
A Novel Hash Function based on Hybrid
Cellular Automata and Sponge Functions

Anita John1, Ajay P Manoj2, Alan Reji2, Atul Premachandran2, Basil
Zachariah2, and Jimmy Jose1

1 Department of Computer Science and Engineering,
National Institute of Technology Calicut, Kozhikode, India

{anita_p170007cs, jimmy}@nitc.ac.in
2 Department of Computer Science and Engineering,

Rajagiri School of Engineering and Technology, Kochi, India
{u1603013, u1603021, u1603065, u1603066}@rajagirtech.edu.in

Abstract. Hash functions serve as the fingerprint of a message. They
also serve as an authentication mechanism in many applications. Nowa-
days, hash functions are widely used in blockchain technology and bit-
coins. Today, most of the work concentrates on the design of lightweight
hash functions which needs minimal hardware and software resources.
This paper proposes a lightweight hash function which makes use of Cel-
lular Automata (CA) and sponge functions. This hash function accepts
arbitrary length message and produces fixed size hash digest. An addi-
tional property of this function is that the size of the hash digest may
be adjusted based on the application because of the inherent property of
varying length output of sponge function. The proposed hash function
can be efficiently used in resource constraint environments in a secure
and efficient manner. In addition, the function is resistant to all known
generic attacks against hash functions and is also preimage resistant,
second preimage resistant and collision resistant.

Keywords: Cryptographic Hash functions · Cellular Automata · Sponge
Functions · Omega Flip Permutation

1 Introduction

Any digital document needs a fingerprint of itself to avoid misuse of the docu-
ment known as the message digest or hash digest. Cryptographic hash functions
are one-way functions that take an arbitrary length input and produce a fixed
length hash digest as output. Different hash functions were developed so far
which made use of Merkle-Damgård [21,10] and Davies-Meyer [20] schemes. To-
day, most of the applications need lightweight hash functions which can be used
in resource constraint environments. But, the lightweight property of the hash
functions must not affect the security of the function. So this is a trade off be-
tween efficiency and security. In order to accomplish this, new cryptographic

https://orcid.org/0000-0001-8939-6985
https://orcid.org/0000-0001-7074-090X


2 Anita et al.

primitives like CA and sponge functions can be used in their design. This paper
proposes a hash function that makes use of both CA and sponge function.

The rest of the paper is organized as follows. Section 2 gives a brief descrip-
tion about CA and sponge functions. Section 3 gives literature survey on the
hash functions based on CA and sponge. Section 4 explains the detailed design
of the proposed hash function followed by Section 5 that discusses the design
rationale. Security analysis is done in Section 6 followed by conclusion.

2 Preliminaries

In this section, we discuss some basic definitions and terminologies related to
CA, sponge functions and cryptographic hash functions.

2.1 Basics of CA

CA are a discrete lattice of cells. Each cell has a memory element and a next
state computation function or rule which is a Boolean function associated with
it. The value of the cells get updated based on the CA rule at every clock cycle
and this happens in parallel. The transformation of the value in a particular
cell is influenced by the memory elements of the neighbouring cells. The rules of
CA are developed based on the number of neighbours involved in the updation
of a cell. There are two types of CA rules - linear rules and non-linear rules.
Linear rules are those rules that use only XOR in their combinational logic and
non-linear rules are rules that do not follow the conditions of linear rules. In
general, the number of cells n that participate in a CA cell update is given by
n = 2r+1, where r is the radius of the neighbourhood. All the cells in a CA can
make use of same CA rules or different CA rules for updation. If they use the
same rules, then they are called uniform CA and if they use more than one rule,
then they are called hybrid CA. The neighbors of the cells at the extreme left
and right are decided based on whether the CA follows periodic or null boundary
conditions. In addition to these conditions, three more boundary conditions are
discussed in [8] namely one null, null one and one boundary conditions. Here,
we make use of one null boundary where the left most cell takes the value 1
as its left neighbour and rightmost cell takes the value 0 as it right neighbour.
This makes CA rules cryptographically robust [8]. CA have recently evolved as
a good cryptographic primitive due to its chaotic nature and parallel execution.
It is also efficient in both hardware and software applications due to its simple
logic operations. Three-neighbourhood CA developed by Stephen Wolfram [30]
had been very powerful in developing cryptographically secure pseudorandom
number generators. Later, 3-neighbourhood CA have been widely used in many
cryptographic applications like stream ciphers [28], block ciphers [23] and hash
functions [22].



Hash function based on Hybrid CA and Sponge 3

2.2 Sponge Functions

Sponge function [3] is a simple iterative function that takes a variable length
input, processes it and generates an infinite length output. Sponge functions
have an internal function F that can either permute or transform the state bits.
Sponge function is the basic technique used in Keccak[5] which was selected as
the new SHA-3 standard by the National Institute of Standards and Technology
(NIST) in October 2012. The function operates on a state of bits of width b,
where b = r + c. Here r is called the bit rate and c is called the capacity of
the sponge. The values of r and c can be varied. The security level that can be
attained using sponge is dependent on c [4].

Working of sponge function-
Absorbing phase- In this phase, each message block after XORing with r bits
of the b state bits is subject to an internal transformation function. The output
of nr rounds of transformation will be the state bits used for the next message
block. This continues until all message blocks are exhausted.
Squeezing phase- In this phase, the r bits from the output of absorption phase
are extracted and it forms the first part of the final hash digest. This state again
undergoes transformation and the next r bits from its output are again squeezed
out. This continues until the needed length hash digest has been squeezed out. If
the length of the squeezed out bits is more than the required hash digest length,
it must be truncated to match the needed length. The strength of the sponge
function lies in the internal transformation function.

2.3 Cryptographic Hash Functions

A cryptographic hash function accepts an arbitrary length input and outputs a
fixed length output. Earlier, all known hash functions made use of a compression
function which processes every message block in the same manner. They were
called iterated hash functions. The properties of a good hash function are (i)
Collision Resistance (ii) Preimage resistance (iii) Second preimage resistance.
The most popular standard hash functions were MD5 [24] and SHA [27] (Secure
Hashing Algorithm) family of hash functions. SHA-256 which produces a 256-
bit hash digest is considered to be secure and is now used in Blockchain. Even
though MD5 and SHA were considered to be the standard hash functions, by
2004 and 2005, Wang et al [29] had shown that finding collisions for MD5 and
SHA were relatively easy. This made NIST to make an announcement for an
open competition in 2007 for a stronger hash function design to be selected as
SHA-3. In 2012, Keccak [5] was declared as the winner. Keccak or SHA-3 used
a new design strategy called sponge functions. The main advantage of using
sponge functions in hash design is that we could get a hash digest of any desired
length.



4 Anita et al.

2.4 Omega Flip Permutations

Several bit level permutation functions for fast software cryptography were dis-
cussed in [18]. Bit level permutations play an important role in introducing
diffusion in a block of data. Omegaflip (OMFLIP) permutation permutes n bits
in atmost logn permutation instructions. The instruction used for performing
this operation is omflip. For an omega flip network, there are 2 basic operations-
omega and flip, the order of which are decided by a 2-bit opcode. In order to
permute n bits, we make use of an n-bit control string. More detailed description
about the working of this instruction is available in [19].

3 Related Work

3.1 Hash functions based on Cellular Automata

Ivan Damgard was the first to propose a collision-free hash function based on
CA [10]. Damgard proposed a hash function that computes a 128-bit hash digest
from a 256-bit string. This made use of a binary CA rule Rule120 with periodic
boundary conditions. The CA evolved through 384 iterations and the first bits of
the strings from 257th to 384th iterations were taken as the final hash digest. But
his proposal was cryptanalyzed by Daemen [9], who in turn proposed another
hash function called Cell Hash. Cell Hash made use of non-linear and linear CA
rules with periodic boundary conditions which was also cryptanalyzed later.

Another hash function based on CA was proposed by Mihaljevic et al [22].
This paper proposes a dedicated one way hash function based on programmable
CA. They have used an iterative hash function where the compression function
and output function made use of CA. Another lightweight hash function based
on CA developed by Hanin et al is LCAHASH [14]. An extension of LCAHASH
is proposed in LCAHASH-1.1 [25] which made use of non-uniform CA with rule
< 30, 90 > for 128 or 256 iterations and the required output is taken as the hash
digest. Jamil et al [16] had proposed a hash function based on hybrid CA that
made use of linear and non-linear rules together in a CA along with a customized
omega flip permutation. They made use of Rules 30 and 134 and they were the
first to employ such elements into the compression function which showed good
avalanche effect. Another recent work based on CA was done by Sadak et al in
[26] where they made use of a carefully chosen cryptographically hybrid rule set
which contains both linear and non-linear CA rules. The rules are selected based
on Cryptographically Secure Hybrid Rules (CSHR) algorithm proposed in [8].

3.2 Hash functions based on sponge functions

A lightweight hash function based on sponge construction with permutation is
Quark [2]. The hash function made use of shift registers and Boolean functions.
The permutation used in QUARK was done by using stream ciphers based on
shift registers like Grain [15] and block cipher like KATAN [7]. SPONGENT



Hash function based on Hybrid CA and Sponge 5

[6] and PHOTON [12] were the other lightweight hash functions that made use
of sponge functions in their domain extension algorithm. Keccak, the winner of
NIST competition for a new hash function was also based on sponge construction.
A detailed description of all lightweight cryptographic hash functions is found
in B.Hammad et al in [13].

3.3 Hash functions based on CA and sponge functions

As part of the research to find lightweight and efficient cryptographic hash func-
tions, new designs that used compression functions using CA and sponge func-
tions were developed. The use of CA and sponge as individual primitives in these
functions produced hash digests that satisfied the properties of collision resis-
tance, preimage and second preimage resistance. The strength of a hash function
that uses sponge function is the strength of the internal transformation function
used in it. This inspired researchers in the field of cryptographic hash functions
to use CA in the transformation function of sponge.

CASH[17] is a family of hash functions based on CA and sponge function.
This hash function made use of tweakable parameters which allows the user to
choose suitable parameters depending upon the level of security and efficiency
required for a particular application. They made use of both permutation and
transformation in the internal transformation function of the sponge function.
The hash function provided diffusion and non-linearity with the help of both
cryptographic primitives. Very few works have been done that made use of CA
in the internal function of sponge.

4 Proposed Hash Function

This paper proposes a new hash function which makes use of CA in the internal
function of sponge function. The internal transformation function has two layers-
the permutation layer and the transformation layer. The transformation layer
makes use of hybrid CA rules for their transformation. Here we have combined
linear and non-linear 3-neighbourhood rules in a single CA which is supposed
to give good characteristics to the hash function. The permutation layer makes
use of Omega Flip permutation [18].
Description of the hash function
The hash function accepts an arbitrary length input message and produces 256
bit hash digest. The size of the hash digest can be varied which is an inherent
property of the sponge function. The sponge function is implemented on a state
bit of width b, where b = r + c. Here, we have taken r as 92 and c as 132. Another
combination is r=92 and c=258 which gives good results and is resistant to
attacks at the cost of more execution time. The block diagram for the proposed
hash function is shown in Figure 1.



6 Anita et al.

Fig. 1. Block diagram for Hash Function

The input message must be padded to make the length of the message a
multiple of r. This is done by padding the message with ’10’ followed by the 64-
bit representation of the message length. Padding step is mandatory even if the
original message is a multiple of r even before padding. This ensures the collision
resistance property of the hash digest. The padded message is then divided into
r bit blocks M1, M2,..., Mi. Initially, b is set to all zeros. Each message block is
XORed with the r bits of the state bits of b. The XORed r bits together with
c bits will be transformed by the internal transformation function. The block
diagram of the internal function F of the sponge function is shown in Figure 2.

Fig. 2. Internal function



Hash function based on Hybrid CA and Sponge 7

Single Round of the Internal Function
The state bits in b undergo an internal transformation function F which pro-
ceeds in 2 steps- permutation and transformation. To permute the state bits,
we have used Omega Flip permutation. We have used the bits of the message
block itself as the control bits for permuting them. In order to permute 224
bits, we need eight omflip instructions. The 2-bit opcode needed in each of these
8 instructions can be obtained from the first 16 bits of the b state bits. i.e.,
the first 16 bits of the message block itself. So, the order of performing omega
or flip operation is decided by the first 16 bits of the message block Mi. The
entire omegaflip permutation is dependent on the message. After performing
the permutation, the state will be subjected to a transformation phase. In the
transformation phase, we make use of cryptographically secure hybrid linear
and non-linear 3-neighbourhood CA rules. The order of rules to be used in each
of the cells is decided by an algorithm called Cryptographically Secure Hybrid
Rules (CSHR) discussed in [8]. These rules are expected to give good results
with respect to algebraic degree, non-linearity and period. The rule set that we
use here is < 30, 90, 150, 30, 210, 30, 90, 150 > where each component in the rule
set represents an elementary CA rule. This rule set was proved to have good
cryptographic properties like non-linearity and algebraic degree [8]. The CA is
run for 13 clock cycles.

There will be two rounds (i.e., nr = 2) for the internal function. After the
last transformation function, a null round, i.e., a single round of the transforma-
tion function without any XOR input is performed. This marks the end of the
absorption phase of the sponge function. During the squeezing phase, the r bits
of the absorbing phase are squeezed out to form part of the hash digest. Now,
the same transformation function used in the absorbing phase is applied and
the next r bits are squeezed out. During this phase, the b bits of the state are
taken as the control bits for omega flip permutation. This interleaved sequence
of transformation and squeezing will continue until we get the required hash
digest length. The size of the hash digest can be varied as per user needs by
adjusting the number of times r bits are squeezed out. If the length exceeds the
required hash digest length, the remaining bits can be truncated.

5 Design Rationale

The proposed hash function design makes use of CA and sponge function. The
emergence of sponge functions as random oracle encourages their use in the de-
sign of cryptographic hash function as a replacement to the conventional Merkle-
Damgård scheme. The design of the transformation function has a crucial role
in the strength of the sponge function which increases the resistance of the hash
function to known attacks on it. In the proposed design, the internal trans-
formation consists of permutation and transformation. Since we combine both
operations into a single function, we have combined the best possible among



8 Anita et al.

them to retain the lightweight nature of the hash function. The design rationale
for each of the steps in the hash function are discussed below.
1. Padding the input: Here we pad the message to make the length of the
message a multiple of r, the bit rate. This padding scheme ensures that the last
block never contains all zeros which is one of the criteria for using sponge func-
tions. This padding rule also enhances the security of the hash function design.
2. Sponge functions: Merkle-Damgård scheme suffered from length extension
attacks and multicollision attacks. The sponge function is known to be resistant
to these attacks. This motivated us to use sponge function in our design. Our
next aim was to strengthen the sponge function by designing a strong internal
function. We have used a hybrid rule set that has a combination of linear and
non-linear 3-neighbourhood rules. The use of hybrid CA enhances the security
of the function in 2 ways- linear hybrid rules ensure diffusion of bits and non-
linear hybrid rules introduce non-linearity to the function. Both non-linearity
and diffusion are important factors that determine the strength of the function.
We have added an additional step of permutation with the implementation of a
faster method of Omegaflip [18] so as to distribute the bits throughout the state.
The addition of null round in between the absorbing and squeezing phases helps
to avoid sliding attacks on the sponge functions. So, we have tailored a CA with
hybrid rules along with omega flip permutation into the sponge function.

6 Security and Performance Analysis

6.1 Security Analysis

1. Avalanche effect: Avalanche effect is a desirable property for hash functions.
This property states that, a small change in the input should bring a great change
in the output bits of the hash digest. To evaluate the Avalanche effect, we have
taken a sample of 100 varying length messages. For each message, we changed
the original message by one bit and calculated the Hamming distance between
the hash values of the original message and the corresponding modified message.
The values for Hamming distance range from 117 to 145 where the size of the
hash digest is 256. This shows that even a single bit change in the input has var-
ied around half of the output bits which proves that the proposed hash function
exhibits good avalanche effect.

2. Pre-image resistance and Second pre-image resistance: The secu-
rity of the proposed system is based on the internal transformation function of
the sponge construction. This function is composed of hybrid CA and permuta-
tion. Given a hash digest output of size n, we need to perform 2n operations to
find a preimage or a second pre image and 2n/2 operations to find a collision.
Here, the internal transformation has transformed input message block in an
efficient manner. Each message block first goes through a permutation followed
by CA. In CA, each bit is dependent on 27 neighbouring bits at the end of 13
CA cycles, since we are using 3-neighbourhood CA and each bit is dependent on
2q+1 neighbouring bits where q is the number of cycles of CA. The hash digest is



Hash function based on Hybrid CA and Sponge 9

produced after many rounds of internal transformation and hence is dependent
on all bits of the input message. So the function is resistant to pre-image, 2nd
pre-image and collision attacks.

3. Sliding attacks: One of the attacks on hash functions that made use
of sponge function is the sliding attack [11]. Sliding attacks occur when we are
able to find a ”slid pair” of messages. In sponge functions, the first r bits of the
hash digest is obtained from the output of the last internal transformation of the
absorbing phase, So, there is a chance that an attacker gets some hint regarding
the last block of the input message or about the internal transformation. In order
to avoid this, we run an additional null round which hides the last message block.

4. Randomness Test using NIST Statistical Test Suite The random-
ness of hash digest is a property that makes it suitable for cryptographic appli-
cations. So to test the randomness of the hash digest output, we make use of
NIST Statistical Test Suite [1]. This contains a battery of 15 tests. Each test
computes the chi-square statistic of a particular parameter. This is done by com-
paring this parameter for the generated bit stream with the ideal value of this
parameter. The ideal value will be the one that is obtained from the theoretical
results of such an identical sequence of bits. This chi-square value is converted
to a random probability value called P-value.
The tests in the test suite, in general, checks for the proportion of zeros and ones
in the entire bit stream as well as in subblocks of the stream, checks whether
there are any repeating patterns, non-periodic patterns or too many occurrences
of ones in the bitstream. Based on these analyses, an output file will be generated
by the test suite with relevant intermediate values such as test statistics and P-
values for each statistical test. The P-values generated will help to analyze the
randomness properties of the newly generated sequence [1]. The randomness test
of the generated hash digests using NIST test suite affirms the cryptographic
strength of the hash function against attacks.

To execute the test suite, the hash function has been used as a pseudorandom
number generator to create a data stream of 10 Mb. The stream is generated
by applying the hash function on an initial seed, S which is incremented by 1.
We calculate H(S), H(S+1) and so on until we are able to concatenate them to
get a 10 Mb sequence. This acts as input to the NIST statistical test suite. The
binary stream generated by the hash function showed good p-values and pass
rates for the relevant tests for hash functions as shown in table 1.

6.2 Performance Analysis

The proposed hash function has been implemented in C language, while the per-
formance experiments were done on an Intel Core i5 (2.3 GHz) microprocessor.
The speed of the hash function was calculated with a test file of size 10097 bytes
and was found to be 1.1 MB/s. The speed of other hash functions computed in
the same environment is given in Table 2.

The randomness property of the hash digest generated by the hash function
is important to make it cryptographically secure. In order to get good p-values



10 Anita et al.

Table 1. NIST Test Results

SI.No Test Name P-value Status
1 Frequency test 0.419021 Pass
2 Block Frequency test 0.030806 Pass
3 Cumulative Sums test 0.935716 Pass
4 Runs test 0.236810 Pass
5 Longest Runs test 0.017912 Pass
6 Rank test 0.616305 Pass
7 FFT test 0.897763 Pass
8 Non overlapping template test 0.616305 Pass
9 Overlapping template test 0.514124 Pass
10 Random Excursions 0.911413 Pass
11 Random Excursions Variant 0.637119 Pass
12 Linear Complexity 0.719747 Pass

for the tests in NIST, we have tested the bit stream by increasing the number of
cycles sequentially from 2 and found that 13 cycles gave good results. We have
also implemented the same hash function without using omega flip permutation,
i.e., the internal function of the sponge function has only the transformation
step which made use of hybrid 3-neighbourhood CA rules. The speed achieved
during that design was 6.84 MB/s which is much more than other popular hash
functions. The design also showed good avalanche effect, but it did not pass some
of the tests in NIST test suite with good p-values. While designing the new hash
function, we have considered the randomness property and avalanche effect with
equal priority and this accounts for the decreased speed of the hash. The size
of the internal state bits of the sponge function, the values of r and c are also
factors affecting the speed of the hash function. So, here we have a trade-off
between security and speed. But, the reward for slow speed is the adjustable
size of the hash digest due to the use of sponge functions and additional security
due to CA and omflip permutation.

Table 2. Speed of Different Hash Functions

Hash function Speed(MB/s)
SHA-224 4.52
SHA- 256 4.52
SHA-384 3.95
SHA-512 4.37

RIPEMD-160 4.13
WHIRLPOOL 4.49

7 Conclusion and Future Work

In this paper, we propose a new hash function based on Cellular Automata and
sponge functions which takes an arbitrary length input and produces a 256 bit
hash digest. The proposed function has tailored the best cryptographic primitives
into the design and hence shows good Avalanche effect. We have used the CSHR



Hash function based on Hybrid CA and Sponge 11

algorithm to develop a 3-neighbourhood CA rule set that uses both linear and
non-linear rules. In addition, we have also used Omega Flip permutation which
helps in permuting the bits in a fast and efficient manner. The proposed hash
function produces a hash digest that resembles a random number, which makes
it resistant to all known attacks on hash functions. We are still investigating the
possibility of using other rule sets under CSHR algorithm. We are also analysing
the impact of using CA rules of higher radii like 5-neighbourhood CA in place
of 3-neighbourhood.

References

1. NIST Statistical Test Suite https://csrc.nist.gov/projects/
random-bit-generation/documentation-and-software, accessed: 2020-03-26

2. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight
hash. In: Mangard, S., Standaert, F.X. (eds.) Cryptographic Hardware and Embed-
ded Systems, CHES 2010. pp. 1–15. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT hash workshop. vol. 2007. Citeseer (2007)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N. (ed.) Advances in Cryptology – EURO-
CRYPT 2008. pp. 181–197. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT 2013. pp. 313–314.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

6. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
Spongent: A lightweight hash function. In: Preneel, B., Takagi, T. (eds.) Crypto-
graphic Hardware and Embedded Systems – CHES 2011. pp. 312–325. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

7. Cannière, C., Dunkelman, O., Knežević, M.: Katan and ktantan – a family of
small and efficient hardware-oriented block ciphers. In: Proceedings of the 11th
International Workshop on Cryptographic Hardware and Embedded Systems. p.
272–288. CHES ’09, Springer-Verlag, Berlin, Heidelberg (2009)

8. Chakraborty, K., Chowdhury, D.R.: Cshr: Selection of cryptographically suitable
hybrid cellular automata rule. In: Sirakoulis, G.C., Bandini, S. (eds.) Cellular Au-
tomata. pp. 591–600. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

9. Daemen, J., Govaerts, R., Vandewalle, J.: A framework for the design of one-way
hash functions including cryptanalysis of damgård’s one-way function based on a
cellular automaton. In: International Conference on the Theory and Application
of Cryptology. pp. 82–96. Springer (1991)

10. Damgård, I.B.: A design principle for hash functions. In: Conference on the Theory
and Application of Cryptology. pp. 416–427. Springer (1989)

11. Gorski, M., Lucks, S., Peyrin, T.: Slide attacks on a class of hash functions. In:
Pieprzyk, J. (ed.) Advances in Cryptology - ASIACRYPT 2008. pp. 143–160.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

12. Guo, J., Peyrin, T., Poschmann, A.: The photon family of lightweight hash func-
tions. In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011. pp. 222–239.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software


12 Anita et al.

13. Hammad, B.T., Jamil, N., Rusli, M.E., Reza, M.: A survey of lightweight cryp-
tographic hash function. In: International Journal of Scientific and Engineering
Research. vol. 8 (2017)

14. Hanin, C., Echandouri, B., Omary, F., Bernoussi, S.E.: L-cahash: A novel
lightweight hash function based on cellular automata for rfid. In: UNet (2017)

15. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: 2006 IEEE International Symposium on Information Theory. pp. 1614–
1618 (2006)

16. Jamil, N., Mahmood, R.: A new cryptographic hash function based on cellular
automata rules 30 134 and omega-flip network (2012)

17. Kuila, S., Saha, D., Pal, M., Chowdhury, D.R.: Cash: Cellular automata based
parameterized hash. In: International Conference on Security, Privacy, and Applied
Cryptography Engineering. pp. 59–75. Springer (2014)

18. Lee, R.B., Zhijie Shi, Xiiao Yang: Efficient permutation instructions for fast soft-
ware cryptography. IEEE Micro 21(6), 56–69 (Nov 2001)

19. Lee, R.B., Shi, Z.J., Yin, Y.L., Rivest, R.L., Robshaw, M.J.B.: On permutation
operations in cipher design. In: Proceedings of the International Conference on
Information Technology: Coding and Computing (ITCC’04) Volume 2 - Volume 2.
p. 569. ITCC ’04, IEEE Computer Society, USA (2004)

20. Matyas, S.M.: Generating strong one-way functions with cryptographic algorithm.
IBM Technical Disclosure Bulletin 27, 5658–5659 (1985)

21. Merkle, R.C.: One way hash functions and des. In: Conference on the Theory and
Application of Cryptology. pp. 428–446. Springer (1989)

22. Mihaljevic, M., Zheng, Y., Imai, H.: A fast cryptographic hash function based on
linear cellular automata over gf(q) (06 1998)

23. Mukhopadhyay, D., RoyChowdhury, D.: Cellular automata: An ideal candidate for
a block cipher. In: Ghosh, R.K., Mohanty, H. (eds.) Distributed Computing and
Internet Technology. pp. 452–457. Springer Berlin Heidelberg, Berlin, Heidelberg
(2005)

24. Rivest, R.: The md5 message-digest algorithm (1992)
25. Sadak, A., Echandouri, B., Ziani, F.E., Hanin, C., Omary, F.: Lcahash-1.1: A new

design of the lcahash system for iot. International Journal of Advanced Computer
Science and Applications 10(11) (2019)

26. Sadak, A., Ziani, F.E., Echandouri, B., Hanin, C., Omary, F.: Hcahf: A new family
of ca-based hash functions. International Journal of Advanced Computer Science
and Applications 10(12) (2019)

27. Standard, S.H.: Fips publication 180-1. National Institute of Standards and Tech-
nology (1995)

28. Tomassini, M., Perrenoud, M.: Stream ciphers with one-and two-dimensional cel-
lular automata. In: International Conference on Parallel Problem Solving from
Nature. pp. 722–731. Springer (2000)

29. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Cramer, R.
(ed.) Advances in Cryptology – EUROCRYPT 2005. pp. 19–35. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

30. Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) Ad-
vances in Cryptology — CRYPTO ’85 Proceedings. pp. 429–432. Springer Berlin
Heidelberg, Berlin, Heidelberg (1986)


	A Novel Hash Function based on Hybrid Cellular Automata and Sponge Functions

