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Ciphertext Policy Attribute Based Encryption for
Arithmetic circuits

Mahdi Mahdavi Oliaee and Zahra Ahmadian

Abstract—We present the first Ciphertext Policy Attribute
Based Encryption (CP-ABE) scheme with arithmetic circuit
access policy. The idea is first introduced as a basic design
which is based on multilinear maps. Then, two improved versions
of that, with or without the property of hidden attributes, are
introduced. We also define the concept of Hidden Result Attribute
Based Encryption (HR-ABE) which means that the result of
the arithmetic function will not be revealed to the users. We
prove that the proposed schemes have adaptive security, under
the (k − 1)-Distance Decisional Diffie-Hellman assumption.

Index Terms—Ciphertext Policy Attribute Based Encryption
(CP-ABE), Arithmetic circuit, Multilinear map, Adaptive secu-
rity, Hidden attributes, Hidden Result.

I. INTRODUCTION

Nowadays, there is a considerable demand for fine-grained
data sharing in cloud based communication systems, where ac-
cess to data is supposed to be limited to specific eligible users.
This type of data sharing requires a decentralized, flexible
and dynamic access control over a service provider which is
not necessarily trusted-enough. Based on the traditional public
key encryption solutions, the sender must identify all the
potential qualified users and encrypt the message separately
for each of which; an extremely inefficient solution. Attribute
Based Encryption (ABE) addresses this demand by providing
a decentralized access control based on the user’s set of
attributes. The access structure, which is itself protected by
encryption, can be embedded either into the key (KP-ABE)
or ciphertext (CP-ABE). The flexibility of ABE makes it
applicable to many different aspects of recent technologies,
such as Internet of Things [?], Personal Healthcare Records
[?], and vehicular networks [?].

Related work. The concept of Attribute Based Encryption
(ABE) was first invented by Sahai, Waters, et al. [1], though
under the title of fuzzy Identity Based Encryption. In their
scheme, each user has a set of attributes and a set of secret
keys associated with these attributes. The message is encrypted
by the sender based on the attributes and if the intersection of
the sender and receiver attribute sets are greater than a TTP-
chosen threshold value, the message can be decrypted by the
receiver. Goyal et al. [2] defined the concept of Key Policy
Attribute Based Encryption (KP-ABE). In this type of ABE
scheme, the ciphertext is labeled with a set of attributes, and
the user’s secret key is associated with an access structure. The
ciphertext is decryptable only by the users whose secret key
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access structure is satisfied by the set of attributes attached to
the ciphertext.

The concept of Ciphertext Policy Attribute Based Encryp-
tion (CP-ABE) was introduced by Bethencourt et al. [3],
contrary to KP-ABE. In this type of ABE, the ciphertext is
constructed according to access structure and the secret keys of
the receiver are constructed according to the user’s attributes.
In these schemes, the set of attributes of the decryptor must
satisfy the access structure defined in the ciphertext. Due to the
possibility of choosing the access structure by the sender, this
scheme is more flexible than KP-ABE. Moreover, KP-ABE
is less efficient than CP-ABE in view of the ciphertext size.
Bethencourt proved the security of his scheme in the generic
group model. Waters in [4] proposed a CP-ABE scheme
and demonstrated the security of his scheme under standard
assumptions. All of these schemes support the monotone
circuit access structures. Ostrofsky et al. [5] presented the
first schemes for non-monotone circuits. Green et al. [6]
proposed the idea of outsourcing the heavy computations to
cloud service, in order to reduce the computational overhead
for users.

One challenge in this domain is revoking the attributes
(keys) and users. Some schemes, like [7] and [8], focus on
resolving this problem. Chase in [9] proposed the multi au-
thority ABE as a solution for the key escrow problem. In [10],
Attrapondong and Imai present the Dual Policy ABE, which is
a kind of ABE with simultaneous key and ciphertext policies.
In [11] the Hierarchical Attribute Based Encryption (HABE)
was presented. In HABE, users possessing an attribute with
a higher level can decrypt the messages encrypted for those
with lower level ones. For example, a commander can decrypt
messages that are encrypted for soldiers. Some articles have
focused on increasing the efficiency, security, and size of the
ciphertext and keys [12],[13], and [14].

Two levels of security have been defined for ABE schemes:
selective security and adaptive security. In the selective secu-
rity game, the attacker selects the challenge attribute vector
(or function) at the beginning of the setup phase and sends
it to the simulator. Then, the simulator constructs the public
parameters according to the received vector. The attacker can
request the secret keys, adaptively. These secret keys should
not satisfy the challenge vector (or function). On the other
hand, in the adaptive security game, public parameters are
defined by the simulator and are sent to the attacker, at the
beginning. Then, the attacker defines the challenge attribute
vector (or function) and sends it to the simulator. Then the
attacker requests the secret keys, adaptively. These secret keys
should not satisfy the challenge vector (or function). Adaptive
security is known as complete security. However, there is
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another security level, called semi-adaptive security [15], that
lies between these two levels of security. In semi-adaptive
security, the simulator defines public parameters and sends
them to the attacker. Then, the attacker selects the challenge
vector (or function) and sends it to the simulator, and requests
the secret keys. The simulator constructs secret keys according
to request and challenge vector (or function) and sends these
secret keys to the attacker. These secret keys should not satisfy
the challenge vector (or function).

Garg et al. in [16] presented a backtracking attack for
pairing-based ABE with circuits with fan-out bigger than
one. Garg presented KP-ABE for all circuits using multilinear
maps, though the underlying assumptions for proving its
security are non-standard ones. Hard problems related to the
multilinear maps are nonstandard cryptographic assumptions.
However, his scheme works for any circuits with arbitrary
fanout.

All the above schemes are constructed based on the bilinear
pairing and their security rely on pairing-related hard prob-
lems. Therefore, they can not be regarded as the post quantum
ABE schemes. Contrary to pairing based ABE schemes, lattice
based ABE scheme are proposed, where security rely on the
Learning With Error (LWE) assumption. Agrawal et al. [17]
presented the Fuzzy ABE based on lattice for the first time.
Boyen et al. [18] and Zhang et al. [19] presented the first
lattice-based KP-ABE and CP-ABE, respectively. Gorbunov et
al. [20] presented the lattice based KP-ABE for circuits with
arbitrary fanout. This scheme is the first ABE scheme that
works for any boolean function with standard assumptions.
The technique used in this scheme is called two to one
Recoding (TOR). Also, this scheme supports gates with fan-in
two. The first work which supports the arithmetic circuit as
the access structure is Boneh’s scheme [21], where a fully
key homomorphic encryption for constructing KP-ABE is
proposed. In this scheme, addition and multiplication gates
are used instead of the conventional AND and OR gates; a
more general approach.

To reduce the complexity of LWE, in [22],[23], and [24], the
use of Ring-LWE was proposed for designing ABE schemes.
Schemes based on R-LWE have less computational complexity
and memory required. Recently, an adaptively secure ABE
based on LWE is proposed [25].

If the attribute vector or policy in the ciphertext is hid-
den, the ABE is called Predicate Encryption [26]. Predicate
Encryption is a special case of functional encryption [27], in
which the receiver can obtain a function of the encrypted data.
Finally, some ABE schemes, such as [28] and [29], the policy
is hidden.

Our contribution. In this paper, we propose the first CP-
ABE schemes for arithmetic functions with arbitrary results.
The proposed schemes are designed based on multilinear
maps. We introduce the new concept of hidden result ABE,
which means that the result of the arithmetic function remains
unknown to the user.

The proposed schemes are described in three variants. A
basic scheme is first introduced by which the platform of our
idea is demonstrated. In this scheme, the result and attribute
vector is hidden and it covers simple arithmetic functions.

Then, the first improved version is proposed, in which the
arithmetic function is more general than the basic one and the
attribute vector, as well as the result value, are unknown to
the users. Finally, the second improved version is described, in
which the attribute vector of each user is disclosed to himself.
The result value will be known for the eligible users, e.g. those
with a set of attributes satisfying the access structure function.
The adaptive security for all of these schemes is proved based
on a new-defined hard problem, which we call k − 1-distance
Diffie-Hellman problem. This problem is at least as hard as
the k-multilinear Diffie Hellman problem.

Comparing to [21], which is the only existing ABE work
for arithmetic circuits, the proposed scheme has significant
advantages. Our schemes are CP-ABE. They have adaptive
security. The result can take any arbitrary value. The variant
with hidden attribute, can be used for predicate encryption.
It supports the exponentiation gate and does not have any
constraint over the attribute values. However, scheme [21] is
lattice based which makes it a post quantum scheme, despite
ours.

Paper structure. The structure of the rest of the paper
is as follows. In Sec. II, the preliminaries for the paper are
reviewed. In Sec. III, the proposed basic scheme is detailed
and its security is proved. Sections IV and V describe the
two improved versions of the basic scheme, which are with
or without the property of hidden attribute and result, respec-
tively. A comparison of the proposed scheme with Boneh’s
scheme is brought in Sec. VI. Finally Sec. VII concludes our
work.

II. PRELIMINARIES

In this section, we provide preliminaries that are necessary
for the rest of the paper.

Definition 1. k-Multilinear map. The multilinear map is de-
fined over k groups of the same order G1,G2, . . . ,Gk . Assume
that gi is the generator of Gi for i ∈ {1, 2, . . . , k}. The function
ei, j is defined as below:

ei, j : Gi × Gj → Gi+j ; 1 ≤ i, j, i + j ≤ k

ei, j(gai , g
b
j ) = gabi+j (1)

We can summerize the consecutive computations of several
bilinear maps (1) into the following formula.

e(gx1
i1
, gx2

i2
, . . . , gxmim ) = g

∏m
i=1 xi

n (2)

where n =
∑m

j=1 ij ≤ k. There is a polynomial-time algorithm
for computing the above equations. The bilinear map (or
pairing) is a special case of this map for k = 2.

Definition 2. k-Multilinear Diffie-Hellman problem. Given the
vector

{
{g1, g2, . . . , gk}, g

s, gc1, gc2, . . . , gck
}
, where g = g1,

computing the amount of T = g
s.

∏k
i=1 ci

k
is known as the k-

Multilinear Diffie-Hellman (k-MDH) problem.

Definition 3. k-Multilinear Decisional Diffie-Hellman prob-
lem. Assume g = g1, given the vector

{
{g1, g2, . . . , gk}, g

s, gc1,
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gc2, . . . , gck , gz
k

}
, deciding if z =

∏k
i=1 ci or not is known as the

k-Multilinear Decisional Diffie-Hellman (k-MDDH) problem.

Definition 4. (k − 1)-Distance Diffie-Hellman problem. Given
a k-multilinear map over groups G1, . . . ,Gk , and

{
gx, g

y
k

}
, we

define the problem of computing T = g
x.y
k

as (k − 1)-Distance
Diffie-Hellman ((k − 1)-DsDH) problem.

This problem is at least as hard as k-MDH prob-
lem, i.e. given access to oracle O that solves (k −
1)-DsDH problem, one can solve k-MDH problem. For
demonstrating this claim, assume that we are given{
{g1, g2, . . . , gk}, g

x, gc1, gc2, . . . , gck
}

to compute g
s.

∏k
i=1 ci

k
.

We first compute g
y
k
= e(gc1, gc2, . . . , gck ), then we query O

by
{
gx, g

y
k

}
.

Definition 5. (k−1)-Distance Decisional Diffie-Hellman prob-
lem. Assume that we have a k-Multilinear map over groups
G1, . . . ,Gk and are given vector

{
gx, g

y
k
, gz

k

}
. We define the

problem of deciding if z = x.y or not as (k − 1)-Distance
Decisional Diffie-Hellman ((k − 1)-DsDDH) problem.

This problem is at least as hard as the (k-MDDH) problem.
This claim can be proved similar to the hardness proof of
(k − 1)-DsDH.

III. THE PROPOSED CP-ABE SCHEME, BASIC VERSION

CP-ABE schemes for arithmetic circuits aim to realize the
access policies consistent with all or a class of arithmetic
functions f (x) = f (x1, x2, . . . , xn) , deg( f ) ≤ k where k
is the number of groups in the underlying multilinear map.
Each xi , i = 1, 2, . . . , n corresponds to one attribute and
x = [x1, x2, . . . , xn] is the attribute vector. Note that n is the
number of attributes and k is called the depth of function (cir-
cuit). The encryptor of the message can encrypt the ciphertext
in a way that only the users whose attribute vectors satisfy
f (x) = y can decrypt the ciphertext, where y is an encryptor-
chosen value and is called the result. f (·) is chosen by the
encryptor, as well, conditioned that it meets the limitations of
the functions supported by the design, if any.

A. Limitations and Specifications
In this section, we propose a CP-ABE scheme which can

be realized for access structures with arithmetic circuits of the
following form.

f (x) =
|S |∑
i=1

(
ai

∏
j∈Pi

xj
)

(3)

where Pi, i = 1, . . . , 2k is a subgroup of {1, 2, . . . , k}. S is
defined as the set of all Pi that ai is nonzero. The cardinality
of S is denoted by |S |.

for the CP-ABE proposed in this section, we restrict f (x)
to the functions that k = n, and ∀Pi, Pj ∈ S, i , j, Pi ∩ Pj =

∅. However, the proposed scheme works for any result value
y ∈ Zq . Moreover, in this scheme the user does not know the
value of his/her own attribute vector as well as the value of
result. Some of these constraints will be relaxed in the schemes
proposed in next sections.

B. The CP-ABE Scheme

The proposed CP-ABE scheme is a quadruple
(Setup,KeyGen,Enc,Dec) of probabilistic polynomial
time algorithms, which are described in the following.

Setup(λ, 1k): This algorithm takes security parameter λ and
the multilinear map paratmeter k as input. Then, it outputs the
public parameters of the scheme, the public key, and the master
secret key.

The k groups of G1,G2, . . . ,Gk with generators
g1, g2, . . . , gk respectively, all with the same prime order
q, are selected as the public parameters of the scheme. For
simplicity g1 is denoted by g.

PP = {G1,G2, . . . ,Gk, g, g2, . . . , gk} (4)

A multilinear map {ei, j ; i, j ∈ {1, . . . , k − 1}} which is defined
over these groups is also public. A number of 2k random
values t1, t2, . . . , tk, s1, s2, . . . , sk ∈ Zq are selected. Then, the
public key PK and the master secret key MSK are generated,
as below.

PK =
{
[gt1, gt2, . . . , gtk ], [g

1
s1 , g

1
s2 , . . . , g

1
sk ], [g

t1
s1 , g

t2
s2 , . . . , g

tk
sk ]

}
MSK = {[t1, t2, . . . , tk], [s1, s2, . . . , sk]} (5)

KeyGen(MSK): This algorithm takes the master secret key
MSK as input. Then, it outputs the user’s secret key SK . For
generating the user’s secret keys, the values of x1, x2, . . . , xk ∈
Zq are set according to the value of the user’s attributes. Then
secret keys SK are generated as below.

SK = [sk1, sk2, . . . , skk] = [s1x1, s2x2, . . . , sk xk] (6)

Note that the user, who is the owner of secret keys, does not
know the value of its own attributes.

Enc(PK, f , y,m): This algorithm takes public key PK ,
arithmetic function f consistent with the specification given
in Sec. III-A, result y, and message m which is encoded to an
element of Gk , as input. It outputs the ciphertext Ctx which
can be decrypted only by the users whose attribute vector x
satisfies f (x) = y.

Then, the encryptor chooses random numbers r1, r2, . . . , rk ∈
Zq such that ∀Pj ∈ S,

∏
i∈Pj

ri = R. Note that since Pjs are
disjoint, such a set of r1, r2, . . . , rn always exists. Then, he
computes C1,C2, . . . ,Ck as follows.

C1 = g
r1 t1
s1 ,C2 = g

r2 t2
s2 , . . . ,Ck = g

rk tk
sk (7)

and C0 and Check are also computed as

C0 = m · (g
∏k

v=1 tv
k

)y.R

Check = g
y
k

(8)

Finally, the ciphertext is generated as below:

Ctx = [ f ,C0,C1,C2, . . . ,Ck,Check] (9)

The value of Check is used for checking the result of the
function. The value of g

∏k
i=1 ti

k
can be easily computed by
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applying a multilinear map as follows.

ek(gt1, gt2, . . . , gtk ) = ek−1,1(. . . e21(e11(g
t1, gt2 ), gt3 ) . . . , gtk )

= g
∏k

v=1 tv
k

(10)

The above computation can be done in the KeyGen algorithm
by TTP and be defined as a piece of the public key.

Dec(Ctx, PK, SK): This algorithm is a deterministic algo-
rithm that takes the ciphertext Ctx, public key PK and the
secret key SK as input and outputs message m only if Ctx is
an encryption of m under the public key PK and f (x) = y.

The decryptor first computes IPi , i = 1, . . . , |S | as follows.

IPi = e(Ci1,Ci2, . . . ,Ciw , g
tj1 , gtj2 , . . . , g

tj(k−w) ) (11)

where Pi = {i1, . . . , iw} , w = |Pi | and {1, . . . , k} \ Pi =

{ j1, . . . , jk−w}. Then, he computes Mask, and decrypts the
ciphertext Ctx into message m′ as follows.

Mask =

|S |∏
i=1
(IPi )

ai
∏

j∈Pi
sk j

m′ =
C0

Mask
(12)

The correctness of equation (12) is as follows. We first
simplify (11) according to the following.

IPi = g

∏
j∈Pi
(
r j .t j
s j
)·
∏

v<Pi
tv

k

= g

∏
j∈Pi

(r j )∏
j∈Pi

(s j )
·
∏k

v=1 tv

k

= g

R∏
j∈Pi

(s j )
·
∏k

v=1 tv

k
(13)

So, the value of Mask is equal to

Mask =

|S |∏
i=1

(
IPi

)ai
∏

j∈Pi
sk j

=

|S |∏
i=1

(
g

R∏
j∈Pi

(s j )

∏k
v=1 tv

k

)ai
∏

j∈Pi
sj x j

=

|S |∏
i=1

g
R ·ai (

∏
j∈Pi
(x j ))

∏k
v=1 tv

k

= g

(∑|S |
i=1

(
ai .

∏
j∈Pi

x j

) )
R.

∏k
v=1 tv

k

= g
f (x).R

∏k
v=1 tv

k
(14)

Finally, equations (14) along with (8) yeilds (12).

For example, assume that S = {P1, P2} where P1 = {1, 3}
and P2 = {2}. Here, k = n = 3 and f (x) = a1x1x3 + a2x2. So,

the value of Mask is as follows.

Mask =

2∏
i=1

(
IPi

)ai
∏

j∈Pi
sk j

= (IP1 )
a1

∏
j∈{1,3} sk j · (IP2 )

a2
∏

j∈{2} sk j

= (IP1 )
a1(s1x1.s3x3) · (IP2 )

a2(s2x2)

= g
R ·a1x1x3

∏3
v=1 tv

3 · g
R ·a2x2

∏3
v=1 tv

3

= g
R(a1x1x3+a2x2)

∏3
v=1 tv

3

= g
f (x).R

∏k
v=1 tv

k
(15)

Since the attribute vector and the result are hidden for the
decryptor, it should check if Check = g

f (x)
k

to make sure that
the decryption is correct and m′ = m. The decryptor computes
g
f (x)
k

by computing the following.

Check ′ =
∏
Pi ∈S

e
(
(g

1
si1 )ski1 , . . . , (g

1
si|Pi | )

ski|Pi |

)ai

=
∏
Pi ∈S

e
(
gxi1 , . . . , g

xi|Pi |

)ai

=
∏
Pi ∈S

g
ai

∏
j∈Pi

x j

k

= g
f (x)
k

(16)

If the Check ′ = Check, the receiver will conclude that he is
an authorized user for decryptyng Ctx.

C. Security Proof

In this section we prove that the proposed scheme in Sec.
III-B acheieves adaptive security. Suppose that there exist
a polynomial-time attacker A for the proposed basic ABE
system for arithmetic circuit in the adaptive security game,
which can distinguish between the ciphertexts of two messages

m0 and m1 with a probability of
1
2
+ ε , where ε is non-

negligible. Having this assumption, We prove that there is a
polynomial-time challenger C that can solve (k − 1)-DsDDH

problem with a probability nonnegligibly greater than
1
2

.

In this model, the challenger C gets the (k − 1)-DsDDH
parameters then simulates/ the above scheme parameters to
attacker A. The attacker A adaptively requests for secret
keys. Then, the challenger generates secret keys to the attacker.
In the next step, the attacker chooses two messages m0 and
m1 and sends the to the challenger. The challenger randomly
chooses one of these messages and simulates Enc algorithm
to receive Ctx. Then challenger sends it to A. The attacker
A should decide which message was encrypted and sends the
result to the challenger. The challenger can solve to k-MDDH
problem according to the received result.
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Theorem 1. The proposed basic ABE scheme (section III-B)
achieves adaptive security for arithmetic functions of the form
(20) with k variables under (k − 1)-DsDDH assumption

Proof. We follow the adaptive security game and conclude that
if there exist the polynomial-time attacker A that distinguishes
between two encrypted messages in the proposed scheme, with
nonnegligible advantage, then the challenger C can construct a
polynomial-time algorithm for solving (k−1)-DsDDH problem
with nonnegligible advantage. The security game for our
scheme is as follows.

1) The challenger is given the (k − 1)-DsDDH parameters
as below.

{G1,G2, . . . ,Gk, g, g2, . . . , gk, g
x, g

y
k
, gz

k
}

The challenger must distinguish if z = x · y or it is a
random value.

2) The challenger C chooses t1, . . . , tk−1, s1, . . . sk ∈ Zq

randomly, and computes gti and g
ti
si for i = 1, . . . , k−1.

Then, it sets gtk = gx ·
∏k−1

i=1 t−1
i , and simulates the public

parameters PP according to (4) and public key PK for
the attacker A as follows.

PK = {[gt1, . . . , gtk−1, gx ·
∏k−1

i=1 t−1
i ],

[g
1
s1 , . . . , g

1
sk−1 , g

1
sk ],

[g
t1
s1 , . . . , g

tk−1
sk−1 , gxs

−1
k
·
∏k−1

i=1 t−1
i ]} (17)

3) After receiving public parameters and public keys, A
requests the challenger for secret keys SK . The chal-
lenger C randomely chooses a k-tuple (x1, . . . , xk) as
attribute values and generates the secret key according
to (6). Then, it sends them to the attacker A, upon any
secret key request by attacker A.

4) A chooses the challenge function f (x) and two mes-
sages m0 and m1, as well. Then, it sends f (x), m0, and
m1 to the challenger.

5) The challenger C randomly chooses one of the two
messages m0 and m1. Then, C runs algorithm Enc to
simulate the ciphertext of mb where b ∈r {0, 1}. The
ciphertext Ctx is as below.

Ctx = [ f , C0 = mb .(g
z
k
)R,

C1 = g
r1 t1
s1 , . . . ,Ck−1 = g

rk−1 tk−1
sk−1 ,

Ck = gxrk s
−1
k
·
∏k−1

i=1 t−1
i ,

Chek = g
y
k
] (18)

The challenger sends Ctx to the attacker.
6) The attacker can request secret keys adaptively after

receiving Ctx. The challenger solves these requests
similar to Step 3.

7) The attacker sends the the guessed value b′ to the
challenger.

The probability of success of challenger for distinguishing the

(k − 1)−DsDDH problem is as follows.

Pr[C(k−1)−DsDDH = success] =
1
2
· (

1
2
+ ε) +

1
2
·

1
2

=
1
2
+
ε

2
(19)

In the above equation, the probability of resolving (k −

1)−DsDDH problem is non-negligibly greater than
1
2

. So, the
attacker A does not exist because (k − 1)−DsDDH problem
is assumed to be hard. �

IV. THE IMPROVED SCHEME I, HIDDEN RESULT AND
ATTRIBUTES

In this section, we propose an improved version of the basic
CP-ABE scheme for arithmetic circuits, proposed in Sec. III,
in which some of the limitations of the basic scheme is relaxed.
This scheme has the property that the attribute vector and
result value are both hidden to the user.

A. Specifications

The arithmetic function that this scheme can realize as
access structure is of the following form:

f (x) =
|S |∑
i=1

(
ai

∏
j∈Pi

x
ui j
j

)
(20)

where Pi , S and ai are defined as previous. Since deg( f (x)) ≤
k, it holds that

∑
j∈Pi

ui j ≤ k for all i. In this scheme, n ≥ k
and the constraint Pi ∩Pj = ∅ is relaxed, though a more slight
constraint on Pi should be met that is characterized in details
in Appendix A. Moreover, the value of attribute vector as well
as the result value are hidden to the user.

B. Ciphertext Policy Attribute Based Encryption Scheme

This version of proposed CP-ABE scheme, is similar to
the basic scheme, introduced in Sec. III-B, with the following
modifications in the quadruple (Setup,KeyGen,Enc,Dec).

Setup(λ, n, 1k). The only changes are on the public key and
master secret key which are as below.

PK = {[gt1, gt2, · · · , gtk ], [g
1
s1 , g

1
s2 , · · · , g

1
sn ],

g
t1
s1 g

t2
s1 · · · g

tk
s1

g
t1
s2 g

t2
s2 · · · g

tk
s2

...
...

. . .
...

g
t1
sn g

t2
sn · · · g

tk
sn


}

MSK = {[t1, t2, . . . , tk], [s1, s2, . . . , sn]} (21)

KeyGen(MSK). The secret keys of users are generated
similar to the basic scheme (6).

Enc(PK, f ,m). The encryptor chooses random numbers
r (i)j ∈ Zq , j = 1, . . . , |Pi | and i = 1, . . . , |S | in a way that for
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Algorithm 1: Computing IPi

Input: Pi , u j, j ∈ Pi and I0
Pi

Output: IPi

1 B← I0
Pi

;
2 T ← {1, . . . , k} \ Pi;
3 for j ← 1 to |Pi | do
4 for k ← 1 to u j − 1 do
5 select i′ ∈ T ;

6 B← e(B, g
ti′
s j );

7 T ← T \ {i′};

8 while T , ∅ do
9 select i′ ∈ T ;

10 B← e(B, gti′ );
11 T ← T \ {i′};

12 return B;

all i it holds
∏

j∈Pi
r (i)j = R. The ciphertext is then computed

according to the following equation.

Ctx = [ f , C0 = m.(g
∏k

v=1 tv
k

)y.R,Check = g
y
k
,

CP1,CP2, · · · ,CP|S | ] (22)

where

CPi = [C
(i)
1 ,C

(i)
2 , . . . ,C

(i)

|Pi |
], ∀Pi ∈ S (23)

and C(i)j = g

r
(i)
j
Ûti j

si j .

Dec(Ctx, PK, SK): Only the computation of IPi , i =

1, . . . , |S | changes in decryption algorithm. It is more conve-
nient to present the way of this computation in an algorithm
format rather than the closed-form expression. To compute IPi ,
The decryptor first computes I0

Pi
based on the given ciphertext.

I0
Pi
= e(C(i)1 ,C

(i)
2 , . . . ,C

(i)

|Pi |
) (24)

Then, It runs Algorithm 1 to get IPi . Based on Algorithm 1,

it would be computed as IPi = g

R∏
j∈Pi

s
uj
j

∏k
v=1 tv

k
. The rest of

the Dec algorithm is exactly similar to the basic scheme.

We bring an example here to show how Algorithm 1 works.
Suppose that k = 7 and the ith monomial of f (x) is x3

1 x2
2 x4.

So, Pi = {1, 2, 4} and u1 = 3, u2 = 2 and u4 = 1. Algorithm 1
computes IPi as follows.

IPi = e(C(i)1 ,C
(i)
2 ,C

(i)
4 , g

t3
s1 , g

t5
s1 , g

t6
s2 , gt7 )

= (g
r
(i)
1 t1
s1 , g

r
(i)
2 t2
s2 , g

r
(i)
4 t4
s4 , g

t3
s1 , g

t5
s1 , g

t6
s2 , gt7 )

= g

r
(i)
1 r
(i)
2 r
(i)
4

s3
1 s2

2 s4

∏k
v=1 tv

7

= g

R

s3
1 s2

2 s4

∏k
v=1 tv

7 (25)

C. Security proof

The security proof of this scheme is completely similar to
the security proof of the basic scheme brought in Sec. III-C.

V. THE IMPROVED SCHEME II, DISCLOSED ATTRIBUTES,
HIDDEN RESULT

In the two previous schemes the attribute vector is hidden
to its owner. Depending on the application, such a property
may be desired or not. In this section, we present a variant of
the proposed scheme in which the values of the attributes are
known to the attribute-owner.

A. Limitations and specifications

The function f (x) which can be supported by this scheme
as access structure is the same as that of the improved scheme
I, characterized in Sec. IV-A. The only difference is that, the
value of result y is hidden to the user prior to the decryption,
but the attribute vector is known to its owner. However, the
eligible user who can successfully decrypt the ciphertext can
obtain the value of result after decryption.

This scheme is based on the 2k-multilinear map where
deg( f ) ≤ k. This increases the size of public parameters
and secret keys as well as the computational complexity of
decryption algorithm.

B. The scheme

In this section we highlight only those part of algorithms
(Setup,KeyGen,Enc,Dec) that have changed comparing to
the improved scheme I, in Sec. IV-B.

Setup(λ, n, 1k). This algorithm outputs a number of
2k groups G1, . . . ,G2k over which the multilinear map
{ei, j : i, j ∈ {1, . . . , 2k − 1}} is defined. This means that
the public parameters are twice of the previous schemes but
the Public key and Master Secret Key are the same as the
previous one.

KeyGen(MSK). In this variant, the secret key, SK , is
generated as below:

SK =

[
sk11 sk12 · · · sk1n
sk21 sk22 · · · sk2n

]
=

[
s1x1(x1)

α s2x2(x2)
α · · · snxn(xn)α

gx
−α
1 gx

−α
2 · · · gx

−α
n

]
(26)

where α is a randomly-chosen user-specific parameter.

Enc(PK, f ,m). The only change in this algorithm is as
follows.

C0 = m · (g
∏k

v=1 tv
2k )y ·R

Check = g
y
2k (27)
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Dec(Ctx, PK, SK). This algorithm changes as follows. The
receiver first computes IPi , i = 1, . . . , |S | according to Algo-
rithm 1. Then, it computes JPi , i = 1, . . . , |S | as follows.

JPi = e(sk2, j1, . . . , sk2, j1︸              ︷︷              ︸
u j1 times

, . . . , sk2, j|Pi |
, . . . , sk2, j|Pi |︸                    ︷︷                    ︸

u j |Pi |
times

, g, . . . , g︸   ︷︷   ︸
k−ki times

)

= g
∏

j∈Pi
x
−uj α

j (28)

where Pi = { j1, . . . , j |Pi |}, and ki =
∑

j∈ |Pi |
u j . Finally, Mask ′

is computed according to the following.

Mask ′ =
|S |∏
i=1

ek,k(I
ai

∏
j∈Pi

sk
uj
1, j

Pi
, JPi )

=

|S |∏
i=1

ek,k(g
R ·ai

∏
j∈Pi

x
uj
j (x j )

uj α
∏k

v=1 tv

k
, g

∏
j∈Pi

x
−uj α

j

k
)

=

|S |∏
i=1

g
R ·ai

∏
j∈Pi

x
uj
j

∏k
v=1 tv

2k

= g
R ·

∑|S |
i=1 ai

∏
j∈Pi

x
uj
j

∏k
v=1 tv

2k

= g
R · f (x)

∏k
v=1 tv

2k (29)

C. Security Proof

The security proof of this scheme is similar to the security
proof of the basic scheme brought in III-C, tough with some
modifications. The adaptive security game for the improved
scheme II, is as follows.

1) The challenger C receives the (2k − 1)-DsDDH param-
eters as follows.

{G1,G2, ...,G2k, g1, g2, ..., g2k, g
x, g

y
2k, g

z
2k}

where g1 = g. It must distinguish if z = x · y or it is a
random element of Zp .

2) The challenger C randomly chooses (k − 1) values
t1, t2, ..., tk−1 and computes gti , i = 1, . . . , k − 1. Then, it
sets gtk = gx

∏k−1
i=1 r−1

i . The challenger also selects random

values sj and computes g
ti
s j , i = 1, . . . , k, j = 1, . . . , n.

Then challenger runs Setup algorithm for simulating
the public parameters PP and public keys PK . Then,
challenger sends the public parameters to the attacker
A as below.

PP = {G1,G2, ...,G2k, g = g1, g2, ..., g2k}

PK = {[gt1, gt2, · · · , gtk ], [g
1
s1 , g

1
s2 , · · · , g

1
sn ],

g
t1
s1 g

t2
s1 · · · g

tk
s1

g
t1
s2 g

t2
s2 · · · g

tk
s2

...
...

. . .
...

g
t1
sn g

t2
sn · · · g

tk
sn


} (30)

3) The attacker A requests the secret keys SK correspond-
ing to his selected attribute vector x = [x1, x2, ..., xn]
from the challenger. Having received the public param-
eters and public keys, the challenger C chooses the
random number α and computes [si .xi .(xi)α, gx

−α
i ]; i =

1, . . . , n and sends them to A as secret keys. This item
can repeat adaptively to simulate collusion of users.

4) The attacker chooses the challenge function f (x). It also
chooses two messages m0 and m1. Then, the attacker
sends f (x),m0,m1 to the challenger.

5) The challenger randomly chooses one of the two mes-
sages m0 and m1. Then the challenger C runs the
algorithm Enc to simulate the ciphertext of mb where
b ∈r {0, 1}. The ciphertext Ctx is simulated as follows
and sends it to the attacker.

Ctx = [ f , C0 = m · (gz2k)
R,Check = g

y
2k,

C1,CP2, . . . ,CP|S | ] (31)

6) The attacker A can request more secret keys for adap-
tively chosen attribute vectors, after receiving Ctx. The
challenger responses to these requests similar to Step 3.

7) the attacker sends the value of guessed b′ to the chal-
lenger.

The probability of success of challenger to distinguish the
(2k − 1)-DsDDH problem is as follows.

Pr[C(2k−1)−DsDDH = success] =
1
2
· (

1
2
+ ε) +

1
2
·

1
2

=
1
2
+
ε

2
(32)

which is greater than
1
2

, since
ε

2
has been considered non-

negligible. So, we conclude that the attacker A does not exist
because the (2k − 1)-DsDDH problem is hard.

VI. COMPARISON WITH BONEH’S SCHEME

Comparing to the only ABE scheme for arithmetic func-
tions, proposed by Boneh [21], the proposed schemes in
this paper have several advantages, which are listed in the
following.

1) The proposed schemes are CP-ABE which is more
flexible than KP-ABE.

2) The value of result in our scheme is arbitrary. But,
Boneh’s scheme just supports y = 0, though it can be
modified to work for any arbitrary result.

3) The proposed schemes can support both hidden or
disclosed attribute values. However, in Boneh’s scheme
the values of attributes can not be kept hidden, so this
scheme can not be used as predicate encryption.

4) In Boneh’s scheme, the values of attributes must be in
[−p, p], where p is less than the group order q, for Mult
gates. However, our scheme does not put any constraint
on the values of attributes.

5) Despite Boneh’s scheme which has selective security,
the proposed schemes have adaptive security which is
stronger.
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6) Despite [21], our scheme can support the exponentiation
gate, tough it seems that this feature can be added to
Boneh’s scheme.

7) since [21] is a lattice-based scheme, the copmutational
complexity and key sizes of the keys are larger than our
scheme.

However, the disadvantage of our scheme comparing to
Boneh’s scheme is that our scheme is not post-quantum.

VII. CONCLUSION

We proposed some CP-ABE schemes for arithmetic circuit
access structures. The proposed scheme relies on multilinear
maps. We defined the new concept of hidden results ABE
which refers to the ABE scheme for arithmetic functions in
which the result value for the function is unknown.

In the first proposed scheme, the attribute vector and the
result value are hidden to the users. It relies on a k-multilinear
map and supports a number of n = k attributes. The improved
scheme I works for any number of n ≥ k attributes, condi-
tioned that the degree of the function is at most k. In this
scheme, the attribute vector and the result value are hidden to
the users, too. Finally, we proposed the improved scheme II,
where the attribute vector is not hidden to the users and the
result value, would become disclosed to users who can decrypt
the ciphertext. However, the order of groups must be greater
the first two schemes.

We proved that these schemes are adaptively secure under
a new defined hardness assumption, called k-Distance Deci-
sional Diffie-Hellman problem, which is at least as hard as the
well known k-multilinear decisional Diffie-Hellman problem.
Finally, we compared our schemes with Boneh et al.’s scheme
and described the advantages of ours.
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