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Abstract. Though the multilinear maps have many cryptographic ap-
plications, secure and efficient construction of such maps is an open prob-
lem. Many multilinear maps like GGH, GGH15, CLT, and CLT15 have
been and are being proposed, while none of them is both secure and effi-
cient. The construction of some multilinear maps is based on the Graded
Encoding Scheme (GES), where, the necessity of announcing zero-testing
parameter and encoding of zero has destroyed the security of the multi-
linear map. Attempt is made to propose a new GES, where, instead of
encoding an element, the users can obtain the encoding of an associated
but unknown random element. In this new setting, there is no need to
publish the encodings of zero and one. This new GES provides the actual
functionality of the usual GES and can be applied in constructing a se-
cure and efficient multilinear map and a multi-party non-interactive key
exchange (MP-NIKE) scheme. We also improve the MP-NIKE scheme
of [1] and turn it into an ID-based MP-NIKE scheme.

Keywords: Multilinear map, Self-multilinear map, multi-party key ex-
change.

1 Introduction

Multilinear map is the extension of bilinear map, where, instead of two ele-
ments, it is given many elements as the input. This map is widely applied in
many cryptographic applications, like broadcast encryption, attribute-based en-
cryption, indistinguishable obfuscation, and multi-party key exchange.
Boneh and Silverberg (2003) introduced the notion of multilinear map and
showed that a multilinear map can be applied in constructing efficient broadcast
encryption and non-interactive key-exchange, but they did not introduce any
concrete construction for multilinear maps therein. They found that the well-
known bilinear pairings cannot be generalized in constructing multilinear maps.
Gentry et al. (2013) found that a multilinear map can be applied in construct-
ing an Indistinguishable Obfuscation iO [17]; moreover, it can be applied in
constructing other tools like Pseudo-Random Function (PRF) and Constrained
PRF [13], Attribute-Based Encryption (ABE) [18] and Functional Encryption
(FE).



1.1 Related Work

In 2003, Garg et al. proposed the first candidate of the multilinear map (GGH13)
based on the Graded Encoding Scheme (GES) in ideal lattices. Coron et al.
(2013) proposed another candidate of the multilinear map (CLT13) based on
GES and over integers [4]. Both the CLT13 and GGH13 maps are inefficient [6].
Langlois et al. (2014) proposed a more efficient version of GGH, named GGH-
Lite [5], and then, Albrecht et al. (2014) implemented the GGHLite and made
its codes publicly available under an open-source license [6]. Their construction
is inefficient in the sense that, computing the value of a 7-linear map takes about
1.75 seconds on a 16-core CPU [6]. Hu and Jia (2015) revealed that the GGH13
and GGHLite multilinear maps are not secure [7]. Following this, Cheon et al.
(2015) proposed an attack on the CLT13 multilinear map [8]. In the same year,
Gentry, Gorbunov and Halevi proposed a graph-based multilinear map named
GGH15 [9], and immediately, Coron et al. (2014) proposed an attack against
GGH15 [10]. Coron et al. (2015) improved the CLT13 scheme [11], while, imme-
diately, Minaud and Fouque proposed an attack on their scheme [12]. All these
schemes lack formal security proof. Lewi et al. (2016) constructed a framework
for CLT multilinear map named 5Gen [13], which was the most efficient multi-
linear map [13], [14] of the date. Ma and Zhandry (2018) proposed a CLT-like
scheme and proved that their scheme is secure against known attacks, but they
did not prove the security in a formal model [14].
In 2016, Albrecht et al. (2016) proposed a multilinear map from obfuscation [15],
[16], which is not efficient because of employing costly tools like indistinguishable
obfuscation and homomorphic encryption.

1.2 Our Contribution

A new GES scheme is presented in this article. In previous graded encoding
schemes each element has many encodings, while in this scheme any element
has a unique encoding. In the previous schemes, any code-word could be easily
decoded without re-randomization, while, this encoding scheme, even without
re-randomization is irreversible. Previous schemes need encodings of zero for re-
randomization, while, in this scheme, re-randomization and encodings of zero as
its public parameters are not required. Next to these, they are restricted to a
pre-defined level κ to extract a representation of an element, while the proposed
GES scheme can extract the representation of the element in any level of encod-
ing. In this proposed GES, users can directly check the equality of two encoded
values, thus, no need for zero-testing parameter. In this proposed GES, users
can add and multiply the encoded elements. Multiplication of encoded elements
will increase the level of encoding similar to that of the available GES schemes.
The advantage of this newly proposed GES vs. its counterparts is that users can
extract a representation of encoded elements at any arbitrary level of encoding,
without being limited to a predefined level κ. Contrary to the available GES can-
didates, this proposed GES scheme is practical and efficient in different aspects
like the system parameters’ size, encoded elements’ size and computation cost.



After introducing this GES, we will explain how it can be applied in multilinear
map and designing MP-NIKE scheme, where the key generation algorithm is not
run by a Trusted Third Party (TTP).

1.3 Paper Organization

The rest of this article is organized as follows: In Section 2 the notation, required
definitions and the proposed GES general model are introduced. Our proposed
GES scheme is described in Section 3. In Section 4, an efficient multilinear map
based on the proposed GES is constructed. An MP-NIKE scheme without key
generation algorithm run by TTP is proposed in Section 5. In Section 6, the
MP-NIKE scheme of [1] is converted to an ID-Based scheme. The security of
the proposed multilinear map is proved in Section 7, and finally, the paper is
concluded in Section 2.

2 Preliminaries

The required mathematical background and the GES general model are intro-
duced here.

2.1 Notations

The notations applied throughout this article are listed in Table 1.

2.2 Graded Encoding Scheme

The recent constructions of multilinear maps (e.g. the GGHLite multilinear map)
use an encoding scheme named Graded Encoding Scheme (GES) [5] based on
ideal lattices. In the available GES, a same element has many different encodings.
In this section, the GGHLite graded encoding scheme [5] is briefly described. The
GES encoding scheme involves the following seven algorithms.

Instance generation InstGen(1λ, 1κ): Consider polynomial rings R =
Z[x]/〈xn + 1〉 and Rq = R/qR. The algorithm InstGen is given a security pa-
rameter λ and the multilinearity parameter κ as the input, and generates system
parameters SP and one instance of level-1 encoding of 1 ([o]1) and two instances
of level-1 encodings of zero ([z1]1, [z2]1). The [z1]1 and [z2]1 will be considered
as randomizers.

Level-0 sampler samp(SP ): In this algorithm, any user chooses an integer
y which in GES is defined as a level-0 encoding. In lattice-based GES schemes,
the level-0 encoding y is an integer sampled from discrete Gaussian distribution.

Level-1 encoding enc(SP , y): Given a level-0 encoding y and SP , this
algorithm computes [y]1 = y[o]1 and yields the encoded value of y at level 1,
while, by having the publicly known [o]1 computing [y]1 becomes reversible and
the value y can be computed. In this case, the user must randomize [y]1 as
follows:

[ý]1 = [y]1 + r1[z1]1 + r2[z2]1, (1)



h
Table 1. Notations

Symbol Description

z(q) A random polynomial of q, such that z(0) = 0

r(j) j-th bit of the integer r

p, q Two large primes

N Modulus of computation

G A multiplicative subgroup of Z∗
N

g A generator of G

r Random integer

W A set of encoded base elements which is used
for encoding other elements.

ui Encoding of ri
bi Blinded encoding of ri
[x]j The element x is encoded at level j

SP System parameters

msk The KGC’s master secret key

ei Encoding of yi
di Blinded encoding of yi
γ Security parameter

A The adversary

B The challenger algorithm

where r1 and r2 are two random integers (level-0 encodings). Note that the re-

sultant [ý]1 is still an encoding of y at level 1. Adding different multiples of
[z1]1 and [z2]1, as their name suggests, is to randomize the encoding, and does

not affect the actual value and level of the the encoding. The ´[y]1 is a random

encoding of integer y and computing the value of y from [ý]1 is intractable. In

the GES encoding scheme [y]1, [ý]1 and [o]1 are level-1 encodings.

Adding encodings add([a]l, [b]l): For adding the two elements [a]l and [b]l
together they must be at the same level l and the result is [a+ b]l at level l.

Multiplying encodings mult([a]l1 , [b]l2): Multiplication of two elements
[a]l1 and [b]l2 with any arbitrary level l1 and l2 is possible and the result will be
[ab]l1+l2 at level l1 + l2.

isZero(SP , pzt, [y]κ): The isZero algorithm is applied in testing whether an
encoded element [y]κ (at a pre-defined level κ) is a valid encoding of zero or not,
applicable in equality test of two encoded elements (i.e. if [y1]κ− [y2]κ is valid en-
coding of zero then y1 = y2). The pzt is the zero testing parameter and if [y]κ.pzt
is less than specific value (q3/4), then [y]κ is a valid encoding of zero, (i.e. y = 0).



ext(SP , pzt, [y]κ): For extracting the random representation of an encoded
element, it must be at a predefined level κ, where users can extract it by multi-
plying it with the zero testing parameter. The result is a unique image of y not
its actual value. This image of y only depends on its exact value and does not
depend on the randomizers and their coefficients. For exact details, refer to [5].

2.3 Definitions

To describe and prove the security of the proposed scheme, the following defini-
tions should be defined:

Definition 1. (Safe modulus): Let N = ṕq́ be the product of two large primes.
N is called a safe RSA modulus if ṕ = 2p+ 1 and q́ = 2q+ 1, where p and q are
prime numbers of the same size.

Definition 2. (Subset Sum Problem (SSP)). Let W = {e1, e2, . . . , em} be a set
of m random integers. The SSP is the problem of finding a subset of W , where
the sum of its elements is equal to a given value u.

The SSP is an NP-complete problem and the complexity of its best possible
solutions is equal to O(2m/2) [20], O(u

√
m) [21] and O(mc) [22], where c is the

size of the largest element of W .

Definition 3. (Multilinear Map). Let G1 and G2 be two cyclic groups of the
same order N . Consider g1, g2, . . . and gt are generators of G1, and gt+1 is a
generator of G2. The map e : G1 ×G1 × · · · ×G1︸ ︷︷ ︸

t times

→ G2 is named a multilinear

map if it satisfies the following properties [2].

1. For any integer β ∈ Z and generators gi ∈ G1, i = 1, . . . , t, and gt+1 ∈ G2,
we have e(gα1 , . . . , gj , . . . , g

γ
t )β = e(gα1 , . . . , g

β
i , . . . , g

γ
t ).

2. The map e is non-degenerate, i.e. if gi ∈ G1, for i = 1, . . . , t, are all gener-
ators of G1, then gt+1=e(g1, . . . , gt) is a generator of G2.

Definition 4. (Injective function f). A function f : S → G is injective if it
maps each element of S into exactly one distinct element of G, where S is a set
and G is a group. The size of G must be equal or greater than S.

Definition 5. (Isomorph ring). The (R1,+,×) ∼= (R2,+,×) are isomorph rings
if there exists a reversible bijective function f : R1 → R2 in a sense that it maps
each element of R1 to exactly one element of R2 and each element of R2 is paired
to exactly one element of R1. For any elements a and b ∈ R1 the following is
yield.

f(a) + f(b) = f(a+ b) (2)

f(a)× f(b) = f(a× b) (3)



Definition 6. (Quotient ring). Let I be an ideal in Z we define an equivalence
relation ∼ on Z as below

a+ I = {a+ r : r ∈ I} (4)

a ∼ b ⇐⇒ a− b ∈ I (5)

We use Z/I to show the set of all such equivalence classes. The Z/I is a ring
and we have

(a+ I) + (b+ I) = (a+ b) + I (6)

(a+ I)(b+ I) = (ab) + I (7)

The multiplicative identity of R = Z/I is 1̄ = (1 + I) and its zero-element is
0̄ = (0 + I) = I.

3 The Proposed Graded Encoding Scheme

Before describing our Graded Encoding Scheme, first, the Yamakawa self-bilinear
map should be discussed. The bilinear map is a multilinear map that has two
domain inputs (t = 2 in Definition 4) and a different target group, where its
target group and domain groups are different. Yamakawa et al. proposed a new
bilinear map, named the self-bilinear map, where the two domain groups and the
target group are the same with unknown order [23]. If the order of the self-bilinear
map group is known (e.g. a safe prime 2p + 1, where p is also prime), then the
CDH problem will be easy in this group, because, if e(g, g) = g1 = gc mod 2p+
1 then e(ga, gb) = gab1 mod 2p + 1 = gabc mod 2p + 1. Therefore computing

gab mod 2p + 1 is possible by computing e(gc
−2

, e(ga, gb)) = gbc mod 2p + 1,

while gc
−2

= gc
p−3

mod 2p + 1 [23], [24]. The gc
−2

mod N can be computed by

at most O(logp) computations since e(gc
i

, gc
i

) = gc
2i+1

and e(g, gc
i

) = gc
i+1

[24].
Yamakawa revealed that in self-bilinear schemes the decisional assumptions like
the decisional Diffie-Hellman (DDH) assumption cannot hold and they consider
only computational assumptions like CDH problem [23]. A self-multilinear map
is defined as follows:

Definition 7. Self-Multilinear Map: Let R be a ring of the unknown order q
and G be an isomorph cyclic group of the unknown order q. Then the map e :
G×R× · · · ×R︸ ︷︷ ︸

t times

→ G is called a self-multilinear map if it satisfies the following

properties:

1. For any integer r ∈ S, where S is a set of integers, generator g ∈ R and
generator ǵ ∈ G we have

e(ǵ, g, . . . , g, . . . , g)r = e(ǵ, g, . . . , gr, . . . , g) = e(ǵr, g, . . . , g, . . . , g). (8)



2. The map e is non-degenerate; that is, if gi ∈ R, for i = 1, . . . , t − 1 are
generators of R and ǵ is a generator of G then gt = e(ǵ, g1, . . . , gt−1) is also
a generator of G.

Let N = ṕq́ = (2p + 1)(2q + 1) be a safe modulus, where q > p, I be a
principal ideal over Z generated by q and z(q) be a random polynomial of q,
then Z/qZ = {0, 1, . . . , q− 1} is considered as a quotient ring. In this article the
(R = Z/I,+,×) is defined as a ring of order q with generator p+ z(q). We have
y1p

2 + z(q) mod q = (y1p
2 mod q) + z(q), so y1p

2 + z(q) is an element of R.
Let g be a generator of subgroup G1 of Z∗

N of order pq. The (G,+) is defined as
a group of order q with generator gp mod N , where the ring R over + and the
group (G,+) are isomorph, which makes them behave a similar manner.

In the proposed GES, [y]1 = e = yp+kq ∈ R is a level-1 public encoding of y
and [y]b1 = d = gpy mod N ∈ G is the blinded version of this encoding of y, where
y ∈ {0, 1, . . . , q− 1} is the plaintext and k is a random integer. The exponent of
p is encoding level (e.g. yp2 + z(q) is a level-2 encoding of y, where z(q) is the
polynomial of q, thus making z(0) = 0). The z(q) is considered as the noise of
encoding and does not affect the result of extraction algorithm. Let [yi1 ]b1 = di1
be a blinded level-1 encoding of yi1 , and ei2 , ei3 be the level-1 encodings of yi2
and yi3 , respectively. The blinded level-1 encoding of yi is referred to as the rep-
resentation of yi at level 1. To extract a representation of element F = yi1yi2yi3
at level 3, users can simply compute (di1)ei2ei3 = gp

3yi1yi2yi3 mod N . The final
result of the extraction algorithm does not depend on the actual polynomial
z(q), which may be added during arithmetic operations on encoded elements;
that is z(q) is just the encoding noise indicating that there exist too many en-
codings for an integer yi. Because 1 randomizers are not applied, there is no
way for generating two different encodings for the same integer. This property
prevents many attacks. If one can find three different encodings ui1 , ui2 and ui3
of the same integer yi, he can break the security of the proposed GES scheme
by first, applying the Euclidean algorithm on ui1 − ui2 and ui1 − ui3 , which is
assumed to output a multiple of q, and second, computing the gcd of this output
and ui2 − ui3 , which would be q. Next to this, because in the proposed GES,
users can obtain only a unique codeword of an element in a specific level, no
zero testing parameter pzt is needed for equality testing.

In this GES, instead of publishing encodings of zero and one as system pa-
rameters, the level-1 and blinded level-1 encodings of m random integers are
published. The value of m will be determined later. Now assume that users want
to obtain an encoding of an element of S, where S = {2, 3, . . . , 2m} is a set
of integers, then, instead of obtaining the encoding of an element r ∈ S they
can compute an encoding of the image of r (ŕ) in the ring R and group G.
The users have access to description of S, with no idea about the real value
of the image of r in the R and G. Let W = {(e1, d1), . . . , (em, dm)}}, where
ei = [yi]1 = yip + kiq ∈ R and di = [yi]

b
1 = gpyi mod N ∈ G for i ∈ {1, . . . ,m},

are the valid level-1 and blinded level-1 encodings of yi respectively. The ki’s are



the random integers and {y1, . . . , ym} is a super-increasing set of private inte-
gers. For any integer ri ∈ S, the image of ri is defined in the ring R and group
G, symbolized by ŕi, as follow:

ŕi =

m∑
j=1

yjr
(j)
i , (9)

where r
(j)
i is the jth bit of ri. That is users encode r and they obtain an en-

coding of the image of r in the ring R and group G. The encoding algorithm is
explained in the Section 3.1.
The {y1, . . . , ym} must be a super-increasing set, that is, there exists an injective

relationship between ri and ŕi, where ŕi = y1r
(1)
i + · · ·+ymr

(m)
i . To generate this

set in a secure manner, first, the two 80-bit random integers y1 and y2 must be
chosen, where y2 > y1, followed by choosing y3 > y2 + y1, and y4 > y3 + y2 + y1

and so on.
If {y1, . . . , ym} is not a super-increasing set, then there exist no one-to-one re-
lationship between ri and ŕi. In this case, there is a chance to have the two
different integers ri and rj with the same images ŕi = ŕj . However, Because of
the large space of 2m and Z∗

N , this probability is negligible.

Definition 8. (GCDH and Ext-GCDH Problems). Given system parameter SP
and t+ 1 level-1 encodings [y0]1, [y1]1, . . . , [yt]1 as inputs, the Graded-CDH and
Extraction Graded CDH problems are defined as follows [5].

– (Graded CDH Problem): Output [y1 × · · · × yt]t−1.
– (Ext-Graded CDH Problem): Output the extracted string of level-t en-

coding [y1×· · ·×yt]t, which is equal to level-t blinded encoding [y1×· · ·×yt]bt .

Because of its self-multilinearity property, the Graded-DDH problem is not
hold in the proposed GES. Based on Theorem 1, the Graded-CDH in the pro-
posed GES is as hard as integer factorization.

Theorem 1. Computing [y]t−1 = ypt−1 + z(q) from [y]t = ypt + z(q) (down-
grading the level of encodings) is as hard as integer factorization.

Proof. Let N = (2p + 1)(2q + 1) be a safe RSA modulus, er = (N − 1)/2 =
p + (2p + 1)q and r ∈R Z∗

N . Suppose that there exists an adversary able to
downgrade the level of encoding, then there exists an algorithm B, which can
factor N . The algorithm B sends rer = rp + z(q) to the adversary. Note that
rer is a valid level-1 encoding. Assume that the adversary is able to compute
r+z(q) and send it back to the algorithm B, then the algorithm B can compute
z(q) = r+z(q)−r, which is a polynomial of q and can lead the attacker to factor
N . �

The Ext-Graded-CDH problem indicates that, it is not possible to compute
[y]bt = gyp

t

mod N from [y]t = ypt + z(q). For this computation, the attacker



must remove z(q) from [y]t or extract the p-root of (gp)yp
t+z(q) mod N , which

needs the knowledge of factorization of N . The representation of an element at
different levels of encoding is different. The Ext-Graded-CDH problem is for-
mally proved in Theorem 3.

3.1 Description of the proposed GES

The proposed GES consists of the following five algorithms:

1. Instance generation InstGen(1λ). Given security parameter λ, this algo-
rithm determines system parameters SP = {N,G,R,S, gp, W = {(e1, d1), . . .
, (em, dm)}}, where N is a safe RSA modulus, G is a subgroup of Z∗

N of or-
der q, gp is a generator of G, R is a ring of order q as defined in previous
section and ei = [yi]1 = yip + kiq ∈ R, di = [yi]

b
1 = gpyi mod N ∈ G for

i ∈ {1, . . . ,m} are the valid level-1 and blinded level-1 encodings of yi’s. The
ki’s are the random integers and {y1, . . . , ym} is a super-increasing set of pri-
vate integers. The Key Generation Center (KGC) keeps {y1, . . . , ym} private.

2. Obtaining a level-1 encoding of an element Level-1-enc(SP ). Any user
chooses uniformly random integer ri and then generates a level-1 encoding
([ri]1 = ei) and a blinded level-1 encoding ([ri]

b
1 = bi) of an integer ri ∈ S

by computing the following equation:

ui =r
(1)
i e1 + · · ·+ r(m)em (10)

=((r
(1)
i )y1 + · · ·+ (r

(m)
i )ym)p+ ((r

(1)
i )k1 + · · ·+ (r

(m)
i )km)q

=pŕi + z(q),

bi =d
r
(1)
i

1 × · · · × dr
(m)
i
m (11)

=gp(y1(r
(1)
i )+···+ym(r

(m)
i )) mod N

=gŕip mod N,

where bi ∈ R and ui ∈ G, are the encoding of ŕ in R and G respec-
tively. The user i publishes ui as level-1 encoding of the unknown value

ŕi =

m∑
j=1

yjr
(j)
i and keeps bi secret for himself. It is obvious that obtaining ri

from ui =

m∑
j=1

r
(j)
i ej requires solving an instance of the SSP problem which

is assumed to be intractable.

3. Adding encodings Add(α, β). The addition procedure is given the two
blinded encodings (α, β)=(bi, bj) or the two non-blinded encodings (α, β)=(ui, uj)



with arbitrary level κ as input, and will produce another element with the
same level through the following equation:

ui + uj = [ri]κ + [rj ]κ = (ŕi + ŕj)p
κ + z(q) = [ri + rj ]κ (12)

bibj = [ri]
b
κ[rj ]

b
κ = g(ŕi)p

κ

g(ŕj)p
κ

= g(ŕi+ŕj)p
κ

mod N = [ri + rj ]
b
κ, (13)

where z(q) is the encoding noise and does not affect the final result. Users
are not allowed to perform any operation on elements of S.

4. Multiplying encodings Mul([r]κi , [rj ]κj ). The multiplication procedure is
given two non-blinded encodings ui = [ri]κi and uj = [rj ]κj with arbitrary
levels κi and κj as the input and multiplies them as follows:

uiuj = [ri]κi [rj ]κj = (ŕiŕj)p
κi+κj + z(q) = [rirj ]κi+κj , (14)

where the result is a level-(κi + κj) encoding of r1r2. Users are not allowed
to perform any operation on elements of S.

5. Extraction Ext(N, [ri]
b
κi , [rj ]κj ). This algorithm is given an encoding uj =

[rj ]κj with any arbitrary level κj and a blinded level-κi encoding bi = [ri]
b
κi

as the input and then extracts the representation (blinded encoding) of
[ri.rj ]

b
κi+κj at level κi + κj .

(bi)
uj = gp

κi+κj ŕiŕj mod N = [rirj ]
b
κi+κj (15)

Let a1, a2 ∈ S be two integers and a3 = a1 + a2, then [a3]1 6= [a1]1 + [a2]1 (e.g.
[2]1 + [4]1 6= [6]1). Because, the elements of S is mapped to R and G by injective
functions f1 : S → R and f2 : S → G (i.e. functions f1 and f2 are not mor-
phisms), then f(u× v) 6= f(u)× f(v) and f(u + v) 6= f(u) + f(v). As a result,
no operation on S is defined, in the first place.This property does not cause any
obstacle for the applications of the resultant GES such as key exchange and mul-
tilinear map, because, in these applications, extracting the value of an encoded
element is not intended, and users just wants to securely obtain a unique key by
using a public tool.

Parameter setting. For λ = 80 bit security the modulus of computation
must be at least 1024-bit. Computing ri from ui is an instance of the SSP
problem. The most efficient algorithms for solving the SSP problem have the
complexity O(mc), where c is a size of the largest member of W , O(u

√
m) and

O(2m/2). At m = 2λ = 160, it is necessary to assure that u ≥ c > 280. Here, N
is a safe RSA modulus, p and q are chosen to be at least 511-bit primes and all
of the members of W are at least 512-bit integers, thus u ≥ c > 2511.

4 Multilinear Map

The proposed GES can be used to construct an efficient multilinear map. In this
system, a trusted third party runs InstGen(1λ) to generate system parameters



SP , and then it will announce it publicly. Then any user can generate his en-
coding, do various operations on encodings, and run a multilinear map in any
arbitrary multilinearity-degree.
Instance Generation(1λ). The instance generation algorithm takes the se-
curity parameter λ as input and then runs InstGen(1λ). Finally, it publishes
SP = {N,G,R,S, gp,W = {(e1, d1), . . . , (em, dm)}} as public parameters.

Element Encoding(SP ). Given system parameters SP as input, user i
generates a level-1 encoding (ui = [ri]1) and a blinded level-1 encoding (bi =
[ri]

b
1) of an arbitrary element ri by running Level-1-enc(SP ) algorithm. The user

keeps bi secret and publicly publishes ei.

Group Operation(SP, α, β). This algorithm takes the system parameters
SP and two encodings (α, β) as input, where (α, β) = ([ri]κ, [rj ]κ) or two en-
codings (α, β) = ([ri]κi , [rj ]κj ) or two blinded encodings (α, β) = ([ri]

b
κ, [rj ]

b
κ).

Users can compute [ri]
b
κ[rj ]

b
κ = [ri + rj ]

b
κ = gp(ŕi+ŕj) mod N and [ri]κ + [rj ]κ =

[ri + rj ]κ = (ŕi + ŕj)p
κ + z(q) as well as multiple of two non-blinded level-κi and

level-κj encodings by computing [ri]κi [rj ]κj = [rirj ]κi+κj = (ŕiŕj)p
κi+κj + z(q),

where the result is at level κi + κj and z(q) is the noise of encoding.

Multilinear Map(SP, [ri1 ]bκi1 , [ri2 ]κi2 , . . . , [rit+1 ]κit+1
). This algorithm is given

the system parameters SP , t encodings {ui2 = [ri2 ]κi2 , . . . , uit+1 = [rit+1 ]κit+1
}

with level {κi2 , . . . , κit+1
} and one blinded level-κi1 encoding bi1 = [ri1 ]bκi1 as

input and generates a blinded level-(κi1 + · · ·+ κit+1
) encoding (representation)

of [ri1 . . . riκ+1
]κi1+···+κit+1

as below

e(bi1 , ui2 , . . . , uit+1) =(bi1)

t+1∏
j=2

uij
mod N (16)

=g
p
(κi1

+···+κit+1
) t+1∏
j=1

uij
mod N

=[ri1 . . . rit+1
]bκi1+···+κit+1

The following lemma proves that the proposed multilinear map is non-degenerate.

Lemma 1. The proposed self-multilinear map is non-degenerate.

Proof. Let the order of G and gp be a prime integer q, then for any integer y ∈
Z−{q, 2q, . . . }, (gp)y is also a generator of G. Next to this, because, there is not
any two integers y1 and y2 such that y1y2 = 0 mod q, the proposed multilinear
map is non-degenerate. �

The proposed multilinear map needs an off-line trusted party to perform a
trusted setup. However, the proposed self-multilinear map does not need KeyGen
phase as in MP-NIKE schemes, and it is not limited to a predefined number of
users. Because of self-multilinearity property, the output of the self multilinear
map can be used as an input for another self-multilinear map.



5 Efficient Multi-party Non-interactive Key Exchange
(MP-NIKE) scheme without key generation algorithm
run by TTP

The proposed GES-based MP-NIKE scheme does not require an on-line key
generation server since any user can generate his public/private keys. Suppose
k + 1 users aim to compute a shared key. The proposed MP-NIKE scheme has
the following three algorithms.

1. Setup(1λ). This algorithm takes as input the security parameter λ and runs
InstGen(1λ).

2. Publish(SP ). In this algorithm, given the system parameters SP , every
user runs Level-1-enc(SP ). So, at the end of this algorithm, any user,
for example the i-th user, will receive k encodings u1 = [r1]1, . . . , ui−1 =
[ri−1]1, ui+1 = [ri+1]1, . . . , uk+1 = [rk+1]1 from other k users. These en-
codings are regarded as other users’ public keys. Moreover, each user, for
example the i-th user, generates a blinded level-1 encoding bi = [ri]

b
1 which

is regarded as his private key.
3. ShareKey(N, {[r1]1, . . . , [ri−1]1, [ri+1]1, . . . , [rk+1]1}, [ri]b1). This algorithm

is given the system parameters, k level-1 encodings {[r1]1, . . . , [ri−1]1, [ri+1]1, . . . , [rk+1]1}
and a blinded level-1 encoding bi = [ri]

b
1 and outputs the representation of

r1 × r2 × · · · × rk+1 at level k. In the proposed MP-NIKE scheme, users
are not limited to a predefined level K and the representation of encoded
element can be extracted in any arbitrary level.

e(bi, u1, . . . , ui−1, ui+1, . . . , uk+1) =(di)

k+1∏
j=1,j 6=i

uj
mod N (17)

=g
pk+1

k+1∏
j=1

ŕij
mod N

For example, suppose that at the end of Publish(SP ) the user 1 receives
three level-1 encodings u2 = y2p + k2q mod N , u3 = y3p + k3q and u4 =
y4p + k4q. It wants to obtain a representation of y1y2y3y4 at level 4. So, it
computes d

uj
1 , where uj = u2u3u4. Note that the result does not depend on

the coefficient of q.

6 ID-Based MP-NIKE

In ID-based cryptography, the public key of users is obtained directly from the
identity of users. Fortunately, in the MP-NIKE scheme of [1] any logN -bit ran-
dom integer r can be a valid public key and the KGC has a trapdoor to compute
its respective private key, while others cannot do it. The TTP can use algorithm
ID-KeyGen(SP, IDi) to compute the private key of user i.



ID-KeyGen(N, g,msk, IDi). This algorithm takes the modulus of compu-
tation, generator g, master secret key msk = {p, q} and identity of user i as
input and after user authentication, it generates a valid private key for user i.
Let N = ṕq́ = (2p+ 1)(2q + 1) be a n-bit safe modulus, H : {0, 1}∗ −→ {0, 1}n
be a secure cryptographic hash function and hi = H(IDi) be the public key of
user i. Any integer bigger than Frobenius number (pq−p−q) can be represented
by linear combination of p and q [25]. So, any n-bit random integer r can be
valid public key of MP-NIKE scheme of [1].

The KGC computes the private key of user i as below

hip
−1 mod q =yhipp

−1 + khiqp
−1 mod q (18)

=yhipp
−1 mod q

=yhi mod q.

Now the algorithm ID-KeyGen generates the private key for user i as gpyhi mod
N .

7 Security Analysis

The security of this proposed GES scheme is proved in this Section. First,
in Theorem 2, the intractability of decompositioning an encoding u = [r]1 to
e1r

(1) + · · ·+ r(j)ej + · · ·+ r(m)em and recovering r is proved.

Theorem 2. The adversary that has access to system parameters SP = {N,G,
R,S, gp,W = {(e1, d1), . . . , (em, dm)}} and a non-blinded level-1 encoding u =
[r]1 = e1r

(1) + · · ·+ r(j)ej + · · ·+ r(m)em cannot compute r.

Proof. Suppose that there is an adversary A which can compute r from u = [r]1,
then there is an algorithm B which can solve an instance of the SSP problem.
Algorithm B is given a non-super-increasing set of m-bit integers {e1, . . . , em}
as input and must find all the subsets whose sum of elements is equal to u.
The algorithm B generates a safe RSA modulus N = (2p+ 1)(2q + 1), choose a
generator g ∈ Z∗

N and then computes

yi = eip
−1 mod q (19)

di = gpyi mod N. (20)

Note that any integer larger than Frobenius number (pq − p− q) can be a valid
public encoding in the proposed GES. Finally the algorithm B sends SP =
{N,G,R,S, gp,W = {(e1, d1), . . . , (em, dm)}} and u to the adversary A. If the
adversary A can computes r such that u = r(1)e1 + · · · + r(m)em and sends it
back to B. Then algorithm B outputs r(1), . . . , r(m) (r) as the solution of the
SSP problem. �

Theorem 3 proves that the security of the proposed scheme is equal to the
MP-NIKE scheme of [1].



Theorem 3. The security of the proposed GES is equal to the MP-NIKE scheme
of [1].

Proof. Suppose that there exists an adversary A that can breaks the secu-
rity of the proposed GES scheme, then there exists an algorithm B that can
break the security of the MP-NIKE scheme of [1]. Suppose that there is an
algorithm B which is given the public parameter PP = {N,H(·), gp} and m
public/private key pairs W = {(e1, d1), . . . , (em, dm)} as input and it must com-
pute the shared key of group W ∗ = {u1, . . . , us}, where ui is a valid public
key of [1] MP-NIKE scheme. The algorithm B gives SP = {N,G,R,S, gp,W =
{(e1, d1), . . . , (em, dm)}} as the system parameters and W ∗ = {u1, . . . , us} as a
valid level-1 encodings to the attacker A. If the adversary A can computes Ext-
Graded CDH(u1, u2, . . . , us) and return it to the algorithm B, then the algorithm
B can solve the inputted problem. �

8 Conclusion

In this article, a new efficient GES is introduced, where users are simply able to
generate an encoding of the image of an element, without re-randomization. In
this scheme, the users are not able to generate several encodings of the same ele-
ment, while the noise of encoding is always fixed, thus, the zero testing parameter
and re-randomization are not necessary. The extraction algorithm can run on
any encoding with any arbitrary level. This GES can be applied in constructing
a multilinear map. This GES multilinear map is secure, efficient and practical
in different applications, like the multi-party non-interactive key exchange with-
out the key generation algorithm run by TTP. The MP-NIKE scheme of [1] is
improved here and turned to an ID-based scheme.
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