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Abstract. To prove computational complexity lower bounds in cryp-
tography, one often resorts to so-called generic models of computation.
For example, a generic algorithm for the discrete logarithm is one which
works independently from the group representation—and thus works
generically for all group representations. There are a multitude of dif-
ferent models in the literature making comparing different results—and
even matching lower and upper bounds proven in different models—
rather difficult.
In this work we view a model as a set of games with the same type of
interactions. Using a standard notion of reduction between two games,
we establish a hierarchy between models. Different models may now be
classified as weaker and stronger if a reduction between them exists. We
propose different extensions of the generic group model with different
queries, explicitly capturing different information that an algorithm may
need to exploit.
Finally, we use the hierarchy between these models to systematically
compare and improve the results in the literature. First we strengthen
the model in which the baby-step giant-step algorithm is proven and
weaken the model in which the matching lower bound is proven. We
then analyse the discrete logarithm with preprocessing. Upper and lower
bounds have been proven in the literature in mismatching models. We
weaken the model of the lower bound and strengthen the model of the
upper bound to close the gap between the two.

1 Introduction

1.1 Restricted Models of Computation

The core of theoretical computer science is about computational problems, the
algorithms to solve these problems and the complexity and performance of these
algorithms. To describe algorithms and capture their complexity, we first need to
fix a computational model. A computational model describes a set of operations
that can be performed by algorithms. For example, one of the most commonly
used models, the standard model, allows bit-wise binary operations AND, OR and
NOT. With the standard model we design algorithms for various computational
problems. Yet in cryptography, proving the security of certain cryptographic
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schemes means to prove a lower bound on the hardness of a certain computational
problem. Unfortunately, few useful lower bound proofs are known in the standard
model.

It is therefore interesting to investigate restricted models of computation if
meaningful lower bounds can be proved in the model. Shoup [?] introduced a re-
stricted model where algorithms have access to group elements via a randomly se-
lected bit-string representation. Maurer [Mau05] introduced the Abstract Model
of Computation (AMC) where algorithms interact with a black-box via restricted
operations and relation queries. Jager and Rupp [?] considered assumptions over
groups equipped with a bilinear map e: G1 × G2 → G3, where G1 and G2 are
modeled in Shoup’s model and G3 is modeled in the standard model. Aggarwal
and Maurer [?] introduced a black-box model to capture generic algorithms hav-
ing access to ring operations and their inverses. Fuchsbauer, Kiltz and Loss [?]
proposed the Algebraic Group Model where an algorithm can take advantage of
the group structure but it outputs a group element as a linear combination of
the input group elements.

Various upper and lower bound proofs are given in different restricted mod-
els of computation. But it is not clear how these models relate to each other.
Jagar [?] argued that models introduced by Maurer [Mau05] and Shoup [?] are
equivalent. Yet in [?] these two models are considered not equivalent. Multiple
extensions of these two models have been proposed as well, each coming with
new lower bounds for various computational problems. But without knowing the
relationships between these models, we lack the tools to compare the hardness
of these computational problems. We tackle exactly this problem in this work.
We introduce a hierarchy over computational models, from the most restricted
one to the most general one. We develop a theory of abstract models, in which
we study relationships between models and relationships between problems.

1.2 The Preprocessing Models

The models we have mentioned so far captures online-only attacks, in which the
adversary simultaneously receives the description of a cyclic group and a problem
instance. Yet a real-world adversary may have access to the entire description
of the target group in advance. The adversary could potentially perform the
following preprocessing attack relative to a target group. In the preprocessing
phase, the adversary computes and stores a group-specific advice string. Subse-
quently in the main phase, when the problem instance is at hand, the adversary
could use the advice string to solve the problem with less queries to the group
operation. Indeed, generic preprocessing attacks by Mihalcik [?], Bernstein and
Lange [?], Lee, Cheon, and Hong [?] and Corrigan-Gibbs and Kogan [CGK18]
solve the discrete logarithm problem in every group of order N using N1/3 bits
of advice string and N1/3 queries to the group operation in the main phase. This
is a dramatic improvement from generic online-only attacks, which require N1/2

group operations.
To study the power and limits of such preprocessing attacks, a line of work

initiated by Unruh [Unr07], and followed by Dodis et al. [?] and Coretti et
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al. [CDGS18,CDG18] introduce the auxililary-input model and the bix-fixing
model in the generic group settings. Matching lower bounds for these attacks
are given in [CGK18,CDG18], but the models used for the lower bounds are
stronger, so the results are not tight. More specifically, the analysis of the attack
from [CGK18] assumes a shared random oracle (RO) between the preprocessing
and online phases of the algorithm, but the lower bounds do not assume access
to such a RO.

1.3 Contributions

Our first contribution is to develop a systematic model of abstract computation,
which includes many of the models proposed in the literature as special cases.
We do this by extending the Abstract Model of Computation (AMC) model of
Maurer [Mau05] to include parameters with extra information about the group
representation and new queries that leak information about this representation.
When solving a problem, algorithms usually have some representation of the
underlying algebraic structure to work with. Yet it is unclear what properties of
the representation are exploited by the algorithm. We use the aforementioned
queries to control what information the algorithm gets and thus obtain a fine-
grained picture of what representation properties the algorithm exploits, e.g., a
total order between group elements.

Our second contribution is to establish a natural hierarchy between different
models. In our language solving a problem corresponds to winning a game and
a model corresponds a set of games that allow the same types of queries. Using
a standard notion of reduction between two games, we establish a hierarchy
between models. Different models may now be classified as weaker and stronger
if a reduction between them exists. Upper bounds in a stronger model are also
upper bounds in the weaker model, and lower bounds in a weaker model are also
lower bounds in the stronger model.

In this work we propose various extensions of the generic group models that
capture different properties of a representation that an algorithm may exploit.
The strongest model (which gives the least power to the algorithm) only allows
equality check. Relaxing this, we allow the algorithm to compare two representa-
tions according to an arbitrary total order (e.g., lexicographically). Relaxing this
further, our model may output a concrete (arbitrary) representation of elements.
And in an even weaker model, this representation is known to be dense.

We then weaken the model further to capture preprocessing attacks. In the
basic model the preprocessing and online phases only share the queries they
would in the online-only set-up. But we further weaken this by providing them
first with access to a shared t-wise independent hash function oracle, then to a
fully random oracle.

Our third contribution is to use the hierarchy between the models mentioned
in the paragraphs above to systematically compare and improve the results in
the literature. We show that the Baby-step Giant-step algorithm for solving the
discrete logarithm problem works in a model where only comparing queries are
available. We extend the lower bound proven in the generic group model [Mau05]
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to show that it holds even when given access to a dense representation. This lower
bound in a weak model matches the upper bound of the baby-step giant step
algorithm in the strong model. This proves that the extra information provided
by a dense representation in not useful in solving the discrete logarithm problem
and the comparison queries are all that is needed.

In the preprocessing model we show that the RO is not needed in the upper
bound from [CGK18] by giving an analysis for a variation of their algorithm
that does not require the RO. We also strengthen the lower bound result from
[CGK18,CDG18] by showing that it holds even if the preprocessing and online
phase have access to a shared RO. This results in two sets of tight upper and
lower bounds for the discrete logarithm with preprocessing, one with and one
without RO.

1.4 Structure of this paper

In Sect. 2, we introduce the theory of abstract games. In Sect. 3, we extend
the abstract model of computation and establish a hierarchy between models. In
Sect. 4, we introduce different extensions of the generic group model with differ-
ent function queries. In Sect. 5, we extend the model futher with preprocessing
and strengthen an upper bound and a lower bound result from the literature.

2 Abstract Games

Some of the concepts used in this work can be defined on a more general and
abstract level than the application for which they are needed. For example,
solving the discrete logarithm problem (DLP) can be seen as playing a game, and
results involving reductions between different versions of the DLP correspond
to reductions between games. In this section we define these concepts (e.g.,
games and reductions) in an abstract way, and then use them as tools in the
following sections. We believe that this abstract presentation is simpler and
clearer than introducing the concepts directly in a more complex model such as
generic groups.

In Sect. 2.1 we define games and solvers, and in Sect. 2.2 we define a reduction
between games. Then in Sect. 2.3 we introduce a notion of hierarchy between
classes of games based on reductions. A recap of the notation used can be found in
Appendix A. And in Appendix B we provide a formal definition of probabilisitic,
discrete, reactive systems.

2.1 Games and Solvers

The problems we consider in this work—e.g., solving the discrete logarithm—
are modeled as games. These are abstract objects defined by their performance
function, i.e., for a given universal set of solvers S and for every game g, a
function wg : S→ [0, 1] defines the performance of solvers at winning that game.
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Definition 1. For any game g and for a given universal set of solvers S, the
performance of a solver s ∈ S playing g is given by a function

wg : S→ [0, 1].

In this work, the value wg(s) may be interpreted as the probability that s wins
g.1 The set of solvers S will simply be the set of all (finite) probabilisitic, discrete,
reactive systems—using the term from [Mau02], we call these random systems.2

We do not need a notion of computational efficiency, because the number of
queries that the games allow (and thus the number of queries to which a solver
gets a response) is always bounded, which is the notion of efficiency relevant in
this work. The games considered in this work can also all be modeled as random
systems, with the exception of worst-case games (see Definition 2 below). Once
the solver has used up all its queries, the game will apply a predicate to the
transcript and output a bit denoting whether the solver won or not. We give
Example 1 and Example 2 in Appendix D to demonstrate two concrete games
and their interactions with the solvers.

Often one is not interested in solvers for a single game g, but solvers that are
good for a whole set of games G. For example in the permutation inversion prob-
lem, as described in Example 1, there exists a solver that has success probability
1, namely one that has the target permutation hard-coded and just submits the
pre-image of the problem instance according the hard-coded permutation. Find-
ing the worst-case performance over the whole set of games is a more interesting
problem.

Definition 2. For a set of games G, the worst-case game Ĝ is the game whose
performance function is defined as

wĜ(s) := inf
g∈G

wg(s).

2.2 Reduction

If one can reduce (solving) a game g2 to (solving) a game g1, that means that
given a solver for g1 one can construct a solver for g2 (with similar performance).
Formally, a reduction from a game g2 to a game g1 is a pair of a function α
mapping any solver for g1 to a solver for g2 and a function λ which computes
the performance of the new solver for g2.

Definition 3. The pair (α, λ) of functions α : S → S and λ : R → R is a

reduction from game g2 to game g1, denoted as g2
α,λ−−→ g1, if

∀s ∈ S,wg2(α(s)) ≥ λ(wg1(s)).

1One may consider more general theories of games in which the performance of
a solver is not given by a single value p ∈ [0, 1] but by a vector of values capturing
different criteria of success. But for this work, a single probability p is sufficient.

2Random systems are formalized in Appendix B
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One is usually only interested in functions α that preserve the complexity of
the solver and functions λ that preserve the performance of the solver, e.g., in an
asymptotic setting one might require α to be efficient and λ to be a multiplicative
constant. Since we are not interested in asymptotic limits in this work, we give
α and λ explicitly instead—asymptotic limits may always be derived from the
explicit function if desired. We give Example 3 in Appendix D to demonstrate
reductions between two concrete games.

2.3 Hierarchies of games

The concept of a reduction introduced in the previous section can be used to
define a notion of (relative) hardness of games: if g2 can be reduced to g1, then
solving g2 is at least as easy as solving g1. Here we extend this to define a partial
order between any sets of games. This is motivated by the fact that we often
group games into classes, e.g., by the different queries allowed by the games, and
a hierarchy between sets of games can be used to determine which queries are
more powerful and which do not improve the success probability of a solver.

Definition 4. For two sets of games G1 and G2, G2 is easier than G1, denoted
as G2 D G1, if there exists a function α : S→ S such that

∀g2 ∈ G2,∃g1 ∈ G1, g2
α,id−−→ g1,

where id denotes the identity function.
For any two games g1, g2, we also define g2 D g1 if and only {g2} D {g1}.

We give Example 4 in Appendix D to demonstrate a hierarchy between two
sets of concrete games. We finish the section with few technical lemmas in the
theory of abstract games in Appendix C.

3 Abstract Models of Computation

3.1 The Model

In order to capture restricted models of computation and give concrete lower
bounds on computation complexity, Maurer [Mau05] proposed a model of ab-
stract computation: the computation is performed inside a black-box3 and the
user can only interact with the box via the (abstract) operations that it pro-
vides. For example, in the Generic Group Model4 (GGM) this black-box has
registers that contain values from the group ZN and the user can only perform
the group operation on two registers (the result is stored in a third register) or
compare two registers (the result is output). By counting the number of group

3Interacting with the black-box corresponds to playing a game. We use the term
black-box in this subsection for compatibility with [Mau05], and explain the relation to
games in Sect. 3.2.

4See also the formal definition in Definition 5.
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operations and registers that are used, one can prove upper and lower bounds
on the computational and memory requirements of a generic algorithm (i.e., one
which does not exploit the group structure).

More precisely, the abstract model of computation (AMC) of Maurer [Mau05]
is characterized by a tuple M = 〈S,Π,Σ, k,m〉, where S denotes a certain al-
gebraic structure over which the computation is performed (e.g., a group), m is
the number of internal registers of the black-box, k is the number of interactions
with the box that are allowed, Π is the set of possible computation operations
(which store the result in a new register) and Σ is the set of possible function
queries (the result is output).

Definition 5 (Generic Group Model (GGM) [Mau05]). Let S = ZN ,Π =
{+,1},Σ = {eq}, where + is the group operation on ZN , 1 is the nullary
operation that inserts 1 into a register and the function query eq : Z2

N →
{0, 1} returns 1 if two arguments are equal and 0 otherwise. The model Geq =
〈ZN , {+,1}, {eq}, k,m〉 is the Generic Group Model (GGM). At most k inter-
actions are allow in the model and at most m internal registers can be used.

In this work we extend the AMC to have an extra element, namely a set
P of possible parameter values p ∈ P . These capture extra information about
the algebraic structure which might be made available to the user, e.g., a total
order amongst broup elements or a specific representation of group elements as
in Definition 6 below. Thus, we define a model as a tupleM = 〈S,Π,Σ, k,m, P 〉.
As before, S is the algebraic structure over which the computation is performed,
and m is the number of internal registers of the black-box which we denote
V1, . . . , Vm (m may be set to ∞ if we do not care about the memory bound).
An instantiation of the model will also be given a parameter value p ∈ P , e.g.,
a specific representation of group elements (see Sect. 3.2 for details on how the
model is instantiated). The computation operations Π and function queries Σ
will typically depend on the parameter p and also need to be provided with
registers on which to operate:

– Computation operations: For a set Π of operations, a computation oper-
ation consist in selecting an operation f ∈ Π (say t-ary) as well as t indices
i1, . . . , it. The value f(p, Vi1 , . . . , Vit−1

) is computed and the result is stored
in the register Vit .

– Function Queries: For a set Σ of functions, a function query consists in
selecting a function ρ ∈ Σ (say t-ary) as well as t−1 indices i1, . . . , it−1. The
value ρ(p, Vi1 , . . . , Vit−1

) is computed and the result output to the user.

The total number of interactions to which a system will respond is bounded by
k, but here too we may set k to ∞ if we do not care about this bound.

In the following example we use the parameter p to provide the user with
a representation of the group elements. This is essentially Shoup’s model [?]
rephrased in the AMC language.

Definition 6 (Shoup’s model [?]). Let S = ZN ,Π = {+,1},Σ = {rep} and
P = IN,M , where IN,M is the set of injective functions from ZN to ZM . The
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MD

1. MD samples a pair (p, x) according to the distribution D, and stores x in V1.
2. MD responds to at most k computation operations Π and function queries Σ.
3. MD receives x′ from the solver. The game is won if x′ = x.

Fig. 1. The extraction game in a modelM = 〈S,Π,Σ, k,m, P 〉 with instance distribu-
tion D.

function rep : IN,M×ZN → ZM takes two inputs σ ∈ IN,M and v and returns the
bit-string σ(v). The model Grep = 〈ZN , {+,1}, {rep}, k,m, IN,M 〉 is the generic
group model with representation queries.

3.2 Model as a Set of Games

One may consider many different problems in the AMC, e.g., extraction problems
(where a value x ∈ S must be guessed), computation problems (where a value
x ∈ S must be computed inside the black-box), or distinction problems (where
one must distinguish between two different black-boxes). For concreteness we
will focus on extraction games in the rest of this work and refer the interested
reader to [Mau05] for other applications.

The model introduced in Sect. 3.1 defines the interaction of the user with the
black-box. To instantiate the model with a concrete extraction problem—i.e., to
define the corresponding extraction game—one still needs to define the initial
state of the black-box. For an extraction game one needs to define the value
x ∈ S to be extracted and the parameter p ∈ P . Let V = P ×S denote the set of
possible initial states of a modelM and D(V) denote the set of all distributions
over V. For any distribution D ∈ D(V), the extraction game MD is the random
system which first draws a pair (p, x) according to D, writes x in the first register
V1, then interacts with the solver via the computation operations Π and function
queries Σ, and finally receives a guess x′ from the solver and outputs a bit 1 or
0 if x′ = x or not. This is summarized in Fig. 1.

Definition 7. A model M = 〈S,Π,Σ, k,m, P 〉 for extraction games is the set
of games {MD|D ∈ D(V)} where D(V) is the set of all distributions over (p, x) ∈
V = P × S, p is the parameter of the game and x is the value to be extracted
(which are drawn according to D), m is the number of internal registers of the
game, k is the number of queries and operations from Σ and Π that are executed,
and the performance wMD (s) is the probability that a solver s submits a correct
guess x′ = x.

The corresponding worst-case extraction game M̂ of model M is defined
according to Definition 2. When D is the uniform distribution over V, we call
the corresponding extraction game MD the average-case game and write M.

Definition 8. For a modelM, the average-case gameM is defined as the game
MD ∈M where D is the uniform distribution on V = P × S.
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3.3 Hierarchies of Models

Since a model corresponds to a set of extraction games, the hierarchy of sets
of games introduced in Sect. 2.3, Definition 4, applies to models. If M2 DM1

(M1 D M2) we will usually say that M2 is weaker (stronger) than M1. For
example, this means that Shoup’s model Grep is a weaker model than GGM Geq,
as illustrated in Example 5 in Appendix D. This means that an algorithm in the
GGM model trivially yields an algorithm in Shoup’s model, and a lower bound
on the number of quieres k that are needed in Shoup’s model immediately gives
us a lower bound in the GGM. Note that a reduction in the opposite direction is
not possible without the number of queries needed blowing up to N , the group
order. We also give Example 6 in Appendix D to illustrate that operations that
insert constants can also be compensated by a small overhead in the number of
interactions.

4 Extensions of the Generic Group Model

A generic algorithm for solving the discrete logarithm problem will have access to
an (unknown) representation of group elements, and will exploit some properties
of this representation. For example, one of the most basic operations it can do is
compare two elements to know if they are equal or not. Exactly this operation is
captured by the generic group model Geq = 〈ZN , {+,1}, {eq}, k,m〉 introduced
in Definition 5.

We may relax this and provide the solver with more operations, in particular,
an algorithm could sort the group elements lexicographically. We obtain a weaker
model by using a parameter (see Sect. 3) to capture this total order. We define
the function query comp : PN × Z2

N → {0, 1}, that compares two values in ZN
according to a permutation π ∈ PN . For any v1, v2 ∈ ZN , comp(π, v1, v2) = 1
if and only if π(v1) ≤ π(v2). The permutation parameter π ∈ PN captures a
total order on ZN , but the solver does not directly have access to it, only to
comparing two elements.

Definition 9. Let S = ZN ,Π = {+,1},Σ = {comp} and P = PN . Gcomp =
〈ZN , {+,1}, {comp}, k,m,PN 〉 is the generic group model with comparing queries.

In Sect. 4.1, we introduce the baby-step giant-step algorithm which needs a
comparison query and works in the model Gcomp.

When proving lower bounds on the number of queries and operations k that
are needed to win a game, we are interested in proving the bounds in the weak-
est model possible—even with all operations provided by this weak model, one
still needs k operations. The weakest generic model is one in which we do not
only give an unknown representation to the solver (as in Definition 6), but the
representation is guaranteed to be dense. To this end, we define the function
query dense : PN × ZN → ZN which takes two inputs π ∈ PN and v ∈ ZN and
returns π(v).
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Definition 10. Let S = ZN ,Π = {+,1},Σ = {dense} and P = PN . The model
Gdense = 〈ZN , {+,1}, {dense}, k,m,PN 〉 is the generic group model with dense
representation queries.

In Sect. 4.2 we prove the lower bound of k = Ω(
√
N) needed to extract x in

the model Gdense.

4.1 The Baby-step Giant-step Algorithm

The baby-step giant-step algorithm requires the ability to compare the order of
two group elements, but does not need any other information about the rep-
resentation, so we prove it in the model with comparison queries Gcomp from
Definition 9. Since we would like the algorithm to work regardless of the value x
to extract or the choice of total order π, we prove a bound that the success prob-
ability of this solver is 1 for the worst-case game Ĝcomp. The baby-step giant-step
algorithm and the proof of the success probability may be found in Appendix E.

4.2 The Lower Bound of Extraction Games

As stated at the beginning of this section, we proving lower bounds on the
number of queries and operations k that a needed by a solver, we wish to consider
a weak model, in our case this is Gdense. We will also prove that bound for the
average case problem, which immediately implies that it is a lower bound for the
worst-case problem and in all stronger models as well. The lower bound proven
in [Mau05] in the model Geq follows from this.

Theorem 1. Let N be a prime number. For any integer k and any solver S
interacting with the model Gkdense = 〈ZN , {+,1}, {dense}, k,∞,PN 〉,

wGkdense
(S) ≤ 1

2
(k + 1)2/N.

The proof of Theorem 1 appears in Appendix F.1.
Combining with Lemma 5, the lower bound in turn implies a lower bound in

winning the worst-case extraction games Ĝeq, Ĝcomp, Ĝrep and Ĝdense.
Corollary 1. Let N be a prime number. For any integer k and any solver S
interacting with one of the models Gk ∈ {Gkeq,Gkcomp,Gkrep,Gkdense},

wĜk(S) ≤ 1

2
(4k + 1)2/N.

5 Extraction Games with Preprocessing

The models we have considered so far capture online-only attacks, in which
the solver has no information about the group beforehand. We now modify the
generic group model to capture preprocessing attacks. In Sect. 5.1 we explain
how to define preprocessing in the AMC. In Sect. 5.2 we give a new upper bound
on the number of queries needed for extraction games in this model, i.e., we give
a concrete algorithm and proof. And in Sect. 5.3 we give a new lower bound
matching the upper bound.
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pMD

1. pMD.pre samples an initial state v = (p, x) from the distribution D.
2. pMD.pre performs computation operations Π and replies function queries Σ

from the solver S up to k.pre times.
3. pMD.main clears all registers and sets V1 to be x.
4. pMD.main performs computation operations Π and replies function queries Σ

from the solver S up to k.main times.
5. pMD.main receives x′ from the solver. The game is won if x = x′.

Fig. 2. The extraction game in model pM = 〈S,Π,Σ, (k.pre, k.main),m, P 〉 with dis-
tribution D

5.1 The Abstract Preprocessing Model

To capture preprocessing we divide the interaction between the solver and the
game in two phases, the preprocessing phase and the main phase. As before, the
game will pick the parameter p and value x according to some distribution D, but
x will not be written in any register in the first phase, so it will not be accessible
to the solver. In this phase, the solver can interact k.pre times with the game
using the operations and queries, and thus learn information about the parameter
p. In the second phase the registers are all cleared, then the value x is written to
register V1 making it accessible via operations and queries. The solver can have
k.main such interactions, then has to make a guess for x. We denote such a model
with pM = 〈S,Π,Σ, (k.pre, k.main),m, P 〉, where as before this corresponds to a
set of games pM = {pMD|D ∈ D(V)}, where D(V) is the set of all distributions
over the pairs (p, x) ∈ V = P ×S, and pMD = (pMD.pre, pMD.main) is the game
described above which is summarized in Fig. 2.

The solver S interacting with the extraction game pMD is also split in two
parts S.pre and S.main. After the preprocessing phase, S.pre sends an advice
string z to S.main. We denote by ` = |z| the length of the advice string, and
make statements parameterized by this value. To this end, we define by pS` the
set of all solvers split in these two (independent) phases that pass an ` bit advice
string from one to the other.

We can extend the generic group models Gcomp, Grep, Gdense to the correspond-
ing preprocessing generic group models.

Definition 11. Let S = ZN , Π = {+,1}. For Σ = {comp} and P = PN , the
model pGcomp = 〈ZN , {+,1}, {comp}, (k.pre, k.main),m,PN 〉 is the preprocessing
generic group model with comparing queries. For Σ = {rep} and P = IN,M , the
model pGrep = 〈ZN , {+,1}, {rep}, (k.pre, k.main),m, IN,M 〉 is the preprocessing
generic group model with representation queries. For Σ = {dense} and P = PN ,
the model pGdense = 〈ZN , {+,1}, {dense}, (k.pre, k.main),m,PN 〉 is the prepro-
cessing generic group models with dense representation queries.
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pMD

pMD.main

pMD.pre

S

S.pre

S.main

z

Fig. 3. The interaction between pMD and S

5.2 The Preprocessing Algorithm with t-wise Independent Hash
Function

In [CGK18] the authors provide an algorithm in a pre-processing model that
uses a hash function to generate a random walk. This algorithm needs ` =
Õ(N1/3) bits of advice between the preprocessing and main phases, and does
k.main = Õ(N1/3) operations in the main phase. The assumption is that the
hash function behaves like a random oracle (RO), and the proof is done in the
RO model [HJKY95]. Corresponding lower bounds are given in [CGK18,CDG18],
where it is shown that k2` = Ω(εN) and ε is the probability of correctly guessing
the value x. But these lower bounds do not involve ROs, so we have a mismatch-
ing in the models and the results are not directly comparable. In this section we
focus on the upper bound and prove that if one uses t-wise independent hash
functions, then one does not need a RO.

We start by defining the preprocessing model with a RO. This is achieved
by including it in the game and allowing the solver to query it. More precisely,
we define a model with a dense : PN × ZN → ZN query which takes two inputs
π ∈ PN and v ∈ ZN and returns π(v), and a ro : PN × ZN → ZN query which
takes two inputs π ∈ PN and v ∈ ZN and returns RO(π(v)) for a random oracle
RO : ZN → ZN .5

Definition 12. Let S = ZN , Π = {+,1}, Σ = {dense, ro} and P = PN . The
model pGdense,ro = 〈ZN , {+,1}, {dense, ro}, (k.pre, k.main),m,PN 〉 is the prepro-
cessing generic group model with dense representation queries and random oracle
queries.

We will now strengthen this model by first replacing the RO with a t-wise
independent hash function, i.e., we introduce another function query hash :
PN × ZN → ZN induced from an arbitrary t-wise independent hash function
family. More precisely, let t ≥ 1 be an integer. Let Ht be a collection of func-
tions h : ZM → ZN . We say that Ht is t-wise independent if for any distinct

5Since RO is a random oracle, we could have equally defined ro as returning RO(v).
But later when we replace RO with t-wise independent hash functions these two values
are not identical anymore (due to extra randomness over the choice of π), so we already
write RO(π(v)) here.
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x1, x2, . . . , xt ∈ ZM and for any y1, y2, . . . , yt ∈ ZN , it holds that

Pr
h∈Ht

(h(xt) = yt|h(xt−1) = yt−1 ∧ . . . ∧ h(x1) = y1) =
1

N
,

where h ∈ Ht is picked uniformly at random. The first time hash is called, it will
pick a h ∈ Ht uniformly, then always use the same h and return h(π(v)).

The second change we make is to note that the algorithm does not need to
query dense directly, it only needs the hash values of this representation and to
compare the order of two elements. So we can remove dense, and just use comp
instead.

Definition 13. Let S = ZN , Π = {+,1}, Σ = {comp, hash} and P = PN .
Let Ht denote an arbitary t-wise independent hash function family. The model
pGcomp,hash = 〈ZN , {+,1}, {comp, hash}, (k.pre, k.main),m,PN 〉 is the preprocess-
ing generic group model with comparing queries and t-wise independent hashing
queries.

A simplified version of the algorithm that runs in this model is given in Fig. 4,
the details can be found in Appendix F.2. As before, we want the algorithm to
work for all x and all p, so we consider the worst-case problem over pGcomp,hash.
The success probability for the worst-case game is given by the following theorem.

Theorem 2. Let N be an integer. Let ` = t = d 12N
1/3e. Let Ahash denote the al-

gorithm described in Fig. 4. The algorithm interacts with the model pGcomp,hash =
〈ZN , {+,1}, {comp, hash}, (k.pre, k.main),m,PN 〉 where k.pre = 2`t logN ,
k.main = 4t logN and m = 2t+ `, we have

Ahash ∈ pS` logN

and

w
p̂Gcomp,hash

(Ahash) ≥ 1/64.

The proof of Theorem 2 appears in Appendix F.2.
We now wish to remove hash from the model. To do this, the solver will

choose the hash function itself in the preprocessing phase, then send the bits
necessary to describe the function in the advice string to the main phase. For
this to work the solver will also need access to some representation of the group
elements, so that it can apply the hash to this representation. So we include the
query rep in the model, which is now pGrep.

Vadhan [?] showed an explicit construction for a family of t-wise indepen-
dent functions Ht = {h : ZM → ZN}, such that sampling a random function
in Ht takes t logM random bits, hence these bits need to be added to the ad-
vice string. We now present another extraction algorithm with preprocessing,
slightly modified from the algorithm in Fig. 4, that wins the worst-case extrac-
tion game p̂Grep with constant performance—the details of the algorithm appear
in Appendix F.3.
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Ahash.pre

Let w : ZN → ZN denote the mapping w(x) = x+ hash(π, x).
Ahash.pre repeats ` times the following steps. In the i-th round:

1. Ahash.pre sample a uniform random value ri0
$←− ZN as the starting value.

2. Ahash.pre computes rij+1 = w(rij) for all j ∈ {1, 2, . . . , t− 1}.
3. Ahash.pre stores the end value rit = wt(ri0) in the advice string.

Ahash.pre sorts all the end values r1
t , r

2
t , . . . , r

`
t in the advice string according to the

permutation π.

Ahash.main

Let w : ZN → ZN denote the mapping w(x) = x+ hash(π, x).
Ahash.main sets x1 = V1, the value to be extracted, and repeats at most 2t− 1 times
the following steps. In the i-th round:

1. If xi ∈ {r1
t , r

2
t , . . . , r

`
t}:

2. Let xi = rpt for some p ∈ {1, 2, . . . , `}
3. Ahash.main outputs x′ = rpt −

∑p−1
j=1 hash(π, xi) and halts.

4. Else
5. Ahash.main sets xi+1 = w(xi).

Ahash.main fails after repeating the above steps for 2t− 1 times.

Fig. 4. Ahash = (Ahash.pre,Ahash.main) interacting with pGcomp,hash

.

Corollary 2. Let N and M be two integers and M ≥ N . Let ` = t = d 12N
1/3e.

Let pGrep = 〈ZN , {+,1}, {rep}, (k.pre, k.main),m, IN,M 〉 denote the preprocessing
generic group model with representation queries, where k.pre = 2`t logN, k.main =
4t logN and m = 2t+ `. There exists an algorithm A such that

A ∈ pSt logM+` logN

and
w
p̂Grep

(A) ≥ 1/64.

The proof of Corollary 2 appears in Appendix F.3.

5.3 The Lower Bound of Extraction Games with Preprocessing

In this section we strength the lower bounds from the literature in the pre-
processing model [CGK18,CDG18] to show that even when the games provide
access to a dense representation and to a common random oracle (RO), the
length of the advice string and the number of operations needed in the main
phase does change. This means in particular that the RO cannot be exploited
to pass information from the preprocessing to the main phase of the algorithm.
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pGdense.pre

1. pGdense.pre samples
(π, x) uniformly at
random from PN ×
ZN .

2. pGdense.pre performs
operations {+,1}
and replies function
queries {dense}
to S.pre unlimited
times.

extG.pre

1. extGdense.pre samples
(π, x) uniformly at
random from PN ×
ZN .

2. extGdense.pre outputs
π to S.pre.

injGpdense.pre

1. injGpdense.pre receives
a collision-free list
L = (xi, yi)

p
i=1 from

S.pre.
2. extGdense.pre samples

(π, x) uniformly at
random from PLN ×
ZN .

pGkdense.main

1. pGdense.main clears all registers and sets internal registers V1 = x.
2. pGdense.main performs operations {+,1} and replies function queries {dense}

with S.main up to k times.
3. pGdense.main receives x′ from S.main. The game is won if x = x′.

Fig. 5. Variations of the average-case extraction game in model pGdense

The model in which we will prove the lower bound was already introduce
in Definition 12, namely pGdense,ro. More precisely, we will prove the bound for

the average case game pGkdense,ro which immediately implies the same bound for
the worst-case game. We will achieve this by performing various game hops. We

related a bound on the game pGkdense,ro to a bound on pGkdense. We relate this to a

bound on extGkdense, a game which gives the parameter π to the solver during the

preprocessing phase. We relate this to a bound on injGp,kdense, a game which allows
the solver to fix p values of π. And finally we compute a bound on the success

probability of the best solver for injGp,kdense directly. These games all share the
common main phase but have different preprocessing phase, and are described
in Fig. 5.

In game extGkdense, the preprocessing phase solver can extract the complete
permutation function π from the model. This variation clearly gives more power

to the solver than pGkdense does since the only information that can leak in the
preprocessing phase is the permutation π. We illustrate this formally with the
following proposition.

Proposition 1. extGkdense D pGkdense.

The proof of Proposition 1 appears in Appendix F.4.

Let p ≤ N be an integer. In game injGp,kdense, instead of extracting information
about the permutation, the preprocessing phase solver can inject a list of p
input/output pairs of the permutation. Assuming the solver always submits a



16 U. Maurer, C. Portmann, and J. Zhu

collision-free list L = {(xi, yi)}pi=1 of maximal length |L| = p, where xi, yi ∈ ZN ,
all the xi are distinct and all the yi are distinct, we define the set of permutations
PLN consistent with L as follows:

PLN := {π ∈ PN |π(xi) = yi,∀i ∈ {1, 2, . . . , p}} .

Unruh in [Unr07] proved a general relationship between game extGkdense and game

injGp,kdense. The relationship was sharpened by Coretti et al. [CDG18]. We recall
their theorem6 now.

Proposition 2 ([CDG18]). For any integers p, k, ` and γ > 0 such that p ≥
(`+ log γ−1)k, we have

max
S∈pS`

w
extGkdense

(S) ≤ 2 max
S∈pS`

w
injGp,kdense

(S) + γ,

For any solver S = (S.pre,S.main) interacting with the game injGp,kdense, since
S.pre gets no information from the game, S.main can learn no information about
the permutation via the advice string other than the list L of p input/output
correspondences. After interacting with the main phase extraction game up to k
times, S.main learns up to k+ p+ 1 input/output correspondence of the permu-
tation function. This yields a bound for the performance of the solver S in the
same way as Theorem 1. We present the lemma as follows.

Proposition 3. Let N be a prime number. For any integers p and k and any
solver S ∈ S,

w
injGp,kdense

(S) ≤ 1

2
(k + 2p+ 1)(k + 1)/N.

The proof of Proposition 3 appears in Appendix F.5.
We are now ready to bound the performance of the average-case extraction

game pGdense for all the solvers utilizing limited length of advice string.

Theorem 3. Let N be a prime number. Let k and ` be two positive integers.
For model pGkdense = 〈ZN , {+,1}, {dense}, (∞, k),∞,PN 〉,

∀S ∈ pS`,w
pGkdense

(S) ≤ 3`(k + 1)2/N

Proof. For any solver S ∈ pS`, choosing p = (`+ logN)k and γ = 1/N , we have
p ≥ (`+ log γ−1)k. Therefore,

w
pGkdense

(S) ≤ w
extGkdense

(S)

≤ max
S∈pS`

w
extGkdense

(S)

≤ 2 max
S∈pS`

w
injGp,kdense

(S) + γ

≤ (k + 2p+ 1)(k + 1)/N + γ

≤ 3`(k + 1)2/N.

6The game extGkdense corresponds to the AI-RPM model the game injGp.kdense corre-
sponds to the BF-RPM model in [CDG18]. We adapt the theorem with our notation
here.
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The first inequality invokes Proposition 1, the third inequality invokes Propo-
sition 2 under the condition that p ≥ (` + log γ−1)k, the fourth inequality in-
vokes Proposition 3 and in the last equality we plug in p = (` + logN)k and
γ = 1/N .

We now prove the strongest lower bound statement in the model pGdense,ro.
To do this we note that implementing ro essentially corresponds to sharing lots
of randomness between the preprocessing and the main phases of the solver. And
we show that sharing randomness does not help the solver.

Corollary 3. Let N be a prime number. Let k and ` be two integers. For model
pGkdense,ro = 〈ZN , {+,1}, {dense, ro}, (∞, k),∞,PN 〉, we have

∀S ∈ pS`,w
pGkdense,ro

(S) ≤ 3`(k + 1)2/N

The proof of Corollary 3 appears in Appendix F.6.
Since pGdense,ro D pGcomp,hash it follows that the upper bound from Theo-

rem 2 matches the lower bound in Corollary 3 (up to a factor logN). And since
pGdense D pGrep it follows that the upper bound from Corollary 2 matches the
lower bound from Theorem 3 (up to a factor logN).
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A Notation

The notation used in this work is defined in Tables 1, 2, 3 and 4.

Symbol Explanation

PY |X(y|x) the probability that Y = y given that X = x
xi the sequence (x1, . . . , xi)
ZN the additive group which consists of {0, 1, . . . , N − 1}
PN the set of all permutations on ZN
IN,M the set of injective functions from ZN to ZM
id identity function
Ht a t-wise independent hash function family

Table 1. Mathematical notation

Symbol Explanation

S,G (sans serif math) a random system
wg(s) the winning probability of the solver s playing the game g
G (caligraphic) a set (of games, random systems, etc.)

Ĝ the worst-case game over the set G
G the average-case game over the set G

Table 2. Notation for random systems, games and sets of games.

Symbol Explanation

+ performs group operation on ZN
1 inserts value 1
eq checks equality
comp compares according to an order of the representation
rep returns a representation
dense returns a dense representation
hash hashs a representation with a t-wise independent hash function
ro queries a random oracle

Table 3. Computation operations and function queries.
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Symbol Explanation

GΣ the generic group model with function queries Σ
pGΣ the preprocessing generic group model with function queries Σ

Table 4. Specific models.

B Formalising Discrete Systems

When describing an algorithm or a game, one often uses informal descriptions
such as pseudo-code. Various formal models for such discrete, reactive systems
exist, e.g., interactive turing machines or input/output automata. But the ex-
act model is generally not of interest, since only the input-output behavior of
the system is relevant. We refer to the object of concern—a probabilistic, dis-
crete, reactive system defined by its input-output behavior—as a random system
[Mau02,?]. A minimal description of a random system is given by a (sequence of)
conditional probability distribution(s), that defines (the probability distribution
of) the new output given previous in- and outputs.7

Definition 14 (Random Systems). An (X ,Y)-random system S is a proba-
bilistic, discrete, reactive system that takes inputs x ∈ X and produces outputs
y ∈ Y. It is uniquely defined by a finite sequence of conditional probability distri-
butions {P S

Yi|XiY i−1}i≥1 defined on all xi = (x1, . . . , xi) ∈ X×i, all yi ∈ Y and

all yi−1 = (y1, . . . , yi−1) ∈ Y×(i−1) that have non-zero probability, i.e., such that∏
j<i P

S
Yj |XjY j−1(yj |xj , yj−1) > 0. Here P S

Yi|XiY i−1(yi|xi, yi−1) is the probability

of observing the output yi given the inputs xi = (x1, . . . , xi) and previous outputs
yi−1 = (y1, . . . , yi−1).

If for two systems S and R, we have

P S
Yi|XiY i−1(yi|xi, yi−1) = PR

Yi|XiY i−1(yi|xi, yi−1)

for all i and for all (xi, yi) on which they are defined, then S and R are the same
random systems and one may write S = R.

Although a minimal description of a random system is given by such a se-
quence of conditional probability distributions, it is often more convenient to
describe them using pseudo-code. We will usually do so in this work, keeping
in mind that this is a (redundant) description of a random system, and the
mathematical object of interest about which we make statements is the random
system.

By “connecting” two random systems—i.e., passing some of the output values
of each system as inputs to the other—we obtain a new random system. Although
one may imagine random systems being connected in arbitrary ways, in this work
we will only need the type of connection illustrated in Fig. 6 and defined here
below.

7Pseudo-code, probabilisitic interactive Turing machines and probabilisitic in-
put/output automata correspond to various (redundant) descriptions of random sys-
tems.
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R C

S
x

y

u

v

Fig. 6. Two random systems R and C are connected, resulting in a new random system
S = RC, as in Definition 15.

G2 C G1=

G2C

0/1 0/1

Fig. 7. A special case of a reduction from G2 to G1 used in Lemma 1.

Definition 15 (Converter). A (X ,Y)→ (U ,V)-converter C is a (Y t U ,X t
V)-random system, where t denotes the disjoint union.8 By passing the xi ∈ X
outputs of C as inputs to a (X ,Y)-random system R and passing the yi ∈ Y
outputs from R as inputs to C, we obtain a uniquely defined (U ,V)-random system
S = RC.

We will often say that C has two interfaces, one accepting the inputs y ∈ Y
and producing the outputs x ∈ X , the other accepting the inputs u ∈ U and
producing the outputs v ∈ V. In Fig. 6, these two interfaces correspond to the
two sides of the box labeled C.

C Technical Lemmas

A special case of a reduction between two games G2 and G1 illustrated in Fig. 7
is when there exists a converter C such that G2C = G1. We state this for the case
of sets G2 and G1 in Lemma 1.

Lemma 1. For two sets of random system games G1 and G2, if there exists a
converter9 C such that,

G2C ⊆ G1
where G2C := {G2C|G2 ∈ G2} denotes the set of games in G2 composed with the
converter C, then we have

G2 D G1.
8The disjoint union of set X and set V is defined as (X × {0}) ∪ (V × {1}).
9The term converter is defined in Appendix B along with the composition GC.
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Proof. Since G2C ⊆ G1, for any game G2 ∈ G2, there exists a game G1 ∈ G1 such
that G2C = G1, as illustrated in Fig. 7. Hence for any solver S,

wG2C(S) = wG1(S).

Let α : S 7→ CS, then

wG2
(α(S)) = wG2

(CS) = wG2C(S) = wG1
(S).

So G2
α,id−−→ G1 which proves that G2 D G1.

The following lemma shows that for any set of games, all games from the set
are easier than the corresponding worst-case game.

Lemma 2. For any set of games G, we have ∀g ∈ G, g D Ĝ.

Proof. For any game g ∈ G, and for any solver s ∈ S,

wg(s) ≥ inf
g∈G

wg(s)

= wĜ(s),

which proves that g
id,id−−→ Ĝ and therefore g D Ĝ.

The following lemma shows that if we can compare two sets of games, we
can compare the corresponding worst-case games.

Lemma 3. For two sets of games G1 and G2, if G2 D G1, then Ĝ2 D Ĝ1.

Proof. If we write out all the quantifies explicitly, we get

G2 D G1 ⇐⇒ ∃α,∀g2 ∈ G2,∃g1 ∈ G1,∀s ∈ S, wg2(α(s)) ≥ wg1(s)

=⇒ ∃α,∀s ∈ S,∀g2 ∈ G2,∃g1 ∈ G1, wg2(α(s)) ≥ wg1(s)

=⇒ ∃α,∀s ∈ S, inf
g2∈G2

wg2(α(s)) ≥ inf
g1∈G1

wg1(s)

⇐⇒ Ĝ2 D Ĝ1.

The following lemma establishes a hierarchy of four models supporting func-
tion queries eq, comp, rep and dense.

Lemma 4. For any integer k, G4kdense D G4krep D G2kcomp D Gkeq.

Proof. First G2kcomp D Gkeq since the equality check (i, j, eq) can be emulated by
querying (i, j, comp) and (j, i, comp) and replying 1 if and only if both replies of
the comparing queries are 1. Moreover, G2krep D Gkcomp since the comparing query
(i, j, comp) can be emulated by querying the representation of both registers
(i, rep) and (j, rep) and comparing the results σ(Vi) and σ(Vj). Lastly, G2kdense D
G2krep since the non-dense representation query rep can always be emulated by
the dense representation query dense. A dense representation is indeed also a
non-dense representation.
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Combining Lemma 2, 3 and 4 we can derive that the worst-case extraction
games in all four models Geq, Gcomp, Grep and Gdense can be bounded by the
averaged-case extraction game in the weakest model Gdense.

Lemma 5. For any integer k, G4kdense D Ĝ4kdense D Ĝ4krep D Ĝ2kcomp D Ĝkeq.

Since the dense representation query is a special case of the non-dense rep-
resentation query and the random oracle query ro is a special case of the t-wise
independent hash function query, we obtain the following hierarchy in the pre-
processing generic group model.

Lemma 6. For any integer k, pGkdense D pGkrep.

Lemma 7. For any integer k, pG2kdense,ro D pGkcomp,hash.

D Examples

The following two examples demonstrate two concrete games and their interac-
tions with the solvers.

Example 1. Consider the game of inverting a permutation. Let ZN denote the
additive group on {0, . . . , N − 1} and let PN denote the set of permutations
of the elements of ZN . We define a random system Okπ which contains a fixed

permutation π ∈ PN . At the beginning of the game, Okπ samples x
$←− ZN

uniformly at random and outputs π(x) to the solver S. The solver S can query
the permutation π from Okπ up to k times, i.e., on input a from S, Okπ outputs
π(a) to S. Then finally the solver sends a guess x′ to Okπ. The game is won if the
solver inputs x. The performance of the solver, wOkπ

(S), is the probability that
x′ = x.

Example 2. Consider the following abstract discrete logarithm problem.10 A ran-
dom system Gkσ contains a fixed injective function σ ∈ IN,M , where M ≥ N and
IN,M denotes the set of injective functions from ZN to ZM . At the beginning of

the game, Gkσ samples x
$←− ZN uniformly at random and outputs σ(x) and σ(1)

to the solver S. The solver S can use Gkσ to perform k group operations, i.e.,

– on input (u, v, op), if u, v ∈ Im(σ) and u = σ(a), v = σ(b), Gkσ returns σ(a+b)
to S, where + is the group operation of ZN . Otherwise, Gkσ returns ⊥ to S.

After k queries, S inputs x′ to Gkσ. The game is won if x′ = x, and the perfor-
mance of the solver, wGkσ

(S), is the probability that x′ = x.

The following example demonstrates reductions between two concrete games.

10This is referred to as a discrete logarithm problem, because if we take σ(x) to
be a (bit-string) representation of a group element gx, then the problem consists in
finding the discrete log (namely x) while only being able to perform k group operations
gxgy = gx+y.
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SCGk logN
σ

α(S)

0/1

Fig. 8. The reduction discussed in Example 3.

Example 3. Consider a variation of the game Gkσ in Example 2. As well as per-
forming group operations, the game Gkσ,inv also answers inverse queries. More

specifically, Ginv
σ first samples x

$←− ZN uniformly at random and outputs σ(x)
and σ(1).

– On input (u, v, op), if u, v ∈ Im(σ) and u = σ(a), v = σ(b), Gkσ,inv outputs

σ(a+ b). Otherwise, Gkσ,inv outputs ⊥.

– On input (u, inv), if u ∈ Im(σ) and u = σ(a), Gkσ,inv outputs σ(−a). Other-

wise, Gkσ,inv outputs ⊥.

As before, after a k queries the solver has to provide a guess for x and wins
if guessed correctly.

Since Gkσ,inv allows an extra type of query, one obviously has Gkσ,inv
id,id−−→ Gkσ,

where id is the identity function. We will now sketch that the reduction also
works in the opposite direction if the number of allowed queries is increased,
namely that Gk logN

σ can be reduced to Gkσ,inv. To do this we will define a system

C so that for any solver S for Gkσ,inv, CS (the composition of C and S) is a solver

for Gk logN
σ —the system C is called a converter and the composition CS is defined

in Appendix B. So C needs to be defined with one interface that connects to S
and the other which connects to Gk logN

σ . This is drawn on the right in Fig. 8.
The inverse query can be emulated by at most logN times the + operation via

repeated doubling. We define C such that upon receiving an input (u, inv) at one
interface (which is connected to a solver S for Gkσ,inv), it uses the repeated dou-

bling algorithm at the other interface (which is connected to the game Gk logN
σ )

to compute the response to the query, which is then output at the first interface.
Other queries and responses are directly forwarded between S and Gk logN

σ . One
can easily see that CS is a solver for Gk logN

σ that performs as well as S on Gkσ,inv.

Thus for α : S 7→ CS we have Gk logN
σ

α,id−−→ Gkσ,inv.

The following example demonstrates a hierarchy between two sets of concrete
games.

Example 4. Consider the set of games Gk logN = {Gk logN
σ |σ ∈ IN,M} from Ex-

ample 2 and Gkinv = {Gkσ,inv|σ ∈ IN,M} from Example 3. We have Gk logN D Gkinv
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Absgs

– Giant-step: Let m = d
√
Ne. Absgs first computes 0,m, 2m, . . . , (m − 1)m in

internal registers using the + query, then uses the comp query to sort these m
values according to the permutation π.

– Baby-step: for each i ∈ {0, 1, 2, . . . ,m− 1}, Absgs computes x− i and compares
it with the m values computed in the Giant-step. Once the collision is found,
namely x−v = um for some u, v ∈ {0, 1, 2, . . . ,m−1}, Absgs outputs x = um+v
and halts.

Fig. 9. Absgs interacting with the model Gcomp

because the reduction function α in Example 3 reduces any game Gk logN
σ ∈

Gk logN to Gkσ,inv ∈ Gkinv with λ = id.

The following two examples demonstrate hierarchies between two models.
First, the equality query can be emulated by twice the representation query.
This example is also part of the hierarchy proved in Lemma 4.

Example 5. Let Gkeq and Gkrep be the two models from Definitions 5 and 6 with

k interactions. Then one has G2krep D Gkeq. We define a converter C which upon

receiving a query (i, j, eq) from a solver, queries (i, rep) and (j, rep) to G2krep ob-
taining responses ri and rj , and returns 1 to the solver if ri = rj . It is easy to
see that G2krepC = Gkeq, so the result follows from Lemma 1.

And second, operations that insert constants can also be compensated by a
small overhead in the number of interactions.

Example 6. Consider the following two models Gkeq = 〈ZN , {+,1}, {eq}, k,m〉
(from Definition 5) and Gkeq,C = 〈ZN , {+,1} ∪ C, {eq}, k,m〉, where C denotes
the set of operations that insert a constant into a register. We trivially have
Gkeq,C D Gkeq because Gkeq supports strictly less function queries than Gkeq,C . But

we can also show that Gk logN
eq D Gkeq,C because every constant nullary operation

in Gkeq,C can be emulated by the operation 1 and at most logN times the +

operations in Gk logN
eq via repeated doubling.

E The Baby-step Giant-step algorithm

Theorem 4. Let N be an integer. Let Absgs be the algorithm described in Fig. 9,

interacting with Gcomp = 〈ZN , {+,1}, {comp}, k,m,PN 〉, where k = 3
√
N logN

and m = d
√
Ne. The algorithm Absgs has performance 1 winning the worst-case

extraction game Ĝcomp, i.e.

wĜcomp
(Absgs) = 1.
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Proof. Let p = π and V1 = x be any initial state of the extraction game. The
value x can be uniquely represented as x = um+v, 0 ≤ u, v < m. The Giant-step
queries m+ logm times the + operation to compute m values in the model and
queries m logm times the comp query to sort these m values. The Baby-step
queries at most m times the + operation and at most m logm times the comp
query to compute x − i and compare it with all the values computed in the
Giant-step, for all i ∈ {0, 1, 2, . . . ,m−1}. Overall, the algorithm queries at most
2m logm+2m+logm ≤ 3

√
N logN times and succeeds on all initial state of the

model. Therefore, for any distribution D over the initial state, wGDcomp
(Absgs) = 1,

which proves that wĜcomp
(Absgs) = 1.

F Proofs

F.1 Proof of Theorem 1

Since any probabilistic solver can be considered as a distribution of the determin-
istic solvers and the average case performance of any probabilistic solver cannot
beat the best deterministic solver, we only need to consider the deterministic
solvers.

Let S denote a deterministic solver interacting with the average-case extrac-

tion game Gkdense. Let V = PN ×ZN be the set of all initial states. For any initial

state v = (π, x) ∈ V, let Gvdense denote the same game as Gkdense except that the
initial state is fixed to be v. Since v is sampled uniformly at random from V in

the game Gkdense, we have

wGkdense
(S) =

1

|V|
∑
v∈V

wGvdense
(S).

Since both S and Gvdense are deterministic, wGvdense
(S) can only be 0 or 1. We denote

by W the set of initial states v such that the game Gvdense will be won by S, i.e.

W =
{
v ∈ V

∣∣wGvdense
(S) = 1

}
and

wGkdense
(S) =

|W|
|V|

.

Clearly |V| = N ·N !, we now analyze the size of the set W. To make the lower
bound statement even stronger, we consider all the dense queries and 1 queries
free and we only count the number of + operations made by the solver. Without
loss of generality, we assume the solver S queries dense on all values in the
register immediately after they are computed. The register V1 is initialized with
value x. Let Vi+1 be the value computed by the i-th + operation. Since every
value computed by S is a linear combination of x and 1, we denote the value
Vi+1 = ai+1x + bi+1, where coefficients ai+1, bi+1 are chosen by S in each +
operation. Based on the replies of the dense queries, S can adaptively choose the
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coefficients in next + operation. After querying the + operation at most k times,
S outputs a value d. S is successful if d = x.

Let y = {yi}i denote the replies of the dense queries of each register. Since
S is deterministic, the choices of S, namely {ai}i, {bi}i and d, are determined
entirely by the replies y and therefore can be denoted as {ayi }i, {b

y
i }i and dy.

We now define the set of initial states such that replies of the dense queries of
each register are y,

Vy = {(π, x) ∈ V|π(ayi x+ byi ) = yi,∀i ∈ {1, 2, . . . , k + 1}}

and the subset of Vy that is in W,

Wy = Vy ∩W.

To analyze the size of Vy and Wy, we first consider the set of replies where all
elements are distinct, namely

Y = {{yi}i|yi 6= yj ,∀i 6= j ∈ {1, 2, . . . , k + 1}} .

For any y ∈ Y, (π, x) ∈ Vy implies that {ayi x + byi }i are distinct. Since N is
a prime number, for any fixed ayi and byi determined by the solver S, there are
at most k(k + 1)/2 values x in ZN such that the following equations is true for
some i, j ∈ {1, 2, . . . , k + 1}

ayi x+ byi = ayj x+ byj .

Therefore there are at least N−k(k+1)/2 values of x in ZN such that {ayi x+byi }i
are distinct. Once x is fixed, k+ 1 locations of the permutation π are fixed with
certain values, leaving N − k − 1 locations to be arbitrary permutations of rest
of the values in ZN . Therefore for any solver S,

∀y ∈ Y, |Vy| ≥ (N − 1

2
k(k + 1))(N − k − 1)!,

Since S outputs dy in the end, S will only succeed on the initial state (π, x)
where x = dy. Therefore

∀y ∈ Y, |Wy| = (N − k − 1)!.

Since |Y| =
(
N
k+1

)
(k + 1)!, we derive that

|∪y∈YVy| ≥ (N − 1

2
k(k + 1))N !

and

|∪y∈YWy| = N !.
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For the rest of the initial states that we have not considered, denoted as
R = V \ ∪y∈YVy, we have

|R| = |V \ ∪y∈YVy|

≤ N ·N !− (N − 1

2
k(k + 1))N !

=
1

2
k(k + 1)N !.

We assume the solver S wins on all the initial states in R, therefore

wGkdense
(S) =

|W|
|V|

≤ 1

N ·N !
|(∪y∈YWy) ∪R|

≤ 1

N ·N !
N ! +

1

2
k(k + 1)N !)

≤ 1

2
(k + 1)2/N.

This concludes the proof.

F.2 Proof of Theorem 2

We first analyze the length of the advice string and the number queries made
by the algorithm. Ahash.pre stores ` end values r1t , r

2
t , . . . , r

`
t in the advice string,

which takes ` logN bits. Therefore Ahash ∈ pS` logN .
Both Ahash.pre and Ahash.main evaluate the mapping w(x) = x + hash(π, x)

multiple times. Each evaluation of the w mapping takes one hash query, one
constant insertion11 and one + operation, altogether 2 + logN interactions.
Ahash.pre interacts with the model `(t − 1)(2 + logN) + ` log ` times, including
evaluating the w mapping `(t− 1) times and sorting the advice string one time.
Ahash.main interacts with the model at most (2t − 1)(2 + logN + log `) times,
including evaluating the w mapping at most 2t − 1 times and performing the
binary search in the advice string at most 2t − 1 times. A will insert ` end
values r1t , r

2
t , . . . , r

`
t in the advice string and compute at most 2t group elements

x1, x2, . . . , x2t, using at most 2t+ ` registers. Therefore, the parameters k.pre =
2`t logN, k.main = 4t logN and m = 2k + ` are sufficient for A to interact with
the model.

We now analyze the performance of A winning the worst-case game p̂Gcomp,hash.
We first argue that A.pre computes more than `t/2 different values with proba-
bility at least 1/2. Recall that rij is j-th computed value of the i-th round. Let

Aij denote the event that rij is a new value, i.e.

Aij = 1 if and only if rij /∈
{
rlk
∣∣(l < i) ∨ (l = i ∧ k < j)

}
.

11Constant insertion can be emulated by at most logN times the + and 1 operation
via the repeated doubling algorithm.
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Notice that if one value rij is not new, then all subsequent values in the same

round rik, k ≥ j are not new, i.e.

Pr
(
Aij+1 = 0

∣∣Aij = 0
)

= 1.

Since h is sampled uniformly at randon from a t-wise independent hash function
family, for any permutation π, w(x) = x+ h(π(x)) is also a t-wise independent
hash function. If one value rij is new, then the distribution of the next value in
the same round is uniform.

Pr
(
rij+1 = r

∣∣Aij = 1
)

=
1

N
,∀r ∈ ZN .

Since the number of computed values in all ` rounds can not be larger than `t,
therefore the probability of a uniform random value being new is larger than
1− `t/N ,

Pr
(
Aij+1 = 1

∣∣Aij = 1
)
≥ 1− `t/N

We now analyze the probability of the event that Ahash.pre computes t new values
in the i-th round.

Pr

 t∑
j=1

Aij = t

 = Pr

 t∧
j=1

(Aij = 1)


=

t∏
j=1

Pr

(
Aij = 1

∣∣∣∣∣
j−1∧
k=1

(Aik = 1)

)

=

t∏
j=2

Pr
(
Aij = 1

∣∣Aij−1 = 1
)

Pr(Ai1 = 1)

≥ (1− `t

N
)t

≥ 3/4.

The last equality follows from ` = t = d 12N
1/3e. Therefore in every round t new

values are computed with probability at least 3/4. This implies that in every
round at least 3t/4 new values are expected,

E[

t∑
j=1

Aij ] ≥
3

4
t.

By linearity of expectation in all ` rounds at least 3`t/4 different values are
expected,

E[
∑̀
i=1

t∑
j=1

Aij ] ≥
3

4
`t.
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Since there are at most `t different values, we derive that more than `t/2 different
values are computed with probability at least 1/2.

Pr(
∑̀
i=1

t∑
j=1

Aij ≥
`t

2
) ≥ 1

2
.

In the main phase, if Ahash.main hits one of the values rij computed in the
preprocessing phase, then in the next t− 1 rounds, Ahash.main will hit one of the
values stored in the advice string, namely rit. The value x will then be successfully
derived. The question remains is how likely A.main is to hit one of the values in
{rij}i,j in the first t rounds.

Let x1 = V1 be any valued to be extracted. Since the mapping w is a t-wise
independent hash function, the output of the first t evaluation x2, x3, . . . , xt+1

are distributed uniform at random. If the set {rij}i,j contains at least `t/2 ele-

ments, then the set {x2, x3, . . . , xt+1} intersects with {rij}i,j with probability at
least

1− (1− `t

2N
)t ≥ 1− exp(− `t

2

2N
)

≥ `t2

4N

The overall worst-case success probability is at least `t2/(8N) ≥ 1/64.

F.3 Proof of Corollary 2

Given an construction [?] for a family of t-wise independent functions Ht = {h :
ZM → ZN}, such that sampling a random function in Ht takes t logM random
bits, we construct the algorithm A = (A.pre,A.main) that behaves identically
as Ahash described in Fig. 4 except that it emulates the hash and comp query
internally in the following way.

– A.pre first samples the function h using t logM random bits and include
these t logM bits in the advice string. This ensures that A.pre and A.main
share the same function h.

– To emulate the (i, hash) query, A queries (i, rep) from the model pGrep, gets
the reply σ(Vi), computes h(σ(Vi)) internally and use it as the reply to the
(i, hash) query.

– To emulate the (i, j, comp) query, A queries (i, rep) and (j, rep) from the
model pGrep and compares the replies σ(Vi) and σ(Vj).

Let ρ ∈ PN denote the permutation on ZN that preserves the total order
defined by the injective function σ. That is ρ(a) ≤ ρ(b) ⇔ σ(a) ≤ σ(b),∀a, b ∈
ZN . The emulation perfectly simulates the query comp(ρ, Vi, Vj) and hash(ρ, Vi)
with the function family H′ := {h ◦ σ ◦ ρ−1 : ZN → ZN}. Since σ ◦ ρ−1 is an
injective function and H is t-wise independent, H′ is also t-wise independent.
For any t-wise independent hash function family and for any permutation, Ahash

achieves performance at least 1/64, and therefore so does A winning the worst

case game p̂Grep.
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F.4 Proof of Proposition 1

Two games extGkdense and pGkdense share the common main phase. By Lemma 1, we
only need to find a converter C to emulate the computation operations +, 1 and
the function queries dense in the preprocessing phase. This is straightforward.

The converter C first extracts the permutation π from extGkdense and keeps an
internal list of values (v1, v2, . . . , vm), all initialized to be ⊥.

– On operation (i,1), C sets vi = 1.
– On operation (i, j, k,+), C sets vk = vi + vj .
– On query (i, dense), C replies π(vi).

The converter C simulates perfectly the prepreocessing phase of the game pGkdense.

F.5 Proof of Proposition 3

It is suffice to consider deterministic solvers. Let S denote a deterministic solver
interacting with the game injGp,kdense. In the preprocessing phase, S injects a list
of p input/output pairs

L = (ci, zi)
p
i=1,

where all the ci are distinct and all the zi are distinct. Let PLN be the set of
permutations that are consistent with L and VL = PLN × ZN be the set of all
initial states that are consistent with L. For any initial state v = (π, x) ∈ VL,

let Gvdense denote the same game as injGp,kdense except that the initial state is fixed
to be v. We denote by WL the set of initial states v such that the game Gvdense
will be won by S, i.e.

WL =
{
v ∈ VL

∣∣wGvdense
(S) = 1

}
and

w
injGp,kdense

(S) =
|WL|
|VL|

.

Clearly, for any list L, |VL| = N(N − p)!. We now analyze the size of the set
WL. In the main phase, the register V1 is initialized with value x. The solver
S interacts with the model up to k times. To make the lower bound statement
even stronger, we consider all the dense queries and 1 operations free and only
count the number of + operations made by the solver. Without loss of generality,
we assume S queries dense on all values in the register immediately after they
are computed. Let Vi+1 be the value computed by the i-th + operation. Since
every value computed by S is a linear combination of x and 1, we denote the
value Vi+1 = ai+1x+ bi+1, where coefficients ai+1, bi+1 are chosen by S in each
+ operation. Based on the replies of the dense queries, S can adaptively choose
the coefficients in next + operation. After querying the + operation at most k
times, S outputs a value d. S is successful if d = x.

Let y = {yi}i denote the replies of the dense queries of each register. Since
S is deterministic, the choices of S, namely {ai}i, {bi}i and d, are determined
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entirely by the replies y and therefore can be denoted as {ayi }i, {b
y
i }i and dy.

We now define the set of initial states such that replies of the dense queries of
each register are y,

VLy =
{

(π, x) ∈ VL
∣∣π(ayi x+ byi ) = yi,∀i ∈ {1, 2, . . . , k + 1}

}
and the subset of Vy that is in W,

WL
y = VLy ∩WL.

To analyze the size of VLy and WL
y , we first consider the set of replies where all

elements are distinct and do not interact with the output values of the injection,
namely

Y =

{
{yi}i

∣∣∣∣yi 6= yj ∧ yi 6= zl,
∀i 6= j ∈ {1, 2, . . . , k + 1}, l ∈ {1, 2, . . . , p}

}
.

For any y ∈ Y, (π, x) ∈ VLy implies that all the {ayi x + byi }i are distinct and
do not intersect with {ci}i. Since N is a prime numebr, for any fixed ayi and byi
determined by the solver S, there are at most k(k+ 1)/2 values of x in ZN such
that for some i, j ∈ {1, 2, . . . , k + 1}

ayi x+ byi = ayj x+ byj .

and at most p(k + 1) values of x in ZN such that for some i ∈ {1, 2, . . . , k + 1}
and l ∈ {1, 2, . . . p}

ayi x+ byi = cl.

Therefore there are at least N − (k/2 + p)(k+ 1) values of x in ZN such that all
the {ayi x+byi }i are distinct and do not intersect with {ci}i. Once x is fixed, k+1
locations of the permutation π are fixed with certain values, leaving N−p−k−1
locations to be arbitrary permutations of rest of the values in ZN . For any solver
S,

∀y ∈ Y, |VLy | ≥ (N − (k/2 + p)(k + 1)) (N − p− k − 1)!,

Since S outputs dy in the end, S will only succeed on the initial state (π, x)
where x = dy. Therefore

∀y ∈ Y, |WL
y | = (N − p− k − 1)!.

Since |Y| =
(
N−p
k+1

)
(k + 1)!, we derive that∣∣∪y∈YVLy ∣∣ ≥ (N − (k/2 + p)(k + 1)) (N − p)!

and ∣∣∪y∈YWL
y

∣∣ = (N − p)!.
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For the rest of the initial states that we have not considered, denoted as
RL = VL \ ∪y∈YVLy , we have

|RL| =
∣∣VL \ ∪y∈YVLy ∣∣

≤ N(N − p)!− (N − (k/2 + p)(p+ 1)) (N − p)!
= ((k/2 + p)(p+ 1)) (N − p)!.

We assume the solver S wins on all the initial states in RL, therefore

w
injGp,kdense

(S) =
|WL|
|VL|

≤ 1

N(N − p)!
∣∣(∪y∈YWL

y

)
∪RL

∣∣
≤ 1

N(N − p)!
((N − p)! + (k/2 + p)(k + 1)(N − p)!)

≤ 1

2
(k + 1)(k + 2p+ 1)/N.

This concludes the proof.

F.6 Proof of Corollary 3

For any solver S ∈ pS`, let Sh denote the solver that behaves identically as S
except that all the function queries ro made by S is answered internally with a
fixed function h. When S queries (i, ro), Sh queries (i, dense) from the model, gets
the reply π(vi) and computes h(π(vi)) internally. Thus, if the random function
used by the query ro is the fixed function h, then Sh behaves identically as S.
The number of queries made by Sh and S are the same. Let H denote the set of

functions from ZN to ZN , the performance of S winning the game pGkdense,ro is

the performance of Sh winning the game pGkdense, taking average over a uniform
choice of h from H, i.e.,

w
pGkdense,ro

(S) =
1

|H|
∑
h∈H

w
pGkdense

(Sh).

Since for any fixed function h, the performance of Sh winning the game pGdense
is bounded in Theorem 3, we conclude that the same bound applies to S winning
the game pGdense,ro,

w
pGkdense,ro

(S) ≤ 3`(k + 1)2/N.
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