F1(x1, x2)@i ⇒ ∃y1, y2, j. F2(y1, y2)@j.More generally, variables to the left of ⇒ are universally quantified and those to the right are existentially
quantified, and quantifiers are always applied to facts. For example, F (x) ⇒ F1(y) ∨ ¬F2(y) represents
∀x, i. F (x)@i ⇒ ∃y, j. F1(y)@j ∨ ¬(∃y, j. F2(y)@j). We may still use @ when we need to express a
timepoint relation. We note, on this occasion, that our models can also be adapted to ProVerif if needed.
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3.2 Voting related abstractions
We extend the perfect cryptography assumption to cover two specific operations of e-voting protocols: ballot
construction and vote counting. We explain and justify the corresponding abstractions next.
Ballot construction. Voting platform audits in Helios allow voters to ensure that the ballot to be cast cor-
rectly encodes their vote [8, 18]. The underlying security argument is probabilistic and is based on expec-
tations regarding the voter audit behaviour. For our model of Helios, we assume that the voting platform
correctly encrypts the voter’s choice, therefore assuming that the ballot audit perfectly achieves its goals and
does not affect other parts of the system. We note that the same assumption is used in previous symbolic
models of Helios and for symbolic analysis of electronic voting in general [10, 46, 58, 27, 32, 28]. However,
a malicious voting platformmay still choose the randomness required for the encryption in an arbitrary way,
even in presence of audits, and we allow this in our models. In this, our model of the voting platform is
more general than previous symbolic models.
Vote counting. We consider voting systems that use a public bulletin board BB to record the execution of
the election. We can distinguish the following important parts:

BBcast ∶ (cr1, [b11, b
2
1
,…]), (cr2, [b12, b

2
2
,…]), …,

BBtally ∶ (cr1, b1),… , (crn, bn).

BBcast records the ballots cast during the voting phase. It can be used by voters to verify that their
ballots correctly reach the bulletin board, and also by public auditors to ensure the behaviour of BB follows
the specification. Above, BBcast records for each cri the list of all cast ballots [b1

i
, b2

i
,…]. The revoting

policy and ballot validity checks determine which ballot from BBcast(cr, _), if any, to keep for the tally, and
these are stored in BBtally. The first part of an universally verifiable tally (called good sanitization in [27]),
allows any external observer to ensure that BBtally is correctly obtained from BBcast.

The second part of an universally verifiable tally (called good counting in [27]) takes as input the mul-
tiset of ballots ⦃b1,… , bn⦄ from BBtally and outputs a result �, which corresponds to a multiset of votes
⦃v1,… , vn⦄, and a zero-knowledge proof � showing that these votes correctly correspond to ⦃b1,… , bn⦄.The proof � is, in general, a complex cryptographic primitive whose security should also be analysed in-
dependently of the voting protocol. It may consist of two components, one for a verifiable mixnet [56, 52,
43, 60], and one for verifiable decryption [42, 53, 29]. As typically done in symbolic models [28, 27], in
order to capture the properties of this second part of the tally, we restrict the class of evoting protocols to
those where the public information present on BB before the final tally is sufficient to determine the vote vithat is encoded by a ballot bi. This is in general true for verifiable protocols, in particular for those where
bi contains an encryption of vi, like Helios or Belenios. We note, however, that there are verifiable proto-
cols where this assumptions is not true, for example when the ballot bi contains an information theoretic
commitment to vi [51, 36].Having made this assumption, we consider a function open (like in [28]) that, when applied to a ballot b,
returns the vote encoded by b according to public information of the election; similar notions are the wrap
predicate in [27] and the extract function in [20]. Then the final outcome corresponding to b1,… , bn from
BBtally is considered to be open(b1),… , open(bn). For Helios, when pk is the public key of the election, wedefine open as follows:

b = ⟨h(enc(v, pk, r)), enc(v, pk, r)⟩ ⟹ open(b) = v,
b = ⊥ ⟹ open(b) = ⊥.

We stress that this abstraction is justified by the fact that: (i) BBtally is public and fixed at the end
of the election; (ii) � is claimed by election authorities to be the result corresponding to BBtally; (iii) the
expected correspondence between BBtally, the public key pk and the result �, as defined by open, can be
formalised as an NP relation. This defines a precise cryptographic task for a zero-knowledge proof, and
dedicated cryptographic primitives can be used to implement it. We note that there are symbolic methods
for ensuring that software correctly implements the underlying cryptographic constructions [40, 9], and also
for explicitly incorporating zero-knowledge proofs within symbolic models for security protocols [12, 11].
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4 Formal models for election verifiability
We need two specifications for formal verification:

•  - the specification of the considered e-voting system, including the procedures for honest parties
and the corruption abilities of the adversary;

• Φ - the specification of the desired security property.
 will be defined based onmultiset rewriting rules and restrictions, whileΦwill be a conjunction of trace

formulas referring to executions of  . In order to have a general security definition Φ that can be applied
to any desired  , we assume, similar to previous symbolic definitions, e.g. [10, 27, 28], that  defines a
set of basic events, that are standard for electronic voting protocols: a voter is registered; a candidate is
electable; a vote is cast; a ballot is verified; the result is recorded; a voter is corrupted. Formally, relying on
fact symbols

BBreg,Cand,Vote,Verif ied,BBtally,Corr,

these events will be represented by action facts associated to the corresponding rules in the specification
 . We refer to Figure 1 for an example specification showing how these events are added to rules. In more
detail:

– BBreg and Cand. A voting system assumes a set of eligible voters, represented by the identities
id1,… , idn. They are determined by a trusted administrator or other election authorities. The number
n of eligible voters is in general public, however there are elections where it is required that voter iden-
tities remain private, and in that case public credentials cr1,… , crn are used to record and track voterballots on the bulletin board. We assume that for each eligible credential cri there is a correspondingevent BBreg(cri) recorded in the trace. We note that cr can be equal to id, if the specification of the
voting system prescribes it. The set of candidates to be elected is represented by the set of events
Cand(v1),… ,Cand(vk) in the trace.

– Vote. Formally, when a voter with private identity id and public credential cr casts a vote v, we assume
the action fact Vote(id, cr, v) is recorded in the corresponding execution trace.

– Verified. Individual verification procedures allow voters to verify that their cast vote is correctly
recorded by the voting system, possibly relying on special section of the bulletin board. If a voter
with identity id and public credential cr has successfully performed the verification steps related to a
vote for v, we assume the action fact Verif ied(id, cr, v) is recorded in the execution trace.

– BBtally. In a symbolic execution trace, the multiset of ballots to be tallied is formally defined by
events of the form BBtally(cr, b) recording that the ballot b is tallied for the respective cr. Accord-
ing to the vote counting abstraction discussed in subsection 3.2, if all BBtally events in a trace are
{BBtally(cr1, b1),… ,BBtally(crn, bn)}, then we consider the result of the election to be {open(b1),… ,
open(bn)}.

– Corrupted Voter. A registered voter obtains a public credential and possibly private credentials to
be used for the authentication. The action fact Corr(id, cr) denotes the event that all these credentials
are leaked to the adversary. The cause of the leak may be the voter or the infrastructure used to
transmit or store credentials. Note that other components of the voting system - e.g. the trustees, the
registrar, the voting server, the voting platform - may also be corrupted, but we do not require these
corruption events to be recorded in the execution trace. The reason this is required for voters is that,
if private credentials are leaked, in general we cannot prevent the adversary from casting a ballot for
the respective voter, and we need to account for this in the security property.
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Figure 1: Protocol components for Helios specification

(a) Protocol specification  = ( ,Ψ)

Rules are labelled with corresponding protocol parties
A,T,VR,VS,VP,EA as introduced in section 2.
SETUP PHASE

RT
key
∶ generate election secret and public keys
[ Fr(sk) ]−−[ BBkey(pk(sk)) ]→
[ Sk(sk), Pk(pk(sk)),BBkey(pk(sk)),Out(pk(sk)) ]

RA
cand

∶ determine candidates to be elected
let vlist = ⟨v1,… , vk⟩ in

[ In(vlist) ]
−−[ Cand(v1),… ,Cand(vk),BBcand(vlist) ]→
[ Cand(v1),… ,Cand(vk),Out(vlist) ]

RA
id
∶ determine identities eligible to vote
[ In(id) ]−−[ ]→[ Id(id) ]

RVR
reg ∶ register voter with credential and password

[ Id(id), Fr(cr), Fr(pwd) ]−−[ BBreg(cr) ]→
[ Reg(id, cr, pwd),BBreg(cr),Out(cr) ]

RVS
bb
∶ setup initial BBcast for registered voters
[ BBreg(cr) ]−−[ BBcast(cr, ⊥) ]→[ BBcast(cr, ⊥) ]

VOTING PHASE

RVP
vote ∶ construct a ballot, authenticate and send it to VR

let c = enc(v, pkey, r); b = ⟨h(c), c⟩;
a = h(⟨id, pwd, b⟩) in

[ Cand(v),BBkey(pkey), Fr(r),Reg(id, cr, pwd) ]
−−[ Vote(id, cr, v),VoteB(id, cr, b) ]→
[ Out(⟨id, b, a⟩),Voted(id, cr, v, h(c)) ]

RVR
auth

∶ authenticate voter and forward ballot to VS
let b = ⟨hc, c⟩; a′ = h(⟨id, pwd, b⟩) in

[ In(⟨id, b, a⟩),Reg(id, cr, pwd) ]−−[ a′ ≈ a ]→
[ Cast(cr, b) ]

RVS
cast ∶ effectively cast the ballot on BB

[ Cast(cr, b) ]−−[ BBcast(cr, b) ]→[ BBcast(cr, b) ]

ΨVS∕EA
cast ∶ ensure ballot validity; can be audited by EA

BBcast(cr, b)⇒ BBreg(cr) ∧ ( b = ⟨hc, c⟩ ⇒
hc = h(c) ∧ BBkey(pkey) ∧ BBcand(vlist)
∧ ver(c, pkey, vlist) = ok )

TALLY PHASE

RVS∕EA
tally

∶ VS selects ballots for tally; can be audited by EA
[ BBcast(cr, b) ]−−[ BBtally(cr, b) ]→[ BBtally(cr, b) ]

ΨVS∕EA
tally

∶ the last ballot added to BB is selected for tally
BBcast(cr, b) @ i ∧ BBcast(cr, b′) @ j ∧
BBtally(cr, b) @ l ⇒ j ≺ i ∨ b = b′

(b) Individual verification procedures for 

R0
ver ∶ voter verifies the receipt on BBcast

let b = ⟨hc, c⟩ in

[ Voted(id, cr, v, hash),BBcast(cr, b) ]
−−[ hash ≈ hc,Verif ied(id, cr, v),VerB(id, cr, b) ]→[ ]

R1
ver ∶ same as R0

ver, but performed in the tally phase

R2
ver ∶ voter verifies the receipt on BBtally

let b = ⟨hc, c⟩ in

[ Voted(id, cr, v, hash),BBtally(cr, b) ]
−−[ hash ≈ hc,Verif ied(id, cr, v) ]→[ ]

R3
ver ∶ voter verifies there is no ballot on BBtally

[ Reg(id, cr, pwd),BBtally(cr, x) ]
−−[ x ≈ ⊥,Verif ied(id, cr, ⊥) ]→[ ]

R0ver and R1ver can be combined with restrictions below

Ψlast ∶ the verified ballot is currently the last on BB
BBcast(cr, b) @ i ∧ BBcast(cr, b′) @ j ∧
VerB(id, cr, b) @ l ∧ i ≺ l ∧ j ≺ l
⇒ j ≺ i ∨ b = b′

Ψmine ∶ all ballots currently on BB were cast by id
VerB(id, cr, b) @ j ∧ BBcast(cr, b′) @ i ∧ i ≺ j
⇒ VoteB(id, cr, b′) @ l

(c) Adversarial corruption rules against 

T
key
∶ corrupt trustee to reveal the secret key
[ Sk(sk) ]−−[ ]→[ Out(sk) ]

VR
reg ∶ corrupt registration of public credentials

[ In(⟨cr, cr′⟩), Fr(pwd) ]−−[ BBreg(cr′) ]→
[ Reg(id, cr, pwd),BBreg(cr′) ]

VR
auth

∶ corrupt registrar to not authenticate voter
[ In(⟨cr, b⟩) ]−−[ ]→[ Cast(cr, b) ]

VS
cast ∶ corrupt server to stuff ballots

[ In(⟨cr, b⟩) ]−−[ BBcast(cr, b) ]→[ BBcast(cr, b) ]

VP
vote ∶ corrupt platform to choose randomness

rule RVP
vote where Fr(r) is replaced by In(r)

V
corr ∶ corrupt voter to reveal credentials
[ Reg(id, cr, pwd) ]−−[ Corr(id, cr) ]→ [ Out(⟨id, cr, pwd⟩) ]

Ψorder ∶ ensure ballots are delivered in the right order
VoteB(id, cr, b) @ i ∧ VoteB(id, cr, b′) @ j ∧

BBcast(cr, b) @ k ∧ BBcast(cr, b′) @ l ∧ i ≺ j ⇒ k ≺ l

12



4.1 Voting protocols, procedures and adversary
A protocol component is a pair (,Ψ), where  is a set of protocol rules and Ψ is a set of restrictions, i.e.
trace formulas that may restrict the execution of rules from  under certain conditions.
Definition 1. An e-voting specification  is a triple of protocol components ( , ,), where

•  specifies the voting protocol procedures,
•  specifies the individual verification procedures,
•  specifies the corruption abilities of the adversary.

If  = ( (R ,Ψ ), (R ,Ψ ), (R,Ψ) ), then we let  ⊧ Φ iff R ∪ R ∪ R; Ψ ∧ Ψ ∧ Ψ ⊧ Φ.

While  may also be considered as part of the protocol specification , we treat it separately because we
will analyse the security properties that are ensured by various verification procedures  in the context of
the same basic protocol  and various adversaries . We note that  may also include public verification
checks that can be performed by any external party on the bulletin board. Next, we discuss and illustrate in
more detail each component of a specification ( , ,).
Protocol model  . The component  = ( ,Ψ) from Figure 1a corresponds to the Helios protocol as
introduced in section 2, omitting the individual verification procedures. Rules can be formally separated into
phases with additional restrictions in Tamarin (omitted from picture). The fact Reg(id, cr, pwd) represents a
voter with identity id that was communicated the public credential cr and the password pwd at registration.
The rule RVPvote models the actions of the voting platform when asked to construct a ballot for the given
credentials and desired vote. For casting to the bulletin board, the ballot needs to be authenticated with
pwd. The mechanism used for authentication is abstracted with a simple construction based on a hash
function. The voting server verifies the validity of ballots to be posted on BBcast, checking the hash of the
encryption and the range proof showing that the encryption is for an eligible candidate (we model this with
equations from Example 1). For tally, VS selects the last ballot from BBcast for each cr. These actions
of the server are universally verifiable by auditors, since BBcast and BBtally are public. That is why the
corresponding restrictions are labeled by both VS and EA.
Individual verification procedures . In Figure 1b, we present rules and restrictions that can be combined to
obtain individual verification components for Helios. The premises of rules River typically contain two facts:one which includes the expected vote and tracking information for a posted ballot; and one which includes a
particular cast ballot as seen on the bulletin board. A basic verification check performed in the rule ensures
that the tracking information for the posted ballot matches the one of the ballot b shown as cast on the
bulletin board. Further verification checks on b are enabled by the action fact VerB, which records some
parameters relevant to the verification operation. The restrictions Ψ ∈ {Ψlast,Ψmine} can then express
additional trace properties that should be true for these parameters. If and only if all tests performed by Riverand Ψ are true, the rule River can be executed and a corresponding event Verif ied(id, cr, v) can be recordedin the trace to represent a successful verification event.

For example, (R0ver, ∅) represents the basic verification procedure where the voter simply checks whether
the obtained receipt is present onBBcast, with no constraint. In addition, (R0ver,Ψlast) ensures that the verified
ballot is the last one currently cast for that cr on BBcast. In addition, (R0ver,Ψlast ∧ Ψmine) requires that allballots previously cast should be recognised as originating from the voter who performs the verification.
The specification of the protocol may require that verification is performed after the end of the voting phase,
which can be handled by a rule R1ver similar to R0ver. The rule R2ver shows that ballots can also be verified on
BBtally after it was computed from BBcast (which is different from verifying BBcast with R1ver). The rule
R3ver used in a component ({R0ver,R3ver},Ψ) means that voters who did not vote can verify that there is no
ballot tallied in their name on the bulletin board. We discuss more about these procedures in section 5.
Adversarial corruption rules . Election verifiability should also take into account the ability of the ad-
versary to corrupt certain participants and infrastructure. It is standard to assume that the adversary may
corrupt voters, the holders of secret keys (also known as trustees) and the communication network. In ad-
dition, the adversary may control other parties (e.g registrars), voting platforms, election servers, etc. We
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model all such abilities by a set of (adversarial) corruption rules, which is a parameter of our definition,
and is an addition to the standard network and intruder deduction rules. For our case study, we will con-
sider different scenarios where  consists of a subset of rules from Figure 1c with respect to the Helios
specification (and we have a similar set for Belenios). The corruption rules are of two sorts: either leak-
ing information to the adversary (rules T

key
,V

corr), or allowing the adversary to control parts of the voting
infrastructure corresponding to parties VR, VS or VP. The rule VR

reg affects the electoral roll: a corrupted
registrar takes instructions on how to construct and allocate public credentials to voters. For example, the
same credential may be allocated to two different voters, in order to mount a clash attack. Note that ad-
versarial inputs are not constrained, letting the adversary choose the desired attack strategy. The rule VR

auth

(respectively VS
cast), models a corrupted VR (respectively VS) that may forgo the prescribed way of casting

ballots to the bulletin board. The rule VP
vote represents a corrupted voting platform which allows the ad-

versary to select the randomness used in the encryption of the vote. This will generate a valid ballot with
adversarially chosen randomness. As discussed in subsection 3.2, we assume the ballot is valid because
voters have the option to audit their platform.

Restrictions can be used to reduce the adversarial power, when it is justified by the considered scenario.
For example, if one makes the assumption that the ballot-casting infrastructure is honest, it follows that, if
a voter casts multiple ballots, we can ensure that they are delivered to the bulletin board in the right order.
We can model this by the restriction Ψorder used in conjunction with the corresponding adversarial rules.

4.2 Symbolic election verifiability
Our definition of election verifiability is a conjunction of trace formulas that restricts the possible outcome
of the election and the possible outcome of individual verification procedures. The goal is to guarantee
that all successfully verified votes are correctly counted in the final result, and also to restrict the set of
additional, potentially malicious, votes in the result.
Revoting policy. Assume a voter with credentials (id, cr, pwd) has cast several ballots corresponding to
votes v1… , vk. Only one of these votes, say vi, will be counted in the final outcome, according to the
revoting policy in place. If the individual verification procedure is appropriate for the respective revoting
policy, then it should be the case that Verif ied(id, cr, vj) is true in an execution trace if and only if vj = vi.In consequence, we would be able to ensure that all successfully verified votes are contained in the final
outcome. However, some systems may prescribe weaker verification procedures, which can only ensure for
example that the ballot made it to the bulletin board. In that case, the formal verifiability property needs
to add additional constraints that should be satisfied in order for the verified vote to be counted. We use a
(parameterised) formula Ω(id, cr, v) to add the respective constraints for a given triple (id, cr, v). We note
that, in this paper, we are mainly interested in verification procedures that are strong enough to imply that
the verified vote is counted, thus in general we may not need Ω(id, cr, v); formally, this formula is set to
true in that case. Another natural policy is Ωlast from Figure 2, specifying that the vote v should be the last
one cast by the given voter. Although Φiv and Φ⋄E2E defined below depend on the revoting policy Ω, it will
usually be clear from the context and we omit it from notation.
Definition 2. Consider the trace formulas from Figure 2. For ⋄ ∈ {◦, ∙}, we define

Φ⋄E2E = Φiv ∧ Φeli ∧ Φcl ∧ Φ⋄res.

We say that an e-voting specification  satisfies symbolic election verifiability iff  ⊧ Φ⋄
E2E

.
∙ Φiv corresponds intuitively to individual verifiability, i.e. successful verification should imply that the
corresponding vote is indeed counted as intended in the final outcome. For successful verification, we have
seen thatVerif ied(id, cr, v) can require various properties to be ensured on an execution trace, as in Figure 1b.
To obtain a precise, practical notion of counted as intended, the formulaΦiv needs to be complemented with
the rest. Recall that events and variables to the right of ⇒ in a (simplified) trace formula are universally
quantified. Therefore Φiv requires that any ballot b claimed by election authorities to represent a voter’s
choice satisfies the required constraint v = open(b). We also note that, by public audits, it can be ensured
that there is always a ballot recorded for every registered credential; this can be the empty ballot ⊥ if there
was no ballot cast for that credential.
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Figure 2: Symbolic election verifiability
Formulas defining symbolic E2E

Φiv ∶ Verif ied(id, cr, v) ∧ Ω(id, cr, v) ∧ BBtally(cr, b)
⇒ v = open(b)

Φeli ∶ Verif ied(id, cr, v) ∨ BBtally(cr, b)⇒ BBreg(cr)
Φcl ∶ Verif ied(id, cr, v) ∧ Verif ied(id′, cr, v′) ⇒ id = id′

Φ⋄
res ∶ BBtally(cr, b) ∧ b ≠ ⊥

⇒ ( Vote(id, cr, v) ∧ v = open(b) ) ∨ Φ⋄
adv
(cr)

Two possible cases for Φ⋄
adv

Φ∙
adv
(cr) ∶ Corr(id, cr)

Φ◦
adv
(cr) ∶ Corr(id, cr) ∨ ¬Verif ied(id, cr, v′)

Additional property for homomorphic tally

Φcand ∶ BBtally(cr, b) ∧ b ≠ ⊥⇒ Cand(open(b))

Examples of revote policies Ω

Ωok(id, cr, v) ∶ true
Ωlast(id, cr, v) ∶ Vote(id, cr, v) @ i

⇒ (Vote(id, cr, v′) @ j ⇒ j ≺ i ∨ v = v′)

Possible weakening of individual verifiability

Φh
iv
∶ ¬Corr(id, cr) ⇒ Φiv(id, cr)

Restrictions to achieve multiset-based E2E

Ψtally1 ∶ BBreg(cr)⇒ BBtally(cr, b)
Ψtally2 ∶ BBtally(cr, b) @ i ∧ BBtally(cr, b′) @ j

⇒ i = j

∙ Φeli ensures that, for every voter, successful verification implies that the corresponding public credential is
registered as eligible on the bulletin board, and therefore will be accounted for in the final tally. Conversely,
all credentials accounted for in the final tally should correspond to registered credentials.
∙ Φcl specifies that no clash should occur on public identities used in successful individual verification
procedures. In other words, if there is such a clash, then the individual verification procedure should detect
it and return a negative result. In subsection 2.2, we have shown a few scenarios where a violation of
this property leads to practical attacks on verifiability of Helios; therefore this property is, in some sense,
necessary. On the other hand, it is also a general property, and it has a significant contribution towards a
minimal set of properties and restrictions that are sufficient for end-to-end verifiability.
∙ Φ⋄

adv
. For each ballot to be tallied, we can make the following distinction: either there was a corresponding

instance of the voting procedure executed by an eligible voter, or else this is a vote cast by the adversary. The
property Φ⋄

adv
specifies precisely what votes are expected to be cast by the adversary. This may depend on

trust assumptions related to participants in the voting system, thus the property is parametrised by a formula
Φ⋄

adv
. At least, we expect that the adversary is able to cast votes for corrupted voters. The strongest version

of Φ⋄
adv

, obtained by using Φ∙
adv

in place of Φ⋄
adv

, specifies that no other votes are expected to be cast by the
adversary. If we do not make any trust assumptions about the election authorities then, to our knowledge,
there is no voting system that ensures this property. It can be achieved by Helios when the registrar and the
voting server are honest, and by Belenios when at least one of these parties is honest, but we note that the
registrar plays a different role in Belenios, providing secret signing keys to voters [33].

To evaluate the degree of security that can be achieved in stronger corruption scenarios, for example
when all election authorities are corrupted, we consider a slightly weaker version ofΦ⋄

adv
. The formulaΦ◦

advspecifies that, in addition to corrupted voters, the adversary may cast ballots for voters who do not verify
their votes. To illustrate this case, we consider a few scenarios where votes from honest voters may not reach
the final tally: (i) a voter does not vote; (ii) a voter does vote but the corresponding ballot is dropped by
corrupted election infrastructure; (iii) revoting is allowed, and a first vote submitted by the voter is replaced
by corrupted election infrastructure. In all these cases, the voter has the option to perform the verification
procedure associated to the voter choice (abstention or desired candidate) and to the corresponding public
credential. Φ◦

adv
says that the adversary is able to take over the respective credential if and only if the voter

did not perform the verification procedure, or if its outcome was negative, in which case the voter should
complain to the relevant authority. We note that accountability and dispute resolution mechanisms should
complement election verifiability for this case [47, 15].
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∙ Φcand is required for the particular case of systems whose tally method is based on homomorphic encryp-
tion. Then we need to ensure that ballots entering the final tally encode valid votes, otherwise the adversary
may submit multiple votes within a single ballot, annulling the benefits of Φ⋄res. For systems where each
ballot is decrypted individually, like those based on mixnets, invalid votes can be simply removed from the
final outcome.
∙ Φh

iv
isΦiv that is applied only to voters whose credentials are not leaked. For some systems and procedures,

only this weaker version may be ensured. For Helios, we will see examples of procedures that achieve strong
as well as examples that only achieve weak individual verifiability.
Comparison with [28]. The properties defining Φ⋄

E2E
are similar in nature to properties defining symbolic

verifiability in [28]. There are, however, important technical differences that allow us to overcome the lim-
itations of [28] discussed in the introduction:
−we introduce cr as an argument inVerif ied,Vote and we remove id as an argument in BBtally. In [28] these
are Verif ied(id, v),Vote(id, v) and BBtally(id, cr, b). Our version of Verif ied,Vote makes a stronger connec-
tion between these events and public information on BB. In the same spirit, removing id from BBtallymakes
the verifiability property more transparent (the connection to id is only known to the voting server in [28]).
− the hidden connection between id and cr in BBtally requires [28] to come up with additional artefacts and
restrictions (which vary according to the corruption scenario, and are justified by trust assumptions) in order
to make a formal and consistent connection between the public information in BBtally and voter information
in Verif ied and Vote. In our case, this connection is directly provided by the public credential cr used both
by voter and the public bulletin board. We demonstrate the generality of our approach by applying it to
various scenarios in Helios and Belenios, where we only need to switch between Φ∙res and Φ◦res to choose
the appropriate level of security.
− there is one simple consistency property that we need to ensure between cr and id, which is formalised by
the no clash property Φcl. It is a property that should intuitively hold for any system, and it can be proved
instead of taken as a trust assumption.
− we capture revoting by introducing a revote policy Ω and, more generally, a systematic way of linking
Verif ied events to other events in the execution trace.
− we allow a more liberal handling of corruption and we argue that the stronger version of individual veri-
fiability that we propose, Φiv, should be preferred to Φh

iv
whenever possible. It allows to derive verifiability

guarantees even for voters who are dynamically or unwillingly compromised.

4.3 Multiset-based election verifiability
Following the approach from [26, 28, 27], we consider a definition of end-to-end verifiability based on mul-
tisets. The advantage of this definition is that it captures the desired verifiability property with mathematical
notions (like set theory and natural number theory) that are more closely related to the real-world execution
of a vote-counting election. The drawback is that automated verification modulo these theories is more
problematic than for the symbolic approach. The goal of this section is to show that symbolic verifiability
entails multiset-based verifiability, based on minimal restrictions concerning the execution of the voting
system. We aim for restrictions that can be enforced by public audits on the bulletin board, and do not
require additional trust assumptions about the voting infrastructure. We consider the two restrictions from
Figure 2, where Ψtally1 requires that for each registered credential there has to be a corresponding ballot
(possibly ⊥) recorded for the tally phase, and Ψtally2 requires that there is at most one ballot recorded for
each credential. Both restrictions can be ensured relying on the basic assumption of a public bulletin board,
where the list of registered credentials is published at setup and the list of ballots to be tallied is published
at the end of the voting phase. We let ΨE2E = Ψtally1 ∧ Ψtally2.We denote multisets by ⦃a1,… , an⦄, where each element ai may have multiple occurrences. A ⊎ B
represents the disjoint union of multisets A and B, where multiplicities of common elements of A and B
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add up. For an execution trace �, revote policyΩ and ⋄ ∈ {◦, ∙}, we define the following sets and multisets:
Ver(�) = ⦃(cr, v) | ∃id. � ⊧ Verif ied(id, cr, v) ∧ Ω(id, cr, v) ∧ v ≠ ⊥⦄,

Vervote(�) = ⦃v | ∃cr. (cr, v) ∈ Ver(�)⦄,
Vercr(�) = {cr | ∃v. (cr, v) ∈ Ver(�)},
Adv⋄(�) = {cr | � ⊧ Φ⋄

adv
(cr)},

Result(�) = ⦃open(b) | ∃cr. � ⊧ BBtally(cr, b) ∧ b ≠ ⊥)⦄.

Our definition of multiset-based end-to-end verifiability is a slight generalisation of the one in [26, 28]:
we account for revoting; we extend the notion of corrupted voters (coveringΦ∙

adv
) to adversarial credentials

defined by Φ⋄
adv

(covering both Φ∙
adv

and Φ◦
adv

); we require that corrupted voters that have verified their
votes should also benefit from the underlying end-to-end verifiability guarantees. In summary, the definition
shows that the final result can be partitioned into: votes that have been verified by voters, votes that have
not been verified, and additional votes that may be cast by the adversary. Moreover, for each of these sets,
there are constraints related to their content and size.
Definition 3. Let Ω be a revoting policy. A trace � satisfies MS⋄E2E, for ⋄ ∈ {◦, ∙}, if there exist multisets
V1, V2, V3 such that Result(�) = V1 ⊎ V2 ⊎ V3, where

1. V1 = Vervote(�),
2. V2 = ⦃v1,… , vl⦄ and there are mutually distinct cr1,… , crl such that ∀i ∈ {1,… , l},

• ∃idi. � ⊧ Vote(idi, cri, vi), and
• cri ∉ Vercr(�) ∪ Adv⋄(�).

3. |V3| < | Adv⋄(�) ⧵ Vercr(�) |.
We denote this by � ⊩ MS⋄E2E.

Intuitively, we have: 1) all of the verified votes should be part of the final outcome; 2) if a credential
is not adversarial, and there is a vote counted for that credential, there can be at most one such vote and it
comes from an honest execution of the voting procedure; 3) the number of any additional votes that is part
of the final result is bounded by the number of adversarial credentials. In 2) and 3), we exclude credentials
for which some voter verified their vote, since these have been counted in 1).
Lemma 1. For any trace � and terms cr, v such that � ⊧ Φiv ∧ Φeli ∧ Ψtally1 and � ⊧ Verif ied(id, cr, v) ∧
Ω(id, cr, v), we have � ⊧ BBtally(cr, b) ∧ v = open(b), for some term b.

Proof. From � ⊧ Verif ied(id, cr, v) and � ⊧ Φeli, we deduce � ⊧ BBtally(cr, b), for some term b. Putting this
together with � ⊧ Verif ied(id, cr, v) ∧ Ω(id, cr, v) and applying � ⊧ Φiv, we deduce � ⊧ BBtally(cr, b) ∧ v =
open(b) as required.

Proposition 1. For every trace � and ⋄ ∈ {◦, ∙} such that � ⊧ ΨE2E, we have � ⊧ Φ⋄E2E ⟹ � ⊩ MS⋄E2E,
where

Φ⋄
E2E

= Φiv ∧ Φeli ∧ Φcl ∧ Φ⋄res,
ΨE2E = Ψtally1 ∧ Ψtally2.

Proof. Assume � ⊧ ΨE2E ∧ Φ⋄
E2E

. Let R = ⦃(cr, v) | � ⊧ BBtally(cr, b) ∧ v = open(b) ∧ b ≠ ⊥⦄. Note
that, by definition, Result(�) = ⦃v | (cr, v) ∈ R⦄. Let us define:

R1 = R ∩ Ver(�) R2 = R′2 ⧵ Ver(�) R3 = R′3 ⧵ Ver(�)
R′2 = R ∩ ⦃(cr, v) | ∃id.� ⊧ Vote(id, cr, v), cr ∉ Adv⋄(�)⦄ R′3 = R ∩ ⦃(cr, v) | cr ∈ Adv⋄(�)⦄

For i ∈ {1, 2, 3}, let Vi = ⦃v | ∃cr. (cr, v) ∈ Ri⦄. We show that V1, V2, V3 satisfy the requirements of
Definition 3. First, let us show that Result(�) = V1 ⊎ V2 ⊎ V3. By definition, this is equivalent to showing
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R = R1 ⊎ R2 ⊎ R3. From � ⊧ Φ⋄res, we deduce that, for each (cr, v) ∈ R, we have one of two cases: (i)
either ∃id. � ⊧ Vote(id, cr, v); (ii) or � ⊧ Φ⋄

adv
(cr). Therefore, we have (cr, v) ∈ R′2 or (cr, v) ∈ R′3. Since

R′2 ∩ R
′
3 = ∅ and R′2, R′3 ⊆ R, we can then deduce R = R′2 ⊎ R

′
3. Next, by definition of R2, R3, we have

R′2 = R2 ⊎ (R
′
2 ∩ Ver(�)) and R′3 = R3 ⊎ (R′3 ∩ Ver(�)). Moreover, we have
R1 = R ∩ Ver(�) = (R′2 ⊎ R

′
3) ∩ Ver(�) = (R′2 ∩ Ver(�)) ⊎ (R′3 ∩ Ver(�)).

Therefore, we can conclude R = R1 ⊎ R2 ⊎ R3 and Result(�) = V1 ⊎ V2 ⊎ V3.Next, we show that each of V1, V2, V3 satisfies respectively 1), 2), 3) from Definition 3:
1) We show V1 = Vervote(�). By definition, we have V1 ⊆ Vervote(�). Let us show that Vervote(�) ⊆ V1.For any v ∈ Vervote(�), let s be the number of times v occurs in Vervote(�). We show that the number
of times v occurs in the multiset V1 is at least s. Consider the list of all (id1, cr1),… , (ids, crs) such that
∀i ∈ {1,… , s}, � ⊧ Verif ied(idi, cri, v). By definition of Ver(�) and by the definition of s, for any i ≠ j, we
have (idi, cri) ≠ (idj, crj). Therefore, if idi = idj, we must have cri ≠ crj. Moreover, from � ⊧ Φcl, we alsohave idi ≠ idj ⇒ cri ≠ crj. Thus, we can conclude that, for any i ≠ j, we have cri ≠ crj.For every i ∈ {1,… , s}, from � ⊧ Φiv ∧ Φeli ∧ Ψtally1 and (cri, v) ∈ Ver(�), by Lemma 1, we deduce
� ⊧ BBtally(cri, bi) ∧ v = open(bi). Therefore, by definition of R1, we have ⦃cr1, v),… , (crs, v)⦄ ⊆ R1.Moreover, from i ≠ j ⇒ cri ≠ crj, we can then deduce that all (cri, v) are distinct, and therefore, the multi-
plicity of v in V1 is at least s. Thus, we can conclude that V1 = Vervote(�) as required.
2)We show the required property for V2. Let R2 = ⦃(cr1, v1),… , (crl, vl)⦄. From � ⊧ Ψtally2, we know that
cr1,… , crl are mutually distinct. By definition of R2, for all i ∈ {1,… , l}, we have cri ∉ Ver(�) ∪ Adv⋄(�)
and there exists idi such that � ⊧ Vote(idi, cri, vi).
3) We show |V3| < | Adv⋄(�) ⧵ Vercr(�) |. By definition, we have |V3| = |R3| and

R3 = (R ∩ R′3) ⧵ Ver(�) ⊆ R ∩ (R
′
3 ⧵ Ver(�)).

From � ⊧ Ψtally2, we have for all cr, |⦃v | (cr, v) ∈ R3⦄| ≤ |⦃v | (cr, v) ∈ R⦄| ≤ 1. Therefore,
by definition of Adv⋄(�) and R′3, we can deduce |R3| < | Adv⋄(�) ⧵ Vercr(�) | and conclude |V3| <
| Adv⋄(�) ⧵ Vercr(�) |.
Corollary 1. For any evoting specification  and ⋄ ∈ {◦, ∙}, we have

 ⊧ Φ⋄
E2E

∧  ⊧ ΨE2E ⟹  ⊩ MS⋄E2E.

5 Helios verification: attacks and security proofs
We put together the symbolic models introduced previously to derive several scenarios for the verification of
election verifiability in Helios (in the next section we apply them to Belenios). We perform automated veri-
fication, finding both security proofs and attacks with Tamarin. The Tamarin code is available as additional
material [1]. Each scenario is defined by assembling elements from Figure 1. The protocol component is combined with an individual verification procedure i and adversarial corruption rules j , resulting in
an e-voting specification[i,j] = ( ,i,j). The set of i and ofj that we consider are in Table 1and Table 2, respectively.

The procedure 1 represents the scenario where the bulletin board only displays the last ballot cast by
each voter, as in the current deployment of Helios [5], or where all ballots are shown but voters are instructed
to verify the last ballot cast for their credential on the bulletin board. 2 represents the same procedure, but
performed after the voting phase has ended, so no more ballots can be accepted on the bulletin board. 1and resp. 2 can be augmented to 3 and resp. 4, using an additional test, modelled by Ψmine, ensuringthat all ballots cast on the bulletin board belong to the voter performing the verification (note that this is in
fact not possible on the current deployment, where only the last ballot is shown). 5 and 6 are performed
directly on BBtally after it is computed from BBcast.
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Table 1: Verification procedures for Helios and Belenios

Specif ication Voter instructions

1 ∶ (R0ver,Ψlast) verify the last ballot in BBcast

2 ∶ (R1ver,Ψlast) verify the last ballot in BBcast, and do it in tally phase
3 ∶ (R0ver,Ψlast ∧ Ψmine) as 1, and ensure all ballots are recognised as own
4 ∶ (R1ver,Ψlast ∧ Ψmine) as 2, and ensure all ballots are recognised as own
5 ∶ (R2ver) verify the ballot directly on BBtally

6 ∶ (R3ver) verify abstention directly on BBtally

Table 2: Adversary models for Helios

Specif ication Corrupted parties and infrastructure

1 ∶ T
key
,V

corr,Ψorder trustees, voters
2 ∶ T

key
,V

corr,
VR
auth

or VS
cast trustees, voters and (registrar∗ or server)

3 ∶ T
key
,V

corr,
VR
reg ,Ψorder trustees, voters and registrar⋆

4 ∶ T
key
,V

corr,
VR
reg ,

VR
auth

and∕or VS
cast trustees, voters, registrar and server

5 ∶ T
key
,V

corr,
VR
reg ,

VR
auth

,VP
vote,

VS
cast trustees, voters, registrar, server and voting platform

∗ : only the authentication component is corrupted
⋆ : only the registration component is corrupted

Verification results are presented in Table 3, where [i,j] is represented by [i,j]. Recall that
Φ∙

E2E
= Φiv ∧ Φeli ∧ Φcl ∧ Φ∙res,

Φ◦
E2E

= Φiv ∧ Φeli ∧ Φcl ∧ Φ◦res.

and note that for each adversary, except for 5 where we have the clash attack of [49], there is a corre-
sponding procedure such that either Φ∙

E2E
or Φ◦

E2E
is satisfied. A particular case is individual verifiability

for the scenarios [i,1], for i ∈ {1, 3}, that can only be proved for voters that are not corrupted (i.e. we
use Φh

iv
instead of Φiv). Moreover, since 1,3 allow a voter to verify multiple distinct votes, we also use

the revote policy Ωlast to specify that only the last of these should be counted. Note that we can prove Φ∙
E2Efor 1,3 only in the weakest adversarial model1. We also proveΦcand in all corruption scenarios, whichis true since the auditors check the range proofs on the bulletin board to ensure legitimate votes. We have

a ’?’ in the table when Tamarin does not terminate within 10 minutes; for all other cases it does so within
5 minutes. In several scenarios we find attacks that we discuss next. Some of them are expected; some of
them are new.
Violations of Φiv - (VIV). In some cases, verification procedures do not satisfy the basic requirement of
individual verifiability, i.e. that the verified vote should be part of the outcome. If revoting is allowed and a
party responsible for vote casting, that is VS or VR, is corrupted, then any verification procedure performed
during the voting phase is vulnerable to an instance of the ballot stuffing attack: even if the expected ballot
is present on the bulletin board at some point during the voting phase, it may be later replaced by malicious
parties with a ballot of their choice. The vulnerable scenarios are {[i,j] | i ∈ {1, 3}, j ∈ {2, 4, 5}}.
Some additional, less expected scenarios are also vulnerable: we have [i,3] ̸⊧ Φh

iv
, for i ∈ {1, 3}.
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Table 3: Verifiability analysis for [i,j]

[i,j]∕�type Φiv Φeli Φcl Φ∙res Φ◦res
[i,1], i ∈ {1, 3} 3⋆ 3 3 3 3

[i,1], i ∈ {2, 4, 5, 6} 3 3 3 3 3

[i,2], i ∈ {1, 3} 7 3 3 7 7

[i,2], i ∈ {2, 4, 5, 6} 3 3 3 7 3

[1,3] 7 3 7 3 3

[3,3] 7 3 3 3 3

[i,3], i ∈ {2, 4, 5} 3 3 3 3 3

[6,3] 3 3 7 3 3

[1,4] 7 3 7 7 7

[3,4] 7 3 3 7 7

[i,4], i ∈ {2, 4, 5} 3 3 3 7 3

[6,4] 3 3 7 7 3

[1,5] 7 3 7 7 7

[3,5] 7 3 ?∗ 7 7

[4,5] 3 3 ?∗ 7 3

[i,5], i ∈ {2, 5, 6} 3 3 7 7 3

⋆ : verification is forΦh
iv
when used with revote policyΩlast.

∗ : there should be an attack but Tamarin takes > 10mins.

In this case, the adversary only controls the registration authority. The explanation for the attack in this
case is that there can be a clash on public credentials, so the ballot of a voter who verified may be replaced
with a ballot of a second voter that has the same credential. Note that, if the second voter verifies their
ballot according to 3, the clash mounted by the adversary would be detected, and that is why we have
[3,3] ⊧ Φcl.
Violations of Φ∙res - classic ballot stuffing (BS1). Ballot stuffing is possible in Helios for honest voters
who did not vote or, more generally, for those who did not verify their vote. For this attack, the adversary
has to corrupt either the registrar or the voting server. Since the attack applies for voters who did not
verify their vote, no verification procedure can help here, so we obtain the following vulnerable scenarios:
{[i,j] | i ∈ {1,… , 6}, j ∈ {2, 4, 5}}.
Violations of Φ◦res - strong ballot stuffing (BS2). The goal of Φ◦res is to formally prove the claim from
above, i.e. that there can be no ballot stuffing for voters that verified their (absence of) vote. This is true for
2,4,5,6, but not for 1,3.
Violations of Φcl - clash attack of [49] (CL1). The clash attack of [49] occurs with the adversarial model
5, and none of the current verification procedures can prevent it.
Violations of Φcl - new clash attacks (CL2). To derive the new class of clash attacks discussed in sub-
section 2.2, we consider the weaker adversaries 3 - corrupting the registration of credentials, and 4 -also corrupting a party responsible for ballot casting. Assume voters perform verification according to 1,i.e. the standard procedure, and that the corrupted registrar assigns the same credential to a second voter.
Then both voters may be able to successfully verify their ballot, since the bulletin board will display the
latest ballot cast by each of them, and verifying at different times they can both be happy. Yet, for these
two ballots, there will only be one vote counted at the end of election. This attack shows that the adversary
3 can cause damage already. However, it may not allow large scale corruption of results, since too many
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instances of this attack would have a noticeable impact on the total number of votes in the outcome. For
large scale corruption, the adversary needs to control a ballot casting authority - either VS or VR, leading
to 4 - so that the missing votes can be replaced with the ones chosen by the adversary. The vulnerable
scenarios, excluding the ones also vulnerable to (CL1), are {[i,j]) | i ∈ {1, 6}, j ∈ {3, 4}}.This attack can be prevented by 5 - verifying ballots directly on BBtally (where there is only one singleballot per cr ) - or using the restriction Ψmine to ensure all ballots are recognised as theirs by voters. Note
that the violation of Φcl for 6 corresponds to the clash attack on abstaining voters. Ψmine does not applyin that case. Verifying on BBtally also does not help, since two abstaining voters would both be happy with
the ⊥ ballot.

5.1 Resisting clash attacks with verifiable aliases
We have seen the none of the current procedures can protect against clash attacks by the strongest adversary
5, or against weaker adversaries that target abstaining voters. The solution proposed by [49] to counter
the former attacks is that the randomness used for encryption should be a combination of one part rV that
is provided by the voter and another part rVP that is generated by the voting platform. In this case, even if
VP is corrupted, it will not be possible that two voters will have the same ballot. However, our new class
of clash attacks can still be mounted without a corrupted VP, and having control of encryption randomness
would not prevent them. Another solution suggested by [49] is that voters should have an efficient strategy
for auditing a number of ballots and check whether two ballots are generated similarly. However, it is in
general difficult to anticipate and counteract the adversarial strategy of the platform, and this solution also
raises usability challenges.

Our observation is that the source of attacks (by all3,4,5) is the distribution of corrupted creden-tials by the registrar, which provides a number of voters with the same alias, and there is no direct way to
detect it. To improve on this, we propose a solution which allows voters to verify that their alias is unique to
them, so that clashes can be detected independently of ballot casting. We believe this solution is potentially
more usable than some of the options sketched above, and it could also be improved with future research,
for example by making the aliases publicly verifiable, not just voter-verifiable. We also note that some of
the more complex checks that we proposed to protect against 3,4, like Ψmine, are also not needed: a
simple individual verification procedure combined with alias verification would be enough to prevent clash
attacks. Finally, verifiable aliases would also prevent clash attacks against abstaining voters.

Figure 3: Verifiable aliases for Helios

RVR
reg ∶ register voter with verifiable public credential

let cr = h(⟨id, pwd⟩) in

[ Id(id), Fr(pwd) ]−−[ BBreg(cr) ]→ [ Reg(id, cr, pwd),BBreg(cr),Out(cr) ]

RV
cr ∶ verify that cr satisfies the expected relation

[ Reg(id, cr, pwd) ]−−[ cr ≈ h(⟨id, pwd⟩) ]→[ VerC(id, cr) ]

R0
ver ∶ verification succeeds only if cr has been previously verified

let b = ⟨hc, c⟩ in

[ VerC(id, cr),Voted(id, cr, v, hash),BBcast(cr, b) ] −−[ hash ≈ hc,Verif ied(id, cr, v),VerB(id, cr, b) ]→[ ]

Verifiable aliases can be provided by a function that generates distinct outputs for distinct inputs. In
this paper, we evaluate a simple solution based on a (colision resistant) hash function h which takes the
unique identity of the voter id and an additional value that the voter knows, e.g. the password of this voter
pwd, and generates a unique alias h(⟨id, pwd⟩). This alias will be verifiable by each voter, as modelled by
the additional rule RVcr given in Figure 3. We also note that individual verification procedures need to be
updated so that they require alias verification in order to succeed. We give one example. Formal verification
results for all cases are in Table 4.
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Table 4: Verifiability analysis for verifiable aliases

[i,j]∕�type Φiv Φeli Φcl Φ∙res Φ◦res
[1,3] 7 3 3 3 3

[6,3] 3 3 3 3 3

[1,4] 7 3 3 7 7

[6,4] 3 3 3 7 3

[i,5], i ∈ {1, 3} 7 3 3 7 7

[4,5] 3 3 3 7 3

[i,5], i ∈ {2, 5, 6} 3 3 3 7 3

6 Belenios verification: security proofs and attacks
The Belenios voting protocol is an elaboration of Helios in order to ensure stronger security properties when
some election authorities may be corrupted [33, 26]. Specifically, the aim is to distribute trust, so that a
stronger version of E2E (Φ∙

E2E
in our models) can be achieved even when either the registrar or the server is

corrupted. The most important change with respect to Helios is the addition of signatures that can publicly
authenticate voter ballots, in addition to the id-password mechanism provided by the voting server.
Cryptographic primitives. The symbolicmodel needs to be extended to capture the additional cryptographic
primitives of signing and zero-knowledge proofs. Belenios uses a zero-knowledge proof relation that is more
complex than in Helios. It has two features: (i) like in Helios, it ensures the vote is in a valid range; and
(ii) it ensures the encryption is linked to a given signature verification key, and so it cannot be reused to
cast a ballot for a different voter. We model (i) as in Helios, with equations that we add to the theory of
encryption. To model (ii), we have a dedicated proof symbol, as shown below:

dec(enc(x, pk(y), z), y) = x,
(∀i) ver(enc(xi, y, z), y, ⟨x1,… , xk⟩) = ok,

verify(sign(m, k),m, pk(k)) = ok,
verifypr(proof (v, r, enc(v, pkey, r), pkey, vk), pkey, vk) = ok.

Protocol description. The registrar and the voting server have special roles:
• Registrar (VR): generates a signing key pair for each eligible voter - a signing key skey and a ver-

ification key vkey - and distributes it to the voter, while publishing the verification key vkey on the
bulletin board.

• Voting Server (VS): generates a password for each voter to authenticate them when they are casting
a ballot and after authentication publishes the received ballot on the bulletin board. At ballot casting
time, it also records a log of pairs (id, cr), in order to ensure consistency, i.e. that no voter uses two
different credentials, and that no credential is used by two different voters.

The remaining parties: administrator (A), voters (V), voting platform (VP), trustee (T) and election
auditors (EA) are similar to Helios. The phases of the protocol and the role of parties are as follows:
Setup phase. A determines the list of eligible voters id1,… , idn, and sends it to VR and VS. They choose
corresponding signature key pairs, public identities, passwords, and communicate these to voters. We have:

BBkey ∶ pk; BBcand ∶ v1,… , vk; BBreg ∶ cr1,… , crn

on the bulletin board, where cri = vkeyi. Each voter idi obtains the signature key pair (idi, cri, skeyi) from
VR and credential (idi, pwdi) from VS after the registration.

22



Voting phase. In this phase, voters interact with their voting platform VP to construct a ballot, authenticate
and post it to VS, which casts it on BB. A ballot is simply an encryption of the vote along with the signature
of the voter, and the zero-knowledge proof. It is important to note that the voters communicate the pair
(id, cr) to the server at this point. This is the first time it learns the association of id and cr. We have:

VP ∶ c = enc(v, pk, r); s = sign(c, skey); pr = proof (v, r, c, pk, cr);
b = ⟨c, s, pr⟩; a = h(⟨id, pwd, cr, b⟩),

VS ∶ receive ⟨id, cr, b, a⟩, match it with (id, pwd), verify zero-knowledge proof pr
and verify the signature using cr; also ensure (id, cr) is consistent with the log

BBcast ∶ (cr, b), where b = ⟨c, s, pr⟩.

Tally phase. As in the homomorphic variant of Helios, decryption and vote counting is performed by T
after ciphertexts from valid ballots are combined homomorphically.
Protocol specification. The protocol specification  of Belenios is similar to the specification  of
Helios, following the differences sketched above: the ballot structure, the registrar and the server behaviour.
It is depicted in Figure 4. For applying the security definition, we also need to define the predicate open
according to the ballot structure in Belenios. If pk is the public key of the election, we have:

b = ⟨enc(v, pk, r), s, pr⟩ ⟹ open(b) = v,
b = ⊥ ⟹ open(b) = ⊥.

Individual verification procedures . The rules and restrictions to obtain individual verification procedures
for Belenios are similar to the ones for Helios, and are presented in Figure 4b. To obtain specific procedures
i, we combine them as in Table 1.
Adversary models. The corruption rules allow the adversary to control voters, trustees, the server or the
registrar - as given in Figure 4c. The rules T

key
,V

corr leak all the private information from trustees and voters
to the adversary. To model corrupted election infrastructure, we consider the roles of each party and give
complete control of the corresponding process to the adversary. The role of the registrar is to assign and
publish voter signing keys, and the rule VR

reg allows the adversary full control of that process: it takes the
signature key pair from the adversary to distribute to the voters; it may, in particular, lead to clash attacks
if the same signature key pair is allocated to two different voters. The rule VS

cast, modelling a corrupted
server, adds any ballot to the bulletin board without password authentication or verifying logs. We perform
verification for the adversarial models listed in Table 5: all-honest case (1), corrupted server case (2),corrupted registrar case (3), and all-corrupted case (4). To obtain an e-voting specification, we combine
 with an adversaryi and an individual verification procedure j .

Table 5: Adversary models for Belenios

Specif ication Corrupted parties and infrastructure

1 ∶ T
key
,V

corr,Ψorder trustees, voters
2 ∶ T

key
,V

corr,
VS
cast trustees, voters and server

3 ∶ T
key
,V

corr,
VR
reg ,Ψorder trustees, voters and registrar

4 ∶ T
key
,V

corr,
VR
reg ,

VS
cast trustees, voters, server and registrar

Attacks. Verification results for these models, obtained with Tamarin, are presented in Table 6. We find
some unexpected attacks in cases1 and3 that we explain next. In case of1, we expect weak individualverifiability to hold with revote policy Ωlast, as in the case of Helios. However, we find (,1,1) ⊧̸ Φh

iv
.

In case of3, the server is honest and it checks the consistency of the assignment of signing keys to voters, as
modelled by the restrictionΨVS

log
. That is why clash attacks should not be possible. Ballot stuffing should also
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Figure 4: Protocol components for Belenios specification

(a) Protocol specification  = (,Ψ)

SETUP PHASE
RT
key
∶ generate election secret and public keys
[ Fr(sk) ]−−[ BBkey(pk(sk)) ]→
[ Sk(sk), Pk(pk(sk)),BBkey(pk(sk)),Out(pk(sk)) ]

RA
cand

∶ determine candidates to be elected
let vlist = ⟨v1,… , vk⟩ in

[ In(vlist) ]−−[ Cand(v1),… ,Cand(vk),BBcand(vlist) ]→
[ Cand(v1),… ,Cand(vk),Out(vlist) ]

RA
id
∶ determine identities eligible to vote
[ In(id) ]−−[ ]→[ Id(id) ]

RVR
reg ∶ register voter with signature pair

let cr = pk(skey) in

[ Id(id), Fr(skey) ]−−[ BBreg(cr) ]→
[ Reg(id, cr, skey),BBreg(cr),Out(cr) ]

RVS
cred

∶ generate password for voter authentication
[ Id(id), Fr(pwd) ]−−[ ]→[ Cred(id, pwd) ]

RVS
bb
∶ setup initial BBcast for registered voters
[ BBreg(cr) ]−−[ BBcast(cr, ⊥) ]→[ BBcast(cr, ⊥) ]

VOTING PHASE
RVP
vote ∶ construct a ballot, authenticate and send it to VS

let c = enc(v, pkey, r); s = sign(c, skey);
pr = proof (v, r, c, pk, cr);
b = ⟨c, s, pr⟩; a = h(⟨id, pwd, cr, b⟩) in

[ Cand(v),BBkey(pkey), Fr(r),Reg(id, cr, skey),
Cred(id, pwd) ]−−[ Vote(id, cr, v),VoteB(id, cr, b) ]→
[ Out(⟨id, cr, b, a⟩),Voted(id, cr, v, b) ]

RVS
cast ∶ authenticate voter, verify ballot, publish

let b = ⟨c, s, pr⟩; a′ = h(⟨id, pwd, cr, b⟩) in

[ In(⟨id, cr, b, a⟩),Cred(id, pwd),BBreg(cr) ]
−−[ a′ ≈ a,Log(id, cr),BBcast(cr, b) ]→[ BBcast(cr, b) ]

ΨVS
log
∶ logs are checked to ensure consistency
Log(id, cr) @ i⇒ ¬(Log(id, cr′) @ j ∧ cr ≠ cr′) ∧
¬(Log(id′, cr) @ j ∧ id ≠ id′)

ΨVS∕EA
cast ∶ ensure ballot validity; can be audited by EA

BBcast(cr, b) ⇒ BBreg(cr) ∧ ( b = ⟨c, s, pr⟩ ⇒
BBkey(pkey) ∧ BBcand(vlist) ∧ verify(s, c, cr) = ok
∧ ver(c, pkey, vlist) = ok ∧ verifypr(pr, pkey, cr) = ok )

TALLY PHASE
RVS∕EA
tally

∶ VS selects ballots for tally; can be audited by EA
[ BBcast(cr, b) ]−−[ BBtally(cr, b) ]→[ BBtally(cr, b) ]

ΨVS∕EA
tally

∶ the last ballot added to BB is selected for tally
BBcast(cr, b) @ i ∧ BBcast(cr, b′) @ j ∧
BBtally(cr, b) @ l ⇒ j ≺ i ∨ b = b′

(b) Individual verification procedures for 

R0
ver ∶ voter verifies the receipt on BBcast

let b = ⟨c, s, pr⟩ in

[ Voted(id, cr, v, b),BBcast(cr, b) ]
−−[ Verif ied(id, cr, v),VerB(id, cr, b) ]→[ ]

R1
ver ∶ same as R0

ver, but performed in the tally phase

R2
ver ∶ voter verifies the receipt on BBtally

let b = ⟨c, s, pr⟩ in

[ Voted(id, cr, v, b),BBtally(cr, b) ]
−−[ Verif ied(id, cr, v) ]→[ ]

R3
ver ∶ voter verifies there is no ballot on BBtally

[ Reg(id, cr, skey),BBtally(cr, x) ]
−−[ x ≈ ⊥,Verif ied(id, cr, ⊥) ]→[ ]

R0ver and R1ver can be combined with restrictions below

Ψlast ∶ the verified ballot is currently the last on BB
BBcast(cr, b) @ i ∧ BBcast(cr, b′) @ j ∧
VerB(id, cr, b) @ l ∧ i ≺ l ∧ j ≺ l
⇒ j ≺ i ∨ b = b′

Ψmine ∶ all ballots currently on BB are cast by id
VerB(id, cr, b) @ j ∧ BBcast(cr, b′) @ i ∧ i ≺ j
⇒ VoteB(id, cr, b′) @ l

(c) Adversarial corruption rules against 

T
key
∶ corrupt trustee to reveal the secret key
[ Sk(sk) ]−−[ ]→[ Out(sk) ]

VR
reg ∶ corrupt registration of signature pair

[ In(⟨cr, skey⟩) ]−−[ BBreg(cr) ]→
[ Reg(id, cr, skey),BBreg(cr) ]

VS
cast ∶ corrupt server to stuff ballots

let b = ⟨c, s, pr⟩ in

[ In(⟨cr, b⟩),BBreg(cr) ]
−−[ BBcast(cr, b) ]→ [ BBcast(cr, b) ]

V
corr ∶ corrupt voter to reveal credentials

[ Reg(id, cr, skey),Cred(id, pwd) ]
−−[ Corr(id, cr) ]→[ Out(⟨id, cr, skey, pwd⟩) ]

Ψorder ∶ ensure ballots are delivered in the right order
VoteB(id, cr, b) @ i ∧ VoteB(id, cr, b′) @ j ∧
BBcast(cr, b) @ k ∧ BBcast(cr, b′) @ l ∧
i ≺ j ⇒ k ≺ l
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not be possible, since it is both a valid signature and the password that are required by the server. However,
we find results contradicting these properties: (,i,3) ̸⊧ Φcl for i = 1, 3 and (,i,3) ̸⊧ Φ∙res, forany i. Moreover, the weaker propertyΦ◦res is also not satisfied for i ∈ {1, 3}. In the following, for illustratingattacks, we consider a scenario with two voters id1 and id2. The main source of attacks is that revoting is
allowed and that voters can choose the public credential under which they submit ballots.

Table 6: Verifiability analysis of Belenios

[i,j]∕�type Φiv Φeli Φcl Φ∙res Φ◦res
[i,1], i ∈ {1, 3} 7⋆ 3 3 3 3

[i,1], i ∈ {2, 4, 5, 6} 3 3 3 3 3

[i,2], i ∈ {1, 3} 7 3 3 3 3

[i,2], i ∈ {2, 4, 5, 6} 3 3 3 3 3

[1,3] 7 3 7 7 7

[3,3] ?∗ 3 3 7 7

[i,3], i ∈ {2, 4, 5} 3 3 3 7 3

[6,3] 3 3 7 7 3

[1,4] 7 3 7 7 7

[3,4] 7 3 3 7 7

[i,4], i ∈ {2, 4, 5} 3 3 3 7 3

[6,4] 3 3 7 7 3

⋆ : Φh
iv
is also violated.

∗ : Tamarin execution exceeds system capacities.

Ballot reordering - violation ofΦh
iv
by1. Assume id1 has public credential cr1 and id2 has public credential

cr2. The adversary corrupts id2 and controls the communication network. The attack scenario is as follows:
Voter id1: posts a ballot b1 followed by b2. Subsequently, the voter only verifies b2.

Adversary : blocks both ballots from id1 and posts the ballot b2 using credentials (id2, cr1).
Server VS: accepts adversary’s input since it has no way of verifying that b2 was constructed by id1.We obtain BBcast(cr1, b2), and thus the voter id1 can successfully verify the ballot b2.

Adversary : posts the second ballot b1 using credentials (id2, cr1).
Server VS: accepts the ballot b1, and we have BBcast(cr1, b1).
Outcome: we obtain BBtally(cr1, b1), when we expect to have BBtally(cr1, b2).

We note that this attack is not possible in Helios since the registrar and the server agree on the correspon-
dence between identities and credentials, and therefore corrupt voters cannot cast ballots for credentials that
are not assigned to them.
Ballot stuffing - violation ofΦ∙res by3. Assume id1 has public credential cr1 and id2 has public credential
cr2. The adversary corrupts id2 and controls the communication network. The attack scenario is as follows:

Registrar VR: registers voters normally, resulting in Reg(id1, cr1, skey1) and Reg(id2, cr2, skey2).
Server VS: registers voters normally, resulting in Cred(id1, pwd1) and Cred(id2, pwd2).

Adversary : corrupts the registrar and the voter id2; it obtains cr1, skey1, pwd2.It casts a ballot b associated to credentials (id2, cr1). We have BBcast(cr1, b).
Server VS: based on log checks, it will not accept further ballots with credentials (id1, cr1).
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In this way, the honest voter id1 can be prevented by corrupt parties (registrar and voter) from casting a ballot.
Formally, the formula Φ∙res is not satisfied since we obtain BBtally(cr1, b) and cr1 does not correspond to
a corrupted voter and b does not come from an honest execution of the voting procedure. We note that,
formally, this is not an attack on multiset-based verifiability as specified in Definition 3 or in [26, 28]. This
is because the number of adversarial votes in the final result is bounded by the number of corrupted voters,
and the multiset-based definition allows ballot-dropping for honest voters. However, we think this attack
is more serious than mere ballot-dropping and should be considered a real attack on election integrity; the
honest voter is permanently prevented from casting a ballot, even if completely trusted infrastructure is
used. Our analysis for the other cases shows that a stronger property is possible, which could be aimed for
in this case as well.
Ballot stuffing - violation of Φ◦res by 3. We also have (,i,3) ̸⊧ Φ◦res for i = 1, 3. Indeed, in a
variation of the previous attack, assume that the voter id1 casts a ballot b1, which is intercepted by  and
cast under credentials (id2, cr1). Subsequently, the voter id1 can successfully verify b1 if we rely on 1 or
3. However, at some point later,  can submit an adversarial ballot b2 with credentials (id2, cr1), withoutbeing detected by the log checks on the server. This violates Φ◦res, since the adversary managed to submit
a ballot even if the voter is not corrupted and performed successful verification. We note that, in this case,
the attack does violate multiset-based verifiability as specified in Definition 3 or in [26, 28], since a verified
vote disappears from the final tally.
Clash attack - violation of Φcl by 3. Similar to individual verifiability, we require resistance to clash
attacks even if some of the targeted voters are corrupted. We show a clash attack against two voters, where
one is honest and one is corrupted:
Registrar VR: clashes id1 and id2 at registration, resulting in Reg(id1, cr, skey) and Reg(id2, cr, skey).

Voters: the voter id1 posts b1 and the voter id2 posts b2.
Adversary : blocks b1 from id1, corrupts id2 and submits the ballot b1 with credentials (id2, cr).

Server VS: sees submissions (id2, cr, b1), (id2, cr, b2), showing no inconsistency in logs.
Voters: id1 sees BBcast(cr, b1); id2 sees BBcast(cr, b2); verification is successful for both.

Outcome: only one ballot will be tallied for id1 and id2; adversary can determine which.
We note that this attack is possible even if  does not know the secret keys of voters. It only needs to

cause a clash on verification keys.
Other attacks. Reminiscent from Helios, we find the clash attack on empty ballots, i.e. against 6 whenthe registrar is corrupted by3 and4. We also have the generic attacks against individual verifiability of
1,3 that are related to the fact that revoting is allowed and ballots can be added by a corrupted server or
registrar after the voters have verified. If there are no corrupted voters, these attacks are less serious than
in Helios, since the only ballots corrupted parties can add are the ones constructed by the respective voters,
similar to the reordering attack when election authorities are honest. We also find the expected attacks in
the case of 4 when both the server and the registrar are corrupted.
Security proofs. We derive proofs of strong end-to-end verifiability, that is Φ∙

E2E
, for the two scenarios

where the registrar is honest, i.e. 1 and2. For3, when the server is honest and the registrar is corrupt,the verification of logs could potentially be improved so that the same property holds, which is expected in
Belenios. Currently, we can only prove the weaker notion of end-to-end verifiability, that is Φ◦

E2E
, for this

case. Finally, for 4, when both the server and the registrar are corrupted, Belenios satisfies the weaker
notion of end-to-end verifiability, like Helios.

7 Conclusion and future work
A limitation of our definition is that we cannot handle protocols where there are no public credentials asso-
ciated to ballots on the bulletin board. This excludes for example a version of Helios with detached names
that is mentioned in [49]. We need public credentials in order to make a strong (injective) correspondence
between tallied ballots and earlier events in the trace. A way towards lifting this restriction may be to rely
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on injective correspondence assertions, which are supported by ProVerif, but not by Tamarin to our knowl-
edge. A more general notion of opening for a ballot is also needed, to handle systems that offer everlasting
privacy, where one cannot extract the votes from the public bulletin board [51, 36]. For Helios or Bele-
nios to be deployed in elections with even higher stakes than currently, we need to further reduce the trust
assumptions required for (strong) end-to-end verifiability - since attackers would be even more motivated
to break them. We also need to improve the usability of some proposed solutions, like our proposal for
verifiable aliases.
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