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Abstract

Realizing access control to sensitive data offloaded to a cloud is a
challenging work, where various devices with different security levels
are interconnected. Despite various solutions, Attribute-Based En-
cryption (ABE) is one of the preferred techniques in the literature
by enabling fine-grained access control over encrypted data. ABE
as a known cryptographic primitive enforces the data access under
a given policy in two complementary types, Key-Policy ABE and
Ciphertext-Policy ABE such that in the former the policy is fixed in
the setup phase while in the latter the policy can alter in the encryp-
tion phase. Currently, either the existing ABE schemes do not meet
a universal policy like an arithmetic circuit or are not a CP-ABE.

We present the first CP-ABE scheme with an arithmetic circuit
access policy based on the multilinear maps. First, we outline a
basic design and then two improved versions of this scheme, with or
without the property of hidden attributes, are introduced. We also
define the concept of Hidden Result Attribute Based Encryption
(HR-ABE) which means that the result of the arithmetic function
will not be revealed to the users.

We define a new hardness assumption, called (k − 1)-Distance
Decisional Diffie-Hellman assumption, which is at least as hard as
the k-multilinear decisional Diffie-Hellman assumption. Under this
assumption, we prove the adaptive security of the proposed scheme.
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1. Introduction

Nowadays, there is a considerable demand for fine-grained data
sharing in cloud based communication systems, where access to the
data is supposed to be limited to some specific eligible users. This
type of data sharing requires a flexible and dynamic access con-
trol over a service provider which is not necessarily trusted-enough.
Based on the traditional public key encryption solutions, the sender
must identify all the potential qualified users and encrypt the mes-
sage for each of them separately, which is an extremely inefficient
solution. Attribute Based Encryption (ABE) addresses this demand
by providing a dynamic access control based on the user’s set of
attributes. The access structure, which is itself protected by encryp-
tion, can be embedded in either the key (KP-ABE) or the cipher-
text (CP-ABE). The flexibility of ABE makes it applicable to many
different aspects of recent technologies, such as Internet of Things
[2, 27], personal healthcare records [33, 30], Internet of Energy [31]
and vehicular networks [13].

Related work. The concept of Attribute Based Encryption was
first invented by Sahai and Waters [28], though under the title of
fuzzy Identity Based Encryption (fuzzy IBE). In their scheme, each
user has a set of attributes and a set of secret keys associated with
these attributes. The message is encrypted by the sender based on
the attributes and if the intersection of the sender and receiver at-
tribute sets is greater than a predefined threshold value, the message
can be decrypted by the receiver.

Goyal et al. [18] defined the concept of Key Policy Attribute
Based Encryption (KP-ABE) and proposed the first KP-ABE scheme.
In this type of ABE scheme, the ciphertext is labeled with a set of
attributes, and the user’s secret key is associated with an access
structure. The ciphertext is decryptable only by the users whose se-
cret key access structure is satisfied by the set of attributes attached
to the ciphertext. Contrary to KP-ABE, Goyal et al. also intro-
duced the concept of Ciphertext Policy Attribute Based Encryption
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(CP-ABE), though they did not propose a scheme with such a prop-
erty.

In 2007, the first CP-ABE scheme was proposed by Bethencourt
et al. [6]. In this type of ABE, the ciphertext is constructed accord-
ing to the access structure and the secret keys of the receiver are
constructed according to the user’s attributes. The set of attributes
of the decryptor in CP-ABE must satisfy the access structure de-
fined in the ciphertext. Due to the possibility of choosing the access
structure by the sender, this scheme is more flexible than KP-ABE.

Bethencourt proved the security of his scheme in the generic
group model. Waters in [32] proposed a CP-ABE scheme and demon-
strated the security of his scheme under standard assumptions. All
of these schemes support the monotone circuit access structures. Os-
trofsky et al. [26] presented the first schemes for non-monotone cir-
cuits. Green et al. [19] proposed the idea of outsourcing the heavy
computations to the cloud, in order to reduce the computational
overhead for the users.

One challenge in this area is the problem of revokation. Some
schemes, like [23] and [20], focus on resolving this problem. Chase
in [11] proposed the multi-authority ABE as a solution for the key
escrow problem. In [3], Attrapondong and Imai present the Dual
Policy ABE, which is a kind of ABE with simultaneous key and
ciphertext policies. In [38, 25], the Hierarchical Attribute Based
Encryption (HABE) was presented. In HABE, the user possessing
an attribute with a higher level can decrypt the messages encrypted
for that with a lower level ones. Some other articles in this research
area are have focused on increasing the efficiency, security, and size
of the ciphertext and keys [4],[24], [35], [14] and [22].

Garg et al. in [16] presented a backtracking attack for pairing-
based ABE with circuits with fan-out bigger than one. Garg pre-
sented KP-ABE for all circuits using multilinear maps, though the
underlying assumptions for proving its security are non-standard
ones. Hard problems related to the multilinear maps are non-standard
cryptographic assumptions. However, his scheme works for any cir-
cuits with arbitrary fanout.

All the above schemes are constructed based on the bilinear pair-
ing and their security relies on pairing-related hard problems. There-
fore, they can not be regarded as the post quantum ABE schemes.
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Contrary to pairing based ABE schemes, lattice based ABE scheme
are proposed, where security rely on the Learning With Error (LWE)
assumption. Agrawal et al. [1] presented the Fuzzy ABE based on
lattice for the first time. Boyen et al. [9] and Zhang et al. [36] pre-
sented the first lattice-based KP-ABE and CP-ABE, respectively.
Gorbunov et al. [17] presented the lattice based KP-ABE for cir-
cuits with arbitrary fanout. This scheme is the first ABE scheme
that works for any boolean function with standard assumptions.
The technique used in this scheme is called Two to One Recoding
(TOR). Also, this scheme supports gates with fan-in two. The first
work which supports the arithmetic circuit as the access structure
is Boneh’s scheme [7], where a fully key homomorphic encryption
for constructing KP-ABE is proposed. In this scheme, addition and
multiplication gates are used instead of the conventional AND and
OR gates, which is a more general approach than the boolean access
structures.

To reduce the complexity of LWE, in [37],[15], and [12], the use
of Ring-LWE was proposed for designing ABE schemes. Schemes
based on R-LWE have less computational complexity and memory
required. Recently, an adaptively secure ABE based on LWE is
proposed [29].

Some schemes have the property of hiding the attribute vector
or access policy in the ciphertext. This property is called Predicate
Encryption (PE) [21]. Such ABE schemes are called policy hidden
ABE [5, 34].

Our contribution. In this paper, we propose the first CP-ABE
scheme for arithmetic functions with arbitrary results. The proposed
scheme is designed based on the multilinear map. We introduce the
new concept of hidden result ABE, which means that the result of
the arithmetic function remains unknown to the user.

The proposed scheme is described in three variants. A basic
scheme is first introduced by which the platform of our idea is demon-
strated. In this scheme, the result and attribute vector is hidden and
it covers simple arithmetic functions. Then, an improved version,
supporting a general arithmetic function is proposed in which the at-
tribute vector, as well as the result value, are unknown to the users.
Comparing to [7], which is the only existing ABE work for arith-
metic circuits, the proposed scheme has significant advantages. Our
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proposed schemes are CP-ABE with adaptive security. The result
can take any arbitrary value. It supports the exponentiation gate
and does not have any constraint over the attribute values. None of
the above features are supported by Boneh’s scheme [7]. However,
that scheme is a lattice-based one which makes it a quantum-friendly
solution, despite ours.

Paper structure. The structure of the rest of the paper is as
follows. In Sec. 2, the preliminaries for the paper are reviewed. In
Sec. 3, a definition of a CP-ABE scheme and its security is given. In
Sec. 4, the proposed basic CP-ABE scheme is detailed and its secu-
rity is proved. Sections 5 and 6 describe the two improved versions of
the basic scheme, which are with or without the property of hidden
attributes, respectively. A comparison of the proposed scheme with
Boneh’s scheme is brought in Sec. 7, and finally Sec. 8 concludes
our work.

2. Preliminaries and Definitions

Throughout the paper, we take λ as a predetermined security
parameter, where negl(λ) denotes a negligible function. The car-
dinality of set A is denoted by |A|. The notation x←$χ indicates
that x is sampled uniformely from set χ. The sets {1, . . . , n} and
{0, 1, . . . , n} are denoted by [n] and [0, n], respectively. By xu, where
x = [x0, x1, . . . , xn] and u = [u0, u1, . . . , un], we mean

∏n
i=1 x

ui
i .

Two computationally indistinguishable distributions A and B are
denoted by A ≈c B. Finally, PPT stands for ”Probabilistic Polyno-
mial Time”.

Next we provide a list of hardness assumptions.

Definition 1 (k-Multilinear map [16]). The multilinear map is de-
fined over k groups G1,G2, . . . ,Gk of the same order. Assume that
gi is the generator of Gi for i ∈ {1, 2, . . . , k}. The function ei,j is
defined as below:

ei,j : Gi ×Gj → Gi+j; i, j ∈ [k − 1]; i+ j ≤ k

ei,j(g
a
i , g

b
j) = gabi+j (1)

We can summarize the consecutive computations of several bi-
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linear maps (1) into the following formula.

e(gx1i1 , g
x2
i2
, . . . , gxmim ) = g

∏m
i=1 xi

n (2)

where n =
∑m

j=1 ij ≤ k. We assume that there is a polynomial-
time algorithm for computing (1). The bilinear map (or pairing) is a
special case of k-multilinear map for k = 2. throughout this paper,
by Multk, we mean the following tuple.

Multk = {G1, . . . ,Gk, g1, . . . , gk, {ei,j}i,j∈[k−1]} (3)

Definition 2 (k-Multilinear Diffie-Hellman assumption (k-MDH)

[16]). This assumption states that given vector
{
Multk, g

s, gc1 , gc2 , . . . , gck
}

,

where g = g1, it is hard to compute T = g
s·
∏k
i=1 ci

k .

Definition 3 (k-Multilinear Decisional Diffie-Hellman assumption

(k-MDDH) [16]). This assuption states that given vector
{
Multk, g

s, gc1 ,

gc2 , . . . , gck , gzk

}
, where g = g1, it is hard to decide if z = s ·

∏k
i=1 ci.

Definition 4 ((k−1)-Distance Diffie-Hellman assumption ((k−1)-DsDH)).

This assumption states that given
{
Multk, g

x, gyk

}
, it is hard to com-

pute T = gx.yk .

Theorem 1. The (k − 1)-DsDH assumption is at least as hard as
the k-MDH assumption.

Proof. Given an oracle O, which on input
{
Multk, g

x, gyk

}
outputs{

gx.yk

}
, we show that there exists an algorithm A, which on input{

Multk, g
x, gc1 , . . . , gck

}
outputs g

x.
∏k
i=1 ci

k . Given a vector
{
Multk, g

x, gc1 , . . . , gck
}

,

we set h1 = gx and h2 = e(gc1 , gc2 , . . . , gck) = g
∏k
i=1 ci

k = gyk . We view
(h1, h2) as an input to O to obtain O(h1, h2) = gx.yk . It follows that

A can compute g
x·
∏k
i=1 ci

k using O in polynomial time with the same
advantage.
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Definition 5 ((k − 1)-Distance Decisional Diffie-Hellman assump-
tion ((k − 1)-DsDDH)). This assumption states that given the vec-

tor
{
Multk, g

x, gyk , g
z
k

}
, it is hard to decide if z = x · y. The ad-

vantage of algorithm A for solving the (k − 1)-DsDDH problem is
AdvDistinguishA,(k−1)−DsDDH = |p− 1

2
|, where p is the success probbaility of A.

Theorem 2. The (k− 1)-DsDDH assumption is at least as hard as
the k-MDDH assumption.

The claim of Theorem 2 can be proved similar to the (k − 1)-
DsDH hardness proof given in the proof of Theorem 1.

3. Overview and Security Definitions

In this section, we bring the formal definition of a ciphertext-
policy attribute-based encryption scheme and its security.

Definition 6. (Arithmetic Access Function (Structure, Policy or
circuit)) Suppose q is a large prime number. The general form of the
arithmetic access function of degree at most d over Zq is as follows.

f(x) =
∑

ui∈[0,d]n∑
j∈[n] ui,j≤d

aix
ui (4)

where ai ∈ Zq, x = [x1, x2, . . . , xn], and ui = [ui,1, . . . , ui,2]. If we
define Pi = {j ∈ [n]|ui,j 6= 0}, (4) can be rewritten as:

f(x) =
∑

ui,j∈[d]∑
j∈Pi

ui,j≤d

(
ai
∏
j∈Pi

x
ui,j
j

)
(5)

We define S = {Pi|ai 6= 0}.

A CP-ABE scheme for arithmetic circuits realizes an access policy
consistent with all or a class of the arithmetic functions defined in
(5), where each xi , i = 1, 2, . . . , n corresponds to one attribute and
x is called the attribute vector.
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Definition 7. (Ciphertext-Policy Attribute-Based Encryption scheme
for arithmetic circuits): Suppose that U is the set of all attributes
from Zq, where |U| = n. Let Σc and Σk = 2U is the set of all arith-
metic access functions and key indices over the attribute space U,
respectively. The CP-ABE scheme ABE for an arithmetic function
Af : Σk × Σc → Zq over message space M and ciphertext space C,
is a quadruple of PPT algorithms, (Setup,KGen,Enc,Dec), described
in the following.

- (pp, pk,msk)← ABE .Setup(λ, k,U): The setup algorithm takes
the security parameter λ, the attribute space U, and the circuit
depth k, as inputs and outputs the public parameters pp, the
public key pk and the master secret key msk.

- (dkB)← ABE .KGen(msk,B,xB): The key generation algorithm
takes the master secret key msk, an authorized key index B ∈
Σk, and the value vector xB ∈ Znq as inputs and returns the
decryption key dkB. Note that xj = 0 for all j /∈ B.

- (Ctxf )← ABE .Enc(pp, pk,m, f, y): The Encryption algorithm
takes the public parameters pp, public key pk, message m ∈M,
the arithmetic access function f ∈ Σc and a value y ∈ Zq,
called the result value, as inputs. It then outputs the ciphertext
Ctxf ∈ C.

- {m′,⊥} ← ABE .Dec(pp, pk, Ctxf , f, dkB,B): The decryption
algorithm takes the public parameters pp, the public key pk,
the ciphertext Ctxf ∈ C and the corresponding access function
f ∈ Σc along with a private decryption key dkB for the key
index B ∈ Σk as inputs. It then outputs m′ ∈ M otherwise it
returns ⊥.

In the following, we give the definitions of the correctness of a
CP-ABE scheme, and the IND-CPA security (Indistinguishability
under Chosen Plaintext Attack) in adaptive security model.

Definition 8 (Correctness). Let Ψ be a CP-ABE scheme for arith-
metic functions. We say that Ψ over message space M and cipher-
text space C is correct if for all m ∈M, B ∈ Σk, f ∈ Σc, and y ∈ Zq,
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it holds that:

Pr

(pp, pk,msk)← Ψ.Setup(λ, k,U), dkB ← Ψ.KGen(msk,B,xB),

Ctxf ← Ψ.Enc(pp, pk,m, f, y),Ψ.Dec (pp, pk, Ctxf , dkB,B) = m :

Af(xB, f) = y

 ≈c 1 .

Definition 9 (Indistinguishability under Chosen Plaintext Attack
(IND-CPA) in adaptive security model). Let Ψ be defined for the
attribute space U, message space M and an arrithmetic function
Af : Σk × Σc → Zq. For a security parameter λ, a circut depth k
and a PPT adversary A, the IND-CPA game between the adversary
A and the challenger C is described as follows.

- Initialization: The Challenger C samples the triple of public
parameters, public key and the master secret key by running
(pp, pk,msk) ← Ψ.Setup(λ, k,U) and gives pp and pk to A,
while keeping msk secure.

- First Query Phase: For polynomially-many requests, the
adversary A chooses a key index B ∈ Σk and queries dkB from
B. C chooses xB, executes Ψ.KGen(msk,B,xB), and returns dkB
to A and addes B to a list, called Qk, that is initialized as an
empty list.

- Challenge: A choses two same length messages (m0,m1)←$

M×M and a challenge access function f ∗ ∈ Σc, and sends
{(m0,m1), f ∗} to B. Then, C flips a fair coin, produces a ran-
dom bit b←$ {0, 1}, chooses y ∈ Zq such that Af(xB, f

∗) 6= y
for all B ∈ Qk, runs Ψ.Enc(pp, pk,mb, f

∗, y) and sends Ctxf∗

back to A.

- Second Query Phase: After receiving the challenge cipher-
text, A is still allowed to request more decryption keys for key
indices B. For each requested B, B chooses xB and generates
the requested keys conditioned that Af(xB, f

∗) 6= y.

- Guess. A returns a bit b′ ∈ {0, 1} to C.
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The IND-CPA-advantage of A is defined as follows.

AdvIND-CPA
A,Ψ (1λ, b) =

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ (6)

where the probability is taken over all coin flips. We say Ψ is
IND-CPA secure if for all PPT adversaries A we have∣∣∣∣AdvIND-CPA

A,Ψ (1λ, b = 0)−AdvIND-CPA
A,Ψ (1λ, b = 1)

∣∣∣∣ ≈c 0 .

Remark 1. It is worth noticing that two main security notions are
defined for ABE constructions including selective security and adap-
tive security. In selective security game as a weak notion, the at-
tacker selects the challenge access function f ∗ at the beginning of the
game and sends it to the challenger. Then, the challenger generates
the public parameters according to the received challenge policy. The
attacker can request the secret keys for chosen key indices repeatedly,
conditioned that these secret keys do not satisfy the access function.
In this paper, we follow the stronger notion of adaptive security game
that for each request, the adversary can query the key generation al-
gorithm, such that its queries may be adaptively chosen according
to the information gathered in the previous requests without fixing
the challenge access policy, in advance. After the first query phase,
the adversary sends the challenge access policy f ∗ to the challenger,
which is responded such that Af(xB, f

∗) 6= y for all B ∈ Qk.

4. Basic CP-ABE Scheme

This section describes a simplified and basic version of the pro-
posed CP-ABE scheme for arithmetic access functions. The goal of
these simplifications is to make it more convenient to understand the
main schemes proposed in the next sections.

4.1. Features

Suppose that the circuit depth of the scheme is k. For the basic
CP-ABE proposed in this section, we restrict f(x) defined in (5) to
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those which ∀i, j, ui,j ∈ {0, 1}, d = n = k1, and ∀Pi, Pj ∈ S, i 6=
j, Pi ∩ Pj = ∅. The proposed scheme works for any result value
y ∈ Zq. Moreover, in this scheme, the user does not know the value
of his/her own attribute vector as well as the value of the result.
These constraints will be relaxed in the schemes proposed in the
next sections.

4.2. Specifications

The proposed CP-ABE scheme Ψ0 is a quadruple (Setup,KeyGen,Enc,Dec)
of PPT algorithms, which are described in the following.

- Ψ0.Setup(λ, k,U). This algorithm takes security parameter λ,
the circuit depth k, and the attribute space U as input. Then,
it outputs the public parameters, the public key, and the mas-
ter secret key. The public parameters are pp = {Multk} defind
in (3). Then, ti←$Zq, si←$Zq, i ∈ [k] are choosen, and the
public key pk and the master secret key msk are generated, as
below.

pk =
{
{gti , g

1
si , g

ti
si }i∈[k], h = g

∏k
v=1 tv

k

}
msk =

{
{ti}i∈[k], {si}i∈[k]

}
(7)

- Ψ0.KGen(msk,B,xB). This algorithm takes the master secret
key msk, key index B, and the attribute value vector xB ∈ Znq
as input, where xi = 0 for all i /∈ B. Then, it outputs the user’s
secret key dkB as follows.

dkB = {B, {ski = si · xi}i∈B}2 (8)

- Ψ0.Enc(pp, pk,m, f, y). This algorithm takes public key pk,
arithmetic function f consistent with the specifications given

1Note that although the basic scheme is described for d = n = k, it can
support functions with d ≤ k and n ≤ k. For the latter case, we consider that a
dummy term

∏
j∈[k] xj with zero coefficient is included in f(x) descryption.

2This way of defining the secret keys does not make this scheme vulnerable
to the collusion attack. The reason for that will be discussed more at the end of
this section

11



in Sec. 4.1, the result value y ∈ Zq and message m encoded to
an element of Gk as inputs, then it generates Ctxf as follows.

Firstly, rj←$Zq, j ∈ [k] such that ∀Pi ∈ S,
∏

j∈Pi rj = R.
Note that since Pis are disjoint, such a set of {rj}j∈[k] always

exists. Then, {Ci}i∈[k] are computed as Ci = g
riti
si , i ∈ [k]. C0

and check are also computed as follows.

C0 = m · hy.R

check = gyk (9)

where h = g
∏k
v=1 tv

k
3. Finally, the ciphertext is returned by

Ψ0.Enc algorithm as below.

Ctxf =
{
f, C0, {Ci}i∈[k], check

}
(10)

The parameter check is left in the Ctxf to allow the Ψ0.Dec
algorithm to check iff f(xB) = y.

- Ψ0.Dec(pp, pk, Ctxf , f, dkB,B). This is a deterministic algo-
rithm that takes the public paratmeters pp, public key pk,
ciphertext Ctxf , and the users secret key dkB as inputs. It out-
puts message m only if Ctxf is an encryption of m under the
public key pk and f(xB) = y otherwise it outputs ⊥.

The algorithm Ψ0.Dec, first checks if check = g
f(x)
k to make

sure that the input decryption key dkB is valid for decryption.
For this purpose, it computes g

f(x)
k using pk and dk, as follows

3h can be easily computed by applying the multilinear map as follows.

ek(gt1 , gt2 , . . . , gtk) = ek−1,1(. . . e21(e11(gt1 , gt2), gt3) . . . , gtk)

= g
∏k

v=1 tv
k

The above computation can be done in the Ψ0.Setup algorithm beforehand and
be included as a piece of the public key.
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(for simplicity xB is denoted by x).

check′ =
∏
Pi∈S

e
(

(g
1
si1 )ski1 , . . . , (g

1
si|Pi| )

ski|Pi|
)ai

=
∏
Pi∈S

e
(
gxi1 , . . . , g

xi|Pi|
)ai

=
∏
Pi∈S

g
ai
∏
j∈Pi

xj

k

= g
f(x)
k (11)

where Pi = {ij}j∈[|Pi|]. If check′ = check, this algorith decrypts
the ciphertext as follows, otherwise it returns ⊥. For decryp-
tion, the algorithm first computes IPi , Pi ∈ S as follows.

IPi = e(Ci1 , Ci2 , . . . , Ci|Pi| , g
tj1 , gtj2 , . . . , g

tj(k−|Pi|) ) (12)

where {j1, . . . , jk−|Pi|} = [k] \Pi. Then, it computes mask, and
decrypts the ciphertext Ctxf into message m′ as follows.

mask =
∏
Pi∈S

(IPi)
ai
∏
j∈Pi

skj

m′ =
C0

mask
(13)

Correctness. The correctness of equation (13) is as follows. We
first simplify (12) using to the following equality.

IPi = g

∏
j∈Pi

(
rj .tj
sj

)·
∏
v/∈Pi

tv

k

= g

∏
j∈Pi (rj)∏
j∈Pi (sj)

·
∏k
v=1 tv

k = h

∏
j∈Pi (rj)∏
j∈Pi (sj)

= h
R∏

j∈Pi (sj) (14)
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So, mask would be equal to

mask =
∏
Pi∈S

(IPi)
ai
∏
j∈Pi

skj

=
∏
Pi∈S

(
h

R∏
j∈Pi (sj)

)ai∏j∈Pi
sjxj

=
∏
Pi∈S

hR·ai(
∏
j∈Pi

(xj))

= h
R

(∑
Pi∈S

(
ai.
∏
j∈Pi

xj

))
= hf(x).R (15)

Finally, equations (15) along with (9) yeilds (13).

Example 1. Assume that S = {P1, P2} where P1 = {1, 3} and P2 =
{2}. Here, k = n = 3 and f(x) = a1x1x3 + a2x2. mask is simplified
as follows.

mask =
2∏
i=1

(IPi)
ai
∏
j∈Pi

skj

= (IP1)
a1
∏
j∈{1,3} skj · (IP2)

a2
∏
j∈{2} skj

= (IP1)
a1(s1x1.s3x3) · (IP2)

a2(s2x2)

= hR·a1x1x3 · hR·a2x2

= hR(a1x1x3+a2x2) = hf(x).R

Note that in this scheme the non-eligible users can not effectively
collude to decrypt an impermissible ciphertext. Since the value of
attributes as well as the result is unknown to the users, they can
not realize which combination of secret keys can lead to a successful
collusion.

4.3. Security

In this section, we prove that the basic scheme proposed in Sec.
4.2 is adaptively IND-CPA secure under the (k−1)-DsDDH assump-
tion.
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Theorem 3. The proposed basic CP-ABE scheme described in Sec.
4.2, for arithmetic functions with the characteristics given in Sec.
4.1 achieves IND-CPA in adaptive security model under (k − 1)-
DsDDH assumption.

Proof. Suppose that there exists a polynomial-time attacker A for
the proposed basic CP-ABE scheme with non-negligible advantage
in the IND-CPA security game (Def. 9). Under this assumption,
there exist a polynomial-time algorithm C that uses the adversary A
as a black-box and solves an instance of the (k−1)-DsDDH problem
with non-negligible advantage.

We suppose that the oracle D generates the (k − 1)-DsDDH pa-
rameters as {Multk, g

x, gyk , g
z
k}. D flips a fair coin µ and sets z = x·y

if µ = 0 else z←$Zq. The challenger C gets the (k − 1)-DsDDH pa-
rameters and, by a blackbox access to A, it aims to distinguish if
z = x · y or it is a random value and return his guess µ′, with
non-negligible advantage. The security game for proof of the basic
scheme is as follows.

- Initialization: The challenger C chooses ti←$Zq, i ∈ [k −
1], and si←$Zq, i ∈ [k]. Then, it sets gtk = gx·

∏k−1
i=1 t

−1
i , and

simulates the public parameters and public key for the attacker
A as follows.

pp = {Multk}
pk =

{
{gti}i∈[k−1], g

tk = gx·
∏k−1
i=1 t

−1
i ,

{g
1
si }i∈[k],

{g
ti
si }i∈[k−1], g

tk
sk = g

x·
∏k−1
i=1

t−1
i

sk

}
(16)

Note that according to this pk, h = e1,k−1(gx, gk−1) = gxk .

- First Query Phase. After receiving pp and pk, A requests C
for secret keys associated to its chosen key index B ∈ Σk. The
challenger C chooses an xB←$Zkq where xi = 0 for i /∈ B, as
the attribute vector and generates the secret key according to
(8) by simulating the Ψ0.KGen(msk,B,xB) algorithm. Then, it
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sends it to A, upon each secret key requested by A. C adds
the recieved key index B to list Qk.

- Challenge. A chooses two same length messages (m0,m1)←$M×
M and the challenge access function f ∗ and sends{(m0,m1), f ∗}
to C. C flips a faircoin, generating the random bit b, chooses
y ∈ Zq such that Af(xB, f

∗) 6= y for all B ∈ Qk. Then, C
runs algorithm Ψ0.Enc(pp, pk,m, f

∗, y) to simulate the cipher-
text Ctxf∗ of mb for A as below.

Ctxf∗ =
{
f ∗, C0, {Ci}i∈[k], check

}
(17)

where C0 = mb.(g
z
k)
R, Ci = g

riti
si , for i ∈ [k − 1], Ck =

gxrks
−1
k ·
∏k−1
i=1 t

−1
i , and check = gyk . The challenger C then sends

Ctxf∗ to A.

- Second Query Phase. Having received Ctxf∗ , A can adap-
tively request more secret keys associated with more key in-
dices B. C chooses xB such that Af(xB, f

∗) 6= y, generates the
requested keys, and sends them to A.

- Guess. The attackerA sends the guessed bit b′ of b to the C. If
b′ = b, C will output µ′ = 0 indicating that z = xy in the given
(k−1)-DsDDH instance, otherwise it outputs µ′ = 1 indicating
that the given (k − 1)-DsDDH instance was a random tuple.

The advantage of C for solving the (k−1)−DsDDH problem is com-
puted as follows. In the case that µ = 1, A gains no information
about b. Therefore, we have Pr[b′ 6= b|µ = 1] = 1

2
. Since C guesses

µ′ = 1 when b 6= b′, we have Pr[µ′ = µ|µ = 1] = 1
2
.

If µ = 0 then A sees an encryption of mb. Suppose that the
advantage of A in this situation is the non-negligible value ε. There-
fore, we have Pr[b = b′|µ = 0] = 1

2
+ ε. Since C guesses µ = 0 when

b = b′, we have Pr[µ′ = µ|µ = 0] = 1
2

+ ε. The overall advantage of
C in the (k − 1)-DsDDH game is:

AdvDistinguishC,(k−1)−DsDDH = |1
2
Pr[µ′ = µ|µ = 0] +

1

2
Pr[µ′ = µ|µ = 1]− 1

2
|

= |1
2
· (1

2
+ ε) +

1

2
· 1

2
− 1

2
| = ε

2
(18)
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In (18), the probability of resolving (k−1)−DsDDH problem is non-

negligibly greater than
1

2
. So, it is concluded that attacker A does

not exist, since (k−1)−DsDDH problem is assumed to be hard.

5. Hidden-Result and Hidden-Attributes CP-ABE Scheme

In this section, we propose an improved version of the basic CP-
ABE scheme for arithmetic circuits, proposed in Sec. 4, where all the
limitations of the basic scheme over the access function are relaxed.
The result value and the value of attribute vector in this scheme
both are hidden to the user.

5.1. Features

The arithmetic function that can be realized as the access struc-
ture in this scheme is in the general form of (5) with no constraint on
n, Pis, and ui,j. It means that the constraint of ∀i 6= j, Pi ∩ Pj = ∅
is relaxed, and for circuit depth k, n can be greater than k, and d is
at most equal to k. So, ui,j ∈ [0, k], conditioned that

∑
j∈Pi ui,j ≤ k.

5.2. Specifications

The quadruple of algorithms (Setup,KeyGen,Enc,Dec) of this ver-
sion of the proposed CP-ABE scheme is similar to the basic scheme’s,
introduced in Sec. 4.2, except for the following modifications in. In
this section, Ψ1 refers to the proposed hidden-result and hidden-
attribute CP-ABE scheme.

- Ψ1.Setup(λ, k,U). The public parameters, the public key and
the master secret key are generated as below.

pp = {Multk}

pk =
{
gti , g

1
sj , g

ti
sj
}
i∈[k],j∈[n]

msk =
{
{ti}i∈[k]{si}i∈[n]

}
(19)

where, ti←$Zq, i ∈ [k] and sj←$Zq, j ∈ [n].
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- Ψ1.KGen(msk,B,xB). This algorithm is the similar to Ψ0.KGen
algorithm. The only difference is in the size of the user secret
key vector, which can reach up to n:

dkB = {B, {skj = sj · xj}j∈B}

- Ψ1.Enc(pp, pk,m, f, y): This algorithm takes public parameters
pp and public key pk, the arithmetic function f , the result value
y ∈ Zq and message m which is encoded to an element of Gk,
as inputs then outputs the ciphertext Ctxf .

Firstly, the random numbers r
(i)
j ∈ Zq, where j ∈ Pi and Pi ∈ S

are selected in a way that for all i it holds
∏

j∈Pi r
(i)
j = R.

The ciphertext is then computed according to the following
equation.

Ctxf = {f, C0, {CPi}Pi∈S, check} (20)

where check = gyk , C0 = m · hy.R , and h = g
∏k
v=1 tv

k .

CPi = [C
(i)
1 , C

(i)
2 , . . . , C

(i)
|Pi|], ∀Pi ∈ S (21)

and C
(i)
j = g

r
(i)
j
tj

sj , for j ∈ Pi and Pi ∈ S.

- Ψ1.Dec(pp, pk, Ctxf , f, dkB,B): The only change in the Ψ1.Dec
algorithm is in IPi formula, Pi ∈ S. In this version, it is more
convenient to use an algorithmic presentation to explain how
IPi is computed, rather than a closed-form formula. So, Algo-
rithm 1 is run to get IPi . According to this algorithm, IPi is
returned as follows.

IPi = g

R∏
j∈Pi s

uj
j

∏k
v=1 tv

k (22)

The rest of the Ψ1.Dec algorithm is exactly similar to Ψ0.Dec
in the basic scheme. We bring an example here to show how
Algorithm 1 works.
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Algorithm 1: Computing IPi
Input: pp, pk, Pi, {uj}j∈Pi and CPi

Output: IPi
1 B ← e(C

(i)
1 , C

(i)
2 , . . . , C

(i)
|Pi|);

2 T ← {1, . . . , k} \ Pi;
3 for j ∈ Pi do
4 for k ∈ [uj − 1] do
5 select i′ ∈ T ;

6 B ← e(B, g
ti′
sj );

7 T ← T \ {i′};

8 while T 6= ∅ do
9 select i′ ∈ T ;

10 B ← e(B, gti′ );
11 T ← T \ {i′};
12 return B;

Example 2. Suppose that k = 7 and the ith monomial of f(x) is
x3

1x
2
2x4. So, Pi = {1, 2, 4} and u1 = 3, u2 = 2 and u4 = 1. Algorithm

1 computes IPi as follows.

IPi = e(C
(i)
1 , C

(i)
2 , C

(i)
4 , g

t3
s1 , g

t5
s1 , g

t6
s2 , gt7)

= (g
r
(i)
1 t1
s1 , g

r
(i)
2 t2
s2 , g

r
(i)
4 t4
s4 , g

t3
s1 , g

t5
s1 , g

t6
s2 , gt7)

= g

r
(i)
1 r

(i)
2 r

(i)
4

s31s
2
2s4

∏k
v=1 tv

7

= g
R

s31s
2
2s4

∏k
v=1 tv

7 (23)

5.3. Security

The IND-CPA security of the proposed scheme, in adaptive se-
curity model, is reduced to the (k − 1)-DsDDH assumption.

Theorem 4. The improved hidden-result hidden-attribute CP-ABE
scheme described in Sec. 5.1 for arithmetic functions with the char-
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acteristics given in Sec. 5.1 achieves IND-CPA in adaptive security
model, under (k − 1)-DsDDH assumption.

Proof. The security proof of this scheme is completely similar to the
security proof of the basic scheme given in Sec. 4.3.

6. Hidden-Result Disclosed-Attributes CP-ABE Scheme

In the two previous schemes, the attribute vector is hidden to
its owner. Depending on the application, such a property may be
desired or not. In this section, we present a variant of the pro-
posed scheme in which the values of the attributes are known to the
attribute-owner.

6.1. Features

Like the scheme proposed in Sec. 5, The access functions sup-
ported by this scheme is in the most general form of (5). Contrary
to the two previous schemes, in this scheme, the attribute vector
is included in dkB, i.e., it is known to its owner. On the other
hand, the result value, y, is hidden prior to the decryption, but
if Af(xB, f) = y, the value of y will be disclosed in Dec algorithm.
In other words, the eligible user who can successfully decrypt the
ciphertext can obtain the result value after decryption.

For a circuit depth of k, this scheme requires a 2k-multilinear
map. This increases the size of public parameters and secret keys as
well as the computational complexity of the decryption algorithm,
but has no effect on the public key and master secret key sizes.

6.2. Specifications

In this section, we mention only those parts of algorithms (Setup,KeyGen,Enc,Dec)
that have changed comparing to the proposed scheme in Sec. 5.2.

- Ψ2.Setup(λ, n,U). The public parameters, the public key and
the master secret key are returned by this algorithm, as below.

pp = {mult2k}

pk =
{
gti , g

1
sj , g

ti
sj
}
i∈[k],j∈[n]

msk =
{
{ti}i∈[k]{si}i∈[n]

}
(24)
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where, ti←$Zq, i ∈ [k] and sj←$Zq, j ∈ [n].

- Ψ2.KGen(msk,B,xB): This algorithm first selects α←$Zq, then
returns the secret key, dkB, as below.

dkB = {B, xB, sk1,j, sk2,j}j∈B (25)

where sk1,j = sj · xj · (xj)α, sk2,j = gx
−α
j .

- Ψ2.Enc(pp, pk, f,m, y): This algorithm is the same as Ψ1.Enc(pp, pk, f,m, y)
algorithm. The only change in this algorithm is as follows.

C0 = m · hy·R

check = gy2k (26)

Note that in this scheme h = g
∏k
v=1 tv

2k .

- Ψ2.Dec(pp, pk, Ctxf , f, dkB,B). The computation of check′ is
much more simple than the previous schemes. The value of
g
f(xB)
2k can be easily computed using the attribute vector xB

included in dkB. Then, it is compared to the received check
value. If check′ 6= check, the algorithm returns⊥ and y remains
unknown, otherwise the it is revealed that y = f(xB) and of
the decryption is proceeds as follows.

The value of IPi , Pi ∈ S is computed according to Algorithm 1.
Then, given dkB and Ctxf , JPi , Pi ∈ S is computed as follows.

JPi = e(sk2,j1 , . . . , sk2,j1︸ ︷︷ ︸
uj1 times

, . . . , sk2,j|Pi|
, . . . , sk2,j|Pi|︸ ︷︷ ︸

uj|Pi|
times

, g, . . . , g︸ ︷︷ ︸
k−ki times

)

= g
∏
j∈Pi

x
−ujα
j

k (27)

where Pi = {j1, . . . , j|Pi|}, and ki =
∑

j∈|Pi| uj. Finally, mask is
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computed as follows.

mask =
∏
Pi∈S

ek,k(I
ai
∏
j∈Pi

sk
uj
1,j

Pi
, JPi)

=
∏
Pi∈S

ek,k(g
R·ai

∏
j∈Pi

x
uj
j (xj)

ujα
∏k
v=1 tv

k , g
∏
j∈Pi

x
−ujα
j

k )

=
∏
Pi∈S

hR·ai
∏
j∈Pi

x
uj
j = hR·

∑
Pi∈S

ai
∏
j∈Pi

x
uj
j

= hR·f(x) (28)

The rest of the Ψ2.Dec algorithm is similar to Ψ1.Dec given in
5.2.

6.3. Security

The security proof of this scheme is mostly similar to the secu-
rity proof of the basic scheme brought in Sec. 4.3, but with some
modifications. However, we bring the complete security proof in this
section.

Theorem 5. The improved hidden-result disclosed-attribute CP-ABE
scheme described in Sec. 6.2 for arithmetic functions with the char-
acteristics given in 6.1 achieves IND-CPA in adaptive security model
under the (2k − 1)-DsDDH assumption.

Proof. We suppose that the oracle D generates the (2k−1)-DsDDH
parameters as {Mult2k, g

x, gy2k, g
z
2k}. D flips fair coin µ and sets

z = x · y if µ = 0 else z←$Zq. The challenger C gets the (2k − 1)-
DsDDH parameters and, by running the IND-CPA game, it aims to
distinguish if z = x · y or it is a random value and return his guess
µ′, with nonnegligible advantage. The security game for proof of the
second improved scheme is as follows.

- Initialization. The challenger C chooses ti←$Zq, i ∈ [k − 1],

and si←$Zq, i ∈ [n]. Then, it sets gtk = gx·
∏k−1
i=1 t

−1
i and h =

e1,k−1(gx, gk−1) = gxk , and simulates the public parameters and
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public key for the attacker A as follows.

pp = {Mult2k}
pk = {{gti}i∈[k−1], g

tk = gx·
∏k−1
i=1 t

−1
i ,

{g
1
si }i∈[n],

{g
ti
sj }i∈[k−1]

j∈[n]

, {g
tk
sj = g

x·
∏k−1
i=1

t−1
i

sj }j∈[n]} (29)

- First Query Phase. After receivingthe public parameters
and public key, A requests C for secret keys associated to its
chosen attribute vector xB ∈ Znq . The challenger C gener-
ates dkB by simulating the Ψ2.KGen(msk,B,xB) algorithm (8).
Then, it sends it to A. C addes the recieved key index B to
list Qk. This step can be reapeted adaptively to simulate the
collusion of users.

- Challenge. A chooses two same length messages (m0,m1)←$M×
M and the challenge access function f ∗ and sends {(m0,m1), f ∗}
to C. C flips a faircoin, generating the random bit b, chooses
y ∈ Zq such that Af(xB, f

∗) 6= y for all B ∈ Qk. Then, C
runs algorithm Ψ2.Enc(pp, pk,m, f

∗, y) to simulate the cipher-
text Ctxf∗ of mb for A as below.

Ctxf∗ = {f ∗, C0, {CPi}Pi∈S, check} (30)

where C0 = mb.(g
z
2k)

R, check = gy2k, and {CPi}Pi∈S are com-
puted according to (21). The challenger C then sends Ctxf∗ to
A.

- Second Query Phase. Having received Ctxf∗ , A can adap-
tively request more secret keys associated with new attribute
vectors xB. AlthoughA chooses xB, the probability of Af(xB, f

∗) =
y is negligible. C generates the requested keys, and sends them
to A.

- Guess. The attacker A sends the guessed bit b′ of b to the C.
If b′ = b, C will output µ′ = 0 indicating that z = x · y in the
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given (2k − 1)-DsDDH instance, otherwise it outputs µ′ = 1
indicating it was a random tuple.

The overall advantage of C in the (2k − 1)-DsDDH game is:

AdvDistinguishC,(2k−1)−DsDDH =
1

2
Pr[µ′ = µ|µ = 0] +

1

2
Pr[µ′ = µ|µ = 1]− 1

2

=
1

2
· (1

2
+ ε) +

1

2
· 1

2
− 1

2
=
ε

2
(31)

In (18), the probability of resolving (k−1)−DsDDH problem is non-

negligibly greater than
1

2
. So, it is concluded that attacker A does

not exist, since (k−1)−DsDDH problem is assumed to be hard.

7. Comparison with Boneh’s scheme

The only ABE scheme for arithmetic functions so far is the
scheme of Boneh et al. [7]. Although this work is a lattice-based
scheme with the benefit of being a post-quantum CP-ABE scheme,
the proposed scheme in this paper have some other advantages over
that, which are listed in the following.

1. Despite Boneh’s scheme which has selective security, the pro-
posed scheme is adaptively secure.

2. The proposed scheme is CP-ABE which is more flexible than
KP-ABE.

3. The both scenarios of hidden- and disclosed- attribute vec-
tor can be supported by the proposed scheme. However, in
Boneh’s scheme the attribute vector can not be kept hidden.

4. In Boneh’s scheme, the values of attributes must be in [−p, p],
where p is less than the group order q, for Multiply gates.
But, the proposed schemes do not put any constraint on the
attribute values.

5. The arithmetic function supported by the proposed scheme is
more general than the Boneh’s scheme. Our scheme supports
the exponentiation gate. However it seems that this feature
can be added to Boneh’s scheme, as well.
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6. Since Boneh’s scheme is a lattice-based scheme, the computa-
tional complexity and the key size are larger than our scheme’s.

7. The result parameter in the proposed schemes is an arbitrary-
chosen value. But, Boneh’s scheme just works for y = 0 while
not supporting an non-zero a0 in access function. However, it
seems to be modifiable to work for an arbitrary result value.

8. Conclusion

We proposed three variants of a CP-ABE scheme for arithmetic
circuit access functions. The proposed scheme relies on multilinear
maps. We defined the new concept of hidden-result ABE which
refers to an ABE scheme for arithmetic functions with unknown
result value.

We first proposed a basic CP-ABE scheme for arithmetic func-
tions, in which the attribute vector and the result value are hidden to
the users. For a circuit depth k, this scheme requires a k-multilinear
map and supports a number of n = k attributes. Then, an improved
hidden-result and hidden-attribute CP-ABE scheme was proposed
which works for any number of n ≥ k attributes, conditioned that
the degree of the function is at most k. Finally, we proposed an
improved hidden-result and disclosed-attribute CP-ABE scheme for
the access functions like the previous scheme, which is based on a
2k-multilinear map.

We proved that these schemes are adaptively secure under a new
defined hardness assumption, called k-Distance Decisional Diffie-
Hellman problem, which is at least as hard as the well-known k-
multilinear decisional Diffie-Hellman problem. Finally, we compared
our schemes with Boneh et al.’s scheme and described the advantages
of ours.
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