
Combining Montgomery Multiplication with Tag Tracing for the

Pollard's Rho Algorithm in Prime Order Fields

Madhurima Mukhopadhyay1 and Palash Sarkar1

1Applied Statistics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, India 700108
Email:{madhurima r,palash}@isical.ac.in

January 12, 2021

Abstract

In this paper, we show how to apply Montgomery multiplication to the tag tracing variant of the
Pollard's rho algorithm applied to prime order fields. This combines the advantages of tag tracing with
those of Montgomery multiplication. In particular, compared to the previous version of tag tracing,
the use of Montgomery multiplication entirely eliminates costly modular reductions and replaces these
with much more efficient divisions by a suitable power of two.
Keywords: Cryptography, Discrete logarithm problem, Pollard’s Rho, Tag Tracing, Montgomery
multiplication.
MSC (2010): 94A60.

1 Introduction

Let G be the finite cyclic group and g be a generator of G. The discrete logarithm problem (DLP) in G
is the following. Given a non-zero element h of G, find i such that gi = h. This i is called the discrete
logarithm of h to base g which is written as i = logg h. Over suitably chosen groups, the DLP is considered
to be a computationally hard problem and forms the basis for security of various cryptosystems.

The best known generic algorithm for solving DLP is the Pollard's rho algorithm [Pol78]. The resources
required by the algorithm is

√
#G time and negligible space. Since its introduction, several variants of

the Pollard's rho algorithm have been proposed. In particular, the tag tracing variant [CHK12] showed
the possibility of obtaining practical speed-up of the Pollard's rho algorithm for certain groups. Concrete
speed-ups were demonstrated for prime order subgroups of multiplicative groups of finite fields. Two kinds
of fields were considered in [CHK12], namely, prime order fields and small characteristic, large extension
degree fields. We focus on the application of tag tracing to prime order fields.

Let p be a prime, Fp be the finite field of p elements. The group G where DLP is considered is typically
a prime order subgroup of F?p.

Pollard's rho algorithm performs a pseudo-random walk. For solving DLP in Fp, each step of the walk
requires performing a multiplication in Fp. The improvement achieved by the tag tracing method is to
ensure that a field multiplication is required after every ` steps for a suitable choice of the parameter `. In
the intermediate steps between two field multiplication steps, a special computation is performed by the
tag tracing method. This computation is significantly faster than a field multiplication. So, tag tracing
speeds up Pollard's rho algorithm by a factor of about `.

A field multiplication in Fp consists of two phases. The first phase is an integer multiplication while
the second phase is a reduction modulo p operation. For primes p not having a special structure, the
reduction operation can require a substantial portion of the overall time for a field multiplication. The
technique of Montgomery multiplication [Mon85, BM17] works with Montgomery representation of ele-
ments and replaces a field multiplication by a Montgomery multiplication. The advantage of Montgomery

1

multiplication is that all divisions are by certain powers of two and so can be implemented using right
shift operations. The expensive modulo p operation is no longer required.

In this work, we show how the Montgomery multiplication can be combined with the tag tracing
method. The goal is to retain the advantages achieved by tag tracing and also simultaneously replace the
field multiplications required after every ` steps by a Montgomery multiplication. All the time consuming
modulo p operations are completely eliminated. Consequently, the Montgomery multiplication version of
tag tracing achieves further speed-up compared to the usual tag tracing algorithm. The combination of
Montgomery multiplication and tag tracing is achieved without any trade-offs. In particular, the storage
space required remains the same in both cases.

2 Background

We provide brief descriptions of Pollard's rho, tag tracing and Montgomery multiplication.

Pollard's Rho: The Pollard's rho algorithm [Pol78] is a well known method for solving DLP in prime order
fields. Several variants of this algorithm have been studied. We briefly mention the variant introduced
in [SJ84].

Let r be a small positive integer. For i = 1, . . . , r, randomly choose integers αi, βi ∈ {0, . . . , p−2} such
that both αi and βi are not zeros. Define mi = gαihβi , i = 0, . . . , r − 1. A pre-computed table T stores
the entries (i,mi, (αi, βi)) for i = 0, . . . , r − 1. Define an indexing function s : G→ {0, . . . , r − 1}. Using
s, a sequence of elements of G is defined as follows. Choose a0, b0 ∈ {0, . . . ,#G− 1} and set g0 = ga0hb0 .
For j ≥ 0, define gj+1 = gjms(gj). The computation of the sequence g0, g1, g2, . . . is considered to be a
pseudo-random walk on G.

Writing gj = gajhbj for j ≥ 0, we have aj+1 = aj +αs(gj) and bj+1 = bj +βs(gj). So, it is easy to obtain
aj+1 and bj+1 from aj and bj . Since G is finite, there must be some j and k, with j < k such that gj = gk,
i.e., the pseudo-random walk must lead to a collision. Denoting logg h by d, the condition gj = gk leads
to the relation aj +dbj = ak +dbk. Under the condition that bj− bk is invertible modulo #G (which holds
with high probability for large p and appropriate group G), we have d = (aj − ak)(bk − bj)−1 mod #G.

There are several methods for detecting collisions. The distinguished point method [vOW99] is the
most practical of these methods and allows parallelisation.

Tag Tracing: In the pseudo-random walk defining Pollard's rho algorithm, the computation of gj+1 from
gj is done by multiplying gj and ms(gj). So, each step requires a field multiplication. The tag tracing
method was introduced in [CHK12]. The essential idea is to increase the size of the pre-computed table
so that a field multiplication is required after every ` steps for a suitable choice of the parameter `. The
computation done in the intermediate steps between two field multiplications is significantly faster than
a field multiplication.

The set of multipliers {mi : mi = gαihβi , i = 0, . . . , r − 1} is defined as in the case of the original
Pollard's rho algorithm. Choose a parameter ` and let M` be the set of all possible products of at
most ` elements from M. The elements of M` can be indexed by vectors of the form (i1, . . . , ik) where
i1, . . . , ik ∈ {0, . . . , r − 1} and 0 ≤ k ≤ `. Given x = (i1, . . . , ik), the element of M indexed by x is
mx = mi1 · · ·mik . Note that if x′ is obtained by permuting the components of x, then mx′ = mx. So, we
will assume that the vector x satisfies i1 ≤ i2 ≤ · · · ≤ ik. A pre-computed table Tab is created. The rows
of Tab are as follows.

(x,mx, (a.b), (m̂0, . . . , m̂d−1))

where

• x = (i1, . . . , ik), with 0 ≤ k ≤ `, i1, . . . , ik ∈ {0, . . . , r − 1},

• mx = mi1 · · ·mik mod p,

• (a, b) is such that mx = gahb.

2

We explain the component (m̂0, . . . , m̂d−1) later. The table Tab is stored as a hash table (or, some other
suitable data structure), so that given an appropriate vector x, it is easy to locate the corresponding row
of Tab.

The indexing function s : G → {0, . . . , r − 1} defines the pseudo-random walk. Tag tracing requires
an auxiliary indexing function s : G×M` → {0, . . . , r − 1} ∪ {fail}, such that

if s(y,m) 6= fail, then s(y,m) = s(ym).

Suppose the element at the j-th step of the pseudo-random walk is gj . The elements in the next ` steps
are gj+1, . . . , gj+`. For 1 ≤ i < `, recall that in the Pollard's rho algorithm gj+i = gj+i−1ms(gj+i−1).
Iterating leads to the following.

gj+i = gj+i−1ms(gj+i−1)

= gj+i−2ms(gj+i−2)ms(gj+i−1)

= · · ·
= gjms(gj)ms(gj+1) · · ·ms(gj+i−1).

The goal of the tag tracing method is to avoid computing the intermediate elements gj+1, . . . , gj+`−1 and
instead jump directly from gj to gj+`. This requires obtaining the element ms(gj)ms(gj+1) · · ·ms(gj+`−1) and
so in particular, the index values s(gj), s(gj+1), . . . , s(gj+`−1). Since gj is available, s(gj) can be directly
obtained. For i > 1, the value of s(gj+i) is obtained using the auxiliary tag function s as

s(gj+i) = s(gjms(gj)ms(gj+1) · · ·ms(gj+i−1))

= s(gj ,ms(gj)ms(gj+1) · · ·ms(gj+i−1)).

The elements ms(gj)ms(gj+1) · · ·ms(gj+i−1) for i = 0, . . . , ` − 1 are elements of M` and are part of the
pre-computed table.

In the tag tracing method, a tag set T is identified. The index function s is defined as the composition
of a tag function τ : G → T and a projection function σ : T → {0, . . . , r − 1}, i.e., for y ∈ G, s(y) =
σ(τ(y)). Similarly, the auxiliary index function s is defined as the composition of an auxiliary tag function
τ : G ×M` → T and a projection function σ : T → {0, . . . , r − 1} ∪ {fail}, i.e., for y ∈ G and m ∈ M`,
s(y,m) = σ(τ(y,m)).

The definitions of τ, σ, τ and σ depend on a number of parameters. The two basic parameters are the
prime p and the size of the index set r. The tag set is T = {0, . . . , t− 1} which also defines the parameter
t. The parameter u is taken to be a suitable word size and d is defined to be d = dlogu(p−1)e. An integer
t is chosen such that t > d(u − 1) and tt < p1/3. The parameter w is defined to be w = tt. Finally, the
parameter r is defined so that rr = t. As shown in [CHK12], it is possible to choose all the parameters
(other than p) to be a power of 2. Based on these parameters, the functions τ and σ are defined as follows.

τ(y) =

⌊
y mod p

tw

⌋
; σ(x) = bx/rc.

To define the function τ , elements of y ∈ F?p are represented in base u as y mod p = y0+y1u+· · ·+yd−1ud−1.
Given m ∈M`, for i = 0, . . . , d−1, define m̂i = b(uim mod p)/wc. Since u is fixed, for each m ∈M`, the
values m̂0, . . . , m̂d−1 are pre-computed and stored in the table Tab along with m (as mentioned earlier).

Given y ∈ G and m ∈M`, the value of τ(y,m) is defined to be the following.

τ(y,m) =

(∑d−1

i=0 yim̂i

)
mod w

t

 .
Given x ∈ T , the function σ is defined as follows.

σ(x) =

{
fail if x ≡ −1 mod r,
bx/rc otherwise.

3

The proof of correctness of the tag tracing procedure based on the above definitions of s and s is complex.
We refer to [CHK12] for details. The use of tag tracing for Pollard's rho requires a suitable definition of
distinguished point. Again, we refer to [CHK12] for details.

The computation of s has a chance of failure. In case of failure, a field multiplication is required.
Otherwise, a field multiplication is required after every ` steps. The computation of s require the com-
putations of τ and σ. The quantities m̂0, . . . , m̂d−1 are part of the pre-computed table. So, for the
computation of τ , the d multiplications yim̂i, i = 0, . . . , d − 1 are required. Apart from these, all other
computations are divisions by w, t and r. Since these are chosen to be powers of 2, such computations
are very fast. Overall, the computation of s is significantly faster than a field multiplication.

Our description of tag tracing has been in the context of DLP computation in a multiplicative subgroup
of F?p as given in [CHK12]. A general description of the method applicable to any finite cyclic group for
which suitable tag and projection functions can be defined has been provided in [CHK12]. Further, the
application of the method to small characteristic, large extension degree fields has also been described
in [CHK12].

Montgomery Multiplication: Let x and y be two elements of Fp and the requirement is to compute the
product xy ∈ Fp. Typically, this is a two-stage process, where in the first stage the integer multiplication
of x and y is carried out and then the result is reduced modulo p. The reduction operation can take
a substantial fraction of the total time to perform the field multiplication. This is especially true if p
does not have a special form. Montgomery multiplication was introduced [Mon85] to replace the costly
reduction operation modulo p by much cheaper divisions by powers of two. Below we provide a brief
description of Montgomery multiplication based on [BM17].

Following the notation used in the context of tag tracing, let u be a power of two representing a word
size and d be such that the elements of F?p have a d-digit representation to base u. Choose R = ud such

that ud−1 ≤ p < ud. Since p is odd and u is a power of two, there exists µ satisfying µ = −p−1 mod u.

The core of Montgomery multiplication is a procedure called Montgomery reduction. Given an in-
teger x having a d-digit representation to base u, Montgomery reduction computes xR−1 mod p. The
Montgomery multiplication is a generalisation which given two integers x and y computes xyR−1 mod p.
Suppose x and y satisfy 0 ≤ x, y < R and x is written as x =

∑d−1
i=0 xiu

i with 0 ≤ xi < u for i = 0, . . . , d−1.
From [BM17], the Montgomery multiplication procedure is the following.

z ← 0
for i = 0 to d− 1 do

z ← z + xiy
q ← µz mod u
z ← (z + pq)/u

end for
if z ≥ p then z ← z − p
output z.

It can be shown that the output z satisfies z ≡ xyR−1 mod p. For a proof of this statement, we refer
to [BM17]. The point to be noted here is that the only divisions in the above procedure are by u which
is a power of two. So, these divisions are simply right shift operations and are very fast.

Given two field elements x and y, one way to multiply them is to first convert them to Montgomery
representation by computing x̃ = xR mod p and ỹ = yR mod p, then performing a Montgomery multi-
plication of x̃ and ỹ to obtain z̃ = x̃ỹR−1 = xyR mod p and then performing a Montgomery reduction
(or, performing Montgomery multiplication of z̃ and 1) on z̃ to obtain z̃R−1 mod p = xy mod p. This
procedure has the overhead of converting x and y to Montgomery representation and at the end applying
a Montgomery reduction to z̃. So, for performing a single multiplication, this procedure is not very useful.
Instead, Montgomery multiplication turns out to be effective when a sequence of multiplications can be
done in the Montgomery representation.

4

3 Combining Montgomery multiplication with Tag Tracing

Pollard's rho algorithm inG consists of a sequence of multiplications modulo p. So, it is an ideal application
case for Montgomery multiplication. Let us first consider how this can be done.

As described earlier, the pseudo-random walk of the Pollard's rho algorithm starts with g0 and contin-
ues by computing g1, g2, . . ., where for j ≥ 0, gj+1 = gjms(gj). Recall that for each i ∈ {0, . . . , r − 1}, the

values αi and βi are known such that mi = gαihβi . As before, a pre-computed table T stores (i,mi, (αi, βi))
for i = 0, . . . , r − 1.

To perform Pollard's rho algorithm using Montgomery multiplication, the multipliers are converted
to Montgomery representation. This requires a change in the pre-computed table T. Denote the modified
table by modT. Then the rows of modT are (i, m̃i, (αi, βi)) for i = 0, . . . , r − 1, where m̃i = miR mod p.

As in the Pollard's rho algorithm described above, randomly choose a0 and b0 and define z0 = ga0hb0 .
Let z̃0 = z0R mod p be the Montgomery representation of z0. For j ≥ 0, we define zj+1 = zjms(z̃j) mod p.
Note that in this case, the indexing function s is applied to z̃j instead of being applied to zj . This is
because the element computed at the (j+1)-th step of the walk is z̃j+1. The quantity z̃j+1 is computed by
applying Montgomery multiplication to z̃j and m̃s(z̃j), i.e., z̃j+1 = z̃jm̃s(z̃j)R

−1 mod p = zjms(z̃j)R mod
p = zj+1R mod p.

With the above modification, all the multiplications required in the pseudo-random walk are Mont-
gomery multiplications. So, at no stage the reduction operation modulo p is required.

The exponent information can be obtained from the walk. For j ≥ 0, let zj = gajhbj . Note that a0
and b0 are known. Let i = s(z̃j). Then from the pre-computed table, it is possible to obtain (mi, αi, βi).
By definition, we have zj+1 = zjmi and so, aj+1 = aj + αi and bj+1 = bj + βi.

Now, suppose there is a collision in the pseudo-random walk, i.e., there are j and k with j < k such
that z̃j = z̃k. Using the definition of z̃j and z̃k, we have zjR = zkR mod p implying zj = zk mod p since
R is co-prime to p. Using zj = zk mod p, we obtain aj + dbj = ak + dbk, where d = logg h. From this
relation, it is possible to obtain d as mentioned earlier.

The distinguished point method for detecting collisions can be applied to this modified pseudo-random
walk by defining distinguished points based on z̃j for j ≥ 0.

The above description shows that using Montgomery multiplication to define the pseudo-random walk
for the Pollard's rho algorithm results in replacing all the relatively expensive modulo p operations with
divisions by powers of two. We next consider, how the tag tracing method can be applied to this version
of the Pollard's rho algorithm.

Let us first consider the difficulties in applying Montgomery multiplication to the setting of tag tracing.
Suppose the pseudo-random walk is at an element z̃j for some j ≥ 0. The goal of tag tracing is to perform
a single field multiplication to move to the element z̃j+`. For the intermediate points of the walk, the
index values s(z̃j), s(z̃j+1), . . . , s(z̃j+`−1) are required.

The goal is to replace the usual field multiplication with a Montgomery multiplication. On the other
hand, recall that the function s is obtained from the auxiliary function s, such that for y ∈ G and
x ∈M`, if s(y,m) 6= fail, then s(ym) = s(y,m). The product ym in the argument of s is the usual field
multiplication. So, there are two apparently conflicting requirements. For the movement from z̃j to z̃j+`,
a Montgomery multiplication is to be applied, while the indexing function s is defined with respect to the
usual field multiplication.

We show a simple resolution of this problem. The first thing to note is that the product in the

5

argument of s is not actually performed. Instead, s(ym) is computed as s(y,m). For 1 ≤ i ≤ `, we have

s (z̃j+i) = s
(
z̃j+i−1m̃s(z̃j+i−1)R

−1 mod p
)

= s
(
z̃j+i−1ms(z̃j+i−1)RR

−1 mod p
)

= s
(
z̃j+i−1ms(z̃j+i−1) mod p

)
= s

(
z̃j+i−2m̃s(z̃j+i−2)R

−1ms(z̃j+i−1) mod p
)

= s
(
z̃j+i−2ms(z̃j+i−2)ms(z̃j+i−1) mod p

)
= · · ·
= s

(
z̃jms(z̃j) · · ·ms(z̃j+i−2)ms(z̃j+i−1) mod p

)
= s

(
z̃j ,ms(z̃j) · · ·ms(z̃j+i−2)ms(z̃j+i−1) mod p

)
.

Let m = ms(z̃j) · · ·ms(z̃j+i−2)ms(z̃j+i−1) mod p. The element m is in the set M`. For computing τ , the
quantities m̂0, . . . , m̂d−1 derived fromm are required, but, the actual value ofm is not required. The fourth
component of the pre-computed table Tab corresponding to the entry for m has the values m̂0, . . . , m̂d−1.
So, using the entries in Tab, it is possible to compute τ(z̃j ,m) and hence s(z̃j ,m) which provides the value
for s (z̃j+i).

Now let us consider the computation of z̃j+` from z̃j .

z̃j+` = z̃j+`−1m̃s(z̃j+`−1)R
−1 mod p

= · · ·
= z̃jms(z̃j) · · ·ms(z̃j+`−2)ms(z̃j+`−1) mod p

= z̃jms(z̃j) · · ·ms(z̃j+`−2)ms(z̃j+`−1)RR
−1 mod p

= z̃jmRR
−1 mod p

= z̃jm̃R
−1 mod p

where m = ms(z̃j) · · ·ms(z̃j+`−2)ms(z̃j+`−1). So, z̃j+` is obtained by applying Montgomery multiplication to
z̃j and m̃. The element m is in the set M` and so is in the pre-computed table Tab. Note however, the
value of m̃ is required which is not present in Tab. One may, of course, obtain m̃ from m by performing the
product mR mod p. This would be costly and would defeat the whole purpose of utilising Montgomery
multiplication. So, a better option would be to include the element m̃ in the table Tab as part of the entry
corresponding to the row for m. This would increase the size of the table Tab. Instead, we propose that
in the table Tab, the entry m̃ is to be stored in place of m.

Let us denote the modified table by modTab. Based on the above discussion, the rows of the table
modTab are as follows.

(x, m̃x, (a.b), (m̂0, . . . , m̂d−1))

where

• x = (i1, . . . , ik), with 0 ≤ k ≤ `, i1, . . . , ik ∈ {0, . . . , r − 1},

• mx = mi1 · · ·mik mod p and m̃x = mxR mod p,

• (a, b) is such that m = gahb,

• m̂i = b(uim mod p)/wc for i = 0, . . . , d− 1.

6

So, modTab stores m̃ instead of m while the quantities m̂0, . . . , m̂d−1 in modTab are derived from m and
not from m̃. In particular, the only difference between Tab and modTab is that Tab stores m whereas
modTab stores m̃. All other entries of Tab and modTab are identical. So, the storage requirements of both
Tab and modTab are also the same.

Using modTab, tag tracing can proceed as follows. For the jump from z̃j to z̃j+`, the entry m̃ is to be
used, whereas for the computations of the outputs of the function s, the entries m̂0, . . . , m̂d−1 are to be
used. Consequently, the advantage of tag tracing is retained, i.e., all computations required for computing
the output of s are divisions by powers of two. Additionally, there is an efficiency gain where the field
multiplication required in tag tracing for the jump from the j-th step of the walk to the (j + `)-th step
of the walk is replaced by a Montgomery multiplication. As explained earlier, this replaces the costly
reduction operations modulo p by inexpensive divisions by powers of two.

4 Conclusion

In this work, we have shown how to combine Montgomery multiplication to the tag tracing variant of
Pollard's rho algorithm for solving DLP in Fp. This results in replacing costly modulo p operations with
divisions by a power of two which will lead to practical speed-ups in actual implementations.

References

[BM17] J. W. Bos and P. L. Montgomery. Montgomery arithmetic from a software perspectiv, pages
10–39. Cambridge University Press, 2017.

[Bos17] Joppe W Bos. Montgomery arithmetic from a software perspective. IACR Cryptology ePrint
Archive, 2017:1057, 2017.

[CHK12] J. H. Cheon, J. Hong, and M. Kim. Accelerating Pollard's rho algorithm on finite fields. Journal
of cryptology, 25(2):195–242, 2012.

[Mon85] P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
44(170):519–521, 1985.

[Pol78] J. M. Pollard. A Monte Carlo method for index computation (mod p). Mathematics of Com-
putation, 32(143):918–924, 1978.

[SJ84] C. Schnorr and H. Lenstra Jr. A Monte Carlo factoring algorithm with linear storage. Mathe-
matics of Computation, 43(167):289–311, 1984.

[vOW99] P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic applications. Jour-
nal of Cryptology, 12:1–28, 1999.

7

	Introduction
	Background
	Combining Montgomery multiplication with Tag Tracing
	Conclusion

