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Abstract

There once was a table of hashes
That held extra items in stashes
It all seemed like bliss
But things went amiss
When the stashes were stored in the caches

The first Oblivious RAM protocols introduced the “hierarchical solution,” (STOC ’90) where the
servers store a series of hash tables of geometrically increasing capacities. Each ORAM query would
read a small number of locations from each level of the hierarchy, and each level of the hierarchy would
be reshuffled and rebuilt at geometrically increasing intervals to ensure that no single query was ever
repeated twice at the same level. This yielded an ORAM protocol with polylogarithmic (amortized)
overhead.

Future works extended and improved the hierarchical solution, replacing traditional hashing with
cuckoo hashing (ICALP ’11) and cuckoo hashing with a combined stash (Goodrich et al. SODA ’12).
In this work, we identify a subtle flaw in the protocol of Goodrich et al. (SODA ’12) that uses cuckoo
hashing with a stash in the hierarchical ORAM solution.

We give a concrete distinguishing attack against this type of hierarchical ORAM that uses cuckoo
hashing with a combined stash. This security flaw has propagated to at least 5 subsequent hierarchical
ORAM protocols, including the recent optimal ORAM scheme, OptORAMa (Eurocrypt ’20).

In addition to our attack, we identify a simple fix that does not increase the asymptotic complexity.
We note, however, that our attack only affects more recent hierarchical ORAMs, but does not affect

the early protocols that predate the use of cuckoo hashing, or other types of ORAM solutions (e.g. Path
ORAM or Circuit ORAM).

1 Introduction

In this work, we describe an attack on a wide variety of hierarchical Oblivious RAM (ORAM) protocols in
the literature. Oblivious RAM is a cryptographic primitive designed to allow a client to securely execute
RAM programs using an untrusted memory. ORAM provides a method for simulating a virtual memory
array, such that for any two sequences of reads and writes into the virtual array, the sequences of accesses
to the underlying physical memory are indistinguishable.

Typically, encryption protects the data content, however, even when the underlying data are encrypted
simply observing the data access pattern can leak significant information.

ORAM is applicable in several different types of scenarios, including:

1. Outsourced storage: If a client makes use of an outsourced (cloud) storage provider, even if the con-
tent is encrypted, the storage provider can observe the client’s access pattern. This type of leakage can
be serious. For example several works have shown that access pattern leakage severely undermines the
security of searchable symmetric encryption schemes [IKK12, LZWT14, NKW15, GMN+16, CGPR15,
AAG17, BGC+18].
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2. Secure hardware: If a small, trusted hardware component makes use of a (cheaper) untrusted mem-
ory, observing the memory access pattern can compromise the security of the processes running within
the trusted component. This was the original proposed application [Ost90] and is a concern where
memory side-channel attacks exist. A secure enclave, such as Intel SGX, is a recent real-world com-
puting environment in which computation is performed on secure hardware, but the application needs
the memory resources of an untrusted operating system. A series of works have shown that revealing
memory access patterns is indeed a problem for SGX [BMD+17, GESM17, MIE17, JHOVD17], and
this leakage can be mitigated using ORAM and other oblivious data structures to allow enclaves to
use untrusted memory without leaking access patterns [SGF17].

3. Secure multiparty computation (MPC): ORAM is also useful in secure multiparty computation
(MPC), where a group of parties engage in a distributed protocol to compute a joint function of their
private data. Most MPC protocols use cryptographic secret sharing to protect the content of the data,
and execute computations in the circuit model to ensure that the computation’s control flow remains
independent of the private data. Efficient ORAM protocols have the potential for allowing efficient,
secure multiparty computation in the RAM model [LHS+14, Ds17, WHC+14].

The first ORAM construction [Ost90], introduced the hierarchical solution, and many subsequent works
have expanded and built on this paradigm [Ost92, GO96, GMOT12, KLO12, LO13, PPRY18, AKL+20]. We
review the hierarchical solution in Section 2.4.

The original Hierarchical ORAM has O(log(n)) levels in the hierarchy, each containing a hash table with
buckets of size O(log(n)), leading to an amortized overhead of O(log2(n)). Pinkas and Reinman realized
that the traditional hash tables could be replaced with cuckoo hashing, which reduced the cost of accessing
each hash table to O(1) per virtual access. The initial solution allowed cuckoo hashing to fail with some
non-negligible probability, and in the case that it did, the hash table would be reconstructed. The failure
(and rebuilding) of a cuckoo hash led to security problems, however, since the ORAM protocol would rebuild
the hash table until there were no collisions, an adversary who observed a collision in the physical access
pattern, would learn that the client had made queries for elements not stored in that level [GM11].

This problem was resolved by reducing the cuckoo hash failure probability by including a stash [PR04].
If each cuckoo hash table in the hierarchy included a O(log(n))-sized stash, the probability of a build failure
becomes negligible, and no rehashing was needed [GM11].1 At query time, every element of the stash at
each level needed to be accessed, so although this eliminated the security problem created by cuckoo hashing
failures, it did not improve the asymptotic overhead, which remained O

(
log2(n)

)
.

Scanning separate cuckoo stashes at every level of the hierarchy significantly adds to the query complexity,
and Goodrich et al. [GMOT12] then observed that even though the size of the stash for each level needs
to be O(log(n)) in order to ensure a negligible probability of failure, the same failure probability could be
maintained by combining the stashes at all levels into a single O (log(n))-sized stash. Similarly, Kushilevitz
et al. [KLO12] proposed that elements that would otherwise be placed in a cuckoo stash could instead be re-
inserted directly into the ORAM data structure. Both these techniques improved the asymptotic complexity
of accesses in the hierarchical solution to O(log(n)) physical accesses per virtual access.

In this work, we show that the techniques of combining cuckoo stashes across different levels of the
hierarchy (introduced by Goodrich et al. and Kushilevitz et al.) creates a subtle security flaw which gives an
adversary non-negligible advantage in distinguishing access patterns. The problem is similar to the problem
in [PR10], where rehashing in the event of a build failure leaked information about the elements being stored
at that level. Removing the elements from the stash on each level, like performing a rehashing, causes the
elements that would have been in the stash to no longer be in the stash. Therefore, if these elements are
searched for they will be found before this level is reached, so instead of searching for these elements, random
locations will be accessed. (For instance most schemes will search for a ‘dummy’ element once the item being
searched for is found.) This means that, if all elements from a level are accessed, the access pattern on that
level is unlikely to contain any collisions in the physical access pattern. In contrast, if no elements from that

1Even though a logarithmic-sized sash provides a negligible failure probability, for the smaller levels, a failure probability
that is negligible in the size of the level may be non-negligible in the overall size of the ORAM. To avoid this problem, [GM11]
suggested using traditional hash tables (rather than cuckoo hashing) for the smaller levels of the hierarchy, i.e., until the level
size reached O

(
log7(n)

)
.
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level are accessed, all accessed locations will be random. The expected number of collisions will therefore be
higher in the second case, and we will show that this difference is non-negligible.

This flaw affects a large number of papers [GMOT12, KLO12, LO13, PPRY18, KM19, AKL+20] which
combine stashes in order to eliminate super-constant sized stashes at each level This does not affect earlier
hierarchical solutions that did not combine the stash e.g. [Ost90, Ost92, GO96] or non-hierarchical ORAMs
such as PathORAM [SVDS+13] or Circuit ORAM [WCS15]. In addition to finding this flaw, we present
a simple solution. Our solution applies directly to almost all schemes which suffer from the flaw without
affecting their asymptotic complexity.

In Section 2.2, we review cuckoo hashing, and in Section 2.4 we review the basic hierarchical ORAM
construction.

In Section 3, we present our concrete attack that allows an adversary to distinguish two different access
patterns with non-negligible probability in hierarchical ORAM solutions that use Cuckoo-Hashing with a
combined stash. In Section 4 we present our solution and prove that it is correct. The attack and fix described
in Sections 3 and 4 do not apply directly to PanORAMa and OptORAMa so in the appendices we present
a general version of the attack (Appendix A) and a general version of the fix (Appendix B) which apply to
these protocols. We defer presenting the protocols that have been affected by this flaw to Section 5. Lastly,
in Section 6 we make some concluding remarks and suggestions for future research.

2 Preliminaries

2.1 Oblivious Hash tables

The hierarchical ORAM scheme builds on oblivious hash tables which we formalize and abstract in Definition
2.1. We view a hash table as a method for storing (v, w) pairs, where v ∈ V = [N ] is a (virtual) index, and
w ∈ W is a payload. Let X = V ×W.

Definition 2.1 (Oblivious hash tables). An oblivious hash table T = (Gen,Build, Lookup,Delete,Extract) is
a tuple of polynomial-time algorithms

• Setup: k ← Gen(N,m) generates a key for a hash table of capacity m, storing (virtual) indices from
[N ]. In most cases, the key is simply the description of the hash functions.

• Building: The function T ← Build(k, X) takes a set, X ⊂ X , |X| ≤ m and builds a table, T ,
containing the elements in X. For any X, the probability Build(k, X) fails is negligible in N , i.e., is
bounded by N−ω(1).

• Lookup: The deterministic function Q ← Lookup(k, v) takes a (virtual) index v ∈ V, and returns a
set of query locations Q ⊂ [|T |].

• Delete: The deterministic function Delete(k, v, T ) removes items (v, w) if they exist in any location
T [i] where i ∈ Q ← Lookup(k, v). Delete accesses exactly the indexes of T in Q and does not access
any other memory.

• Extract: The function X̄ ← Extract(k, T ), takes a key k and a table T and returns a set of elements
X̄.

These algorithms satisfy the following correctness properties. Suppose k ← Gen(N,m) and X ⊂ X with
|X| ≤ m.

• Building: If T ← Build(k, X), then T ∈ X |T |. For every (v, w) ∈ X, we say that the payload w was
stored in virtual location v and that (v, x) is stored in T .

• Lookup: If T ← Build(k, X), then for any (v, w) ∈ X, if v has not been deleted from T , the lookup
Q ← Lookup(k, v) produces a set of indices, Q ⊂ [|T |] such that (v, w) ∈ T [i] for some i ∈ Q with
probability at least 1−N−ω(1).

• Extraction: If k, T are constructed as above, and D is the set of items deleted from table T , and
X̄ ← Extract(k, T ) then x = (v, w) ∈ X̄ iff ∃w such that (v, w) ∈ X, v /∈ D,
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Additionally, these algorithms will need to allow the above functions to be executed obliviously. We define
two notions of obliviousness: access obliviousness and full obliviousness. Full obliviousness includes access
obliviousness. In our attack, we show that “combined-stash” cuckoo hashing schemes are not access oblivious,
and hence cannot be fully oblivious. Since the techniques used to obliviously perform builds and extractions
are complex and varied, focusing on access obliviousness will simplify exposition.

• Obliviousness:

– Access obliviousness: For any two distinct sequences of virtual indices (v1, . . . , vt) and (v′1, . . . , v
′
t)

where a sequence w is distinct if ∀i 6= j, wi 6= wj , the sequence of outputs of Lookup(k, ·) on ~v and
~v′ are computationally indistinguishable (in N). In other words

∆ ((Q1, . . . , Qt) , (Q
′
1, . . . , Q

′
t)) < Nω(1)

where the sequence of queries (Q1, . . . , Qt) and (Q′1, . . . , Q
′
t) are generated according to the fol-

lowing experiments: (Q1, . . . , Qt)

∣∣∣∣∣∣∣∣∣
T ← Build(k, X)
Q1 ← Lookup(k, v1)

...
Qt ← Lookup(k, vt)


and (Q′1, . . . , Q

′
t)

∣∣∣∣∣∣∣∣∣
T ′ ← Build(k′, X ′)
Q′1 ← Lookup(k′, v′1)

...
Q′t ← Lookup(k′, v′t)

 .

– Full obliviousness: The complete sequence of accesses from building, lookups, deletions and
extractions are oblivious, provided that the lookup and deletion sequences are the same, and that
each item in these sequences is distinct. Concretely, for any two sets X,X ′ ⊂ X with |X|, |X ′| ≤ m
and any distinct sequences v, v′ ∈ Vt and

A
def
=

Acc


T ← Build(k, X)
Delete(k, v1, T )
. . .
Delete(k, vt, T )
X̄ ← Extract(k, T )


∣∣∣∣∣∣∣∣∣∣
k← Gen(N,m)


and

A′
def
=

Acc


T ′ ← Build(k′, X ′)
Delete(k′, v′1, T

′)
. . .
Delete(k′, v′t, T

′)
X̄ ′ ← Extract(k′, T ′)


∣∣∣∣∣∣∣∣∣∣
k′ ← Gen(N,m)


where Acc (f(·)) are the set of physical memory accesses when executing function f and Qi, Q

′
i

are defined as above using the same v, v′, X,X ′, k, k′, then

∆ ((A,Q1, . . . , Qt) , (A
′, Q′1, . . . , Q

′
t)) < Nω(1)

Remark 1 (Full Obliviousness). In a single-party ORAM setting, the hash-table must provide full oblivi-
ousness. It is possible in a multi-party setting to have the construction, accessing and extraction of the hash
table be performed by different parties (e.g., [LO13]). In this case, the set of functions executed by each
individual party must be oblivious, but the combined set of all functions need not be.

Remark 2 (Insertions). Although most hash tables support insertion, this is not a necessary functionality
for use in a hierarchical ORAM protocol, so we omit it in the formal definition of a hash table.

Remark 3 (Deletions and Extraction). Some ORAM schemes do not delete items as they are accessed, but
rather extract data from all levels and then perform deduplication. However, the definition presented here
simplifies proofs.

4



Figure 1: Single-table Cuckoo hashing [PR04]

• Key generation: Generate d ≥ 2 hash functions hi : X → [cn] for i ∈ [d].

• Building: The build algorithm must place each element (v, w) ∈ X in either T [hi(v)] for some
1 ≤ i ≤ d or in T [cn+ j] for some 1 ≤ j ≤ s. Building can be accomplished by repeated insertions,
or an “offline” algorithm. We do not specify how the build is accomplished obliviously as this
varies significantly between protocols.

• Lookups: Return Q = {h1(v), . . . , hd(v), cn + 1, . . . , cn + s}. To read an element from a virtual
index, v, read T (hi(v)) for i = 1, . . . , d, and check if any of the elements retrieved are of the form
(v, x) for some x.

• Deletions: Find Q← Lookup(k, v) and for any i ∈ Q if T [i] = (v, x) set T [i] = ⊥.

• Extractions: Again, the method for performing extractions obliviously varies significantly be-
tween protocols, so we do not outline it here.

2.2 Cuckoo hashing

Cuckoo hashing was introduced in [PR04] as a method of multiple-choice hashing with expected constant-
time lookups. Since its introduction, many variants of cuckoo hashing have been proposed and analyzed (see
[Mit09] for a review). In this section, we review a basic common form of cuckoo hashing, but we emphasize
that our attack works for almost all types of hashing with a stash.

We view a hash table as an array, T , with cn+ s locations, each having capacity one. Each element, x,
can be placed in one of d locations given by hi(x) for i = 1, . . . , d where hi(x) ∈ [cn]. If an element cannot be
placed in one of its d locations, it is placed in a logarithmic-sized “stash,” i.e., a location in cn+1, . . . , cn+s.

With appropriate choices of constants c and d, and a stash of size s, cuckoo hashing will succeed except
with probability in n.

Lemma 1. Cuckoo hashing, as presented in Figure 1 is access oblivious.

Proof. As is standard practice, we model the hash functions as truly random functions (see [Mit09] for a
discussion of this assumption). Since each hash function is truly random, the first time an item is queried to
a hash function, the result is chosen uniformly at random and independent of all previous choices. Therefore,
within the scope of the access obliviousness experiment, the values Qi and Q′i will all be chosen uniformly
at random and independently, since each access sequence is distinct, and the keys are different in the two
experiments. Therefore, (Q1, . . . , Qt) and (Q′1, . . . Q

′
t) will actually be perfectly indistinguishable in this

model, and so will also be computationally indistinguishable in N .

If Cuckoo hashing is combined with an appropriate Build and Extract construction, it can be fully oblivious.
Note that this not only requires that the Build and Extract functions are oblivious in themselves, but that
when Build, Lookup and Extract are all performed by a single entity, that the combined sequence of accesses
is still oblivious.

Remark 4 (1-table vs d-table cuckoo hashing). We describe a single-table cuckoo hashing scheme, where
all d hash functions hash into the same table. Alternatively, some cuckoo hashing constructions use d tables,
and hash function i hashes into table i. Setting d to 2 is a common choice, resulting in 2-table cuckoo
hashing. Using 1- vs d-table cuckoo hashing does not change the asymptotic performance of the hashing
scheme, although it does change some details in the analysis.

A single-table cuckoo hash table corresponds naturally to bipartite multigraph with n left-hand nodes
(corresponding to [n]) and cn right-hand nodes corresponding to the hash buckets (i.e., first cn locations

in the array T ). Then a left hand node, v, is connected to d right hand neighbors given by {hi(v)}di=1. It
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is straightforward to see that the build procedure can succeed if there is a bipartite matching that includes
|X| − s left-hand vertices. Since these elements can be placed in their right-hand neighbors (given by the
matching) and the remaining s elements can be placed in the stash.

This also shows that the build procedure can be implemented by building this bipartite multigraph
and calculating a maximum matching. We assume that whatever build procedure is used does find such a
maximum matching. In practice, analyses of build processes generally assume that a maximum matching
is found, even if they use an algorithm which is not known to provide a maximum matching. For example
[KMW09] notes “Of course, the most natural insertion algorithm is to impose an a-priori bound of α log n
on the number of evictions, and if after α log n evictions an empty slot had not been found, put the current
element in the stash. Unfortunately, this insertion algorithm does not guarantee that the element put in the
stash corresponds to a cycle edge, a property essential for the analysis. Nevertheless, simulations given in
Section 5 suggest that the same qualitative results hold for both cases.”

If the stash is chosen by finding a maximum matching, the probability of failure is O(n−Θ(s))). This holds
for constant s with a constant of 1 in the Θ-notation [KMW09]. It also holds for s ≤ O(n) with a constant of
1
2 in the Θ-notation [ADW14]. Therefore, if s = Θ(log(n)) the failure probability is O(n−Θ(logn)), which is
negligible in n. Note that for ORAMs, the failure probability may need to be negligible not in the capacity
of the cuckoo hash table, n, but in the capacity of the ORAM, N . If n is polynomial in terms of N this will
hold. Goodrich and Mitzenmacher show that it also holds if the stash size is Θ(log(N)) and n = Ω(log7(N))
and propose using another type of oblivious hash table for n = o(log7(N)) [GM11].

We have shown here that the Cuckoo hash table presented here, with appropriate Build and Extract
functions, is an example of an oblivious hash table. We next show how oblivious hash tables can be used to
construct a Hierarchical ORAM. This is secure, but we will later show that if the stashes are combined this
breaks obliviousness.

2.3 ORAM

An Oblivious RAM (ORAM) provides access to a virtual memory such that all equal-length sequences of
virtual memory accesses have computationally indistinguishable physical access sequences. We define of an
ORAM formally below.

Definition 2.2 (ORAM). An ORAM O = (Init,Query) is a tuple of polynomial-time algoirthms:

• Init: O ← Init(A,N), where N is an integer, and A is an array of length N of elements from some
space W. This initializes the value of index i ∈ V = [N ] to A[i] ∈ W.

• Query: w′ ← Query(O, v, w) where O is an ORAM object, v ∈ V is an index and w ∈ W ∪ {⊥}. If
w = ⊥ this is a read query and it returns the value at index v. If w 6= ⊥ this is a write query and it
returns ⊥ and sets the value at index v to w.

The ORAM must satisfy the following correctness guarantee.

• Consistency: When a read is performed on index v, the result equals the value that was last written
to index v, or if a write has never been performed on index v, it returns the initial value of index v,
A[v].

The ORAM must additionally satisfy the following security property.

• Obliviousness:

Regardless of the data, or the sequence of queries, the access pattern to the physical memory is
computationally indistinguishable. Formally, for any initial arrays A, A′ of length N and any sequence
of queries (v1, w1), . . . , (vt, wt), (v′1, w

′
1), . . . , (v′t, w

′
t), where vi, v

′
i ∈ V, wi, w

′
i ∈ W ∪ {⊥}, given

C
def
=

Acc


O ← Init(A,N)
Query(O, v1, w1)
. . .
Query(O, vt, wt)
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and

C ′
def
=

Acc


O′ ← Init(A′, N)
Query(O′, v′1, w

′
1)

. . .
Query(O′, v′t, w

′
t)




then
∆ (C,C ′) < Nω(1)

Note that the basic ORAM security definition only gives the adversary the ability to see the access pattern,
but not the underlying data itself. To hide the data, each record can be encrypted under the client’s key
using a symmetric-key cryptosystem, or, in multi-server ORAMs, each record can be secret-shared among
the servers (e.g. [KM19]).

2.4 Hierarchical ORAM

In this section, we review the hierarchical ORAM construction, originally put forward in [Ost90, Ost92,
GO96]. The hierarchical scheme has been used as a basis for many future ORAM protocols including
[GMOT12, LO13, PPRY18, AKL+20]. We will now lay out the basic scheme and show it to be secure. In
Section 3, we show how modifications to this basic scheme caused a subtle security problem that caused
future schemes (using this modification) to be insecure.

A hierarchical ORAM consists of a number of levels, each consisting of an oblivious hash table of increasing
capacities.

...

Cache of capacity c · 2

Level L1 of capacity c · 21

Level L2 of capacity c · 22

Level L`−1 of capacity c · 2`−1

Level L` of capacity c · 2`

Tables in a hierarchical ORAM.

The cache is an oblivious object similar to an Oblivious Hash Table but that additionally supports
insertions and repeated queries in the access sequence. We also refer to it as level 0, L0, when performing
actions on multiple levels. The cache can be implemented easily by performing a linear scan of its contents
on each access.

We present the Hierarchical ORAM formally in Figure 2.4. We will now show why such ORAMs are
secure, provided that the hash tables are fully oblivious. First, we need the following lemma.

Lemma 2. The ORAM of Figure 2.4 satisfies an invariant that all possible indexes v ∈ V are stored in
exactly one level in the ORAM. This invariant holds after initialization, after each cache insertion and after
each rebuild, though need not hold between these points.

Proof. By induction. The ORAM is initialized to store all indexes v ∈ V in level L`. Each query is to some
v ∈ V. When a lookup to some index v is made, by induction this index will exist at some level. Since each
level is searched, this index will be found and deleted from this level. It will then be placed in the cache.
Therefore, once the item has been inserted into the cache, each index v ∈ V will be stored in exactly one
location. If a rebuild occurs, certain levels will be emptied and merged into a larger level. However, this
merge preserves the set of indexes in the ORAM, since all indexes from levels i = 0, . . . , i∗ are extracted and
placed in level i∗.
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Figure 2: Hierarchical ORAM

• Input: A virtual memory size N . An array of initial values A.

• Init: Set t = 0

Set X = (v,A[v]) for all 1 ≤ v ≤ N .

For i = 0, . . . , `− 1, set ki ← Gen(N, c2i), Ti ← Build(ki, ∅).
Set k` ← Gen(N, c2`), T` ← Build(k`, X).

Hierarchical ORAM Initialization

• Input: A virtual memory address, v. A payload, x. (For read queries x = ⊥)

• State: A counter t, hash keys k1, . . . , k`. Local memory, m.

• Scan the cache: Initialize found = false. Read every element in the cache L0. If a pair (v, w) is
found, set m = w, found = true, and delete the old item from the cache.

• Search each level: For i in 1, . . . , `

– If found = false set Qi ← Lookup(ki, v), otherwise set Qi ← Lookup(ki, dummy ◦ t).
– If there is a j ∈ Qi, and a w such that Ti[j] = (v, w), then set m = w and found = true.

– Delete(ki, v, Ti)

• Insert into the cache: If x 6= ⊥ (i.e., it was a write query), insert (v, x) into the cache, otherwise
insert (v,m) into the cache.

• Rebuilding: Increment t. Let τ = 2c be the rebuild period. If t is a multiple of τ initiate a
rebuild (as described below).

Hierarchical ORAM queries.

• State: A counter, t. Hash tables {Ti}i∈[`]. Hash keys {ki}i∈[`].

• Identify level: Let ī be the largest value such such that t
τ = 0 mod 2ī. Let i∗ = min(̄i+ 1, `) We

will merge levels 0, . . . , i∗ into level i∗.

• Merge levels: Initialize X = ∅. For i = 0, . . . , i∗, and obliviously evaluate X = X∪Extract(ki, Ti).
Set ki∗ ← Gen(N, c2i

∗
), and Ti∗ = Build(ki∗ , X).

• Clear lower levels: For i = 0, . . . , i∗ − 1, set ki ← Gen(N, c2i), Ti ← Build(ki, ∅).

Hierarchical ORAM rebuilds.
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Lemma 3. An index is queried at most once at each (non-cache) level between rebuilds of that level, or
equivalently, an index is queried at most once to any oblivious hash table.

Proof. If an index, v ∈ V is queried at a level Li, it will be found at some level, (since by Lemma 2 it must
exist at some level) It will then be placed in the cache. Until Li is rebuilt, it will not exist in Li, since the
tables only support deletions, not insertions. Since the sizes of the tables are exponentially increasing, if Lj
is rebuilt for some j > i, Li will also be rebuilt (possibly to an empty table) so conversely, if Li has not
been rebuilt, Lj will also have not been rebuild for all j > i. Therefore, the index will not be stored at Lj
for any j > i. Therefore, since the index must be stored somewhere, it is stored at some level Lk, where
k < i. Since the Hierarchical ORAM searches levels sequentially, it will find the item before Li is reached,
will set found = true and will therefore search for dummy ◦ t. Therefore each v ∈ V will only be searched
for once in Li between rebuilds of Li. The values of t increment with each ORAM query, so each query of
form dummy ◦ t will also be queried at most once at any level.

We now show that the oblivious property of the ORAM follows easily from this lemma and the properties
of oblivious hash tables:

Theorem 1. The Hierarchical ORAM protocol in Figure 2.4, when using an Oblivious Hash Table at each
level, is oblivious as per Definition 2.2.

Proof. The security of the ORAM protocol rests on two key facts: (1) No repeated accesses: An index
is queried once in each level between rebuilds, or equivalently, the set of queries to each hash table is
distinct. This was demonstrated in Lemma 3. (2) Oblivious accesses: Our definition of an oblivious hash
table (Definition 2.1) produces indistinguishable physical access patterns provided that any two sequences of
distinct virtual indices. This is satisfied as per fact (1), so the combined access patterns of builds, lookups,
deletions and extractions at each level are indistinguishable. Furthermore, builds, lookups, deletions and
extractions of each hash table do not depend on those of other hash tables.

For the cache, there may indeed be multiple queries to the same index. However, we required that the
cache also provides obliviousness given repeated accesses and insertions. Therefore accesses to the cache
are also independent, and since each level is constructed independently of the cache and of each other, the
combined access patterns of the entire data structure are oblivious.

Remark 5 (Efficiency). While rebuilding the hash tables is expensive,2 these rebuilds occur at a frequency
proportional to the capacity of the table, thus the amortized cost can remain low. The exact communication
cost depends on how the hash tables are implemented, and how the oblivious functions Build and Extract are
implemented. We do not focus on these details here, as they do not bear directly on our attack.

3 The Attack

In this section, we describe a novel attack on hierarchical ORAM protocols that use cuckoo hashing with a
combined stash. This attack applies directly to [GMOT12, KLO12, LO13] and Instantiation 2 of [KM19].
The recent works of PanORAMa [PPRY18] and OptORAMa [AKL+20] use a modified hierarchical solution
with multiple cuckoo tables at each level, so the attack described in this section does not apply directly.
In Appendix A we present a modified attack that also applies to PanORAMa [PPRY18] and OptORAMa
[AKL+20].

3.1 Simplified attack

First, we describe an attack in a simplified setting, which we later show is equivalent to the ORAM setting.
Imagine the following construction of a hash table. A cuckoo hash table, as defined in Figure 1, is

modified in the following way. When querying some item v ∈ V, the stash will be searched first. If the item
is found in the stash, then some new unique index v′ /∈ V will be searched for in the remainder of the table,
i.e., hi(v

′) will be accessed for 1 ≤ i ≤ d. This construction is presented in Figure 3. We will show that this
object is no longer an oblivious hash table.

2In the client-server setting expense is measured by communication between the client and the server. In the MPC setting,
expense is measured as the communication between multiple ORAM servers, and possibly also a client.
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Figure 3: Stash-Resampling Cuckoo Table

Build, Delete and Extract are defined identical to Cuckoo Hash Table (Figure 1)

• Lookups: Lookup takes the key k, an index v and the table object T , and returns a set of
indexes, Q. If v is not in the stash, (i.e., T [j] 6= (v, w) for any cm + 1 ≤ j ≤ cm + s) return
Q = {cm + 1, . . . , cm + s, h1(v), . . . , hd(v)}. However, if v is in the stash pick a new v′ /∈ V,
using an internal counter to ensure that the same v′ is never selected twice, and return Q =
{cm+ 1, . . . , cm+ s, h1(v′), . . . , hd(v

′)}.

Observe that previously, Lookup only took k and v as parameters, whereas in this definition, its behavior
depends on an additional parameter T . The fact that the access pattern changes depending on how the table
is constructed breaks the abstraction of an oblivious hash table. We will next show that this break leads to
a concrete vulnerability in the oblivious hash table.

Remark 6. We describe our attack in terms of cuckoo hashing, but essentially the same argument goes
through with other hashing schemes that use a stash.

The remainder of this subsection will go to prove that the Stash-Resampling Cuckoo Hash table is not
access oblivious. We will do this by showing how accesses to a (Stash-Resampling) Cuckoo Hash Table
induce a graph and by showing that the induced graphs of different access sequences to a Stash-Resampling
Cuckoo Hash Table can be distinguished.

As with the Cuckoo hash table, the Stash-Resampling Cuckoo Hash Table has a constant number d ≥ 2
hash functions and holds non-stash elements in an array of length cm for some c > 1. A cuckoo hash
table with d hash functions induces a bipartite multigraph with m left-hand vertices (corresponding to the
virtual accesses 1, . . . ,m) and cm right-hand vertices (corresponding to the cm locations in the table). Each
left-hand vertex will be connected to the d locations given by the d hash functions.

First we will formalize the correspondence between accesses to a (Stash-Resampling) Cuckoo Hash Table
and bipartite graphs by defining a function that generates a graph from a sequence of responses to Lookup.

Definition 3.1 (Access-Pattern Graph Representation). The Graph Representation of an Access Pattern,
B(m, c,Q), is a function that generates a graph for a sequence of accesses Q. B(m, c,Q) takes as inputs
integers m and c and a sequence of integer sets Q1, . . . , Qm and returns a bipartite multigraph with left
vertices a1, . . . , am, right vertices b1, . . . , bcm and edges (ai, bj) for j ∈ Qi ∩ [cm].

We will now review some elementary material regarding maximum matting’s on bipartite graphs.

Definition 3.2 (Left-regular bipartite multigraph). We define a left-regular bipartite directed multigraph
to be a graph G = (L ∪R,E) with the following properties.

• It is bipartite, with vertex sets L and R, and each edge being directed from L to R, i.e., ∀(u, v) ∈
E, u ∈ L, v ∈ R.

• Every vertex in L has a constant number of edges, denoted d.

• E is a multiset, i.e., the edge (u, v) may occur multiple times.

Definition 3.3 (Random left-regular bipartite multigraph). We define H0(m, c, d) to be a function that
produces a random left-regular bipartite multigraph, where |L| = m, |R| = c · m, d ≥ 1 is the degree of
each vertex in L and where each outgoing edge from a vertex u ∈ L has an end-point, v ∈ R, that is chosen
uniformly at random from R (and independent of all other choices).

It is easy to see that if Q = [Q1, . . . , Qm] is the result of outputs of Lookup to a sequence of queries in
a (Stash-Resampling) Cuckoo Hash Table with capacity m and degree d, then G ← B(m, c,Q) will be a

10



left-regular bipartite multigraph, since every Qi will contain d vertices in [cm]. We will soon show that for
an Oblivious Cuckoo Hash Table, this will be sampled as a random left-regular bipartite multigraph, but
for a Stash-Resampling Cuckoo Table the left-regular bipartite multigraph will not be sampled from this
random distribution.

Definition 3.4 (Matching of a bipartite multigraph). For a bipartite multigraph G = (L∪R,E), a matching
is a set of edges E′ ⊆ E such that

(u, v), (u′, v′) ∈ E′ ⇒ u 6= u′, v 6= v′.

A maximum matching is a matching of maximum size. There may be multiple such matchings, but they
will all be the same size; we use M(G) to denote some such matching and |M(G)| to be this size, which is

independent of which matching is chosen. S(G)
def
= m−|M(G)| is the number of unmatched elements on the

left-hand side.

Note that for any graph, 0 ≤ S(G) ≤ m− 1 since at most all elements may be matched and at least one
element will be matched.

Lemma 4 (Lower bound on unmatched elements). For G← H0(m, c, d), where d, c are constants,

Pr [S(G) ≥ s] ≥
(

1

cm

)ds+1

which is non-negligible in m.

Proof. Pick s + 1 elements of L. The probability that all d · (s + 1) edges of these elements will have the

same endpoint v ∈ R is
(

1
cm

)d(s+1)−1 ≥
(

1
cm

)ds+1
. If this occurs, any matching can contain at most 1 of

these elements, which means that at least s of these elements will be unmatched. Thus S(G) ≥ s. Note that
for any constant d and s, this probability is non-negligible.

Next, we describe two distributions on the integers [m− 1].

Definition 3.5. Fix constants d,m ∈ N, and c > 1. Let M(·) be an algorithm that takes a bipartite
multigraph G, and returns a maximum matching M(G).

• Distribution 0: Let s0 be the random variable denoting the number of unmatched elements in a

random bipartite multigraph. s0
def
= S(H0(m, c, d)).

• Distribution 1: Define a distribution of graphs according to the following process. First construct a
graph G′ ← H0(m, c, d). Let G′ = (L ∪ R,E′). Let M(G′) be a maximum matching in G′. Initialize
E = E′. For every u ∈ L s.t. @(u, v) ∈ M(G′), remove every edge (u, v) ∈ E′, and replace it with a
new edge (u, v′) where v′ is chosen uniformly at random from R. Let G = (L1∪R1, E) be the modified
graph. Let H1(m, c, d,M(·)) denote the function that samples a graph from this distribution. Define

s1 to be the number of unmatched elements in this experiment, i.e., s1
def
= S(H1(m, c, d,M(·))).

Although the distributions s0 and s1 depend on parameters, we generally suppress these dependencies for
notational convenience.

Intuitively, the expected value of s1 should be smaller than the expected value of s0, since the vertices
which were not matched get another chance to be matched when new end-points are chosen for them.

In Lemma 5 we show that this is indeed the case, and that the distributions of s0 and s1 are statistically
different (i.e., non-negligibly different).

Lemma 5. If s0 and s1 are the random variables described above, then the statistical distance between s0

and s1 is at least 1
m

(
1−

(
1
c

)d) ( 1
cm

)ds+1
which is non-negligible in m.
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Proof. Consider the graph G′ = (L ∪ R,E′) ← H0(m, c, d) generated as the first step in generating distri-
bution s1, where |R| = c ·m. Let M = M(G′). Since |M | ≤ m, at most a 1

c -fraction of the vertices in R
have edges in M(G′). Thus, when G is constructed (as the second step of distribution s1), for each u ∈ L
that was not in M , there is at most a

(
1
c

)d
chance that all d right-hand neighbors of u are already matched.

Thus by linearity of expectation

E [s1] ≤
(

1

c

)d
E [s0] .

By Lemma 4, E [s0] ≥
(

1
cm

)ds+1
so

|E [s0]− E [s1]| ≥

(
1−

(
1

c

)d)(
1

cm

)ds+1

.

In particular, this means that the expected values, E [s0] and E [s1] are non-negligibly different.
Finally, notice that 0 ≤ s0, s1 ≤ m, so

∆ (s0, s1) ≥ 1

m
|E [s0]− E [s1]| ≥ 1

m

(
1−

(
1

c

)d)(
1

cm

)ds+1

which means that ∆ (s0, s1) is also non-negligible.

Now we show that the Stash-Resampling Cuckoo Hash table is not access oblivious.

Theorem 2. The Stash-Resampling Cuckoo table presented in Figure 3 is not access oblivious.

Proof. Let X = X ′ = {1, . . . ,m} for some m ≤ N
2 . Let vi = i + m and let v′i = i for 1 ≤ i ≤ m. The

adversary will generate a table with the input data, lookup the sequence of virtual indices and construct a
bipartite graph based on these lookup results.

Let there be two experiments:

k ← Gen(N,m);T ← Build(k,X);Qi ← Lookup(k, vi, T );G← B(m, c,Q); s = S(G)

and

k′ ← Gen(N,m);T ′ ← Build(k,X ′);Q′i ← Lookup(k′, v′i, T
′);G′ ← B(m, c,Q′); s′ = S(G′)

where i ranges over 1 ≤ i ≤ m.
In the first experiment, none of the queries are in X, therefore none will be in the stash. Therefore

Q = {cm + 1, . . . , cm + s, h1(vi), . . . , hd(vi)}. Since the vi were never queried by the random oracle before
their results will be uniform at random. Therefore, each left-vertex in G will have d neighbors, chosen
uniformly at random from bj . Therefore G is chosen exactly according to the distribution H0.

In the second experiment, all of the queries are in X ′. If we were to search according to the oblivious
Cuckoo Hashing algorithm of Figure 1 then the corresponding graph would be distributed according to
H0(m, c, d). However, for any element that was not in the maximum matching, (i.e., the elements in
the stash) the Stash-Resampling Cuckoo hash table will instead pick new indices to query, v̄′j and return
locations hi(v̄

′
j) which will not have been queried to the random oracle before so will be new random location.

Therefore, for these elements that were not in the maximum matching, the corresponding edges will be re-
chosen uniformly at random. The graph from the second experiment will therefore be constructed according
to distribution H1(m, c, d,M(·)), assuming the stash was chosen by some maximum matching algorithm
M(·).

We have already shown that distributions H0(m, c, d) and H1(m, c, d,M(·)) are distinguishable. There-
fore an adversary can distinguish the two experiments, so Stash-Resampling Cuckoo Hashing is not access
oblivious.

Remark 7. Note that the attack described above is immediately applicable in cases where the stash is
accesses before the associated cuckoo hash table, and if the target is found in the stash, the protocol searches
for dummy elements in the table. For instance, our attack would apply to a hierarchical ORAM that stored
a stash at the same level, but accessed the stash first, and searches for a dummy in the rest of the table if
the element is found in the stash.
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Figure 4: Hierachical ORAM with a Combined Stash

A Stash-Reinserting ORAM is an ORAM equivalent to that of Figure 2.4 with the following modifica-
tions:

• Rebuild: Rather than table Ti∗ storing all elements in X, at most c of these elements can be
stored in a stash. The stash is not stored at this level, but is is padded to size c and inserted into
the cache.

• Rebuild frequency: Since the cache is of size c after a rebuild, the rebuild period is now τ = c.

3.2 Hierarchical ORAM with a combined stash

We now present how Hierarchical ORAMs were constructed using a combined stash. We will show that this
breaks the abstraction of an oblivious hash table, and results in access patterns identical to those of the
Stash-Resampling Cuckoo Table, which breaks obliviousness.

Beginning with the protocol of Goodrich et al. [GMOT12], a number of hierarchical ORAM schemes
stored stashed items from a table construction in a shared stash or re-inserted them into the cache. Since
most schemes re-insert stash items into the cache, we will present this version. We now present in Figure 4
the changes between the stash-reinserting hierarchical ORAM and the original Hierarchical ORAM protocol
from Section 2.4. All other parts of the protocol remain the same.

Theorem 3. The Stash-Reinserting ORAM of Figure 4 is insecure; i.e., it does not satisfy the oblivious
property in Definition 2.2.

Proof. Let A = A′ = 0N . Let the Hierarchical ORAM be such that there will be some level Li of capacity
m ≤ N

2 that is implemented using a cuckoo hash table.3

Let U = (1,⊥), . . . , (m,⊥), (m+ 1,⊥), . . . , (2m,⊥) and U ′ = (1,⊥), . . . , (m,⊥), (1,⊥), . . . , (m,⊥) be two
sequences of ORAM queries. Recall that w = ⊥ indicates a read query.

After m queries, Li will be constructed.4 In both experiments Li will be constructed using the elements
(1, 0), . . . , (m, 0). A cuckoo hash table will be constructed in both cases, with these contents.5

The stash will be re-inserted in both cases. We have from Lemma 2 that each of these stashed elements
will exist at a single location at the start of each access. Since levels Lj for all j ≥ i will only be rebuilt
when Li is also rebuilt, we know that these elements must remain in some level Lk with k < i until Li is
rebuilt. This means that, until this point in time, they will always be found before Li is accessed. Thus, by
the ORAM query algorithm, a dummy query will be performed in Li.

Therefore, the access pattern in the cuckoo table at Li will be the same as that of the stash-resampling
cuckoo table in Figure 3, where elements were searched in the stash first, and if found in the stash a dummy
was searched in the remainder of the table. The only difference is that in the stash-resampling cuckoo
table, the algorithm also accessed a pre-assigned stash, but this is not an issue since the attack to the
stash-resampling algorithm does not use the access pattern to the stash (as this access pattern is always the
same). Observe that, exactly like in the attack of Theorem 2, one sequence of accesses (U) will only access

3Some schemes use a mixture of hash table types at different levels. We do not require that all levels use a cuckoo hash
table, only that there is at least one such level of size ≤ N

2
that has its stash re-inserted into the ORAM data structure.

4This is not quite true. We would like to construct Li such that it contains indices 1, . . . ,m (although some may of these
may be stashed). However, due to reinsersions of the stash this will actually need to occur in a level with capacity roughly 2m.
If additional accesses are needed to trigger the rebuild, then the same element, e.g., (1,⊥) can be looked up multiple times.
The exact details of what sequence of accesses is needed in order to cause elements 1, . . . ,m to be inserted into a particular
level also varies depending on how exactly the ORAM is constructed. More generally, the sequence (1,⊥), . . . , (m,⊥) at the
beginning of both U and U ′ should be replaced with whatever sequence in the given ORAM is needed in order to instantiate a
level to contain exactly the indices 1, . . . ,m.

5It is possible that when the ORAM is initialized, elements from the L` are stashed and stored in the cache. These elements
would inadvertently also be stored in Li. The affect of this on the cuckoo hash table is small.
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elements that were not in the data table, and the other sequence (U ′) will only access elements that were in
the data table (including the stash). Therefore, by the same argument as Theorem 2 an adversary is able to
distinguish access patterns in the ORAM with non-negligible probability. Therefore, the ORAM protocol is
insecure.

4 Alibi: Secure Hierarchical ORAM with Reinserted Stashes

The basic problem arises when a stashed element is found before the appropriate level of the ORAM hierarchy
is searched. As a successful criminal needs not only to be hidden in the location where they committed a
crime, but also needs an alibi who claims to have seen them enacting their everyday life, likewise the stashed
elements need not only hide their presence in the levels to which they are reinserted, but also need to hide
their absence from the levels from which they came. To fix this problem, we need to ensure that even when
an element cannot be stored at a certain level of the ORAM hierarchy (i.e., because it falls in the cuckoo
stash), it must still be searched for at this level. This way, the set of physical accesses at a level will always
be chosen uniformly at random and be fully independent. Each element therefore needs to store a record of
the locations where it would have been, and needs to be searched for in these locations if accessed.

There are some small subtleties here. First, an element needs to store the fact that it was ejected from a
level not only when it is in the cache, but at least until this level is rebuilt or the item is searched for, since
if it is looked up at any point before this level is rebuilt it needs to be searched for in this level. Second,
it is entirely possible that the same element that had been stashed at some level Li could be stashed again
at some level Lk with k < i, before Li is rebuilt or the element queried. Therefore each element needs to
store the location of all levels from which it was ejected due to having fallen in the stash. Since there are
` ≤ logN levels in the hierarchical ORAM, it is possible to store which levels the item was ejected from
using O(logN) bits.

The flaw can be fixed using the following simple modification. For each element (v, x) the algorithm will
additionally store a bit array e of length `, which records at which levels the item was “stashed.”

Our solution makes the following modifications to the generic hierarchical ORAM protocol.

Lemma 6. In the Alibi protocol above, there is an invariant that given a tuple (v, w, e) stored at some level,
e[i] = 1 if and only if v was stashed at level Li during the last rebuild and v has not been queried by the
ORAM since this rebuild. This invariant holds initially, after each query and after each rebuild.

Proof. By induction. This is initially true, as no items have been stashed and e[i] = 0 for all items.
If a level Li is rebuilt, all levels Lj for j < i will be rebuilt as empty levels. Therefore following the

rebuild e[j] = 0 for all such levels, satisfying the invariant for these levels. For level Li, some elements may
be stashed after the rebuild, e[i] = 1 for exactly these elements, so the invariant is satisfied for level i. For
any level Lj with j > i, the level has not been rebuilt and e[j] is not modified, so the invariant will hold if
it held before.

After a query e[j] is set to 0 for all j, so e[i] will only be 1 if there has not been a query since the last
rebuild.

Therefore, by induction, this invariant always holds.

Theorem 4. Let v1, · · · , vm be the sequence of indices that are looked up at level Li with i > 0, between
two subsequent rebuilds of that level. Then the Alibi protocol satisfies the following property. If vk = v′k for
some k′ < k, then Qk = Lookup(ki, dummy ◦ t) else Qk = Lookup(ki, vk).

Proof. Immediately after Li is rebuilt, all levels Lj for 0 < j < i are empty. Furthermore, the cache L0

contains only elements from the stash of Tj . Therefore, by Lemma 6 every element (v, w, e) either exists
in level Lj for j > i or has e[i] = 1. This will remain true until Li is rebuilt or v is queried. If vk = v is
queried and v is stored at some level j > i, then it will be looked up at level i, i.e., Qk = Lookup(ki, vk).
Similarly, if vk = v is queried, and e[i] = 1 then when v is found, it will still be looked up at level Li,
so Qk = Lookup(ki, vk). In both cases e[i] will be set to 0 (if it wasn’t already) and it will be moved
to a level j < i (if it wasn’t already). Only a rebuild on level Li could change either of these facts.
Therefore, until Li is rebuilt, for any subsequent queries v′k = v, a dummy item will be looked for in Li, i.e.,
Q′k = Lookup(ki, dummy ◦ t).

14



• Initializing records: When initializing the ORAM, for each input tuple (v, x) store the tuple
(v, x, 0`) in the ORAM.

• On rebuilds: When a hash table, Ti, is constructed at level i, suppose (Ti, Si)← Build(ki, X).

– Stashed records: For each record (v, x, e) ∈ Si, set e[i] = 1, and e[j] = 0 for j = 1, . . . , i−1.
Finally, insert (v, x, e) into the cache (or combined stash) as usual.

– Regular records: For each record (v, x, e) ∈ Ti, set e[i] = 0, and e[j] = 0 for j = 1, . . . , i−1.

• On queries: On input (v, x), initialize found = false, f = 0`.

– Scan the cache: If a record (v, w, e) is found in the cache, set m = w, found = true and
f = e and delete the item from the cache.

– Search each level: For i in 1, . . . , `

∗ If found = true, and f[i] = 0 then set Qi ← Lookup(ki, dummy ◦ t). otherwise set Qi ←
Lookup(ki, v),

∗ Probe locations Ti[j] for j ∈ Qi.
∗ If there is a j ∈ Qi, such that Ti[j] = (v, w, e), then set m = w, found = true and f = e.

∗ Execute Delete(ki, v, Ti)

– Rewrite the cache: If x 6= ⊥ (i.e., it was a write query), insert (v, x, 0`) into the cache.
Otherwise insert (v,m, 0`) into the cache.

Alibi Hierarchical ORAM protocol (delta to standard protocol of Figure 2.4)

Theorem 5. The Alibi Stash-Reinserting ORAM protocol, when instantiated with an Oblivious Hash Table
with a stash, is secure, i.e., it satisfies the security property of Definition 2.2.

Proof. This follows similarly to the proof of Theorem 1. The ORAM satisfies two properties: (1) No repeated
accesses: Each query is queried at most once to each level between rebuilds. This follows directly from
Theorem 4. Any query in the form v ∈ V is queried at most once, since the theorem implies that any future
accesses will be to dummy items. Any query in the form dummy ◦ t is queried at most once, because t is
incremented after each query. Therefore the lookups to the Oblivious Hash table are distinct. (2) Oblivious
accesses: The Oblivious Hash Table satisfies a property that the result of Lookup are computationally
indistinguishable over all distinct access patterns. Even though the ORAM only accesses the non-stash part
of the Oblivious Hash Table, the accesses are still computationally indistinguishable, since the access pattern
to the stash is deterministic. Since we know from (1) that the accesses to each Oblivious Hash Table are
indeed distinct, this means that the accesses at that level are computationally indistinguishable.

The cache has the property that it is oblivious despite repeated accesses. All levels are built independently
and so, the access patterns of all levels combined are also oblivious. The Oblivious Hash Tables are such that
builds, deletions, accesses and extractions are oblivious, even when combined. Therefore the full ORAM is
oblivious.

Remark 8. It may initially seem that the proof of security above would apply to the flawed schemes as
well. However, because the schemes resample the queries based on whether they were stored in the stash,
the access pattern of the remaining table changes, and changes specifically in a way that depends on the
structure of the table. We showed that in the case of Cuckoo Hashing this change causes a change in the
combined set of accesses that is distinguishable.

Complexity: Since each element only needs to store one bit for each level, and there are O(log n)
levels, then the additional size of each element is increased by O(log n). Since the index is at least log n
bits and the payload is Ω(log n) the items still have the same asymptotic sizes so this does not change the
asymptotic communication complexity. All of the modifications above only involve modifying or reading e
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when v and/or x would also be read or modified. We have that e is no larger than v or x (up to constant
factors, but usually in exact terms as well.) Therefore the modification only increases communication costs
up to constant factors.

Correctness: The modifications do not change the output of the program, only the access patterns.
The only operation that does not involve only modifications of e is that during an access, if the item has
already been found, the real item may be searched for in subsequent levels rather than a random item. This
does not change the output of the program, since the value that was already found is the one that will be
used.

5 Summary of Affected Papers

Goodrich et al. [GMOT12] introduced the idea of using Cuckoo tables with combined stashes for Hierarchical
ORAM. This introduced the flaw described in this paper. Kushilevitz et al. [KLO12] introduced the
alternative approach of reinserting elements from the stash into the ORAM (“cache the stash”). While there
are differences between these approaches, in either case an element that was stashed will be found prior to
the the level from which it was ejected and random locations accessed at this level instead. Therefore both
approaches are vulnerable to our attack.

Lu and Ostrovsky [LO13] then used the stash-reinsertion of [KLO12] in their 2-party ORAM protocol,
inheriting this vulnerability. Similarly Kushilevitz and Moore [KM19] created a Three-server ORAM that
also uses cuckoo hashing (Instantiation 2) based on [KLO12], but using a shared stash [GMOT12] rather than
reinserting the stash. This ORAM protocol is therefore vulnerable to the attack from this paper; Kushilevitz
and Moore also present other multi-party ORAM protocols based on other techniques which are not subject
to this attack.

Two alternative Hierarchical ORAM protocols were also published that avoided the flaw described in
this paper. The Hierarchical ORAM protocol [MZ14] of Mitchell and Zimmerman uses a different model
where the client can keep track of which level each item should be stored at. Knowing before-hand that an
element does not exist at a certain level allows the algorithm to search for pre-inserted dummy elements at
these levels. The data-structure therefore no longer needs to hide where data is stored, but only whether an
element is real or a dummy, so standard chained hash tables can be used instead of Cuckoo hashing. The
two-tiered Hierarchical ORAM protocol of Chan et al. [CGLS17] then presented an alternative to cuckoo
hashing with a stash. Instead, two hash tables existed, each with bins of size logε(λ) for some constant
ε ∈ (0.5, 1) and security parameter λ. They presented an oblivious construction in which elements would be
placed in the first hash table if possible and in the second if not. They showed that the probability that an
element could not be placed was negligible. Since this protocol used two-tier hashing rather than Cuckoo
hashing with a combined stash it is immune to the attack we have presented.6

However, the flaw resurfaced again in the recent asymptotic breakthroughs of PanORAMa [PPRY18] and
OptORAMa [AKL+20]. These achieved efficiency by storing most of the data in small bins, which are small
enough to be sorted without increasing the asymptotic performance, while remaining items are placed in an
overflow pile. Each of these bins is implemented as a cuckoo table and stashes are shared, but the combined
stash for the bins is kept at the same level as the bins. Therefore it is possible to search the bins for the
stashed elements and then to access the single-level combined stash, so the bin objects are not vulnerable to
this attack. However, in both papers, the overflow and single-level combined stash cuckoo tables both have
stashes that are re-inserted into the ORAM data structure. They are therefore vulnerable to the variant of
our attack in Appendix A.

Our attack does not affect the tree-based ORAM protocols, such as Binary Tree ORAM [SCSL11], Path
ORAM [SVDS+13] and Circuit ORAM [WCS15], as these do not use cuckoo hashing.

In summary, this flaw has existed in the the ORAM literature for almost a decade and has affected a
number of significant protocols, including the most recent asymptotic breakthroughs.

6Chan et al. also presented a concrete instantiation of Goodrich and Mitzenmacher’s ORAM protocol in an appendix of the
full version of their paper. The protocol they present uses a Cuckoo hash table at each level and a shared stash, so is vulnerable
to the attack described in this paper. However, they recommend, somewhat clairvoyantly, that since Cuckoo hashing is complex
and hard to prove correct, that their two-tier hash-table protocol should be used rather than the Cuckoo-hashing protocol.
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6 Conclusion

In this paper we presented an attack that affects all hierarchical ORAM protocols that use cuckoo hashing
with a combined stash. This vulnerability appeared in at least six prominent papers in the field. The attack
is subtle, but has a simple fix which we have presented.

This attack motivates research into simplification of ORAM protocols. While the community has ob-
tained very significant performance improvements over the past decade, ORAM protocols are now often
very complex. Cuckoo hashing, for instance, although it has appealing performances, is tricky to imple-
ment obliviously. It would be worthwhile to find alternative oblivious hashing techniques that are simple to
implement and prove secure. Creating simpler ORAM protocols in general that have the same asymptotic
bounds as the latest hierarchical breakthroughs of PanORAMa and OptORAMa is an important area for
future ORAM research.

This attack also motivates improved formalization of cryptographic components. This attack is a use case
for how breaking an abstraction of a cryptographic component can break the component’s security properties
in counter-intuitive ways. While a Cuckoo Hash Table with a stash is, indeed, an oblivious hash table, and
a hierarchical ORAM based on oblivious hash tables is secure, combining/reinserting the stashes broke both
the hash table abstraction and the security of the ORAM protocol. If an abstraction is broken, security
must be re-proven from the ground up, or alternatively new abstractions need to be created and proven
secure. It would therefore be helpful for the community to continue to formalize and achieve consensus on
new abstractions that will form useful cryptographic components of more complex protocols.

In short the following questions are good avenues for future research:

• How can ORAM protocols be simplified while retaining the same performance?

• What other (simpler) Oblivious Hash Tables exist?

• What new functionalities would be useful cryptographic components in the ORAM space and how can
these be formalized and implemented?

Simpler, more modular ORAM protocols will also aid in exposition to those outside of the field and—
combined with improved constants—pave the way for real-world ORAM implementations.
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Appendix

A PanORAMa/OptORAMa attack

The attack described in Section 3 does not directly apply to PanORAMa [PPRY18] and OptORAMa
[AKL+20]. These protocols do use cuckoo hash tables and combined stashes, but rather than each ORAM
level containing a single cuckoo table, each ORAM level contains many cuckoo tables. Nevertheless, we show
that as long as there is a table with capacity Θ(m/ logq λ) for some constant q > 0, where m is the size of the
ORAM level, then there is still an adversary that is able to distinguish access patterns with non-negligible
probability.

In both PanORAMa and OptORAMa, the cuckoo table for the overflow items is of size Θ(m/ logq λ). In
PanORAMa, each level of the ORAM contains an overflow set, namely the value of D̃ when ctr = d − 1.
(See the construction of OblivHT.BuildLevel [PPRY18]). From this, a cuckoo hash table (H̃d−1, S̃d−1) is
constructed, where H̃d−1 is the table and S̃d−1 is the stash. The overflow set D̃ is of size Θ(m/ log λ) where
m is the capacity of the ORAM level.7 In OptORAMa, each level contains an overflow pile, which has
capacity exactly m

log2 λ
. A cuckoo hash table (OFT , OFS) is constructed from this table, where OFT is the

table and OFS is the stash.
In both cases, the stash of the overflow table is re-inserted into the ORAM data-structure. This means

that instead of searching for stashed items in their assigned locations in the overflow table, the algorithm
will access random locations in the overflow table. Similar to the attack described in 3 this causes the set
of accesses to the overflow table to not be uniformly random and independent for some access patterns, and
this change in the distribution of accesses is non-negligible.

First we introduce some notation and prove some helpful lemmas.
PanORAMa and OptORAMa both use the original two-table Cuckoo Hashing scheme of Pagh and Rodler

[PR01].8 We will represent access patterns to a Cuckoo table as a bipartite multi-graph (U ∪ V,E) with
edges, (uj , vk) representing an element xi being searched for at location uj ∈ U in the first table and vk ∈ V
in the second table.

We can therefore count in any graph the number of “three-way collisions”, that is the number of triplets
(ei, ej , ek) such that i 6= j, j 6= k, i 6= k but ei = ej = ek.

Definition A.1. A three-way collision occurs in a graph between distinct edges ei, ej and ek if they have
the same values, i.e. ∃u ∈ U, v ∈ V such taht ew = (u, v) for all w ∈ {i, j, k}.

Given a bipartite multi-graph (U ∪ V,E), we say an edge is randomly chosen e
$← U × V . if e = (u, v)

and u
$← U and v

$← V .

Lemma 7. If ei, ej , ek
$← U × V , then the probability that ei, ej and ek have a three-way collision is

1
(|U ||V |)2 .

Proof. Let ei be chosen before-hand, ei = (u, v) where u ∈ U , v ∈ V . The probability that ej = (u, v) is
1

|U ||V | and likewise for ek. These events are independent. Therefore the probability that ei = ej = ek is
1

(|U ||V |)2 .

Observe that we did not need the fact that ei was chosen uniformly at random from U ×V . So this proof
also demonstrates the following more general fact:

7This fact is not stated explicitly, but is evident from other information in the paper. D̃ initially has size 2m, where m is the
capacity of the ORAM level. In each iteration |D̃ctr| = δ|D̃ctr−1| for some constant 0 < δ < 1. The iteration stops, and H̃d−1

is constructed once |D̃|+ |S̃| ≤ w
(

m
log λ

)
for some constant w (line 1 of OblivHT.BuildLevel). S̃ is a set that increases in each

iteration, but is much smaller that D̃, since |S̃| = O(log(m)m/ logc λ) where c ≥ 7 and λ = poly(m) i.e., |S̃| = O(m/ log6 λ).
Therefore it must be that D̃ in iteration d− 1 is of size Θ( m

log λ
).

8PanORAMa states they use the cuckoo table construction of Goodrich and Mitzenmacher [GM11] which uses two-table
cuckoo hashing.
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Lemma 8. If ei is an edge in bipartite multi-graph G with vertices partitioned into U and V , then if

ej , ek
$← U × V , then ei, ej , ek have a three-way collision with probability 1

(|U ||V |)2 .

Now we can describe the attack concretely.
Let Li be a level of the ORAM hierarchy. Let m be the capacity of this level. In both access patterns,

we first access [1, . . . ,m]. This causes level Li to be constructed and contain elements 1, . . . ,m. After this
the access patterns will differ. Our first sequence will access A0 = [m+ 1, . . . , 2m] and our second sequence
will access A1 = [1, . . . ,m].

Let T be the two-table cuckoo hash table we will examine. In both PanORAMa and OptORAMa this
is the hash table for the overflow elements. The algorithm will attempt to insert n′ = Θ( m

logd λ
) elements

into T . However some of these elements may be placed in a stash, S of size |S| = s. We know that, except
with negligible probability s ≤ c log(n′) for some constant c. These stashed elements are re-inserted into the
ORAM data-structure. They will be found prior to level Li being accessed, and so rather than querying
items from S and accessing their locations in the overflow cuckoo hash table, the algorithm will instead
access random locations in the overflow cuckoo table.

From the m+ 1th to 2mth accesses we create a graph as follows. Let U be the set of all locations in the
first table of the cuckoo table of T . Let V be the set of all locations in the second table. If access j results
in accessing locations u ∈ U and v ∈ V , add edge ej = (u, v). Let G0 and G1 be the graphs resulting from
access pattern A0 and A1 respectively.

We can observe that in A0 every element is stored in Lj , for some j > i. Therefore, ek
$← U × V for

each access k. Therefore, from Lemma 7, in G0 each triplet of distinct edges has a three-way collision with
probability 1

(|U ||V |)2 .

Now let us examine G1. For elements which the algorithm did not try to store in the overflow table,
the accesses in T will be chosen uniformly at random. Similarly, elements that were placed in S will have
been found already, so random locations will be accessed in the T cuckoo table as well. For elements that
were successfully stored in T , the access pattern will not be entirely random. Let O be the set of edges
corresponding to the elements that were successfully stored in T . Let B be the set of edges corresponding
to all other elements. |O| = n′ − s and |B| = m− n′ + s.

We will now consider the probability of a collision between different types of triplets.

• All three edges are from B. Since each edge is chosen uniformly at random, the probability of a collision
is 1

(|U ||V |)2 from Lemma 7.

• Two edges are from B, one is from O. Since the edges in B are chosen independently at random from
U × V , we have from Lemma 8 that the probability of a collision is also 1

(|U ||V |)2 .

• One edge is from B, two are from O. In order for there to be a three-way collision, the two edges
from O first need to have a two-way collision, i.e., they need to connect the same vertices. When the
cuckoo hash table was first constructed, each edge was chosen uniformly at random, but the edges
corresponding to the stash were removed. If the stash were to not remove any two-way collisions, 9

then the number of two-way collisions would remain the same but the total number of elements would
decrease from n′ to n′ − s. Therefore the probability of a two-way collision is at most 1

|U ||V |
n′

n′−s .

• All three edges are from O. In this case the probability of a three-way collision is 0, since such a collision
would imply that the overflow Cuckoo hash table were able to store 3 values in only 2 locations.

Let E0 be the expected number of three-way collisions in G0 and E1 the expected number in G1.
In E0 each triplet has a collision with probability 1

(|U ||V |)2 . While these are not independent, their expec-

tations still sum, so the expected number of three-way collisions is
∑
{i,j,k}∈[1...m]

1
(|U ||V |)2 = m(m−1)(m−2)

6(|U ||V |)2 .

Let Q(i) be the number of distinct triples (ignoring order) of O∪B such that i of these are in O. Observe

Q(0) +Q(1) +Q(2) +Q(3) = m(m−1)(m−2)
6

9Many stash-choosing algorithms are likely to remove edges that have two-way collisions since they produce cycles in the
corresponding bipartite graph. However we just need to upper-bound the probability of two-way collisions between edges in O
and this generalization allows us to avoid making assumptions about how the stash is chosen.
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E1 ≤
Q(0) +Q(1)

(|U ||V |)2 +
Q(2)n′

(|U ||V |)2
(n′ − s)

E0 =
Q(0) +Q(1) +Q(2) +Q(3)

(|U ||V |)2

E1 − E0 ≤
Q(2)n′

(|U ||V |)2
(n′ − s)

− Q(2)

(|U ||V |)2 −
Q(3)

(|U ||V |)2

E1 − E0 ≤
1

(|U ||V |)2

(
Q(2)s

n′ − s
−Q(3)

)
Now

Q(2) =
(n′ − s)(n′ − s− 1)(m− n′ + s)

2

Q(3) =
(n′ − s)(n′ − s− 1)(n′ − s− 2)

6

Therefore:

Q(2)

Q(3)
=

3(m− n′ + s)

n′ − s− 2

We know that s ≤ c log(n′) so s < n′ and n′ − s− 2 > n′

2 for sufficiently large n′.

Therefore Q(2)
Q(3) ≤

6m
n′ . We have n′ ≥ k m

logq λ , for some constants q > 0 and k > 0, so Q(2) ≤ 6
kQ(3) logq λ.

E1 − E0 ≤
Q(3)

(|U ||V |2)

(
6s logq λ

kn′
− 1

)
Since s ≤ c log(n′) ≤ c log(m), and n′ ≥ k m

logq λ

E1 − E0 ≤
Q(3)

(|U ||V |2)

(
6c log(m) log2q λ

k2m
− 1

)
For sufficiently large m,

6c log(m) log2q λ

k2m
<

1

2

Therefore, for sufficiently large m,

E1 − E0 ≤ −
Q(3)

2 (|U ||V |)2

This is non-negligible in n′.
Therefore, the expected number of three-way collisions is non-negligibly lower in A1 than in A0. This

allows an adversary to distinguish the access patterns A0 and A1.

B PanORAMa/OptORAMa solution

Our fix also applies to PanORAMa and OptORAMa. While we chose to analyze the overflow table at each
level, because it is the largest cuckoo hash table and it has a clear size, the combined bin stash that exists at
each level also has a stash that is re-inserted into the ORAM. Therefore, these stashed elements also need to
be searched for in the combined stash table at that level so as to ensure the access pattern of the combined
stash cuckoo table remains the same.

In addition, the bins of PanORAMa and OptORAMa are also cuckoo hash tables, which have have a
combined stash that is stored at each ORAM level. Care must be taken to ensure that the access patterns
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in the bins is not subject to our attack. In OptORAMa it appears that, in each level, the bins are accessed
first, and then the combined stash for the bins. This means that the access pattern within the bins is the
same regardless of whether an item is stored in the bin or the combined stash. It is important to realize
that this is important for security, and that searching in random bins would likely lead to a vulnerability like
the one described in this paper. In PanORAMa, the combined stash is accessed before the bins are accessed
and a random bin is chosen in the case that the data is found in the combined stash. Therefore, the access
patterns in the individual bins are probably also vulnerable to a distinguishing attack based on the fact that
stashed elements will not be searched for. This can simply be solved by searching the bins before searching
the combined stash. Similarly, elements of the combined stash that were re-inserted into the ORAM need
to be searched for in their corresponding bins, so the ORAM needs to remember to still search in the bins
for these items at the level from which this item was removed.

C Distinguishing distributions

In this section, review a basic fact that if two distributions are statistically different, and supported on
polynomial-sized sets, then they are polynomial-time distinguishable.

Lemma 9. Let {Xn}, {Yn} denote two sequences of distributions supported on polynomial-sized sets, i.e.,
there is a constant c, such that max(|Xn|, |Yn|) < nc. In addition, assume that Xn and Yn are efficiently
samplable.

Then if ∆(Xn, Yn) is non-negligible, the distributions {Xn} and {Yn} are polynomial-time distinguishable.

Proof. Consider the following maximum likelihood distinguisher, D. Let W = supp(Xn) ∪ supp(Yn), and
m = |W |. Define

pz
def
= Pr [Xn = z]

qz
def
= Pr [Yn = z]

Fix t = poly(n).
Recall that if W = Xn ∪ Yn,∑

w∈W
max(pw, qw) =

1

2

∑
w∈W

[[max(pw, qw) + min(pw, qw)] + [max(pw, qw)−min(pw, qw)]]

=
1

2

[
2 +

∑
w∈W

[max(pw, qw)−min(pw, qw)]

]

=
1

2
[2 + 2∆(Xn, Yn)]

= 1 + ∆(Xn, Yn)

First, D will estimate the frequency of elements in both Xn and Yn by sampling. First D will draw tm
samples from Xn, let Xsampled denote the multiset corresponding to these samples. Similarly D will draw
tm samples from Yn. Let Ysampled be the multiset corresponding to these samples.

Then D defines

p̃w
def
=

number of times w occurred in Xsampled

tm

q̃w
def
=

number of times w occurred in Ysampled

tm

Finally, given a sample z from a distribution Z ∈ {Xn, Yn}, the adversary will guess

A(z) =

{
X if p̃z ≥ q̃z
Y if p̃z < q̃z.
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A Hoeffding bound shows that

Pr [|p̃z − pz| > δ] < 2e−2mtδ2

and similarly

Pr [|q̃z − qz| > δ] < 2e−2mtδ2

Fix δ > 0, and define

G
def
= {z ∈W | |pz − qz| > 2δ}

B
def
= {z ∈W | |pz − qz| ≤ 2δ}

Now, notice that
max(pz, qz)− 2δ < min(pz, qz) for all z ∈ B . (1)

The Hoeffding bounds give

Pr [max(pz, qz) = max (p̃z, q̃z)] > 1− 2e−2mtδ2 for z ∈ G (2)

Let ε = maxz (|Pr(Xn = z)− Pr(Yn = z)|). Thus ε ≥ ∆(Xn,Yn)
m , which is non-negligible.

Pr [ A is correct ] =
1

2

[∑
z∈Z

Pr [max (p̃z, q̃z) = max (pz, qz)] max (pz, qz) +
∑
z∈Z

Pr [max (p̃z, q̃z) 6= max (pz, qz)] min (pz, qz)

]

=
1

2

[∑
z∈Z

Pr [max (p̃z, q̃z) = max (pz, qz)] max (pz, qz) +
∑
z∈B

Pr [max (p̃z, q̃z) 6= max (pz, qz)] min (pz, qz)

]

≥ 1

2

[∑
z∈Z

Pr [max (p̃z, q̃z) = max (pz, qz)] max (pz, qz) +
∑
z∈B

Pr [max (p̃z, q̃z) 6= max (pz, qz)] [max (pz, qz)− 2δ]

]

≥ 1

2

[∑
z∈G

Pr [max (p̃z, q̃z) = max (pz, qz)] max (pz, qz) +
∑
z∈B

[max (pz, qz)− 2δ]

]

≥ 1

2

[(
1− 2e−2mtδ2

)∑
z∈Z

max (pz, qz)− 2mδ

]

=
1

2

[(
1− 2e−2mtδ2

)
[1 + ∆(Xn, Yn)]− 2mδ

]
=
(

1− 2e−2mtδ2
)[1

2
+

1

2
∆(Xn, Yn)

]
−mδ

Which is a non-negligible advantage for sufficiently large t and sufficiently small δ.
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