
LLMONPRO: LOW-LATENCY MONTGOMERY MODULAR

MULTIPLICATION

SUITABLE FOR VERIFIABLE DELAY FUNCTIONS

İsmail San
Department of Electrical and Electronics Engineering

Eskişehir Technical University
Eskişehir, Turkey, 26555

isan@eskisehir.edu.tr

December 31, 2020

ABSTRACT

This study presents a method to perform low-latency modular multiplication operation based on
both Montgomery and Ozturk methods. The design space exploration of the proposed method on a
latest FPGA device is also given. Through series of experiments on the FPGA using an high-level
synthesis tool, optimal parameter selection of the proposed method for the low-latency constraint is
also presented for the proposed technique.

1 INTRODUCTION

Modular multiplication is a key operation in several cryptographic algorithms. Most of the public key cryptosystems
such as RSA [1], Diffie-Helman [2], ElGamal [3] and DSA [4] are essentially based on modular arithmetic. The
primary operation in such systems is the modular multiplication and it inherently requires a division which is very
inefficient due the length of the modulus (e.g., 1024-bit).

Modular multiplication Z = A ·B mod M simply consists of multiplying two n-bit operands, A and B and produces
a result in a range of [0,M − 1]. When M is also n-bit integer, a 2n-bit result of plain multiplication needs to be
reduced to n-bit. Thus, modular multiplication decreases the result of the multiplication into the operand length (n-
bit) by performing a reduction process with respect to a given modulus M . Modular reduction inherently requires
a division by a modulus M and finding the remainder of this division. There are many techniques to make this
reduction area-efficient or throughput efficient. Montgomery modular multiplication method [5], which is proposed
in 1985 by Peter Montgomery, first transforms representation of numbers from the ring Zn to a Montgomery residual
representation where the computations are more efficient since the division and modulo operations are done by a power
of 2 and taking the remainder with respect to a number (R) that is power of 2. Montgomery reduction replaces division
by multiplications and additions. Since there is no division, it makes Montgomery reduction advantageous in hardware
implementations. In literature, there are several different hardware implementations from fastest to smallest, area- and
throughput-efficient or compact implementations [6–10].

Emerging schemes like verifiable delay function (VDF) need a low-latency implementations of the modular arithmetic.
VDFs are basically constructed to take a definite amount of time to perform its underlying function even if there are
infinitely many concurrent execution units, that is, the operation is inherently sequential. Thus, low-latency modular
multiplication algorithm and its hardware architecture with lowest possible latency are significantly important to make
VDF schemes practical. Therefore, for hardware implementations of VDF, the critical path of the circuit and the
number of total execution cycles are both important optimization constraints for modular multiplication.

Ozturk proposes a modular multiplication algorithm suitable for low-latency circuit implementations [11]. Modular
multiplication algorithm proposed in [11] allows one to implement O(log n) depth circuits for the modular multipli-
cation and squaring operations. One of the contributions in [11] to attain the low-latency is in the reduction step. After



performing the multiplication in a redundant form to minimize the critical path, the partial products are reduced into
the operand length by looking at a fixed table (look-up table). This is possible since a fixed modulus (M ) is assumed
to be used where this is practical for VDF like schemes.

In this paper, our objective is to find a computational model aimed at the low-latency Montgomery modular multi-
plication. In order to achieve the low-latency for a Montgomery multiplication, first, the multiplications should be
performed with a lowest circuit depth. This is already be investigated thoroughly in [11] and redundant-representation
polynomial multiplication has been presented in [11, Algorithm 7]. Thus, we adapt it to our method to perform the
multiplications in the Montgomery modular multiplication (see the first 3 lines in Algorithm 1). Second, we observed
some of the partial products in Montgomery method are not used in the final computation of the result. Hence, we
change the algorithm to use only the necessary partial products and leave the job to the high-level synthesis (HLS) tool
to remove unnecessary logic and multiplication circuits.

High Level Synthesis (HLS) tools enables an automatic translation from high level C/C++ descriptions into Register
Transfer Level (RTL; e.g., Verilog, VHDL) hardware architecture designs. HLS can find the unused logic and unused
multipliers by its compiler optimization passes. HLS also allows one to design at a high level of abstraction that
offers one to focus on high level concepts within less amount of design time and it is easier to consider many design
parameters.

There are two major drawback of the approach presented in [11] which mainly uses look-up tables in the reduction
step. One of them is that the modulus needs to be fixed. Offline computations of this look-up tables are required for
each modulus change. They need to be separately modified for each modulus. The second one is that the look-up
tables require high amount of on-chip memory, especially when the modulus size is getting larger. However, if the
modulus is fixed and there are available on-chip memory for the look-up tables that are generated for the selected
modulus, then the method proposed by Ozturk [11] is achieving lower-latency compared to the one presented in this
paper. The main advantage of using Montgomery based approach presented in this study is that it is easy to replace
the modulus at run-time and there is no need a big amount of look-up tables and its pre-computation.

2 Low-Latency Method for Montgomery Modular Multiplication

There are several different hardware architectures available in the open literature for Montgomery modular multi-
plication. However, a computational description aimed at the low-latency is missing. In this section, we present a
low-latency computational model for Montgomery modular multiplication.

Algorithm 1 shows the Montgomery modular multiplication method (MonPro) which is a more efficient way of per-
forming the necessary arithmetic with an overhead of transforming the numbers into Montgomery residual domain. If
several modular multiplications are required to be performed, as in the case of VDF, i.e., many square operations that
need to be done one after another, then this overhead is negligible in terms of latency. There are totally three large
(e.g., 1024-bit) multiplications involved in Montgomery modular multiplication. However, we observed that some
partial products are not used in the calculation of the modular multiplication result.

Algorithm 2 shows another computational description of Montgomery modular multiplication operation based on our
observation that some partial products (Q1 and S0) of the multiplication results are not needed in the final summation
(line 4 in Algorithm 2). After this observation, the computation of the partial products of the three multiplications
are optimized. Only the logic to compute the necessary partial products required in the summation to get the result
can be described with a low-level hardware description language. If it is described at high-level correctly, then logic

Algorithm 1 Montgomery Modular Multiplication.

Input: Odd n-bit modulus M , two operands A,B < M , Montgomery radix R = 2n, and the pre-computed constant
M ′ = −M−1 mod R.

Output: Montgomery multiplication result:
Z = MonPro(A,B) = A ·B ·R−1 mod M

1. T ← A ·B
2. Q ← T ·M ′ mod R
3. Z ← (T +Q ·M)/R
4. if Z ≥ M then
5. Z ← Z −M
6. end if
7. return Z;

2



synthesizer via HLS do its task: (1) optimize the logic and (2) remove the unused parts of the execution (unused partial
products) in terms of logic.

Algorithm 2 Our Reduced Montgomery Modular Multiplication.

Input: Odd n-bit modulus M , two operands A,B < M , Montgomery radix R = 2n, and the pre-computed constant
M ′ = −M−1 mod R.

Output: Montgomery multiplication result:
Z = RedMonPro(A,B) = A ·B ·R−1 mod M

1. T ← A ·B ⊲ T = (T1, T0) where T = T1 · 2
n + T0

2. Q ← (T1 · 2
n + T0) ·M

′ mod R
← T0 ·M

′ mod R
3. S ← Q ·M = S1 · 2

n + S0

4. Z ← (T1·2
n+T0)+(S1·2

n+S0)
2n

← (T1 + S1 +
T0+S0

2n ) ⊲ T0+S0

R
∈ {0, 1} and 0 ≤ T0, S0 ≤ R− 1

5. if Z ≥ M then
6. Z ← Z −M
7. end if
8. return Z;

Efficient high-level implementation of RedMonPro is described in Algorithm 3. This description of the Montgomery
modular multiplication is also efficient in terms of high-throughput and software implementations since there is a
reduction in terms of a total computation of the original Montgomery product algorithm (Algorithm 1).

Algorithm 3 High-level implementation of the Algorithm 2

1RedMonPro(A,B, M, Mprime, n){}
2 R = 2**n
3 T = A*B
4 T0 = T % r
5 T1 = T >> n
6

7 if T0 == 0:
8 return T1
9

10 Q = (T0 * Mprime) % R
11

12 S = Q*M
13 S0 = S % R
14 S1 = s >> n
15

16 Z = T1 + S1 + 1
17 if Z >= M:
18 Z = Z-M
19 return Z

Algorithm 4 is reprinted from [11] to show the computational model that we have adapted in the plain multiplica-
tions required in the Montgomery modular multiplication. Throughout this paper, it is denoted as OzturkPolMul.
OzturkPolMul requires two operands in k + 1 digits and performs the plain multiplication with a low-latency (see
[11] for circuit depth analysis of the algorithm). It produces 2k + 2 digit multiplication result.

Algorithm 5 shows the proposed computational description for the low-latency approach to compute the Montgomery
modular multiplication utilizing the Ozturk’s redundant-representation polynomial multiplication. There are three
invocations to redundant-representation polynomial Multiplication and each results in 2n-bit result, however some
parts of the results are utilized to get the final result. Line 4 in Algorithm 2 is implemented in Algorithm 5 from the
Line 4 to 16. E is a internal variable to accumulate the T1 and S1 digits with a carry in value of 1. The variable S is
used to contain the result of Q0 ·M . Note that the lower part (S0) is not used. T is used to contain the both parts of
the result of A ·B. and the higher part (T1) is accumulated in E.

3



Algorithm 4 Redundant-Representation Polynomial Multiplication proposed by Ozturk in [11, Algorithm 7].

Input: A(x) =
�k

i=0 Ai · x
i, 0 ≤ Ai < 2d+1

B(x) =
�k

i=0 Bi · x
i, 0 ≤ Bi < 2d+1

Output: Polynomial multiplication result:
C = OzturkPolMul(A,B)

C(x) =
�2k+2

i=0 Ci · x
i, 0 ≤ Ci < 2d+1

1. for i ← 0 to 2k + 2 do
2. Di = 0
3. end for
4. for i ← 0 to k do
5. for j ← 0 to k do
6. T = Ai ·Bj ⊲ T = (T2, T1, T0)
7. Di+j = Di+j + T0

8. Di+j+1 = Di+j+1 + T1

9. Di+j+2 = Di+j+2 + T2 ⊲ 0 ≤ T2 < 22

10. end for
11. end for
12. for i ← 0 to 2k + 2 do
13. Ci = 0
14. end for
15. C2k+2 = D2k+2 ⊲ 0 ≤ D2k+2 < 22

16. for i ← 0 to 2k + 1 do ⊲ ∀i Di = (Di1 , Di0)
17. Ci = Ci +Di0

18. Ci+1 = Ci+1 +Di1

19. end for
20. return C; ⊲ 0 ≤ Ci < 2d+1 where i ∈ [0, 2k + 2]

3 High-level synthesis of Low-Latency Montgomery Multiplication Method

In this section, the HLS descriptions of the proposed method that is introduced in the Section 2 are presented.

Algorithm 6 shows the HLS implementation of Algorithm 4 that is the redundant-representation polynomial multipli-
cation proposed by Ozturk in [11, Algorithm 7] where we used as a large multiplier in our method. This algorithm
accepts two arguments x and y with k + 1 digits and produces an output z with 2k + 2 digits. The arguments and the
output arrays are decomposed to create a wide register by using ARRAY_RESHAPE pragma via Vivado HLS. For each
multiplication in Algorithm 4, T = Ai · Bj , is computed with calling a mulhilo function (see Algorithm 8). The
necessary additions to accumulate the partial product on the variable D is described in Algorithm 6 between the line
34 to 36. Last accumulation is performed over the variable C and described between the lines after 40.

The HLS implementation of the proposed low-latency Montgomery modular multiplication is given in Algorithm 7.
As one can see, it invocates OzturkPolMul method three times to compute T , Q, and S (see the big_mul_wo_lut
function in Algorithm 6).

Algorithm 8 is the HLS description of the core function for d+1-bit multiplication operation used in HLS implemen-
tation of the proposed algorithm. It accepts two arguments x and y with d + 1-bit and produces three results hi, lo
and redundant with d, d, and 2-bit respectively. This function is simply implemented on FPGA with DSP building
blocks.

4 Results

We captured our architectures in the C language and prototyped our hardware accelerators on a Xilinx Virtex Ul-
trascale+ FPGA (available on VCU118 FPGA Development Kit). Tables 1 and 2 summarize our synthesis results
measured with Vivado HLS 2019.2. Table 3 shows the FPGA implementation results of the proposed Low-Latency
Modular Multiplication based on Montgomery and Ozturk on the VCU118 Development Kit. Note that the corre-
sponding results given in Tables 1 and 2 are further optimized when they are placed and routed on real FPGA platform
with Vivado 2017.4 Design Suite.

4





Algorithm 6 An high-level synthesis implementation of the low-latency redundant-representation polynomial multi-
plication Algorithm 4 proposed in [11, Algorithm 7] when d = 16.

1void big_mul_wo_lut(ap_uint<(17)> z[2*k+2],
2 ap_uint<(17)> x[k+1],
3 ap_uint<(17)> y[k+1]){
4

5#pragma HLS ARRAY_RESHAPE variable=x complete dim=1
6#pragma HLS ARRAY_RESHAPE variable=y complete dim=1
7#pragma HLS ARRAY_RESHAPE variable=z complete dim=1
8

9 int i, j, l;
10

11 ap_uint<32> D[2*k+3]; // width 2*d
12#pragma HLS ARRAY_RESHAPE variable=D complete dim=1
13 ap_uint<17> C[2*k+3]; // width d+1
14#pragma HLS ARRAY_RESHAPE variable=C complete dim=1
15

16 for(i=0; i<2*k+3; i++){
17 D[i]=0;
18 }
19 for(i=0; i<2*k+3; i++){
20 C[i]=0;
21 }
22 for(i=0; i<k+1; i++){
23 for(j=0; j<k+1; j++){
24 int ipj = i + j;
25 ap_uint<16> lo[(k+1)*(k+1)];
26 ap_uint<16> hi[(k+1)*(k+1)];
27 ap_uint<2> redundant[(k+1)*(k+1)];
28 mulhilo(x[i],
29 y[j],
30 &hi[i*(k+1)+j],
31 &lo[i*(k+1)+j],
32 &redundant[i*(k+1)+j]
33 );
34 D[ipj] = D[ipj] + lo[i*(k+1)+j];
35 D[ipj+1] = D[ipj+1] + hi[i*(k+1)+j];
36 D[ipj+2] = D[ipj+2] + redundant[i*(k+1)+j];
37 }
38 }
39

40 C[2*k+2]=D[2*k+2];
41

42 for(i=0; i<2*k+2; i++){
43 C[i]=C[i]+(D[i]&(0xFFFF));
44 C[i+1]=C[i+1]+(D[i]>>16);
45 }
46

47 for(i=0; i<2*k+2; i++){
48 z[i]=C[i];
49 }
50}

achieved when d is selected as 16. This is rational since the FPGA inherently consists of 18x25-bit DSP48 units.
However, the LUT utilization is significantly reduced when d is selected as 64. This is because of the decrease in k,
which results in the reduction of the required logic to do the addition chain for the accumulations in the algorithm. If the
latency is more important than the other constraints, then one should select d as 16 to target an FPGA implementation
of the proposed algorithm in this paper.

Table 2 provides the same metrics as given in the Table 1 with different number of clock cycles achieved. This
is especially important since a single C description is enough to generate many different hardware architecture by

6



inserting different compiler (HLS) directives to explore the design space further. In this table, each iteration of the
loop now has more than one cycle of initiation interval. That means one modular multiplication is now completed in
more than one cycle while achieving less amount of clock period. However, none of the variants is better than the
latency values of the architectures experimented in the Table 1.

Table 3 presents the placed and routed FPGA implementation results of the proposed Montgomery and Ozturk based
low-latency modular multiplication method on VCU118 Development Kit. Note that the method has been verified on
real hardware when n is equal to 128, 256 and 512. Each implementation completes the modular multiplication in
a single cycle. The running frequency for the accelerators of the proposed technique on FPGA where n is equal to
128, 256 and 512 are 25MHz (40ns), 25MHz (40ns) and 20MHz (50ns), respectively. Modulo-square operation is also
performed when t = 10000 and the elapsed clock cycles are measured and they are also given for the three different
experiments in Table 3. As one can see, approximately 10000 clock cycles with a reading overhead are enough to
complete the x2t modular square operation with 50ns for 512-bit operands. Total clock cycle latency achieved with
the proposed technique for n = 512 is 46.72ns whereas it is 25.6ns in the Ozturk method. Remark that LUT utilization
is reduced to 70k from 330k values given in [11] for n = 512.

5 CONCLUSION

In this paper, a new computational description aimed at low-latency for Montgomery modular multiplication is pro-
posed. The method combines Montgomery reduction and polynomial multiplication with redundant-representation
proposed by Ozturk in order to perform modular multiplication with a low-latency in hardware. We presented the de-
sign space exploration of the proposed approach on a latest FPGA device. Furthermore, the algorithm do not require
look-up tables compared to Ozturk method. The proposed algorithm can be customized for different constraints, e.g.,
the algorithm can be customized to use a certain number of multiplication units via HLS, which however results in
increasing the total latency of the modular multiplication.

ACKNOWLEDGMENT

The authors would like to thank Jean-Luc Beuchat for his valuable comments in terms of finding and fixing a bug
in the first version of Algorithm 2 and his help to come up with an efficient description of the method described in
Algorithm 3. The authors would like to acknowledge Supra National for its generous donation of materials in terms
of license of Xilinx design tools and AWS credit used for the necessary hardware synthesis.

Table 1: Design space exploration of the proposed Montgomery and Ozturk based low-latency Modular multiplication
(LLMonPro) method targeted to XILINX VU9P FPGA device via Vivado HLS 2019.2 to achieve single cycle latency.

n

d k

Clock # of

LUT FF DSP[bits] Freq. clock

[ns] cycles†

64
16 4 17.77 1 12034 1622 75
32 2 16.85 1 12921 1793 69

128
16 8 19.44 1 31276 2992 243

32 4 20.86 1 26569 3222 300
64 2 22.72 1 27789 3725 230

256
16 16 21.15 1 77419 5763 867

32 8 22.86 1 58376 5776 972
64 4 27.81 1 51583 6166 1200

512
16 32 22.91 1 202906 10997 3267

32 16 24.86 1 149247 11251 3468
64 8 30.36 1 102271 11056 3888

1024
16 64 24.70 1 636603 17155 12675
32 32 26.85 1 414185 21605 13068
64 16 32.93 1 253382 17727 13872

† Note that the number of clock cycles of a single Montgomery modular multiplication is always one.

7



References

[1] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[2] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions on Information Theory,
22(6):644–654, 1976.

[3] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE transac-
tions on information theory, 31(4):469–472, 1985.

[4] National Institute of Standards and Technology (NIST). Digital Signature Standard (DSS). http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf, July 2013.

[5] Peter L Montgomery. Modular multiplication without trial division. Mathematics of computation, 44(170):519–
521, 1985.

[6] Thomas Blum and Christof Paar. High-radix montgomery modular exponentiation on reconfigurable hardware.
IEEE transactions on computers, 50(7):759–764, 2001.

[7] Ismail San and Nuray At. Improving the computational efficiency of modular operations for embedded systems.
Journal of Systems Architecture, 60(5):440–451, 2014.

[8] Miaoqing Huang, Kris Gaj, Soonhak Kwon, and Tarek El-Ghazawi. An optimized hardware architecture for the
montgomery multiplication algorithm. In International Workshop on Public Key Cryptography, pages 214–228.
Springer, 2008.

[9] Miaoqing Huang, Kris Gaj, and Tarek El-Ghazawi. New hardware architectures for montgomery modular mul-
tiplication algorithm. IEEE Transactions on computers, 60(7):923–936, 2010.

[10] Daisuke Suzuki. How to maximize the potential of fpga resources for modular exponentiation. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 272–288. Springer, 2007.

[11] Erdinç Öztürk. Modular multiplication algorithm suitable for low-latency circuit implementations. Cryptology
ePrint Archive, Report 2019/826, 2019. https://eprint.iacr.org/2019/826.

[12] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.5.1), 2017.
https://www.sagemath.org.

8



Algorithm 7 High-level synthesis implementation for the proposed low-latency Montgomery modular multiplication
when d = 16.

1void low_lat_mont_mul(ap_uint<(17)> z[k+1],
2 ap_uint<(17)> x[k+1],
3 ap_uint<(17)> y[k+1],
4 ap_uint<(17)> m[k+1],
5 ap_uint<(17)> mp[k+1]){
6

7#pragma HLS ARRAY_RESHAPE variable=x complete dim=1
8#pragma HLS ARRAY_RESHAPE variable=y complete dim=1
9#pragma HLS ARRAY_RESHAPE variable=m complete dim=1

10#pragma HLS ARRAY_RESHAPE variable=mp complete dim=1
11#pragma HLS ARRAY_RESHAPE variable=z complete dim=1
12

13#pragma HLS pipeline II=3
14#pragma HLS LATENCY max=3 min=3
15#pragma HLS INLINE
16

17 ap_uint<17> t[2*k+2];
18#pragma HLS ARRAY_RESHAPE variable=t complete dim=1
19 ap_uint<17> q[2*k+2];
20#pragma HLS ARRAY_RESHAPE variable=q complete dim=1
21 ap_uint<17> tl[k+1];
22#pragma HLS ARRAY_RESHAPE variable=tl complete dim=1
23 ap_uint<17> ql[k+1];
24#pragma HLS ARRAY_RESHAPE variable=ql complete dim=1
25 ap_uint<17> res[2*k+2];
26#pragma HLS ARRAY_RESHAPE variable=res complete dim=1
27 ap_uint<34> E[k+1]; // width 2*d
28#pragma HLS ARRAY_RESHAPE variable=E complete dim=1
29

30 big_mul_wo_lut(t,x,y); // computing t
31

32 ap_uint<1> carry=0;
33 for(int i=0;i<k;i++){ tl[i]=t[i]; if(t[i]==0 && carry==0) carry=0; else carry=1;}
34 tl[k]=0;
35

36 big_mul_wo_lut(q,tl,mp); // computing q
37

38 for(int i=0;i<k;i++){ ql[i]=q[i];}
39 ql[k]=0;
40

41 big_mul_wo_lut(res,ql,m); // computing the result
42

43 for(int i=0; i<k+1; i++){ z[i]=0;}
44 for(int i=0; i<k+1; i++){ E[i]=0;}
45

46 E[0] = t[k] + carry;
47 for(int i=0; i<k; i++){
48 E[i] = E[i] + res[i+k];
49 E[i+1] = E[i+1] + t[i+k+1];}
50 for(int i=0;i<k;i++){
51 z[i] = z[i]+(E[i]&(0xFFFF));
52 z[i+1] = z[i+1]+(E[i]>>16);}
53}

9



Algorithm 8 Core multiplication function used in the low-latency LLMonPro implementation when d = 16.

1void mulhilo(ap_uint<17> x, // width d+1
2 ap_uint<17> y, // width d+1
3 ap_uint<16> *hi, // width d
4 ap_uint<16> *lo, // width d
5 ap_uint<2> *redundant // width 2-bit
6 ){
7 // width 2*d+2
8 ap_uint<34> res = (ap_uint<34>)x * (ap_uint<34>)y;
9 *lo = res;

10 *hi = res >> d;
11 *redundant = res >> 2*d;
12}

Table 2: Design space exploration of the proposed Montgomery and Ozturk based low-latency Modular multiplication
(LLMonPro) method targeted to XILINX VU9P FPGA device via Vivado HLS 2019.2 to achieve various different
execution clock cycles.

n

d k

Clock # of

LUT FF DSP[bits] Freq. clock

[ns] cycles†

64
16 4 5.93 16 12429 5002 38
32 2 11.04 2 12126 2559 42

128
16 8 6.50 16 31726 12218 108
32 4 8.13 3 24098 4253 200
64 2 15.10 2 25783 5375 140

256
16 16 8.51 3 69150 8647 434
16 16 8.52 5 68904 9621 386
32 8 8.79 3 50062 7559 648
64 4 10.90 3 46105 11005 800

512
16 32 8.50 8 186605 26588 818
16 32 9.10 5 168620 20246 1452
32 16 9.22 5 149262 16750 3468
64 8 11.25 3 84735 14097 2592

1024

16 64 16.90 3 511958 40303 5634
32 32 8.61 9 307049 54991 3272
32 32 10.491 5 302360 38646 5808
32 32 9.89 8 307031 50156 3272
32 32 9.19 16 294266 74620 1640

64 16 12.11 16 171356 59821 1760
64 16 8.61 18 172305 65471 2080

† It denotes the number of clock cycles of a single Montgomery modular multiplication.

Table 3: FPGA Implementation Results of the proposed Montgomery and Ozturk based Low-Latency Modular Mul-
tiplication (LLMonPro) on VCU118 Development Kit

n d k

Area Critical path [clock freq.] Execution

LUT FF DSP BRAM
Target Logic Route Total Logic # of clock t

Freq. [ns] [ns] [ns] % cycles†

[ns]

Our Work

128 16 8 6498 2278 181 1 40 10.99 15.50 26.49 41.49 1
256 16 16 18741 4121 621 1 40 13.05 19.17 32.22 40.50 1
512 16 32 69302 7833 2269 1 50 14.65 32.07 46.72 31.36 1
1024 32 32 146075 68499 1640 2 20 6.49 13.49 19.98 32.50 16

† It denotes the number of clock cycles of a single Montgomery modular multiplication.
‡ It denotes the total number of clock cycles of the modular squarer when t = 10000.

10


