The Study of Modulo 2^{n}

A General Method To Calculate The Probability Or Correlation Coefficients For Most Statistical Property Of Modulo 2^{n}

Zhongfeng Niu
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
niuzhongfeng@iie.ac.cn

Abstract

In this paper, we present a new concept named the basic function. By the study of the basic function, we find the $O(n)$-time algorithm to calculate the probability or correlation for some property of Modulo 2^{n}, including the difference-linear connective correlation coefficients, the linear approximation correlation coefficients, the differential probability, difference-boomerang connective probability, boomerang connective probability, boomerang-difference connective probability, etc.

Keywords: Modulo addition 2^{n}. Markov chain • basic function • difference-linear connective correlation coefficients • linear approximation correlation coefficients . difference-boomerang connective probability • boomerange connective probability . differential probability boomerang-difference connective probability

Contents

1 Preliminaries 3
2 The Basic Function 4
2.1 The motivation and property 4
3 Notion Description About The Basic Function Series 6
4 The Aa-set 7
5 The $D f$-set 12
5.1 direct method 13
5.2 indirect method 16
5.3 Instance 17
A Reduce The Redundancy of Matrix 22

Introduction

Since the differential analysis and the linear analysis were proposed [1,2], statistical analysis, which makes use of some significant probability for the block cipher to distinguish from the random permutation, have become one of the research hotspots in the cryptanalysis of block cypher in the last 30 years. And most statistical analysis for block cypher is based on the statistical properties of nonlinear functions [1-5]. Specifically, most statistical properties of nonlinear functions is the probability that a series of boolean vector function with the form $\bigoplus_{i=1}^{n} f(x)_{i}$, where each $f(x)_{i}$ in the $\bigoplus_{i=1}^{n} f(x)_{i}$ is constituted by the composite
operation of \oplus, the nonlinear function and its inverse, are equal to some given values or the correlation coefficients of a single boolean vector function $\bigoplus_{i=1}^{n} f(x)_{i}$. In most of block cypher, the construction of nonlinear functions is based on the S-box that it can be regard as the nonlinear function with small scale, especially in the SPN structure and Festial structure, the calculation of statistical properties of nonlinear functions can be completed by calculating the statistical properties of S-box. Due to the S-box with tiny scale, the statistical properties of S-box can be got in a short time by trying all possible values. Thus, for the SPN cipher and the Festial cipher, it almost has no problem to do the statistical analysis, such as differential analysis, linear analysis, boomerang analysis, differential-linear analysis, etc. However, because of the modular addition 2^{n} with large-scale adopted as the nonlinear functions in ARX structure, it is infeasible for the ARX cipher to get the statistical properties of nonlinear functions by trying all possible value. In a word, compared with the SPN structure and the Festial structure, most studies of the utilize of statistical analysis method for the ARX cipher, especially the new method or improvement method proposed in the last decade, have made slow progress due to the above reason.

In order to overcome the above problem, we have to look for the polynomial time algorithms to calculate the statistical properties of modular addition 2^{n}. In 2001, Lipmaa.etc [6] and Johan Wallén [7] proposed the polynomial time algorithms to calculate the differential probability and the linear approximation correlation coefficients respectively, which was been about 10 years since the differential attack and the linear analysis were proposed. And in 2013, Schulte-Geers [8]showed that mod 2^{n} is CCZ-equivalent to a quadratic vectorial Boolean function. Based on it, he proposed the explicit formula to calculate the linear approximation correlation coefficients and the differential probability, of which time complex are polynomial. Since then, the CCZ-equivalent relation of mod 2^{n} had been acknowledged as the most powerful method to look for the polynomial time algorithms to calculate the statistical properties of modular addition 2^{n}. In addition, a series of new statistical properties, including the difference-linear connective correlation coefficients, difference-boomerang connective probability, boomerang connective probability and boomerang-difference connective probability, etc [1-5], were proposed in order to improve the previous methods. And those methods had better performance in the SPN cipher and the Festial cipher. Unfortunately, according to the study of difference-linear connective correlation coefficients for nonlinear function [9], for any two permutations in the same CCZ-equivalent class, their difference-linear connective correlation coefficients are not in general invariant. It means that the CCZ-equivalent relation can't be regard as the general method to look for polynomial time algorithms to calculate the statistical properties of modular addition 2^{n}. Then, the following questions may be asked naturally:
1.How to find the polynomial time algorithms to calculate such new proposed statistical properties?
2.Does there exits a general method that the explicit formula with polynomial time complex can be got for all of the current statistical properties of modular addition 2^{n} or even the properties that may come up in the future?

Our contribution

Firstly, this paper give the $O(n)$-time algorithm to calculate the probability or correlation for newly proposed property of Modulo 2^{n}, including the difference-linear connective correlation coefficients, the linear approximation correlation coefficients, the differential probability, difference-boomerang connective probability, boomerang connective probability, boomerang-difference connective probability, etc.

Secondly, for all of the current statistical property used for statistical analysis in block cipher, such as difference-linear connective correlation coefficients, the linear approxima-
tion correlation coefficients, the differential probability, difference-boomerang connective probability, boomerang connective probability, boomerang-difference connective probability, etc, it can be summarized as the probability of $\bigoplus_{z=1}^{n_{j}} f(x)_{z, j}=A_{j}, 1 \leq j \leq m$ or the correlation coefficients of $\lambda \cdot\left(\bigoplus_{i=1}^{n} f(x)_{i}\right)$, where $f(x)_{z, j}, 1 \leq j \leq m, 1 \leq z \leq n_{j}$; $f(x)_{i}, 1 \leq i \leq n$ are composite operation of \oplus, the nonlinear function and its inverse. Based the above fact, we propose the concept of the basic function, which is a composite operation of \oplus and \boxplus. Then, based on the regular of the basic function, we construct the Aa-set and Df-set. According to the property of the Aa-set and Df-set, we can answer the question 2. The general method has been found, which is fit for all of current statistical properties of modular addition 2^{n}. As a result, the form of formula for all of current statistical properties of modular addition 2^{n} are similar with the Johan Wallén's work.

1 Preliminaries

In this section, we will introduce some basic knowledge that we will use in the following.
Definition 1(Addition modulo 2^{n}): For $x, y \in F_{2}^{n}$, define $y \boxplus x=x \oplus y \oplus \operatorname{carr} y(x, y)$, where $\operatorname{carry}(x, y)=\left[c_{n-1}, \cdots, c_{0}\right]$. The i-th bit c_{i} is defined as

$$
\begin{aligned}
& c_{0}=0 \\
& c_{i+1}=\left(x_{i} \wedge y_{i}\right) \oplus\left(x_{i} \wedge c_{i}\right) \oplus\left(y_{i} \wedge c_{i}\right), 0 \leq i \leq n-1
\end{aligned}
$$

Definition 2: Let $x, y \in F_{2}^{n}, e \in F_{2}$, define $y \boxplus x \boxplus e=y \boxplus x \boxplus(0, \cdots 0, e)$.
Let $\operatorname{carr} y_{e}^{*}(x, y)=\left[c_{n-1}^{*}, \cdots, c_{0}^{*}\right]$, if we define i-th bit c_{i}^{*} as

$$
\begin{aligned}
& c_{0}^{*}=e \\
& c_{i+1}^{*}=\left(x_{i} \wedge y_{i}\right) \oplus\left(x_{i} \wedge c_{i}^{*}\right) \oplus\left(y_{i} \wedge c_{i}^{*}\right), 0 \leq i \leq t-1
\end{aligned}
$$

And the purpose of defining $\operatorname{carry}_{e}^{*}(x, y)$ is to make $y \boxplus x \boxplus e$ have the same form as $y \boxplus x$:
Theorems 1: For $x, y \in F_{2}^{n}, e \in F_{2}$, define $y \boxplus x \boxplus e=x \oplus y \oplus \operatorname{carr} y_{e}^{*}(x, y)$.
Proof. If $e=0$, then the theorem holds.
If $e=1$, let $c_{i}=\operatorname{carry}(x, y)[i], c_{i}^{1}=\operatorname{carry}(x \boxplus y,(0, \cdots 0, e))[i]$, for $0 \leq i \leq n$; then

$$
\begin{aligned}
& c_{0}^{1}=0 \\
& c_{1}^{1}=x_{0} \oplus y_{0} \\
& c_{i+1}^{1}=\left(x_{i} \oplus y_{i} \oplus c_{i}\right) \wedge c_{i}^{1}, 2 \leq i \leq n-1
\end{aligned}
$$

Obviously, $c_{0}^{1} \wedge c_{0}=0, c_{1}^{1} \wedge c_{1}=x_{0} \wedge y_{0} \wedge\left(x_{0} \oplus y_{0}\right)=\left(x_{0} \wedge y_{0}\right) \oplus\left(x_{0} \wedge y_{0}\right)=0$.
Next, we will proof $c_{i}^{1} \wedge c_{i}=0$, for $0 \leq i \leq n-1$, by introduction. Supposed that $c_{i}^{1} \wedge c_{i}=0$ for $1 \leq i \leq k$. Then, for $c_{k+1}^{1} \wedge c_{k+1}$, we have

$$
\begin{aligned}
& c_{k+1}^{1} \wedge c_{k+1} \\
& =\left(\left(x_{k} \oplus y_{k} \oplus c_{k}\right) \wedge c_{k}^{1}\right) \wedge\left(\left(x_{k} \wedge y_{k}\right) \oplus\left(x_{k} \wedge c_{k}\right) \oplus\left(y_{k} \wedge c_{k}\right)\right) \\
& =\left(\left(x_{k} \oplus y_{k}\right) \wedge c_{k}^{1}\right) \wedge\left(\left(x_{k} \wedge y_{k}\right) \oplus\left(\left(x_{k} \oplus y_{k}\right) \wedge c_{k}\right)\right) \\
& =\left(\left(x_{k} \oplus y_{k}\right) \wedge\left(x_{k} \wedge y_{k}\right)\right) \wedge c_{k}^{1} \\
& =\left(\left(x_{k} \wedge y_{k}\right) \oplus\left(x_{k} \wedge y_{k}\right)\right) \wedge c_{k}^{1}=0
\end{aligned}
$$

Thus, for $2 \leq i \leq n-1$, we have $c_{i+1}^{1}=\left(x_{i} \oplus y_{i} \oplus c_{i}\right) \wedge c_{i}^{1}=\left(x_{i} \oplus y_{i}\right) \wedge c_{i}^{1}$, and

$$
\begin{aligned}
& c_{0}^{*}=c_{0} \oplus c_{0}^{1} \oplus 1=1 \\
& c_{1}^{*}=c_{1} \oplus c_{1}^{1} \\
& c_{i+1}^{*}=c_{i+1}^{1} \oplus c_{i+1} \\
& =\left(x_{i} \wedge y_{i}\right) \oplus\left(x_{i} \wedge\left(c_{i}^{1} \oplus c_{i}\right)\right) \oplus\left(y_{i} \wedge\left(c_{i}^{1} \oplus c_{i}\right)\right), 2 \leq i \leq n-1
\end{aligned}
$$

Notice that $\operatorname{carry}_{e}^{*}(x, y)=\operatorname{carry}(x, y) \oplus \operatorname{carry}(x \boxplus y,(0, \cdots 0, e)) \oplus(0, \cdots 0, e)$.
Thus, $y \boxplus x \boxplus(0, \cdots 0, e)=x \oplus y \oplus \operatorname{carr} y_{e}^{*}(x, y)$.
From the definition of \boxplus, we can see that the subtraction modulo $2^{n}(\boxminus)$ can be converted into the addition modulo $2^{n}(\boxplus)$:

Theorems 2: $y \boxminus x=(x \oplus(1, \cdots 1)) \boxplus y \boxplus 1$.
Proof. Notice that $(1, \cdots 1)=-1 \bmod 2^{n}$ and $\operatorname{carry}(x \oplus(1, \cdots 1), x)=0^{n}$, then
$(x \oplus(1, \cdots 1)) \boxplus x=(1, \cdots 1)=-1 \bmod 2^{n}$, which is equal to
$(x \oplus(1, \cdots 1)) \boxplus 1=-x \bmod 2^{n}$.
Thus, $y \boxminus x=y-x \bmod 2^{n}=(x \oplus(1, \cdots 1)) \boxplus y \boxplus 1$.
Combing with the theorems 3, the $y \boxminus x$ have the same form as $y \boxplus x$:
Corollary 1: $y \boxminus x=(x \oplus(1, \cdots 1)) \oplus y \oplus \operatorname{carr}_{1}^{*}(x \oplus(1, \cdots 1), y)$.

2 The Basic Function

2.1 The motivation and property

In the cryptanalysis of block cypher, the scholar proposed many analysis method based on some statistics property of the nonlinear function in the cipher. And these statistics properties can be summarized as the probability of $\bigoplus_{z=1}^{n_{j}} f(x)_{z, j}=A_{j}, 1 \leq j \leq m$ or the correlation coefficients of $\lambda \cdot\left(\bigoplus_{i=1}^{n} f(x)_{i}\right)$, where $f(x)_{z, j}, 1 \leq j \leq m, 1 \leq z \leq n_{j}$; $f(x)_{i}, 1 \leq i \leq n$ are composite operation of \oplus, the nonlinear function and its inverse. In the ARX cipher, the sole nonlinear function is the \boxplus and its inverse can be converted into the composite operation of \oplus and \boxplus. Thus, we can define the basic function as composite operation of \oplus and \boxplus :

Definition 3(The Basic function): Supposed that $x, y \in F_{2}^{n}, E_{k}=\left(e_{0}, e_{1}, \cdots e_{k-1}\right) \in$ $F_{2}^{k}, \alpha_{0}, \alpha_{1}, \cdots \alpha_{k-1} \in F_{2}^{n}, \beta_{0}, \beta_{1}, \cdots \beta_{k-1} \in F_{2}^{n}$. Let $A_{k}=\left(\alpha_{0}, \alpha_{2}, \cdots \alpha_{k-1}\right), B_{k}=$ $\left(\beta_{0}, \beta_{2}, \cdots \beta_{k-1}\right)$, where the element of A_{k}, B_{k} is n-dimension vector. Then the $f(x, y)_{E_{k}, A_{k}, B_{k}}$ is called basic function with k order, if $f(x, y)_{E_{k}, A_{k}, B_{k}}$ satisfies the follow the form:

$$
\begin{aligned}
& \left(x_{0}, y_{0}\right)=(x, y) \\
& \left(x_{i+1}, y_{i+1}\right)=\left(x_{i} \oplus \alpha_{i},\left(x_{i} \oplus \alpha_{i}\right) \boxplus\left(y_{i} \oplus \beta_{i}\right) \boxplus e_{i}\right), 0 \leq i \leq k-1 \\
& f(x, y)_{E_{k}, A_{k}, B_{k}}=\left(x_{k}, y_{k}\right) .
\end{aligned}
$$

Then, for $0 \leq i \leq k-1,\left(x_{i} \oplus \alpha_{i},\left(x_{i} \oplus \alpha_{i}\right) \boxplus\left(y_{i} \oplus \beta_{i}\right) \boxplus e_{i}\right)$ is called the $(i+1)$-th round function, and carry $y_{e_{i}}^{*}\left(x_{i} \oplus \alpha_{i}, y_{i} \oplus \beta_{i}\right)$ is called the carry function of $(i+1)$-th round function in $f(x, y)_{E_{k}, A_{k}, B_{k}}$.

According to the definition 3, we can see that the relation between the $f(x, y)_{E_{k-1}, A_{k-1}, B_{k-1}}$ and the $f(x, y)_{E_{k}, A_{k}, B_{k}}$:

Remark 3: According to the definition of $f(x, y)_{E_{k}, A_{k}, B_{k}}$, the $f(x, y)_{E_{k}, A_{k}, B_{k}}$ can be written as:

$$
\begin{aligned}
& \left(x_{k-1}, y_{k-1}\right)=f(x, y)_{E_{k-1}, A_{k-1}, B_{k-1}} \\
& \left(x_{k}, y_{k}\right)=\left(x_{k-1} \oplus \alpha_{k-1},\left(x_{k-1} \oplus \alpha_{k-1}\right) \boxplus\left(y_{k-1} \oplus \beta_{k-1}\right) \boxplus e_{k-1}\right) \\
& f(x, y)_{E_{k}, A_{k}, B_{k}}=\left(x_{k}, y_{k}\right)
\end{aligned}
$$

where $E_{k-1}=E_{k}[0: k-2]=\left(e_{0}, e_{1}, \cdots e_{k-2}\right), A_{k-1}=A_{k}[0: k-2]=\left(\alpha_{0}, \alpha_{2}, \cdots \alpha_{k-2}\right), B_{k-1}=$ $B_{k}[0: k-2]=\left(\beta_{0}, \beta_{2}, \cdots \beta_{k-2}\right)$.

Definition 4: For $x=X^{2} \| X^{1} \in F_{2}^{n}$, where $X^{2} \in F_{2}^{q}, X^{1} \in F_{2}^{p}, p+q=n$. Define $x=X^{2} \| X^{1}=X^{2} \cdot 2^{p}+X^{1}$.
Then, according to the definition of Addition modulo 2^{n}, we can see that the basic function can be divided into two basic function:
Theorem 3: For any $X^{1, i+1}, Y^{1, i+1}, \alpha_{0}^{1, i+1}, \alpha_{1}^{1, i+1}, \cdots, \alpha_{k-1}^{1, i+1}, \beta_{0}^{1, i+1}, \beta_{1}^{1, i+1}, \cdots \beta_{k-1}^{1, i+1} \in$ $F_{2}^{(i+1) \cdot t}$ and $E_{k}=\left(e_{0}, e_{1}, \cdots, e_{k-1}\right) \in F_{2}^{k}$. Let $Y^{1, i}=Y^{1, i+1}[i \cdot t-1: 0], Y^{2, i}=$ $Y^{1, i+1}[(i+1) \cdot t-1: i \cdot t], X^{1, i}=X^{1, i+1}[i \cdot t-1: 0], X^{2, i}=X^{1, i+1}[(i+1) \cdot t-1: i \cdot t]$, then the k order basic function $f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k}, A_{k}^{i+1}, B_{k}^{i+1}}$ can be written as

$$
f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k}, A_{k}^{i+1}, B_{k}^{i+1}}=f\left(X^{2, i}, Y^{2, i}\right)_{M_{k}^{i}, C_{k}^{i}, D_{k}^{i}} \cdot 2^{i \cdot t}+f\left(X^{1, i}, Y^{1, i}\right)_{E_{k}, A_{k}^{i}, B_{k}^{i}}
$$

where

$$
\begin{aligned}
& \alpha_{m}^{2, i}=\alpha_{m}^{1, i+1}[(i+1) \cdot t-1: i \cdot t], 0 \leq m \leq k-1 \\
& \beta_{m}^{2, i}=\beta_{m}^{1, i+1}[(i+1) \cdot t-1: i \cdot t], 0 \leq m \leq k-1 \\
& \alpha_{m}^{1, i}=\alpha_{m}^{1, i+1}[i \cdot t-1: 0], 0 \leq m \leq k-1 \\
& \beta_{m}^{1, i}=\beta_{m}^{1, i+1}[i \cdot t-1: 0], 0 \leq m \leq k-1 \\
& c_{m}^{i}=\operatorname{carr}_{e_{m}}^{*}\left(X_{m}^{1, i} \oplus \alpha_{m}^{1, i}, Y_{m}^{1, i} \oplus \beta_{m}^{1, i}\right)[i \cdot t], 0 \leq m \leq k-1 \\
& s_{m}^{i}=\operatorname{carr} y_{C_{m}^{i}}^{*}\left(X_{m}^{2, i} \oplus \alpha_{m}^{2, i}, Y_{m}^{2, i} \oplus \beta_{m}^{2, i}\right)[t], 0 \leq m \leq k-1 \\
& A_{k}^{i}=\left[\alpha_{0}^{1, i}, \alpha_{1}^{1, i}, \cdots \alpha_{k-1}^{1, i}\right] \\
& B_{k}^{i}=\left[\beta_{0}^{1, i}, \beta_{1}^{1, i}, \cdots \beta_{k-1}^{1, i}\right] \\
& C_{k}^{i}=\left[\alpha_{0}^{2, i}, \alpha_{1}^{2, i}, \cdots \alpha_{k-1}^{2, i}\right] \\
& D_{k}^{i}=\left[\beta_{0}^{2, i}, \beta_{1}^{2, i}, \cdots \beta_{k-1}^{2, i}\right] \\
& M_{k}^{i}=\left[c_{0}^{i}, c_{1}^{i}, \cdots c_{k-1}^{i}\right] \\
& S_{k}^{i}=\left[s_{0}^{i}, s_{1}^{i}, \cdots s_{k-1}^{i}\right]
\end{aligned}
$$

Moreover, $S_{k}^{i}=M_{k}^{i+1}$.

Proof. Notice that when order $k=1$, according to the definition 2, $\left(X^{1, i+1} \oplus \alpha_{0}^{1, i+1}\right) \boxplus$ $\left(Y^{1, i+1} \oplus \beta_{0}^{1, i+1}\right) \boxplus e_{0}$ can be written as

$$
\begin{aligned}
& \left(X^{1, i+1} \oplus \alpha_{0}^{1, i+1}\right) \boxplus\left(Y^{1, i+1} \oplus \beta_{0}^{1, i+1}\right) \boxplus e_{0} \\
= & \left(\left(X^{1, i} \oplus \alpha_{0}^{1, i}\right) \boxplus\left(Y^{1, i} \oplus \beta_{0}^{1, i}\right) \boxplus c_{0}^{i}\right) 2^{i \cdot t}+\left(X^{2, i} \oplus \alpha_{0}^{2, i}\right) \boxplus\left(Y^{2, i} \oplus \beta_{0}^{2, i}\right) \boxplus e_{0}
\end{aligned}
$$

Thus, when order $k=1$, the theorem holds.
Supposed that when order $m \leq k$, the theorem holds.
When order $m=k+1$, according to the definition of $\operatorname{carr} y_{e}^{*}(x, y)$, the value of the $i \cdot t-t h$
bit of $\operatorname{carry}_{e_{k}}^{*}\left(X_{k}^{1, i+1} \oplus \alpha_{k}^{1, i+1}, Y_{k}^{1, i+1} \oplus \beta_{k}^{1, i+1}\right)[i \cdot t]$ is only rely on the first $i \cdot t-1$ bits of $X_{k}^{1, i+1} \oplus \alpha_{k}^{1, i+1}$ and $Y_{k}^{1, i+1} \oplus \beta_{k}^{1, i+1}$, namely,

$$
\begin{aligned}
& \operatorname{carr} y_{e_{k}}^{*}\left(X_{k}^{1, i+1} \oplus \alpha_{k}^{1, i+1}, Y_{k}^{1, i+1} \oplus \beta_{k}^{1, i+1}\right)[i \cdot t] \\
& =\operatorname{carr}_{e_{e_{k}}^{*}}^{*}\left(X_{k}^{1, i} \oplus \alpha_{k}^{1, i}, Y_{k}^{1, i} \oplus \beta_{k}^{1, i}\right)[i \cdot t] \\
& =c_{k}^{i}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k+1}, A_{k+1}^{i+1}, B_{k+1}^{i+1}} \\
& =\left(X_{k}^{1, i+1} \oplus \alpha_{k}^{1, i+1}\right) \boxplus\left(Y_{k}^{1, i+1} \oplus \beta_{k}^{1, i+1}\right) \boxplus e_{k} \\
& =\left(\left(X_{k}^{2, i} \oplus \alpha_{k}^{2, i}\right) \boxplus\left(Y_{k}^{2, i} \oplus \beta_{k}^{2, i}\right) \boxplus c_{k}^{i}\right) 2^{2 \cdot t}+\left(X_{k}^{1, i} \oplus \alpha_{k}^{1, i}\right) \boxplus\left(Y_{k}^{1, i} \oplus \beta_{k}^{1, i}\right) \boxplus e_{k}
\end{aligned}
$$

On the other hand, due to the assumption of induction, we have:

$$
\begin{aligned}
& \left(X_{k}^{1, i+1}, X_{k}^{1, i+1}\right)=\left(X_{k}^{2, i}, X_{k}^{2, i}\right) \cdot 2^{i \cdot t}+\left(X_{k}^{1, i}, X_{k}^{1, i}\right) \\
& =f\left(X^{2, i}, Y^{2, i}\right)_{M_{k}^{i}, C_{k}^{i}, D_{k}^{i}}+f\left(X^{1, i}, Y^{1, i}\right)_{E_{k}, A_{k}^{i}, B_{k}^{i}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k+1}, A_{k+1}^{i+1}, B_{k+1}^{i+1}}=\left(X_{k}^{1, i+1} \oplus \alpha_{k}^{1, i+1}\right) \boxplus\left(Y_{k}^{1, i+1} \oplus \beta_{k}^{1, i+1}\right) \boxplus e_{k} \\
& =\left(\left(X_{k}^{2, i} \oplus \alpha_{k}^{2, i}\right) \boxplus\left(Y_{k}^{2, i} \oplus \beta_{k}^{2, i}\right) \boxplus c_{k}^{i}\right) \cdot 2^{i \cdot t}+\left(X_{k}^{1, i} \oplus \alpha_{k}^{1, i}\right) \boxplus\left(Y_{k}^{1, i} \oplus \beta_{k}^{1, i}\right) \boxplus e_{k} \\
& =f\left(X^{2, i}, Y^{2, i}\right)_{M_{k+1}^{i}, C_{k+1}^{i}, D_{k+1}^{i}} \cdot 2^{i \cdot t}+f\left(X^{1, i}, Y^{1, i}\right)_{E_{k+1}, A_{k+1}^{i}, B_{k+1}^{i}}
\end{aligned}
$$

When $m=k+1$, the theorem holds.

Remark 4: Obviously, for any $E_{k}, A_{k}^{i+1}, B_{k}^{i+1}$, when $X^{1, i+1}, Y^{1, i+1}$ are given, then M_{k}^{i+1} are uniquely identified.

3 Notion Description About The Basic Function Series

In order to reduce the redundancy of the article, we will introduce some notion description about the given z basic function series $\left\{f\left(X^{1, i}, Y^{1, i}\right)_{E_{k_{m}}, A_{k_{m}}^{i}, B_{k_{m}}^{i}} ; 1 \leq m \leq z\right\}$, which will be frequently adopted in the following proof.
Supposed that $X, Y \in F_{2}^{q \cdot t}$. For $1 \leq m \leq z$, let $\alpha_{0, m}^{1, q}, \alpha_{1, m}^{1, q}, \cdots, \alpha_{k_{m}-1, m}^{1, q}, \beta_{0, m}^{1, q}, \beta_{1, m}^{1, q}, \cdots$, $\beta_{k_{m}-1, m}^{1, q} \in F_{2}^{q \cdot t}, E_{m}=\left(e_{0}, e_{1}, \cdots, e_{k_{m}-1}\right) \in F_{2}^{k_{m}}$.
In addition, let

$$
\begin{aligned}
& X^{1, q}=X \\
& Y^{1, q}=Y \\
& A_{m}^{q}=\left[\alpha_{0, m}^{1, q}, \alpha_{1, m}^{1, q}, \cdots \alpha_{k_{m}-1, m}^{1, q}\right], \\
& B_{m}^{q}=\left[\beta_{0, m}^{1, q}, \beta_{1, m}^{1, q}, \cdots \beta_{k_{m}-1, m}^{1, q}\right] ;
\end{aligned}
$$

And for $1 \leq i \leq q-1$, define:

$$
\begin{aligned}
& Y^{1, i}=Y^{1, i+1}[i \cdot t-1: 0]=Y^{1, q}[i \cdot t-1: 0] \\
& Y^{2, i}=Y^{1, i+1}[(i+1) \cdot t-1: i \cdot t]=Y^{1, q}[(i+1) \cdot t-1: i \cdot t] \\
& X^{1, i}=X^{1, i+1}[i \cdot t-1: 0]=X^{1, q}[i \cdot t-1: 0] \\
& X^{2, i}=X^{1, i+1}[(i+1) \cdot t-1: i \cdot t]=X^{1, q}[(i+1) \cdot t-1: i \cdot t] \\
& \alpha_{j, m}^{2, i}=\alpha_{j, m}^{1, i+1}[(i+1) \cdot t-1: i \cdot t]=\alpha_{j, m}^{1, q}[(i+1) \cdot t-1: i \cdot t], 0 \leq j \leq k_{m}-1,1 \leq m \leq z \\
& \beta_{j, m}^{2, i}=\beta_{j, m}^{1, i+1}[(i+1) \cdot t-1: i \cdot t]=\beta_{j, m}^{1, q}[(i+1) \cdot t-1: i \cdot t], 0 \leq j \leq k_{m}-1,1 \leq m \leq z \\
& \alpha_{j, m}^{1, i}=\alpha_{j, m}^{1, i+1}[i \cdot t-1: 0]=\alpha_{j, m}^{1, q}[i \cdot t-1: 0], 0 \leq j \leq k_{m}-1,1 \leq m \leq z \\
& \beta_{j, m}^{1, i}=\beta_{j, m}^{1, i+1}[i \cdot t-1: 0]=\beta_{j, m}^{1, q}[i \cdot t-1: 0], 0 \leq j \leq k_{m}-1,1 \leq m \leq z
\end{aligned}
$$

Beside this, by the ,for $1 \leq i \leq q, 1 \leq m \leq z$, let
$\left(X_{0, m}^{1, i}, y_{0, m}^{1, i}\right)=\left(X^{1, i}, Y^{1, i}\right)$
$\left(X_{j+1, m}^{1, i}, Y_{j+1, m}^{1, i}\right)=\left(X_{j, m}^{1, i} \oplus \alpha_{j, m}^{1, i},\left(X_{j, m}^{1, i} \oplus \alpha_{j, m}^{1, i}\right) \boxplus\left(Y_{j, m}^{1, i} \oplus \beta_{j, m}^{1, i}\right) \boxplus e_{j, m}\right), 0 \leq j \leq k_{m}-1$ and for $1 \leq i \leq q$, let

$$
\begin{aligned}
& A_{m}^{i}=\left[\alpha_{0, m}^{1, i}, \alpha_{1, m}^{1, i}, \cdots \alpha_{k_{m}-1, m}^{1, i}\right], 1 \leq m \leq z \\
& B_{m}^{i}=\left[\beta_{0, m}^{1, i}, \beta_{1, m}^{1, i}, \cdots \beta_{k_{m}-1, m}^{1, i}\right], 1 \leq m \leq z
\end{aligned}
$$

then we have $\left(X_{k_{m, j}}^{1, i}, Y_{k_{m, j}}^{1, i}\right)=f\left(X^{1, i}, Y^{1, i}\right)_{E_{m}, A_{m}^{i+1}, B_{m}^{i+1}}$, for $1 \leq m \leq z$.
Secondly, we can define:

$$
\begin{aligned}
& c_{j, m}^{i}=\operatorname{carr} y_{e_{j, m}}^{*}\left(X_{j}^{1, i} \oplus \alpha_{j, m}^{1, i}, Y_{j}^{1, i} \oplus \beta_{j, m}^{1, i}\right)[i \cdot t], 0 \leq j \leq k_{m}-1,1 \leq m \leq z \\
& M_{m}^{i}=\left[c_{0, m}^{i}, c_{1, m}^{i}, \cdots c_{k_{m, j}-1, m}^{i}\right], 1 \leq m \leq z
\end{aligned}
$$

where $1 \leq i \leq q$.

$$
\begin{aligned}
& s_{j, m}^{i}=\operatorname{carry}_{c_{j, m}^{i}}^{*}\left(X_{j}^{2, i} \oplus \alpha_{j, m}^{2, i}, Y_{j}^{2, i} \oplus \beta_{j, m}^{2, i}\right)[t], 0 \leq j \leq k_{m}-1,1 \leq m \leq z \\
& S_{j, m}^{i}=\left[s_{0, m}^{i}, s_{1, m}^{i}, \cdots s_{k_{m, j}-1, m}^{i}\right], 1 \leq m \leq z
\end{aligned}
$$

where $1 \leq i \leq q-1$.
According to the Remark 4:, we have
Remark 6: For $1 \leq m \leq r_{j}, 1 \leq i \leq q-1, M_{k_{m, j}}^{i+1}=S_{k_{m, j}}^{i}$.
For convenience to the follow following discussion, for $1 \leq i \leq q-1$, let

$$
\begin{aligned}
& T_{m}^{0}=A_{m}^{1}, 1 \leq m \leq z \\
& D_{m}^{0}=B_{m}^{1}, 1 \leq m \leq z \\
& T_{m}^{i}=\left[\alpha_{0, m}^{2, i}, \alpha_{1, m}^{2, i}, \cdots \alpha_{k_{m}-1, m}^{2, i}\right], 1 \leq m \leq z \\
& D_{m}^{i}=\left[\beta_{0, m}^{2, i}, \beta_{1, m}^{2, i}, \cdots \beta_{k_{m}-1, m}^{2, i}\right], 1 \leq m \leq z
\end{aligned}
$$

4 The Aa-set

Definition 6: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z basic function $\left\{f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1}} ; 1 \leq m \leq z\right\}$. We define the Aa-set with Out, In
as

$$
\begin{aligned}
& A a_{O u t, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
& =\left\{\left(X^{1, i+1}, Y^{1, i+1}\right) \mid X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, \text { Out }=\left(M_{1}^{i+1}, \cdots M_{z}^{i+1}\right)\right\}
\end{aligned}
$$

where Out, In $\in F_{2}^{d}, d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$.
Let $d=\sum_{i=0}^{z} k_{r_{i}}$, then there are 2^{d} possible results for $\left(M_{1}^{i+1}, \cdots M_{z}^{i+1}\right)$, thus
Property 3: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z basic function $\left\{f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1}} ; 1 \leq m \leq z\right\}$. Then, for all $O u t \in F_{2}^{d}$, the Aa-set with Out, In satisfies:

$$
\bigcup_{\text {Out } \in F_{2}^{d}} A a_{O u t, \text { In }}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\left\{\left(X_{1, i+1}, Y_{1, i+1}\right) \mid X_{1, i+1}, Y_{1, i+1} \in F_{2}^{(i+1) t}\right\}
$$

According to the Property 2, we have:
Property 4: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z basic function $\left\{f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1}} ; 1 \leq m \leq z\right\}$. For any $O u t_{1}, O u t_{2} \in F_{2}^{d}$ satisfied $O u t_{1} \neq$ Out $_{2}$, then

$$
A a_{O u t_{1}, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \cap A a_{\text {Out }_{2}, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\varnothing
$$

holds.
From theorem 3, we can see that the Aa-set with Out, In can be divided into many subset, and each disjoint subset has the following recursive structure:
Lemma 1: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z basic function $\left\{f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1}} ; 1 \leq m \leq z\right\}$. We define the Aa-set with Out, Mi, In as

$$
\left.\begin{array}{rl}
& A a_{O u t, M i, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & \left\{\left(X^{2, i}\left\|X^{1, i}, Y^{2, i}\right\| Y^{1, i}\right) \left\lvert\, \begin{array}{c}
X^{1, i}, Y^{1, i} \in A a_{M i, I n}^{i}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) ; \\
M i=\left(M_{1}^{i}, \cdots M_{z}^{i}\right) ; \\
X^{2, i}, Y^{2, i} \in A a_{O u t, M i}^{1}\left(T_{j}^{i}, D_{j}^{i}, 1 \leq j \leq z\right)
\end{array}\right.\right.
\end{array}\right\} .
$$

where Mi, Out, In $\in F_{2}^{d}, d=\sum_{i=0}^{z} k_{r_{i}}$, In $=\left(E_{1}, \cdots E_{z}\right)$. Then,

$$
A a_{O u t, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\bigcup_{M i \in F_{2}^{d}} A a_{O u t, M i, \text { In }}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)
$$

holds, and for $M i_{1} \neq M i_{2}, M i_{1}, M i_{2} \in F_{2}^{d}$, satisfy

$$
A a_{O u t, M i_{1}, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \cap A a_{O u t, M i_{2}, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\varnothing
$$

Proof. Firstly, due to A_{j}^{i}, B_{j}^{i} can be decided according to the definition from the A_{j}^{i+1}, B_{j}^{i+1}. And from the property 4 , we know that for $M i_{1} \neq M i_{2}$,

$$
A a_{M i_{1}, I n}^{i}\left(A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right) \cap A a_{M i_{2}, I n}^{i}\left(A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right)=\varnothing
$$

Thus,

$$
A a_{O u t, M i_{1}, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \cap A a_{O u t, M i_{2}, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\varnothing
$$

Secondly, from theorem 3, for $1 \leq j \leq z$, we have:

$$
f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{j}, A_{j}^{i+1}, B_{j}^{i+1}}=f\left(X^{2, i}, Y^{2, i}\right)_{M_{j}^{i}, T_{j}^{i}, D_{j}^{i}} \cdot 2^{i \cdot t}+f\left(X^{1, i}, Y^{1, i}\right)_{E_{j}, A_{j}^{i}, B_{j}^{i}} .
$$

Thus,

$$
\begin{aligned}
& A a_{O u t, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & \left\{\left(X^{1, i+1}, Y^{1, i+1}\right) \mid X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, \text { Out }=\left(M_{1}^{i+1}, \cdots M_{z}^{i+1}\right)\right\} \\
= & \left\{\left(X^{2, i}\left\|X^{1, i}, Y^{2, i}\right\| Y^{1, i}\right) \left\lvert\, \begin{array}{c}
X^{1, i}, Y^{1, i} \in F_{2}^{i \cdot t}, X^{2, i}, Y^{2, i} \in F_{2}^{t}, M i \in F_{2}^{d}, \\
M i=\left(M_{1}^{i}, \cdots M_{z}^{i}\right), \text { Out }=\left(S_{1}^{i}, \cdots S_{z}^{i}\right) .
\end{array}\right.\right\} \\
= & \bigcup_{M i \in F_{2}^{d}}\left\{\left(X^{2, i}| | X^{1, i}, Y^{2, i} \| Y^{1, i}\right) \left\lvert\, \begin{array}{c}
X^{1, i}, Y^{1, i} \in F_{2}^{i \cdot t} ; M i=\left(M_{1}^{i}, \cdots M_{z}^{i}\right) ; \\
X^{2, i}, Y^{2, i} \in F_{2}^{t} ; O u t=\left(S_{1}^{i}, \cdots S_{z}^{i}\right) .
\end{array}\right.\right\} \\
= & \bigcup_{M i \in F_{2}^{d}}\left\{\left(X^{2, i}| | X^{1, i}, Y^{2, i} \| Y^{1, i}\right) \left\lvert\, \begin{array}{c}
X^{1, i}, Y^{1, i} \in A a_{M i, I n}^{i}\left(A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right), \\
X^{2, i}, Y^{2, i} \in A a_{O u t, M i}^{1}\left(M_{1}^{i}, \cdots M_{z}^{i}, D_{j}^{i}, 1 \leq j \leq z\right) .
\end{array}\right.\right\} \\
= & \left.\bigcup_{M i \in F_{2}^{d}} A a_{O u t, M i, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)\right\}
\end{aligned}
$$

Definition 7:For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z basic function $\left\{f\left(X^{1, i+1}, Y^{1, i+1}\right)_{\left.E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1} ; 1 \leq m \leq z\right\} \text {. Supposed that }}\right.$ $\gamma, \lambda, V, W \in F_{2}^{(i+1) \cdot t}$, Out, In, Middle $\in F_{2}^{d}$, where $d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$. Define the correlation coefficients of $h\left(X^{1, i+1}, Y^{1, i+1}\right)$ as

$$
\begin{aligned}
& \operatorname{Cor}_{\text {In }}^{i+1}\binom{\gamma, \lambda, V, W,}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z} \\
= & \sum_{\substack{X_{1, i+1} \in F_{2}^{(i+1) t}, Y_{1, i+1} \in F_{2}^{(i+1) t}}}(-1)^{(\gamma, \lambda) \cdot h\left(X^{1, i+1}, Y^{1, i+1}\right) \oplus V \cdot X^{1, i+1} \oplus W \cdot Y^{1, i+1}}
\end{aligned}
$$

where $h\left(X^{1, i+1}, Y^{1, i+1}\right)=\bigoplus_{m=1}^{z} f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1}}$.
Additionally define the correlation coefficients of $h\left(X^{1, i+1}, Y^{1, i+1}\right)$ over the Aa-set with Out, In and the correlation coefficients of $h\left(X^{1, i+1}, Y^{1, i+1}\right)$ over the Aa-set with Out, Mi, In respectively as

$$
\begin{aligned}
& \operatorname{Cor}_{O u t, I n}^{i+1}\binom{\gamma, \lambda, V, W}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z} \\
= & \sum_{\left(X_{1, i+1}, Y_{1, i+1}\right) \in A a_{O u t, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}\right)}(-1)^{(\gamma, \lambda) \cdot h\left(X^{1, i+1}, Y^{1, i+1}\right) \oplus V \cdot X^{1, i+1} \oplus W \cdot Y^{1, i+1}} \\
& \operatorname{Cor}_{O u t, M i, I n}^{i+1}\binom{\gamma, \lambda, V, W}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z} \\
= & \sum_{\left(X_{1, i+1}, Y_{1, i+1}\right) \in A a_{O u t, M i, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}\right)}(-1)^{(\gamma, \lambda) \cdot h\left(X^{1, i+1}, Y^{1, i+1}\right) \oplus V \cdot X^{1, i+1} \oplus W \cdot Y^{1, i+1}}
\end{aligned}
$$

From the property of the Aa-set, we can see that the correlation coefficients of $h\left(X^{1, i+1}, Y^{1, i+1}\right)$ is equal to the sum of the $h\left(X^{1, i+1}, Y^{1, i+1}\right)$'s correlation coefficients over the Aa-set with Out, In for all Out $\in F_{2}^{d}$. And the correlation coefficients of $h\left(X^{1, i+1}, Y^{1, i+1}\right)$ over the Aa-set with Out, In have the following recursive structure : Theorem 4: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z basic function $\left\{f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1} ;} 1 \leq m \leq z\right\}$. Supposed that $\gamma, \lambda, V, W \in F_{2}^{(i+1) \cdot t}$, Out, In, Middle $\in F_{2}^{d}$, where $d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$. Then

$$
\begin{aligned}
& \operatorname{Cor}_{\text {In }}^{i+1}\binom{\gamma, \lambda, V, W,}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z} \\
= & \sum_{O u t \in F_{2}^{d}} \operatorname{Cor}_{O u t, I n}^{i+1}\binom{\gamma, \lambda, V, W}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z}
\end{aligned}
$$

$$
\operatorname{Cor}_{O u t, I n}^{i+1}\binom{\gamma, \lambda, V, W}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z}
$$

$$
=\sum_{M i \in F_{2}^{d}} \operatorname{Cor}_{O u t, M i, I n}^{i+1}\binom{\gamma, \lambda, V, W}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z}
$$

$$
=\sum_{M i \in F_{2}^{d}} \operatorname{Cor}_{O u t, M i}^{1}\binom{\gamma^{2}, \lambda^{2}, V^{2}, W^{2},}{T_{j}^{i}, D_{j}^{i}, G_{j}, 1 \leq j \leq z} \times \operatorname{Cor}_{M i, I n}^{i}\binom{\gamma^{1}, \lambda^{1}, V^{1}, W^{1},}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z}
$$

where

$$
\begin{aligned}
& \gamma^{1}=\gamma[0: i \cdot t-1], \lambda^{1}=\lambda[0: i \cdot t-1], V^{1}=V[0: i \cdot t-1], W^{1}=W[0: i \cdot t-1], \\
& \gamma^{2}=\gamma[i \cdot t:(i+1) \cdot t-1], \lambda^{2}=\lambda[i \cdot t:(i+1) \cdot t-1], V^{2}=V[i \cdot t:(i+1) \cdot t-1] \\
& W^{2}=W[i \cdot t:(i+1) \cdot t-1]
\end{aligned}
$$

Proof. According to the property 3 and property 4, we have:

$$
\begin{aligned}
& \operatorname{Cor}_{I n}^{i+1}\binom{\gamma, \lambda, V, W,}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z} \\
= & \sum_{\left(X_{1, i+1}, Y_{1, i+1}\right) \in F_{2}^{(i+1) t}}(-1)^{(\gamma, \lambda) \cdot h\left(X^{1, i+1}, Y^{1, i+1}\right) \oplus V \cdot X^{1, i+1} \oplus W \cdot Y^{1, i+1}} \\
= & \sum_{\left(X_{1, i+1}, Y_{1, i+1}\right) \in} \bigcup_{\text {Out } \in F_{2}^{d}} A a_{O u t, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & \sum_{\text {Out } \in F_{2}^{d}} \sum_{\left(X_{1, i+1}, Y_{1, i+1}\right) \in A A_{O u t, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)}(\gamma, \lambda) \cdot h\left(X^{1, i+1}, Y^{1, i+1}\right) \oplus V \cdot X^{1^{1, i+1} \oplus W \cdot Y^{1, i+1}} \\
= & \sum_{\text {Out } \in F_{2}^{d}} \operatorname{Cor}_{\text {In }, \text { Out }}^{i+1}\binom{(\gamma, \lambda) \cdot h\left(X^{1, i+1}, Y^{1, i+1}\right) \oplus V \cdot X^{1, i+1} \oplus W \cdot Y^{1, i+1}}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z}
\end{aligned}
$$

Likely, from lemma 1, we can also get

$$
\begin{aligned}
& \operatorname{Cor}_{\text {In,Out }}^{i+1}\binom{\gamma, \lambda, V, W}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z} \\
& =\sum_{M i \in F_{2}^{d}} \operatorname{Cor}_{\text {In,Mi,Out }}^{i+1}\binom{\gamma, \lambda, V, W}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z}
\end{aligned}
$$

Secondly, from theorem 3, for $1 \leq j \leq z$, we have

$$
f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{j}, A_{j}^{i+1}, B_{j}^{i+1}}=f\left(X^{2, i}, Y^{2, i}\right)_{M_{j}^{i}, T_{j}^{i}, D_{j}^{i}} \cdot 2^{i \cdot t}+f\left(X^{1, i}, Y^{1, i}\right)_{E_{j}, A_{j}^{i}, B_{j}^{i}} .
$$

Then

$$
\begin{aligned}
& h\left(X^{1, i+1}, Y^{1, i+1}\right)=\bigoplus_{j=1}^{z} h\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{j}, A_{j}^{i+1}, B_{j}^{i+1}} \\
& =\bigoplus_{j=1}^{z} f\left(X^{2, i}, Y^{2, i}\right)_{M_{j}^{i}, T_{j}^{i}, D_{j}^{i} \cdot 2^{i \cdot t}+\bigoplus_{j=1}^{z} f\left(X^{1, i}, Y^{1, i}\right)_{E_{j}, A_{j}^{i}, B_{j}^{i}} .}=h\left(X^{1, i}, Y^{1, i}\right) \cdot 2^{i \cdot t}+h\left(X^{2, i}, Y^{2, i}\right)
\end{aligned}
$$

It can be concluded that:

$$
\begin{aligned}
& \operatorname{Cor}_{I n, M i, O u t}^{i+1}\binom{\gamma, \lambda, V, W,}{A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z} \\
= & \sum_{\left(X^{\left.1, i, Y^{1, i}\right) \in A a_{M i, I n}^{i}\left(A_{j}^{i}, B_{j}^{i}\right.} 1 \leq j \leq z\right)}(-1)^{\left(\gamma^{1}, \lambda^{1}\right) \cdot h\left(X^{1, i}, Y^{1, i}\right) \oplus V^{1} \cdot X^{1, i} \oplus W^{1} \cdot Y^{1, i}} \\
\times & \sum_{\left(X^{2, i}, Y^{2, i}\right) \in A a_{O u t, M i}^{1}\left(T_{j}^{i}, D_{j}^{i}, 1 \leq j \leq z\right)}(-1)^{\left(\gamma^{2}, \lambda^{2}\right) \cdot h\left(X^{2, i}, Y^{2, i}\right) \oplus V^{2} \cdot X^{2, i} \oplus W^{2} \cdot Y^{2, i}} \\
= & C o r_{O u t, M i}^{1}\binom{\gamma^{2}, \lambda^{2}, V^{2}, W^{2},}{T_{j}^{i}, D_{j}^{i}, G_{j}, 1 \leq j \leq z} \times \operatorname{Cor}_{M i, I n}^{i}\binom{\gamma^{1}, \lambda^{1}, V^{1}, W^{1},}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \operatorname{Cor}_{O u t, I n}^{i+1}\binom{\gamma, \lambda, V, W,}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z} \\
= & \sum_{M i \in F_{2}^{d}} \operatorname{Cor}_{O u t, M i, I n}^{i+1}\binom{\gamma, \lambda, V, W,}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z} \\
= & \sum_{M i \in F_{2}^{d}} \operatorname{Cor}_{O u t, M i}^{1}\binom{\gamma^{2}, \lambda^{2}, V^{2}, W^{2},}{T_{j}^{i}, D_{j}^{i}, G_{j}, 1 \leq j \leq z} \times \operatorname{Cor}_{M i, I n}^{i}\binom{\gamma^{1}, \lambda^{1}, V^{1}, W^{1},}{A_{j}^{i+1}, B_{j}^{i+1} 1 \leq j \leq z}
\end{aligned}
$$

Theorem 6: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z basic function $\left\{f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1}} ; 1 \leq m \leq z\right\}$. Supposed that $\gamma, \lambda, V, W \in$ $F_{2}^{(i+1) \cdot t}$, Out, In, Middle $\in F_{2}^{d}$, where $d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$. Then,

$$
\operatorname{Cor}_{I n}^{q}\binom{\gamma, \lambda, V, W,}{A_{j}^{q}, B_{j}^{q}, G_{j} 1 \leq j \leq z}=L \prod_{i=0}^{q-1} M a^{i} Q^{T}
$$

where $L=(1,1, \cdots, 1) \in F_{2}^{d}, Q_{I n} \in F_{2}^{d}$, of which the sole nonzero component satisfies $Q[I n]=1$, and $M a^{i} \in R^{d \times d}$ satisfying $M a^{i}\left[\right.$ Out, In $\left._{1}\right]=\operatorname{Cor}_{\text {Out }, \text { In }}^{1}\binom{\gamma_{i}^{2}, \lambda_{i}^{2}, V_{i}^{2}, W_{i}^{2}}{,T_{j}^{i}, D_{j}^{i} 1 \leq j \leq z}$, $0 \leq i \leq q-1,0 \leq$ Out, In $_{1} \leq 2^{d}-1, \gamma_{i}^{2}=\gamma[i \cdot t:(i+1) \cdot t-1], \lambda_{i}^{2}=\lambda[i \cdot t:(i+1) \cdot t-1], V_{i}^{2}=$ $V[i \cdot t:(i+1) \cdot t-1], W_{i}^{2}=W[i \cdot t:(i+1) \cdot t-1]$.

Proof. For $1 \leq i \leq q$, define the vector Base $_{I n}^{i} \in F_{2}^{d}$ as follow:

$$
\text { Base }_{\text {In }}^{i}[\text { Out }]=\operatorname{Cor}_{\text {Out }, \text { In }}^{i}\binom{\gamma_{i}^{1}, \lambda_{i}^{1}, V_{i}^{1}, W_{i}^{1},}{A_{j}^{i}, B_{j}^{i} 1 \leq j \leq z}
$$

where $0 \leq$ Out $\leq 2^{d}-1, \gamma^{1}=\gamma[0: i \cdot t-1], \lambda^{1}=\lambda[0: i \cdot t-1], V^{1}=V[0: i \cdot t-1], W^{1}=$ $W[0: i \cdot t-1]$.

According to the lemma 1, we have:

$$
\operatorname{Cor}_{I n}^{q}\binom{\gamma, \lambda, V, W}{A_{j}^{q}, B_{j}^{q}, 1 \leq j \leq z}=L \cdot \operatorname{Base}_{I n}^{q}
$$

And by the definition, we see that $B a s e^{1}=M a^{0} \cdot Q^{T}$.
In addition, according to the lemma 1 , for $1 \leq i \leq q-1,0 \leq O u t \leq 2^{d}-1$, we have

$$
\text { Base }_{I n}^{i+1}[O u t]=\sum_{O u t_{1} \in F_{2}^{d}} M a^{i}\left[\text { Out, Out }{ }_{1}\right] \cdot \text { Base }_{I n}^{i}\left[\text { Out }_{1}\right]
$$

Namely,

$$
\text { Base }_{I n}^{i+1}=M a^{i} \cdot \text { Base }_{I n}^{i}
$$

Thus, the theorem holds.

5 The $D f$-set

Recall the law of total probability, given a series of subset $\left\{A_{i}, 1 \leq i \leq n\right\}$ of the total space, where $\bigcup_{i=1}^{n} A_{i}$ is to equal the total space and each A_{i} are disjoint with each other, then for any event B, its probability $P(B)$ is equal to $\sum_{i=0}^{n} P\left(B \cap A_{i}\right)$. Notice that the the Aa-set with Out, In satisfy the above property, thus the same idea can be adopted to do the following study.
Definition 8: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z
 $C=(J, N) \in\left(F_{2}^{n \times(i+1) \cdot t}, F_{2}^{n \times(i+1) \cdot t}\right)$, Out, In $\in F_{2}^{d}$, where $d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$.
We define the Df-set with In and the Df-set with Out, In respectively:

$$
\begin{aligned}
& D f_{I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
& =\left\{\left(X^{1, i+1}, Y^{1, i+1}\right) \left\lvert\, \begin{array}{c}
X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, \\
h_{s}\left(X^{1, i+1}, Y^{1, i+1}\right)=C[s], 1 \leq s \leq n .
\end{array}\right.\right\} \\
& D f_{O u t, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
& =D f_{\text {In }}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \bigcap A a_{\text {Out }, \text { In }}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
& =\left\{\left(X^{1, i+1}, Y^{1, i+1}\right) \left\lvert\, \begin{array}{c}
X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, \text { Out }=\left(M_{1}^{i+1}, \cdots M_{z}^{i+1}\right), \\
h_{s}\left(X^{1, i+1}, Y^{1, i+1}\right)=C[s], 1 \leq s \leq n .
\end{array}\right.\right\} \\
& D f_{\text {Out }, \text { In }}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)^{*} \\
& =\left(\left\{F_{2}^{(i+1) \cdot t} \times F_{2}^{(i+1) \cdot t}\right\}-D f_{I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)\right) \bigcap A a_{\text {Out }, \text { In }}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)
\end{aligned}
$$

where

$$
h_{s}\left(X^{1, i+1}, Y^{1, i+1}\right)=\bigoplus_{m=1}^{z} G[s, m] * f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{m}, A_{m}^{i+1}, B_{m}^{i+1}}, 1 \leq s \leq n
$$

According to the property 3 and property 4 we have:
Property 5: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z basic function $\left\{f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1}} ; 1 \leq m \leq z\right\}$. Supposed that $G \in F_{2}^{n \times z}$, $C=(J, N) \in\left(F_{2}^{n \times(i+1) \cdot t}, F_{2}^{n \times(i+1) \cdot t}\right)$, Out, In $\in F_{2}^{d}$, where $d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$. Then

$$
\bigcup_{O u t \in F_{2}^{d}} D f_{O u t, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=D f_{I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)
$$

According to the Property 2:, we have:
Property 6:For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z
 $C=(J, N) \in\left(F_{2}^{n \times(i+1) \cdot t}, F_{2}^{n \times(i+1) \cdot t}\right)$, Out, In $\in F_{2}^{d}$, where $d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$. If any two $O u t_{1}$, Out $_{2} \in F_{2}^{d}$ satisfy $O u t_{1} \neq O u t_{2}$, then

$$
D f_{O u t_{1}, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \bigcap D f_{O u t_{2}, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\varnothing
$$

As same as the law of total probability, we can get the relation between the Df-set with In and the Df-set with Out, In :
Theorem 5: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z basic function $\left\{f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1}} ; 1 \leq m \leq z\right\}$. Supposed that $G \in F_{2}^{n \times z}$, $C=(J, N) \in\left(F_{2}^{n \times(i+1) \cdot t}, F_{2}^{n \times(i+1) \cdot t}\right)$, Out, In $\in F_{2}^{d}$, where $d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$. Then

$$
\begin{aligned}
& \sum_{O u t \in F_{2}^{d}} \# D f_{O u t, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & \# f_{I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)
\end{aligned}
$$

5.1 direct method

According to the lemma 1 and theorem 3, it can be concluded that the Df-set with Out, In have the fllowing recursive structure:
Lemma 2: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z
 $C=(J, N) \in\left(F_{2}^{n \times(i+1) \cdot t}, F_{2}^{n \times(i+1) \cdot t}\right)$, Out, In $\in F_{2}^{d}$, where $d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$, $J^{1}=J[0: i \cdot t-1], J^{2}=J[i \cdot t:(i+1) \cdot t-1], N^{1}=N[0: i \cdot t-1], N^{2}=N[i \cdot t:(i+1) \cdot t-1]$, $C^{1}=\left(J^{1}, N^{1}\right), C^{2}=\left(J^{2}, N^{2}\right)$. Define

$$
\begin{aligned}
& D f_{O u t, M i, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & \left\{\left(X^{2, i} \| X^{1, i}, Y^{2, i}| | Y^{1, i}\right) \left\lvert\, \begin{array}{c}
X^{1, i}, Y^{1, i} \in D f_{M i, I n}^{i, n}\left(C^{1}, G, A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right) \\
X^{2, i}, Y^{2, i} \in D f_{O u t, M i}^{1, n}\left(C^{2}, G, T_{j}^{i}, D_{j}^{i}, 1 \leq j \leq z\right)
\end{array}\right.\right\}
\end{aligned}
$$

Then,

$$
D f_{O u t, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\bigcup_{M i \in F_{2}^{d}} D f_{O u t, M i, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)
$$

holds. And for any two $M i_{1}, M i_{2} \in F_{2}^{d}$, where $M i_{1} \neq M i_{2}$, satisfy

$$
D f_{\text {Out }, M i_{1}, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \bigcap D f_{O u t, M i_{2}, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\varnothing
$$

Proof. According to the Theorem 3, we have

$$
f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{j}, A_{j}^{i+1}, B_{j}^{i+1}}=f\left(X^{2, i}, Y^{2, i}\right)_{M_{j}^{i}, T_{j}^{i}, D_{j}^{i}} \cdot 2^{i \cdot t}+f\left(X^{1, i}, Y^{1, i}\right)_{E_{j}, A_{j}^{i}, B_{j}^{i}} .
$$

Thus, for $1 \leq s \leq n$:

$$
\begin{aligned}
& h_{s}\left(X^{1, i+1}, Y^{1, i+1}\right)=\bigoplus_{m=1}^{z} G[s, m] * f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{m}, A_{m}^{i+1}, B_{m}^{i+1}} \\
& =\bigoplus_{M=1}^{z} G[s, m] * f\left(X^{2, i}, Y^{2, i}\right)_{M_{m}^{i}, T_{m}^{i}, D_{m}^{i}} \cdot 2^{i \cdot t}+\bigoplus_{m=1}^{z} G_{j}[s, m] * f\left(X^{1, i}, Y^{1, i}\right)_{E_{m}, A_{m}^{i}, B_{m}^{i}} . \\
& =h_{s}\left(X^{1, i}, Y^{1, i}\right) \cdot 2^{i \cdot t}+h_{s}\left(X^{2, i}, Y^{2, i}\right)
\end{aligned}
$$

It means that:

$$
\begin{aligned}
& D f_{I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & \left\{\left(X^{2, i}| | X^{1, i}, Y^{2, i}| | Y^{1, i}\right) \left\lvert\, \begin{array}{c}
X^{1, i}, Y^{1, i} \in F_{2}^{i \cdot t}, X^{2, i}, Y^{2, i} \in F_{2}^{t}, M i \in F_{2}^{d}, M i=\left(M_{1}^{i+1}, \cdots M_{z}^{i+1}\right), \\
h_{s}\left(X^{1, i}, Y^{1, i}\right)=C_{i}^{1}[s], \\
h_{s}\left(X^{2, i}, Y^{2, i}\right)=C_{i}^{2}[s], 1 \leq s \leq n .
\end{array}\right.\right\} \\
= & \left\{\left(X^{2, i}| | X^{1, i}, Y^{2, i} \| Y^{1, i}\right) \left\lvert\, \begin{array}{c}
X^{1, i}, Y^{1, i} \in D f_{M i}^{i, n}\left(C^{1}, G, A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right) \\
M i \in F_{2}^{d}, M i=\left(M_{1}^{i+1}, \cdots M_{z}^{i+1}\right) ; \\
X^{2, i}, Y^{2, i} \in D f_{I n}^{1, n}\left(C^{2}, G, T_{j}^{i}, D_{j}^{i}, 1 \leq j \leq z\right)
\end{array}\right.\right\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& D f_{I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \bigcap A_{O u t, M i, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & \left\{\left(\begin{array}{c}
M i=\left(M_{1}^{i+1}, \cdots M_{z}^{i+1},\right. \\
X^{2, i} \| X^{1, i} \\
Y^{2, i} \| Y^{1, i}
\end{array}\right) \left\lvert\, \begin{array}{c}
M i \\
X^{1, i}, Y^{1, i} \in A_{M i, I n}^{i}\left(A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right) \bigcap D f_{M i}^{i, n}\left(C^{1}, G, A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right) \\
X^{2, i}, Y^{2, i} \in A_{O u t, M i}^{1}\left(T_{j}^{i}, D_{j}^{i}, 1 \leq j \leq z\right) \bigcap D f_{I n}^{1, n}\left(C^{2}, G, T_{j}^{i}, D_{j}^{i}, 1 \leq j \leq z\right)
\end{array}\right.\right\}
\end{aligned}
$$

It can be concluded that

$$
\begin{aligned}
& D f_{I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \bigcap A_{O u t, M i, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & D f_{O u t, M i, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)
\end{aligned}
$$

From Lemma 1 , for any two $M i_{1}, M i_{2} \in F_{2}^{d}$, where $M i_{1} \neq M i_{2}$, satisfy

$$
A_{O u t, M i_{1}, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \bigcap A_{O u t, M i_{2}, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\varnothing
$$

Thus,

$$
D f_{O u t, M i_{1}, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \bigcap D f_{O u t, M i_{2}, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\varnothing
$$

Secondly, due to

$$
A_{O u t, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)=\bigcup_{M i \in F_{2}^{d}} A_{O u t, M i, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)
$$

holds in Lemma 1, we can get:

$$
\begin{aligned}
& D f_{O u t, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & D f_{I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \bigcap A_{O u t, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & D f_{I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \bigcap \bigcup_{M i \in F_{2}^{d}} A_{O u t, M i, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & \bigcup_{M i \in F_{2}^{d}} D f_{I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \bigcap A_{O u t, M i, I n}^{i+1}\left(A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & \bigcup_{M i \in F_{2}^{d}} D f_{O u t, M i, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)
\end{aligned}
$$

According to the above recursive structure, we can calculate the order of the Df-set with Out, In based on the following recurrence relation:
Corollary 2: For any positive integer q, t, z, n and $0 \leq i \leq q-1$, then

$$
\begin{aligned}
& \# D f_{O u t, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \\
= & \sum_{M i \in F_{2}^{d}} \# D f_{O u t, M i}^{1, n}\left(C_{i}^{2}, G, T_{j}^{i}, D_{j}^{i}, 1 \leq j \leq z\right) \\
& \times \# D f_{M i, I n}^{i, n}\left(C_{i}^{1}, G, A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right)
\end{aligned}
$$

holds.
Theorem 7: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z basic function $\left\{f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{k_{m}}, A_{k_{m}}^{i+1}, B_{k_{m}}^{i+1}} ; 1 \leq m \leq z\right\}$. Supposed that $G \in F_{2}^{n \times z}$, $C=(J, N) \in\left(F_{2}^{n \times(i+1) \cdot t}, F_{2}^{n \times(i+1) \cdot t}\right)$, Out, In $\in F_{2}^{d}$, where $d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$, $J_{i}^{1}=J[0: i \cdot t-1], J_{i}^{2}=J[i \cdot t:(i+1) \cdot t-1], N_{i}^{1}=N[0: i \cdot t-1], N_{i}^{2}=N[i \cdot t:(i+1) \cdot t-1]$, $C_{i}^{1}=\left(J^{1}, N^{1}\right), C_{i}^{2}=\left(J^{2}, N^{2}\right)$. Let $C=(J, N)=C_{q}^{1}=\left(J_{q}^{1}, N_{q}^{1}\right)$. Then,

$$
D f_{I n}^{q, n}\left(C, G, A_{j}^{q}, B_{j}^{q}, 1 \leq j \leq z\right)=L \prod_{i=0}^{q-1} M d^{i} Q_{I n}^{T}
$$

where $L=(1,1, \cdots, 1) \in F_{2}^{d}, Q_{I n} \in F_{2}^{d}$, of which the sole nonzero component satisfies $Q[I n]=1$, and $M d^{i} \in R^{d \times d}$ satisfying $M d^{i}\left[O u t, I n_{1}\right]=\# D f_{\text {Out }, I n_{1}}^{1, n}\left(C_{i}^{2}, G, T_{j}^{i}, D_{j}^{i}, 1 \leq\right.$ $j \leq z), 0 \leq i \leq q-1,0 \leq O u t$, In $_{1} \leq 2^{d}-1$.

Proof. For $1 \leq i \leq q$, define vector $N u m_{I n}^{i} \in F_{2}^{d}$ as follow:

$$
N u m_{I n}^{i}[O u t]=D f_{O u t, I n}^{i, n}\left(C_{i}^{1}, G_{0}, G_{j}, A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right)
$$

where $0 \leq$ Out $\leq 2^{d}-1$.
According to the theorem 5 we have:

$$
D f_{I n}^{q, n}\left(C, G, A_{j}^{q}, B_{j}^{q}, 1 \leq j \leq z\right)=L \cdot N u m_{I n}^{q}
$$

And by the definition, we see that $N u m_{I n}^{1}=M d^{0} \cdot Q_{I n}^{T}$.
In addition, according to the corollary 2 , for $1 \leq i \leq q-1,0 \leq O u t \leq 2^{d}-1$, we have

$$
N u m_{I n}^{i+1}[O u t]=\sum_{O u t_{1} \in F_{2}^{d}} M d^{i}\left[O u t, O u t_{1}\right] \cdot N u m_{I n}^{i}\left[O u t_{1}\right]
$$

Namely,

$$
N u m_{I n}^{i+1}=M d^{i} \cdot N u m_{I n}^{i}
$$

Thus, the theorem holds.

5.2 indirect method

In this part, we will use the Markov chain to complete the proof of the Theorem 7:
Theorem 7: For $X^{1, i+1}, Y^{1, i+1} \in F_{2}^{(i+1) \cdot t}, 1 \leq j \leq z, 1 \leq i \leq q-1$, given any z
 $C=(J, N) \in\left(F_{2}^{n \times(i+1) \cdot t}, F_{2}^{n \times(i+1) \cdot t}\right)$, Out, In $\in F_{2}^{d}$, where $d=\sum_{i=0}^{z} k_{i}$, In $=\left(E_{1}, \cdots E_{z}\right)$, $J_{i}^{1}=J[0: i \cdot t-1], J_{i}^{2}=J[i \cdot t:(i+1) \cdot t-1], N_{i}^{1}=N[0: i \cdot t-1], N_{i}^{2}=N[i \cdot t:(i+1) \cdot t-1]$, $C_{i}^{1}=\left(J^{1}, N^{1}\right), C_{i}^{2}=\left(J^{2}, N^{2}\right)$. Let $C=(J, N)=C_{q}^{1}=\left(J_{q}^{1}, N_{q}^{1}\right)$.If $X^{1, i+1}, Y^{1, i+1}$ are chosen uniformly at random, Then,

$$
\operatorname{Pr}\left(\left(X^{1, i+1}, Y^{1, i+1}\right) \in D f_{I n}^{q, n}\left(C, G, A_{j}^{q}, B_{j}^{q}, 1 \leq j \leq z\right)\right)=L \prod_{i=0}^{q-1} M d^{i} Q_{I n}^{T}
$$

where $L=(1,1, \cdots, 1) \in F_{2}^{d}, Q_{I n} \in F_{2}^{d}$, of which the sole nonzero component satisfies $Q[I n]=1$, and $M d^{i} \in R^{d \times d}$ satisfying $M d^{i}\left[\right.$ Out, In $\left._{1}\right]=\frac{1}{2^{2}} \# D f_{\text {Out }, I n_{1}}^{1, n}\left(C_{i}^{2}, G, T_{j}^{i}, D_{j}^{i}, 1 \leq\right.$ $j \leq z), 0 \leq i \leq q-1,0 \leq$ Out, In $_{1} \leq 2^{d}-1$.

Proof. Supposed that the state $T_{O u t, I n}^{i+1, n}\left(C_{i+1}^{1}, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)$ means that $\left(X^{1, i+1}, Y^{1, i+1}\right) \in D f_{\text {Out,In }}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)$; the state
$F_{O u t, I n}^{i+1, n}\left(C_{i+1}^{1}, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right)$ means that $\left(X^{1, i+1}, Y^{1, i+1}\right) \in D f_{O u t, I n}^{i+1, n}\left(C, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq\right.$ $j \leq z)^{*}$. Thus, we can find that any two of the above sates are disjoint and the union of all the above state is Ω according to the Property 5-6.
Secondly, for $1 \leq s \leq n$, due to

$$
\begin{aligned}
& h_{s}\left(X^{1, i+1}, Y^{1, i+1}\right)=\bigoplus_{m=1}^{z} G[s, m] * f\left(X^{1, i+1}, Y^{1, i+1}\right)_{E_{m}, A_{m}^{i+1}, B_{m}^{i+1}} \\
& =\bigoplus_{M=1}^{z} G[s, m] * f\left(X^{2, i}, Y^{2, i}\right)_{M_{m}^{i}, T_{m}^{i}, D_{m}^{i} \cdot 2^{i \cdot t}+\bigoplus_{m=1}^{z} G_{j}[s, m] * f\left(X^{1, i}, Y^{1, i}\right)_{E_{m}, A_{m}^{i}, B_{m}^{i}} .}^{=h_{s}\left(X^{1, i}, Y^{1, i}\right) \cdot 2^{i \cdot t}+h_{s}\left(X^{2, i}, Y^{2, i}\right)}
\end{aligned}
$$

If we know the value of $X^{1, i}, Y^{1, i} \in F_{2}^{i \cdot t}$, then the probability of which sate $X^{1, i+1}, Y^{1, i+1}$ belong to is depend on the state that $X^{1, i}, Y^{1, i}$ belong to. Thus, we can use it to build a Markov chain.
For $1 \leq i \leq q-1, O_{1}, O_{2} \in F_{2}^{d}$:
$\operatorname{Pr}\left(T_{O_{1}, I n}^{i+1, n}\left(C_{i+1}^{1}, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \mid T_{O_{2}, I n}^{i, n}\left(C_{i}^{1}, G, A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right)\right)=M d^{i}\left[O_{1}, O_{2}\right]$
$\operatorname{Pr}\left(T_{O_{1}, I n}^{i+1, n}\left(C_{i+1}^{1}, G, A_{j}^{i+1}, B_{j}^{i+1}, 1 \leq j \leq z\right) \mid F_{O_{2}, I n}^{i, n}\left(C_{i}^{1}, G, A_{j}^{i}, B_{j}^{i}, 1 \leq j \leq z\right)\right)=0$
Thus, the one step transform matrix form i to $i+1$ is:

$$
\left\{\begin{array}{c}
M d^{i}, O \\
*, *
\end{array}\right\}
$$

Then, the $q-1$ step transform matrix is

$$
\left\{\begin{array}{c}
\prod_{i=1}^{q-1} M d^{i}, O \\
*, *
\end{array}\right\}
$$

Define vector $V_{I n} \in F_{2}^{d}$ as follow:

$$
V_{I n}[O u t]=D f_{O u t, I n}^{0, n}\left(C_{0}^{1}, G_{0}, G_{j}, A_{j}^{0}, B_{j}^{0}, 1 \leq j \leq z\right)
$$

where $0 \leq$ Out $\leq 2^{d}-1$. Then $V_{I n}=M d^{0} * Q_{I n}^{T}$. According to the property of Markov chain, we get
$\operatorname{Pr}\left(\left(X^{1, i+1}, Y^{1, i+1}\right) \in D f_{I n}^{q, n}\left(C, G, A_{j}^{q}, B_{j}^{q}, 1 \leq j \leq z\right)\right)=L \prod_{i=1}^{q-1} M d^{i} V_{I n}=L \prod_{i=0}^{q-1} M d^{i} Q_{I n}^{T}$

Remark 7: Supposed that $m=q$ and $t=1$ in theorem 6 and theorem 7, if $2^{m} \gg 2^{d}$ and $m \gg 2^{d^{2}}$, then the time complex of calculating the $\operatorname{Cor}_{I n}^{q}\binom{\gamma, \lambda, V, W}{,A_{j}^{q}, B_{j}^{q} 1 \leq j \leq z}$ and $D f_{I n}^{m, n}\left(C, G, A_{j}^{q}, B_{j}^{q}, 1 \leq j \leq z\right)$ is about $O(m)$.

5.3 Instance

For $F:(x, y) \xrightarrow{F}(x, x \boxplus y)$, it can be treated as 1-order basic function. Besides this, its inverse function F^{-1} is $(x, y) \xrightarrow{F^{-1}}(x, x \boxminus y)$. According to the corollary 1, it can be conversed into $(x, y) \xrightarrow{F^{-1}}(x,(x \oplus(1,1, \cdots, 1)) \boxplus y \boxplus 1)$. For $\alpha, \beta, \gamma, \lambda \in F_{2}^{n}$, let $E=[1,0], B_{1}=[0, \lambda], A_{1}=[0, \gamma], B_{2}=[\beta, \lambda], A_{2}=[\alpha, \gamma]$. Then, for 2-order basic function $f(x, y)_{E, A_{1}, B_{1}}$ and $f(x, y)_{E, A_{2}, B_{2}}$, the following equation holds.

$$
\begin{aligned}
& f(x, y)_{E, A_{1}, B_{1}}=F^{-1}(F(x, y) \oplus(\gamma, \lambda)) \\
& f(x, y)_{E, A_{2}, B_{2}}=F^{-1}(F(x \oplus \alpha, y \oplus \beta) \oplus(\gamma, \lambda))
\end{aligned}
$$

Thus, according to the theorem 6 and the theorem 7, we have:

1. The formula for calculating the boomerang connective probability and its variant:

Corollary 3(BCT): Let F be $(x, y) \xrightarrow{F}(x, x \boxplus y)$, an element of BCT [4] defined by
$B C T(\alpha, \beta, \gamma, \lambda)=\#\left\{(x, y) \mid x, y \in F_{2}^{n}, F^{-1}(F(x, y) \oplus(\gamma, \lambda)) \oplus F^{-1}(F(x \oplus \alpha, y \oplus \beta) \oplus(\gamma, \lambda))=(\alpha, \beta)\right\} \cdot 2^{-2 n}$
where $\alpha, \beta, \gamma, \lambda \in F_{2}^{2 n}$. Then, for $0 \leq i \leq n-1$, let Out $=\left(o_{1}, o_{2}, o_{3}, o_{4}\right) \in F_{2}^{4}$, In $=\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in F_{2}^{4}, d[i]=(\alpha[i], \beta[i], \gamma[i], \lambda[i]), L=(1,1, \cdots, 1) \in F_{2}^{16}, Q=$ $(0,0,0,0,0,1,0, \cdots, 0) \in F_{2}^{16}$. And the $M_{d[i]} \in F_{2}^{16 \times 16}$ is defined as

$$
\begin{aligned}
& M_{d[i]}[\text { Out, } I n] \\
& =D f_{O u t, I n}^{1,1}((\alpha[i], \beta[i]),(0,0),\{(0,1),(0, \overline{\gamma[i]}),(0, \lambda[i])\},\{(0,1),(\alpha[i], \overline{\gamma[i]}),(\beta[i], \lambda[i])\}) \\
& =\#\left\{(x, y) \left\lvert\, \begin{array}{c}
e_{4} \oplus e_{3} \oplus e_{1} \oplus e_{2}=0, \operatorname{carry}_{e_{1}}(y, x)[1]=o_{1}, \\
\operatorname{carry}_{e_{2}}\left(y \oplus x \oplus e_{1} \oplus \lambda[i], x \oplus 1 \oplus \gamma[i]\right)[1]=o_{2}, \\
\operatorname{carry}_{e_{3}}(y \oplus \beta[i], x \oplus \alpha[i])[1]=o_{3}, \\
\operatorname{carry}_{e_{4}}\left(y \oplus \beta[i] \oplus x \oplus \alpha[i] \oplus e_{3} \oplus \lambda[i], x \oplus 1 \oplus \alpha[i] \oplus \gamma[i]\right)[1]=o_{4} ; \\
\text { where carry }(x, y)[1]=(x \wedge y) \oplus(x \wedge e) \oplus(e \wedge y) ; x, y, \in F^{2} .
\end{array}\right.\right\} \\
& \text { where } 0 \leq \text { Out, In } \leq 15 \text {. Thus, }
\end{aligned}
$$

$$
B C T(\alpha, \beta, \gamma, \lambda)=2^{-2 n} \cdot L \prod_{i=0}^{n-1} M_{d[i]} Q^{T}
$$

Corollary $4\left(B C T^{1}\right)$: Let F be $(x, y) \xrightarrow{F}(x, x \boxplus y)$, an element of $B C T^{1}$ [10] defined as

$$
B C T^{1}(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=\#\left\{(x, y) \mid x, y \in F_{2}^{n}, F^{-1}(F(x, y) \oplus(\gamma, \lambda)) \oplus F^{-1}(F(x \oplus \alpha, y \oplus \beta) \oplus(\gamma, \lambda))=(\theta, \zeta)\right\} \cdot 2^{-2 n}
$$

where $\alpha, \beta, \gamma, \lambda, \theta, \zeta \in F_{2}^{2 n}$. Then, for $0 \leq i \leq n-1$, let $O u t=\left(o_{1}, o_{2}, o_{3}, o_{4}\right) \in F_{2}^{4}$, In $=\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in F_{2}^{4}, d[i]=(\alpha[i], \beta[i], \gamma[i], \lambda[i], \theta[i], \zeta[i]) \in F_{2}^{6}, L=(1,1, \cdots, 1) \in F_{2}^{16}$, $Q=(0,0,0,0,0,1,0, \cdots, 0) \in F_{2}^{16}$. And the $M_{d[i]} \in F_{2}^{16 \times 16}$ is defined as

$$
\begin{aligned}
& M_{d[i]}[O u t, I n] \\
& =D f_{\text {Out }, \text { In }}^{1,1}((\theta[i], \zeta[i]),(0,0),\{(0,1),(0, \overline{\gamma[i]}),(0, \lambda[i])\},\{(0,1),(\alpha[i], \overline{\gamma[i]}),(\beta[i], \lambda[i])\}) \\
& =\#\left\{(x, y) \left\lvert\, \begin{array}{c}
\alpha[i]=\theta[i], \zeta[i] \oplus \beta[i] \oplus e_{4} \oplus e_{3} \oplus e_{1} \oplus e_{2}=0, \operatorname{carry}_{e_{1}}(y, x)[1]=o_{1}, \\
\operatorname{carry}_{e_{2}}\left(y \oplus x \oplus e_{1} \oplus \lambda[i], x \oplus 1 \oplus \gamma[i]\right)[1]=o_{2}, \\
\operatorname{carry} y_{e_{3}}(y \oplus \beta[i], x \oplus \alpha[i])[1]=o_{3}, \\
\operatorname{carry}_{e_{4}}\left(y \oplus \beta[i] \oplus x \oplus \alpha[i] \oplus e_{3} \oplus \lambda[i], x \oplus 1 \oplus \alpha[i] \oplus \gamma[i]\right)[1]=o_{4} ; \\
\text { where carry }(x, y)[1]=(x \wedge y) \oplus(x \wedge e) \oplus(e \wedge y) ; x, y, \in F^{2} .
\end{array}\right.\right\}
\end{aligned}
$$

where $0 \leq$ Out, In ≤ 15. Thus,

$$
B C T^{1}(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=2^{-2 n} \cdot L \prod_{i=0}^{n-1} M_{d[i]} Q^{T}
$$

Corollary $\mathbf{5}\left(B C T^{2}\right)$: Let F be $(x, y) \xrightarrow{F}(x, x \boxplus y)$, an element of $B C T^{2}$ [10] defined as
$B C T^{2}(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=\#\left\{(x, y) \mid x, y \in F_{2}^{n}, F^{-1}(F(x, y) \oplus(\theta, \zeta)) \oplus F^{-1}(F(x \oplus \alpha, y \oplus \beta) \oplus(\gamma, \lambda))=(\alpha, \beta)\right\} \cdot 2^{-2 n}$
where $\alpha, \beta, \gamma, \lambda, \theta, \zeta \in F_{2}^{2 n}$. Then, for $0 \leq i \leq n-1$, let $O u t=\left(o_{1}, o_{2}, o_{3}, o_{4}\right) \in F_{2}^{4}$, In $=\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in F_{2}^{4}, d[i]=(\alpha[i], \beta[i], \gamma[i], \lambda[i], \theta[i], \zeta[i]) \in F_{2}^{6}, L=(1,1, \cdots, 1) \in F_{2}^{16}$, $Q=(0,0,0,0,0,1,0, \cdots, 0) \in F_{2}^{16}$. And the $M_{d[i]} \in F_{2}^{16 \times 16}$ is defined as

$$
\begin{aligned}
& M_{d[i]}[\text { Out, In] } \\
& =D f_{\text {Out }, \text { In }}^{1,1}((\alpha[i], \beta[i]),(0,0),\{(0,1),(0, \overline{\theta[i]}),(0, \zeta[i])\},\{(0,1),(\alpha[i], \overline{\gamma[i]}),(\beta[i], \lambda[i])\}) \\
& =\#\left\{(x, y) \left\lvert\, \begin{array}{c}
\lambda[i] \oplus \theta[i] \oplus \gamma[i] \oplus \zeta[i] \oplus e_{4} \oplus e_{3} \oplus e_{1} \oplus e_{2}=0, \\
\theta[i] \oplus \gamma[i]=0, \operatorname{carry} y_{1}(y, x)[1]=o_{1}, \\
\operatorname{carry}\left(y \oplus x \oplus e_{1} \oplus \zeta[i], x \oplus 1 \oplus \theta[i]\right)[1]=o_{2}, \\
\operatorname{carry} y_{e_{3}}(y \oplus \beta[i], x \oplus \alpha[i])[1]=o_{3}, \\
\operatorname{carry}_{e_{4}}\left(y \oplus \beta[i] \oplus x \oplus \alpha[i] \oplus e_{3} \oplus \lambda[i], x \oplus 1 \oplus \alpha[i] \oplus \gamma[i]\right)[1]=o_{4} ; \\
\text { where carry }(x, y)[1]=(x \wedge y) \oplus(x \wedge e) \oplus(e \wedge y) ; x, y, \in F^{2} .
\end{array}\right.\right\}
\end{aligned}
$$

where $0 \leq$ Out, In ≤ 15. Thus,

$$
B C T^{1}(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=2^{-2 n} \cdot L \prod_{i=0}^{n-1} M_{d[i]} Q^{T}
$$

3. The formula for calculating the difference-boomerange connective probability and the inverse difference-boomrange probability, respectively:
Corollary 6-1:(DBT) Let F be $(x, y) \xrightarrow{F}(x, x \boxplus y)$, an element of DBT [5] defined by $D B T(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=\#\left\{(x, y) \left\lvert\, \begin{array}{r}x, y \in F_{2}^{n}, F(x, y) \oplus F(x \oplus \alpha, y \oplus \beta)=(\theta, \zeta), \\ F^{-1}(F(x, y) \oplus(\gamma, \lambda)) \oplus F^{-1}(F(x \oplus \alpha, y \oplus \beta) \oplus(\gamma, \lambda))=(\alpha, \beta) .\end{array}\right.\right\} \cdot 2^{-2 n}$
where $\alpha, \beta, \gamma, \lambda, \theta, \zeta \in F_{2}^{n}$. Then, for $0 \leq i \leq n-1$, let Out $=\left(o_{1}, o_{2}, o_{3}, o_{4}\right) \in F_{2}^{4}$, In $=\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in F_{2}^{4}, d[i]=(\alpha[i], \beta[i], \gamma[i], \lambda[i], \theta[i], \zeta[i]) \in F_{2}^{6}, L=(1,1, \cdots, 1) \in F_{2}^{16}$,
$Q=(0,0,0,0,0,1,0, \cdots, 0) \in F_{2}^{16}$. And the $M_{d[i]} \in F_{2}^{16 \times 16}$ is defined as
$\begin{aligned} & M_{d[i]}[\text { Out, In }] \\ = & D f_{O u t, I n}^{1,1}\left(\left(\begin{array}{c}\alpha[i] \\ \theta[i], \beta[i] \\ \theta[i]\end{array}\right),\left(\begin{array}{cc}0, & 0 \\ 0, & 0\end{array}\right),\left\{\binom{0,1}{1,0},(0, \overline{\gamma[i]}),(0, \lambda[i])\right\},\left\{\binom{0,1}{1,0},(\alpha[i], \overline{\gamma[i]}),(\beta[i], \lambda[i])\right\}\right)\end{aligned}$
$=\#\left\{(x, y) \left\lvert\, \begin{array}{c}\alpha[i]=\theta[i], \alpha[i] \oplus \beta[i] \oplus \zeta[i] \oplus e_{1} \oplus e_{3}=0, \\ e_{4} \oplus e_{3} \oplus e_{1} \oplus e_{2}=0, \operatorname{carry} y_{e_{1}}(y, x)[1]=o_{1}, \\ \operatorname{carry}_{e_{2}}\left(y \oplus x \oplus e_{1} \oplus \lambda[i], x \oplus 1 \oplus \gamma[i]\right)[1]=o_{2}, \\ \operatorname{carry} y_{e_{3}}(y \oplus \beta[i], x \oplus \alpha[i])[1]=o_{3}, \\ \operatorname{carry}_{e_{4}}\left(y \oplus \beta[i] \oplus x \oplus \alpha[i] \oplus e_{3} \oplus \lambda[i], x \oplus 1 \oplus \alpha[i] \oplus \gamma[i]\right)[1]=o_{4} ; \\ \text { wherecarrye }(x, y)[1]=(x \wedge y) \oplus(x \wedge e) \oplus(e \wedge y) ; x, y, \in F^{2} .\end{array}\right.\right\}$
where $0 \leq$ Out, In ≤ 15. Thus,

$$
D B T(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=2^{-2 n} \cdot L \prod_{i=0}^{n-1} M_{d[i]} Q^{T}
$$

Corollary 6-2:(IDBT) Let F be $(x, y) \xrightarrow{F}(x, x \boxplus y)$, an element of DBT [5] defined by $D B T(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=\#\left\{(x, y) \left\lvert\, \begin{array}{c}x, y \in F_{2}^{n}, F^{-1}(x, y) \oplus F^{-1}(x \oplus \alpha, y \oplus \beta)=(\theta, \zeta), \\ F\left(F^{-1}(x, y) \oplus(\gamma, \lambda)\right) \oplus F\left(F^{-1}(x \oplus \alpha, y \oplus \beta) \oplus(\gamma, \lambda)\right)=(\alpha, \beta) .\end{array}\right.\right\} \cdot 2^{-2 n}$
where $\alpha, \beta, \gamma, \lambda, \theta, \zeta \in F_{2}^{n}$. Then, for $0 \leq i \leq n-1$, let Out $=\left(o_{1}, o_{2}, o_{3}, o_{4}\right) \in F_{2}^{4}$, In $=\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in F_{2}^{4}, d[i]=(\alpha[i], \beta[i], \gamma[i], \lambda[i], \theta[i], \zeta[i]) \in F_{2}^{6}, L=(1,1, \cdots, 1) \in F_{2}^{16}$, $Q=(0,0,0,0,0,0,0,0,0,0,1,0, \cdots, 0) \in F_{2}^{16}$. And the $M_{d[i]} \in F_{2}^{16 \times 16}$ is defined as

$$
\begin{aligned}
& M_{d[i]}[\text { Out, In }] \\
= & D f_{\text {Out }, \text { In }}^{1,1}\left(\binom{\alpha[i], \beta[i]}{\theta[i], \zeta[i]},\left(\begin{array}{cc}
0, & 0 \\
0, & 0
\end{array}\right),\left\{\binom{0,1}{1,0},(1, \gamma[i]),(0, \lambda[i])\right\},\left\{\binom{0,1}{1,0},(\overline{\alpha[i]}, \gamma[i]),(\beta[i], \lambda[i])\right\}\right)
\end{aligned}
$$

$$
=\#\left\{(x, y) \left\lvert\, \begin{array}{c}
\alpha[i]=\theta[i], \alpha[i] \oplus \beta[i] \oplus \zeta[i] \oplus e_{1} \oplus e_{3}=0, \\
e_{4} \oplus e_{3} \oplus e_{1} \oplus e_{2}=0, \operatorname{carr} y_{e_{1}}(y, x \oplus 1)[1]=o_{1}, \\
\operatorname{carry}_{e_{2}}\left(y \oplus x \oplus 1 \oplus e_{1} \oplus \lambda[i], x \oplus \gamma[i]\right)[1]=o_{2}, \\
\operatorname{carry}_{e_{3}}(y \oplus \beta[i], x \oplus 1 \oplus \alpha[i])[1]=o_{3}, \\
\operatorname{carry}_{e_{4}}\left(y \oplus \beta[i] \oplus x \oplus 1 \oplus \alpha[i] \oplus e_{3} \oplus \lambda[i], x \oplus \alpha[i] \oplus \gamma[i]\right)[1]=o_{4} ; \\
\text { where carry }(x, y)[1]=(x \wedge y) \oplus(x \wedge e) \oplus(e \wedge y) ; x, y, \in F^{2} .
\end{array}\right.\right\}
$$

where $0 \leq$ Out, In ≤ 15. Thus,

$$
D B T(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=2^{-2 n} \cdot L \prod_{i=0}^{n-1} M_{d[i]} Q^{T}
$$

3. The formula for calculating the difference probability :

Corollary 7:(DDT) Let S be $S(x, y)=x \boxplus y$, an element of DDT [1] defined by

$$
D D T(\alpha, \beta, \Delta)=\#\left\{(x, y) \mid x, y \in F_{2}^{n}, S(x \oplus \alpha, y \oplus \beta) \oplus S(x, y)=\Delta\right\} \cdot 2^{-2 n}
$$

where $\alpha, \beta, \Delta \in F_{2}^{n}$.Then, for $0 \leq i \leq n-1$, let Out $=\left(o_{1}, o_{3}\right) \in F_{2}^{2}$, In $=\left(e_{1}, e_{3}\right), L=$ $(1,1,1,1), Q=(1,0,0,0) \in F_{2}^{4}, \bar{d}[i]=(\alpha[i], \beta[i], \Delta[i]) \in F_{2}^{3}$. And the $M_{d[i]} \in F_{2}^{4 \times 4}$ is
defined as

$$
\begin{aligned}
& M_{d[i]}[\text { Out }, \text { In }] \\
= & D f_{\text {Out }, \text { In }}^{1,1}((\alpha[i], \Delta[i]),(0,0),\{(1),(0),(0)\},\{(1),(\alpha[i]),(\beta[i])\}) \\
= & \#\left\{\begin{array}{c}
\alpha[i] \oplus \beta[i] \oplus \Delta[i] \oplus e_{1} \oplus e_{3}=0, \\
\operatorname{carry} y_{e_{1}}(y, x)[1]=o_{1}, \\
(x, y) \left\lvert\, \begin{array}{c}
\\
\operatorname{carry}_{e_{3}}(y \oplus \beta[i], x \oplus \alpha[i])[1]=o_{3}, \\
\text { where carry }(x, y)[1]=(x \wedge y) \oplus(x \wedge e) \oplus(e \wedge y) ; x, y, \in F^{2} .
\end{array}\right.
\end{array}\right\}
\end{aligned}
$$

where $0 \leq$ Out, In ≤ 3. Thus,

$$
D D T(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=2^{-2 n} \cdot L \prod_{i=0}^{n-1} M_{d[i]} Q^{T}
$$

4. The formula for calculating difference-linear connective correlation coefficients:

Corollary 8:(DLCT) Let S be a $S(x, y)=x \boxplus y$, an element of DLCT [4] defined by

$$
D L C T(\alpha, \beta, \lambda)=2^{-2 n} \cdot \sum_{x, y \in F_{2}^{n}}(-1)^{\lambda \cdot(S(x \oplus \alpha, y \oplus \beta) \oplus S(x, y))}
$$

where $\alpha, \beta, \lambda \in F_{2}^{n}$.Then, for $0 \leq i \leq n-1$, let Out $=\left(o_{1}, o_{3}\right) \in F_{2}^{2}$, In $=\left(e_{1}, e_{3}\right), L=$ $(1,1,1,1), Q=(1,0,0,0) \in F_{2}^{4}, a[i]=(\alpha[i], \beta[i], \lambda[i]) \in F_{2}^{3}$. And the $M_{a[i]} \in F_{2}^{4 \times 4}$ is defined as

$$
\begin{aligned}
& M_{a[i]}[\text { Out, } \mathrm{In}] \\
& =\operatorname{Cor}_{\text {Out }, \text { In }}^{1}\binom{0, \lambda[i], 0,0,}{\{(1),(0),(0)\},\{(1),(\alpha[i]),(\beta[i])\}} \\
& =\sum_{x, y \in \text { Set }_{a[i], \text { out }, \text { In }}}(-1)^{\lambda[i] \cdot(S(x \oplus \alpha[i], y \oplus \beta[i]) \oplus S(x, y))}
\end{aligned}
$$

$0 \leq$ Out, In ≤ 3. Thus,

$$
D L C T(\alpha, \beta, \lambda)=2^{-2 n} \cdot L \prod_{i=0}^{n-1} M_{a[i]} Q^{T}
$$

5. The formula for calculating the linear approximation correlation coefficients(LAT):

Corollary 9:(LAT) Let S be $S(x, y)=x \boxplus y$, an element of LAT [2] defined by

$$
L A T(\mu, \omega, \lambda)=2^{-2 n} \cdot \sum_{x, y \in F_{2}^{n}}(-1)^{\mu \cdot x \oplus \omega \cdot y \oplus \lambda \cdot S(x, y)}
$$

where $\mu, \omega, \lambda \in F_{2}^{n}$.Then, for $0 \leq i \leq n-1$, let $O u t \in F_{2}$, In $\in F_{2}, L=(1,1), Q=(1,0)$, $a[i]=(\mu[i], \omega[i], \lambda[i]) \in F_{2}^{3}$. And the elements of $M_{a[i]} \in F_{2}^{2 \times 2}$ is defined as
$M_{a[i]}[$ Out, In $]=\operatorname{Cor}_{\text {Out }, \text { In }}^{1}\binom{0, \lambda[i], \mu[i], \omega[i]}{,\{(1),(0),(0)\}}$,
$=\sum_{x, y \in \text { Set }_{a[i], \text { Out }, \text { In }}}(-1)^{\mu[i] \cdot x \oplus \omega[i] \cdot y \oplus \lambda[i] \cdot S(x, y)}$
where Set $_{a[i], \text { Out }, \text { In }}=\left\{(x, y) \left\lvert\, \begin{array}{c}\operatorname{carry}_{\text {In }}(y, x)[1]=\text { Out }, \\ \text { where carry } \\ (x, y)[1]=(x \wedge y) \oplus(x \wedge e) \oplus(e \wedge y) ; x, y, \in F^{2} .\end{array}\right.\right\}$,
$0 \leq$ Out, In ≤ 1.Thus,

$$
L A T(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=2^{-2 n} \cdot L \prod_{i=0}^{n-1} M_{a[i]} Q^{T}
$$

According to the Theorem 8 in Appendix-A, after reducing the redundancy of matrix, we have the formulas for the calculating the boomerange-difference connective probability and the variant of difference-boomerange connective probability, respectively:
Corollary $10(B D T)$: Let F be $(x, y) \xrightarrow{F}(x, x \boxplus y)$, an element of BDT [10] defined as
$B D T(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=\#\left\{(x, y) \left\lvert\, \begin{array}{c}x, y \in F_{2}^{n},(x, y) \oplus F^{-1}(F(x \oplus \alpha, y \oplus \beta))=(\theta, \zeta) \\ F^{-1}(F(x, y) \oplus(\gamma, \lambda)) \oplus F^{-1}(F(x \oplus \alpha, y \oplus \beta) \oplus(\gamma, \lambda))=(\alpha, \beta) .\end{array}\right.\right\} \cdot 2^{-2 n}$
where $\alpha, \beta, \gamma, \lambda, \theta, \zeta \in F_{2}^{n}$. Then, for $0 \leq i \leq n-1$, let $O u t=\left(o_{1}, o_{2}, o_{3}, o_{4}, o_{5}\right) \in F_{2}^{5}$, In $=$ $\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right) \in F_{2}^{5}, L=(1,1, \cdots, 1) \in F_{2}^{32}, d[i]=(\alpha[i], \beta[i], \gamma[i], \lambda[i], \theta[i], \zeta[i]) \in F_{2}^{6}$, $Q=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, \cdots, 0) \in F_{2}^{32}$. And the $M_{d[i]} \in F_{2}^{32 \times 32}$ is defined as

$$
M_{d[i]}[\text { Out, In }]=\#\left\{(x, y) \left\lvert\, \begin{array}{c}
\alpha[i]=\theta[i], 1 \oplus \beta[i] \oplus \zeta[i] \oplus e_{5} \oplus e_{3}=0, \\
e_{4} \oplus e_{3} \oplus e_{1} \oplus e_{2}=0, \operatorname{carry} y_{e_{1}}(y, x)[1]=o_{1}, \\
\operatorname{carry}_{e_{2}}\left(y \oplus x \oplus e_{1} \oplus \lambda[i], x \oplus 1 \oplus \gamma[i]\right)[1]=o_{2}, \\
\operatorname{carry}(y \oplus \beta[i], x \oplus \alpha[i])[1]=o_{3}, \\
\operatorname{carry}_{y_{4}}\left(y \oplus \beta[i] \oplus x \oplus \alpha[i] \oplus e_{3} \oplus \lambda[i], x \oplus 1 \oplus \alpha[i] \oplus \gamma[i]\right)[1]=o_{4} ; \\
\operatorname{carry}_{e_{5}}\left(y \oplus \beta[i] \oplus x \oplus \alpha[i] \oplus e_{3}, x \oplus 1 \oplus \alpha[i] \oplus\right)[1]=o_{5} ; \\
\text { where carry }(x, y)[1]=(x \wedge y) \oplus(x \wedge e) \oplus(e \wedge y) ; x, y, \in F^{2} .
\end{array}\right.\right\}
$$

where $0 \leq$ Out, In ≤ 31. Thus,

$$
B D T(\alpha, \beta, \gamma, \lambda, \theta, \zeta)=2^{-2 n} \cdot L \prod_{i=0}^{n-1} M_{d[i]} Q^{T}
$$

Corollary $11\left(D B T^{1}\right)$: Let F be $(x, y) \xrightarrow{F}(x, x \boxplus y)$, an element of $D B T^{1}$ [10] defined as
$D B T^{1}(\alpha, \beta, \gamma, \lambda, \theta, \zeta, \eta, \psi)=\#\left\{(x, y) \left\lvert\, \begin{array}{r}x, y \in F_{2}^{n}, F(x, y) \oplus F(x \oplus \alpha, y \oplus \beta)=(\theta, \zeta), \\ F^{-1}(F(x, y) \oplus(\gamma, \lambda)) \oplus F^{-1}(F(x, y) \oplus(\gamma, \lambda) \oplus(\theta, \zeta))=(\eta, \psi) .\end{array}\right.\right\} \cdot 2^{-2 n}$
where $\alpha, \beta, \gamma, \lambda, \theta, \zeta, \eta, \psi \in F_{2}^{n}$.Then, for $0 \leq i \leq n-1$, let Out $=\left(o_{1}, o_{2}, o_{3}, o_{4}\right) \in F_{2}^{4}$, In $=\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in F_{2}^{4}, L=(1,1, \cdots, 1) \in F_{2}^{16}, Q=(0,0,0,0,0,1,0, \cdots, 0) \in F_{2}^{16}$, $d[i]=(\alpha[i], \beta[i], \gamma[i], \lambda[i], \theta[i], \zeta[i], \eta[i], \psi[i]) \in F_{2}^{8}$. And the $M_{d[i]} \in F_{2}^{16 \times 16}$ is defined as
$M_{d[i]}[$ Out, In $]=\#\left\{(x, y) \left\lvert\, \begin{array}{c}\alpha[i]=\theta[i], \alpha[i] \oplus \beta[i] \oplus \zeta[i] \oplus e_{1} \oplus e_{3}=0, \eta[i]=\theta[i], \\ \psi[i] \oplus \theta[i] \oplus \zeta[i] \oplus e_{4} \oplus e_{1} \oplus e_{2}=0, \operatorname{carry}_{e_{1}}(y, x)[1]=o_{1}, \\ \operatorname{carry}_{e_{2}}\left(y \oplus x \oplus e_{1} \oplus \lambda[i], x \oplus 1 \oplus \gamma[i]\right)[1]=o_{2}, \\ \operatorname{carry}(y \oplus \beta[i], x \oplus \alpha[i])[1]=o_{3}, \\ \operatorname{carry}_{e_{4}}\left(y \oplus x \oplus e_{1} \oplus \lambda[i] \oplus \zeta[i], x \oplus 1 \oplus \gamma[i] \oplus \theta[i]\right)[1]=o_{4} ; \\ \text { where } \operatorname{carry}(x, y)[1]=(x \wedge y) \oplus(x \wedge e) \oplus(e \wedge y) ; x, y, \in F^{2} .\end{array}\right.\right\}$
where $0 \leq$ Out, In ≤ 15. Thus,

$$
D B T^{1}(\alpha, \beta, \gamma, \lambda, \theta, \zeta, \eta, \psi)=2^{-2 n} \cdot L \prod_{i=0}^{n-1} M_{d[i]} Q^{T}
$$

References

[1] Eli Biham and Adi Shamir. Di erential cryptanalysis of des-like cryptosystems. 1990.
[2] Mitsuru Matsui. On correlation between the order of s-boxes and the strength of des. In Workshop on Advances in Cryptology-eurocrypt, 1994.
[3] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang connectivity table: A new cryptanalysis tool. Cryptology ePrint Archive, Report 2018/161, 2018. https://eprint.iacr.org/2018/161.
[4] Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman. Dlct: A new tool for differential-linear cryptanalysis. Cryptology ePrint Archive, Report 2019/256, 2019. https://eprint.iacr.org/2019/256.
[5] Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds. application to aes variants and deoxys. 2019.
[6] Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differential properties of addition. In Mitsuru Matsui, editor, Fast Software Encryption, 8th International Workshop, FSE 2001 Yokohama, Japan, April 2-4, 2001, Revised Papers, volume 2355 of Lecture Notes in Computer Science, pages 336-350. Springer, 2001.
[7] Johan Wallén. Linear approximations of addition modulo 2^{n}. In $F S E$, pages 274-289, 2003.
[8] Ernst Schulte-Geers. On ccz-equivalence of addition mod 2 ${ }^{n}$. Designs Codes, Cryptography, 66(1-3):111-127, 2013.
[9] Anne Canteaut, Lukas Kölsch, and Friedrich Wiemer. Observations on the dlct and absolute indicators. Cryptology ePrint Archive, Report 2019/848, 2019. https: //eprint.iacr.org/2019/848.
[10] Hosein Hadipour, Nasour Bagheri, and Ling Song. Improved rectangle attacks on skinny and craft. Cryptology ePrint Archive, Report 2020/1317, 2020. https: //eprint.iacr.org/2020/1317.

A Reduce The Redundancy of Matrix

Definition 9: For any 2 basic function series $\left\{f(X, Y)_{E_{k_{m, 1}, 1}, A_{k_{m, 1}}^{i+1}, B_{k_{m, 1}}^{i+1}} ; 1 \leq m \leq r_{1}\right\}_{1}$ and $\left\{f(X, Y)_{E_{k_{m, 2},}, A_{k_{m, 2}}^{i+1}, B_{k_{m}, 2}^{i+1}} ; 1 \leq m \leq r_{2}\right\}_{2}$, if there exist a k_{1}, such that $k_{1} \geq 0$, $E_{k_{r_{1}, 1}}\left[0: k_{1}\right]=E_{k_{r_{2}, 2}}\left[0: k_{1}\right], A_{k_{r_{1}, 1}}^{i+1}\left[0: k_{1}\right]=A_{k_{r_{2}, 2}}^{i+1}\left[0: k_{1}\right], B_{k_{r_{1}, 1}}^{i+1}\left[0: k_{1}\right]=B_{k_{r_{2}, 2}}^{i+1}\left[0: k_{1}\right] ;$ then we called that the two basic function series are similar. And the degree of similarity deg for the two basic function series is defined as
$\operatorname{deg}=\max \left\{k+1 \mid k \geq 0, E_{k_{m, 1}}[0: k]=E_{k_{m, 2}}[0: k], A_{k_{m, 1}}^{i+1}[0: k]=A_{k_{m, 2}}^{i+1}[0: k], B_{k_{m, 1}}^{i+1}[0: k]=B_{k_{m, 2}}^{i+1}\right\}$.
Beside this, if two basic function series are not similar, we define $d e g=0$.
Definition 10: Given any z number r_{1}, \cdots, r_{z}, supposed that $1 \leq j_{1} \leq j_{2} \leq z$, deg \leq $r_{j_{1}}, r_{j_{2}}$, where $d=\sum_{i=1}^{z} r_{i}$, then we can define

$$
\operatorname{Sim}_{d e g}^{j_{1}, j_{2}}=\left\{V \in F_{2}^{d} \mid V=\left(V_{1}, V_{2}, \cdots V_{z}\right), V_{r_{j_{1}}}[0: d]=V_{r_{j_{2}}}[0: d], V_{i} \in F_{2}^{r_{i}}, 1 \leq i \leq z\right\}
$$

Define the bijection $F: \operatorname{Sim}_{d e g_{d}}^{j_{1}, j_{2}} \xrightarrow{F} F_{2}^{d-d e g}$ as:
$F\left(V_{1}, V_{2}, \cdots, V_{j_{1}}, \cdots, V_{j_{2}}, \cdots, V_{z}\right)=\left(V_{1}, V_{2}, \cdots, V_{j_{1}}, \cdots, V_{j_{2}}\left[d e g: r_{j_{2}}-1\right], \cdots, V_{z}\right)$.
Theorem 8: For any positive integer q, t, z, n, given any z basic function series $\left\{f\left(X^{1, q}, Y^{1, q}\right)_{E_{k_{m, j}}, A_{k_{m, j}, j}^{q}, B_{k_{m, j}}^{q}} ; 1 \leq m \leq r_{j}\right\}_{j}\left(X^{1, q}, Y^{1, q} \in F_{2}^{q, t}\right), 1 \leq j \leq z$; then we can get $T_{k_{r_{j}, j}}^{i}, D_{k_{r_{j}, j}}^{i} \in\left(F_{2}^{t}\right)^{r_{j}}$ from $A_{k_{m, j}}^{q}, B_{k_{m, j}}^{q}$, where $1 \leq j \leq z, 0 \leq j \leq q-1$. And there are two basic function series ,of which code are j_{1}, j_{2} respectively, are similar. Then we define
the degree of similarity for the two basic function series is deg. Supposed that $G_{0} \in F_{2}^{n \times 2}$, $G_{j} \in F_{2}^{n \times r_{j}}, 1 \leq j \leq z ; C=(J, N) \in\left(F_{2}^{n \times q \cdot t}, F_{2}^{n \times q \cdot t}\right)$, Out, In $n_{1} \in F_{2}^{d}$, In $\in \operatorname{Sim}_{\text {deg }}^{j_{1}, j_{2}}$, where $d=\sum_{i=0}^{z} k_{r_{i}}$, In $=\left(E_{k_{r_{1}, 1}}, \cdots E_{k_{r_{z}, z}}\right)$. Let $C=(J, N)=C_{q}^{1}=\left(J_{q}^{1}, N_{q}^{1}\right)$. We have:

$$
D f_{I n}^{q, n}\left(C, G_{0}, G_{j}, A_{k_{r_{j}, j}}^{q}, B_{k_{r_{j}, j}}^{q}, 1 \leq j \leq z\right)=L \prod_{i=0}^{q-1} M d^{i} Q^{T}
$$

where $L=(1,1, \cdots, 1) \in F_{2}^{d-d e g}, Q \in F_{2}^{d-d e g}$, of which the sole nonzero component satisfies $Q[F(I n)]=1$, and $M d^{i} \in R^{(d-d e g) \times(d-d e g)}$ satisfying $M d^{i}[o u t, i n]=$ $\# D f_{F^{-1}(o u t), F^{-1}(\text { in })}^{1, n}\left(C_{i}^{2}, G_{0}, G_{j}, T_{k_{r_{j}, j}}^{i}, D_{k_{r_{j}, j}}^{i}, 1 \leq j \leq z\right), 0 \leq i \leq q-1,0 \leq$ out, in \leq $2^{d-d e g}-1$.

Proof. According to the remark 5, for $1 \leq i \leq q$, we have :
$D f_{\text {Out,In}}^{i, n}\left(C_{i}^{1}, G_{0}, G_{j}, A_{k_{r_{j}, j}}^{i}, B_{k_{r_{j}, j}}^{i}, 1 \leq j \leq z\right)=0$, when in $\notin \operatorname{Sim}_{d e g}^{j_{1}, j_{2}}$ and out $\in \operatorname{Sim}_{d e g}^{j_{1}, j_{2}}$.
$D f_{\text {Out }, \text { In }}^{i, n}\left(C_{i}^{1}, G_{0}, G_{j}, A_{k_{r_{j}, j}}^{i}, B_{k_{r_{j}, j}}^{i}, 1 \leq j \leq z\right)=0$, when in $\in \operatorname{Sim}_{d e g}^{j_{1}, j_{2}}$ and out $\notin \operatorname{Sim}_{\text {deg }}^{j_{1}, j_{2}}$.
Thus, for $1 \leq i \leq q$, when In $\in \operatorname{Sim}_{d e g}^{j_{1}, j_{2}}$

$$
\begin{aligned}
& \sum_{\text {Out } \in \operatorname{Sim}_{d e g}^{j_{1}, j_{2}}} \# D f_{O u t, I n}^{i, n}\left(C_{i+1}^{1}, G_{0}, G_{j}, A_{k_{r_{j}, j}}^{i+1}, B_{k_{r_{j}, j}}^{i+1}, 1 \leq j \leq z\right) \\
&=\# D f_{I n}^{i, n}\left(C_{i+1}^{1}, G_{0}, G_{j}, A_{k_{r_{j}, j}}^{i+1}, B_{k_{r_{j}, j}}^{i+1}, 1 \leq j \leq z\right)
\end{aligned}
$$

And for $1 \leq i \leq q-1$, when In $\in \operatorname{Sim}_{\text {deg }}^{j_{1}, j_{2}}$,

$$
\begin{aligned}
& \# D f_{O u t, I n}^{i+1, n}\left(C_{i+1}^{1}, G_{0}, G_{j}, A_{k_{r_{j}, j}}^{i+1}, B_{k_{r_{j}, j}}^{i+1}, 1 \leq j \leq z\right) \\
= & \sum_{M i \in \operatorname{Sim}_{d e g}^{j j_{1}, j_{2}}} \# D f_{O u t, M i}^{1, n}\left(C_{i}^{2}, G_{0}, G_{j}, T_{k_{r_{j}, j}}^{i}, D_{k_{r_{j}, j}}^{i}, 1 \leq j \leq z\right) \\
& \times \# D f_{M i, I n}^{i, n}\left(C_{i}^{1}, G_{0}, G_{j}, A_{k_{r_{j}, j}}^{i}, B_{k_{r_{j}, j}}^{i}, 1 \leq j \leq z\right) .
\end{aligned}
$$

Next, use the bijection F to transform $\operatorname{Sim}_{d e g}^{j_{1}, j_{2}}$ into $F_{2}^{d-d e g}$ and do the similar way like the theorem 7. Then, the theorem holds.

Theorem 9: For any positive integer q, t, z, n, given any z basic function series $\left\{f\left(X^{1, q}, Y^{1, q}\right)_{E_{k_{m, j}}, A_{k_{m, j}}^{q}, B_{k_{m, j}}^{q}} ; 1 \leq m \leq r_{j}\right\}_{j}\left(X^{1, q}, Y^{1, q} \in F_{2}^{q \cdot t}\right), 1 \leq j \leq z$; then we can get $T_{k_{r_{j}, j}}^{i}, D_{k_{r_{j}, j}}^{i} \in\left(F_{2}^{t}\right)^{r_{j}}$ from $A_{k_{m, j}}^{q}, B_{k_{m, j}}^{q}$, where $1 \leq j \leq z, 0 \leq j \leq q-1$. And there are two basic function series ,of which code are j_{1}, j_{2} respectively, are similar. Then we define the degree of similarity for the two basic function series is deg. Supposed that $G_{j} \in F_{2}^{r_{j}}, 1 \leq j \leq z ; \gamma, \lambda, v, w \in F_{2}^{q \cdot t}$, Out, In $_{1} \in F_{2}^{d}$, In $\in \operatorname{Sim}_{d e g}^{j_{1}, j_{2}}$, where $d=\sum_{i=0}^{z} k_{r_{i}}$, In $=\left(E_{k_{r_{1}, 1}}, \cdots E_{k_{r_{z}, z}}\right)$. Let $\lambda_{q}^{1}=\lambda, \gamma_{q}^{1}=\gamma, V_{q}^{1}=v, W_{q}^{1}=w$. We have:

$$
\operatorname{Cor}_{I n}^{q}\binom{\gamma_{q}^{1}, \lambda_{q}^{1}, V_{q}^{1}, W_{q}^{1},}{A_{k_{r_{j}, j}}^{q}, B_{k_{r_{j}, j}}^{q}, G_{j} 1 \leq j \leq z}=L \prod_{i=0}^{q-1} M a^{i} Q^{T}
$$

where $L=(1,1, \cdots, 1) \in F_{2}^{d-d e g}, Q \in F_{2}^{d-\text { deg }}$, of which the sole nonzero component satisfies $Q[F(I n)]=1$, and $M d^{i} \in R^{(d-\operatorname{deg}) \times(d-\operatorname{deg})}$ satisfying $M a^{i}[$ out, in $]=$ $\operatorname{Cor}_{F^{-1}(\text { out }), F^{-1}(\text { in })}^{1}\binom{\gamma_{i}^{2}, \lambda_{i}^{2}, V_{i}^{2}, W_{i}^{2}}{,T_{k_{r_{j}, j}}^{i}, D_{k_{r_{j}, j}}^{i}, G_{j} 1 \leq j \leq z}, 0 \leq i \leq q-1,0 \leq$ out, in $\leq 2^{d-\operatorname{deg}}-1$.

Proof. According to the remark 5, for $1 \leq i \leq q$, we have :
$\operatorname{Cor}_{\text {Out }, \text { In }}^{i}\binom{\gamma_{i}^{1}, \lambda_{i}^{1}, V_{i}^{1}, W_{i}^{1}}{,A_{k_{r_{j}, j}}^{i}, B_{k_{r_{j}, j}, i}^{i}, G_{j}, 1 \leq j \leq z}=0$, when in $\notin \operatorname{Sim}_{\text {deg }}^{j_{1}, j_{2}}$ and out $\in \operatorname{Sim}_{\text {deg }}^{j_{1}, j_{2}}$.
$\operatorname{Cor}_{\text {Out }, \text { In }}^{i}\binom{\gamma_{i}^{1}, \lambda_{i}^{1}, V_{i}^{1}, W_{i}^{1}}{,A_{k_{r_{j}, j}}^{i}, B_{k_{r_{j}, j}}^{i}, G_{j}, 1 \leq j \leq z}=0$, when in $\in \operatorname{Sim}_{d e g}^{j_{1}, j_{2}}$ and out $\notin \operatorname{Sim}_{\text {deg }}^{j_{1}, j_{2}}$.
Thus, for $1 \leq i \leq q$, when $I n \in \operatorname{Sim}_{d e g}^{j_{1}, j_{2}}$,
$\operatorname{Cor}_{\text {In }}^{i}\binom{\gamma_{i}^{1}, \lambda_{i}^{1}, V_{i}^{1}, W_{i}^{1}}{,A_{k_{r_{j}, j}}^{i}, B_{k_{r_{j}, j}}^{i}, G_{j}, 1 \leq j \leq z}=\sum_{\text {Out }^{1} \operatorname{Sim}_{d e g}^{j, j}} \operatorname{Cor}_{\text {Out }, \text { In }}^{i}\binom{\gamma_{i}^{1}, \lambda_{i}^{1}, V_{i}^{1}, W_{i+1}^{1}}{,A_{k_{r_{j}, j}}^{i}, B_{k_{r_{j}, j}}^{i}, G_{j}, 1 \leq j \leq z}$
And for $1 \leq i \leq q-1$, when $\operatorname{In} \in \operatorname{Sim}_{\text {deg }}^{j_{1}, j_{2}}$,

$$
\begin{aligned}
& \operatorname{Cor}_{\text {Out,In }}^{i+1}\binom{\gamma_{i+1}^{1}, \lambda_{i+1}^{1}, V_{i+1}^{1}, W_{i+1}^{1},}{A_{k_{r_{j}, j}+1}^{i+1}, B_{k_{r_{j}, j}}^{i+1}, G_{j}, 1 \leq j \leq z} \\
& =\sum_{M_{i \in \operatorname{Sim}_{d e g}}^{j_{1}, j_{2}}} \operatorname{Cor}_{\mathrm{Out}, M i}^{1}\binom{\gamma_{i}^{2}, \lambda_{i}^{2}, V_{i}^{2}, W_{i}^{2},}{T_{k_{r_{j}, j}}^{i}, D_{k_{r_{j}, j},}^{i}, G_{j}, 1 \leq j \leq z} \times \operatorname{Cor}_{M i, I n}^{i}\binom{\gamma_{i}^{1}, \lambda_{i}^{1}, V_{i}^{1}, W_{i}^{1},}{A_{k_{r_{j}, j},}^{i}, B_{k_{r_{j}, j},}^{i}, G_{j}, 1 \leq j \leq z}
\end{aligned}
$$

Next, use the bijection F to transform $S i m_{d e g}^{j_{1}, j_{2}}$ into $F_{2}^{d-d e g}$ and do the similar way like the theorem 6. Then, the theorem holds.

