
Erratum:

The application of the Cauchy-Schwarz inequality in (33) on page 53 is incorrect. This
breaks the proof of Lemma 26 and thus of most results in this paper. We thank Minki
Hhan for discovering this problem.

Counterexample. In particular, the following is a simple counterexample to the central
Theorems 4 and 12:

Consider the state |0 7→ 0〉g. (Where g is f or p, depending on whether we are in the
context of Theorem 4 or 12.) We have that

|0 7→ 0〉g =
∑
y∈R
|0 7→ y〉g −

∑
y∈R\{0}

|0 7→ y〉g =
√
N |∅〉g −

∑
y∈R\{0}

|0 7→ y〉g

∈ span
{
|f〉g : 0 /∈ im f, |dom f | ≤ 1

}
f
.

Consider a system with registers XYH in the state ψ := |0〉X |0〉Y |0 7→ 0〉g. Then the
previous equation implies

ψ ∈ span
{
|x〉X |0〉Y |f〉g : 0 /∈ im f, |dom f | ≤ 1

}
xf
.

By Theorem 4 or 12, with Ax,e, Bx,e := {f : 0 /∈ im f} and with c := 1
N (for Theorem 4)

or c := 1
N−2 (for Theorem 12), this implies that

Uqueryψ
4
√
c
≈ span

{
|x〉X |f(x)〉Y |f〉g : x ∈ dom f, 0 /∈ im f, |dom f | ≤ 2

}
xf

⊆ span
{
|x〉X |y〉Y |f〉g : y 6= 0

}
xyf

=: I ′.

On the other hand, Uqueryψ = |0〉X |0〉Y |0 7→ 0〉g by definition of ψ, Uquery , and |0 7→ 0〉g.

Thus Uqueryψ is orthogonal to I ′, in direct contradiction to Uqueryψ
4
√
c
≈ I ′. (At least

when 4
√
c < 1 which is the case if N ≥ 19.)

Unaffected parts. The only unaffected part of the paper is Section 3.1 in which we give
a different view of Zhandry’s compressed oracle technique. This view may be useful in
its own right for understanding Zhandry’s compressed oracle technique. However, it does
not give us a proof technique for random permutations.

Future of this eprint. If we find a way to fix the problems described above, we will
update this eprint. Otherwise we will leave it in place including this erratum for future
reference.

Compressed Permutation Oracles
And the Collision-Resistance of Sponge/SHA3

Dominique Unruh
University of Tartu

February 22, 2021

THIS IS A DRAFT
Do not distribute

(Git revision: iacr-eprint-v1-0-g950e407-dirty)

Information about mistakes and typos are appreciated (unruh@ut.ee).

Abstract

We generalize Zhandry’s compressed oracle technique to invertible random permuta-
tions. (That is, to a quantum random oracle where the adversary has access to a
random permutation and its inverse.) This enables security proofs with lazy sampling,
i.e., where oracle outputs are chosen only when needed.

As an application of our technique, we show the collision-resistance of the sponge
construction based on invertible permutations. In particular, this shows the collision-
resistance of SHA3 (in the random oracle model).

1 Introduction 2

2 Preliminaries 6

3 Compressed oracles 8

3.1 Zhandry’s compressed ora-
cles 8

3.2 The non-orthogonal view 15

3.3 Example: Zero search . . 17

3.4 Example: Collision finding 21

3.5 Parallel queries 24

4 Compressed permutations 27

4.1 Adapting our approach . . 27

4.2 Example: Zero search . . 28

4.3 Parallel queries 31

4.4 Inverse queries 33

4.5 Example: Two-sided zero
search 34

4.6 Classical computations . . 39

5 Query theorems 42

5.1 Simple properties 43

5.2 Generalized case 46

5.3 Random functions 56

5.4 Random permutations . . 58

5.5 Single query case 59

1

mailto:unruh@ut.ee

6 Collision-resistance of sponges 61
6.1 The sponge construction . 61
6.2 Invariant for collision-

resistance 62
6.3 Proof of collision-resistance 65

7 Conclusion & open questions 69

Indices 70

List of Theorems 70

Symbol index 71

Keyword Index 72

References 73

1 Introduction

The random oracle [BR93] is a powerful heuristic1 for cryptographic security proofs. It
allows us to abstract from the gritty details of the definition of a hash function and to
imagine it to be just a random function. We can then use powerful reasoning techniques
such as lazy sampling to make security proofs simpler or, in many cases, possible in
the first place. (Lazy sampling refers to the technique of choosing the outputs of the
random oracle “on demand”, when they are first accessed.) These techniques are useful
even if we are not in the random oracle model. For example, when working with a
pseudorandom function, the first step in a proof is often to replace it by a fictitious
random function. Quite similar to the random oracle are random permutations (to model
cryptographically-strong permutations), or ideal ciphers (a heuristic model for block
ciphers, basically a key-indexed family of random permutations). In the standard model,
random permutations occur in security proofs involving pseudorandom permutations (e.g.,
in protocols involving block ciphers). In such proofs, we often consider invertible random
permutations, i.e., we give the adversary access also to the inverse of the permutation.
All of this can be handled very nicely using lazy sampling.

At least, this is the situation in classical cryptography. Once quantum (or post-
quantum) cryptography enters the picture, using the random oracle becomes much harder.
This is because the quantum random oracle gives the adversary superposition-access to
the random oracle. That is, the adversary can query the random oracle on a superposition
of many different values. Then lazy sampling as in the classical case does not work any
more: The adversary could query the oracle on a superposition of all inputs already in
the very first query. If we were to sample the oracle at all the sampled positions, this
would mean sampling the whole function in one go. But that goes against the very idea
of lazy sampling. Furthermore, we cannot just measure where the oracle is queried as
this would disturb the adversary state, and we need to make sure that our technique
does not influence the way in which the adversary is entangled with the random oracle
(in a way that the adversary can notice).

The above does not mean that the random oracle is unusable in the quantum setting.

1In general, this heuristic is not sound: There are contrived protocols which are secure in the random
oracle model but insecure when the oracle is instantiated with any hash function [CGH98]. However, in
practice the random oracle model has proven to be a very good heuristic. Readers who reject heuristics
in security proofs may still enjoy the results in this work as a result about generic query complexity, or as
a technique for security proofs involving pseudorandom permutations.

2

A number of techniques have been developed for handling the random oracle (history-
free reductions, 2q-wise independent functions, semi-constant distributions, small-range
distributions, one-way to hiding (O2H) theorems, polynomial method, adversary method,
see the related work below). However, none of these have the general applicability of
the lazy sampling method, and they are often much harder to use. Then, surprisingly,
Zhandry [Zha19] discovered that a variant of lazy sampling is actually possible with
quantum random oracles, although it is not as simple (and as general) as in the classical
case. We refer to this technique as Zhandry’s “compressed oracle technique”. (We give
more details about it below.)

However, when talking about (invertible) random permutations, the situation is much
more limited. The abovementioned tools are specific to the random function case.2

To the best of our knowledge, no hardness results are known about invertible random
permutations, not even simple query complexity results such as the hardness of searching
an input with certain properties. As a consequence, we do not know anything about the
post-quantum security of cryptosystems built from invertible permutations, such as the
industry-standard SHA3 [NIS14].

The present work sets out to fill this gap.

Our contribution.
• We present a new variant of Zhandry’s compressed oracle technique. While it is

not (yet?) applicable in all situations where Zhandry’s is applicable, especially
when efficient simulations are required, it is arguably conceptually simpler. (See
the discussion of pros/contras in Section 3.2.) The greatest advantage of the new
approach is that it is not limited to random functions, but can in principle be
applied to functions of any distribution.

• We instantiate our approach with invertible random permutations. That is, our
framework allows us to prove query complexity and security results that involve
adversaries with superposition access to a permutation h and to its inverse h−1.
Our approach works by keeping track of invariants throughout the adversary’s
execution. These invariants establish where the permutation oracle was queried
and what properties the corresponding outputs satisfy. (E.g., the invariants may
say “no output is 0” or “there are no collisions in the output”.) This mimics the
classical lazy sampling.
We establish a number of theorems that tell us how invariants change under
permutation queries (and inverse queries). The premises of these theorems are
purely combinatorial (upper bounds on the size of certain sets) which means that
all nontrivial quantum mechanical reasoning is hidden away.

• As an example we show that it is hard to find x, y such that h(x‖0c) = y‖0c
for an invertible permutation h (“two-sided zero search”). To the best of our

2Except for the O2H theorem. Some variants of the O2H theorem apply to arbitrarily distributed
functions [AHU19], in particular to invertible permutations. (An invertible permutation can be modeled
as a function f : {0, 1} × {0, 1}n → {0, 1}n, uniformly sampled from the set of all functions where f(0, ·)
is a permutation and f(1, ·) its inverse.) However, we are not aware of any work that makes use of this.

3

knowledge, this is the first hardness result for invertible random permutations.
With our technique, the proof is easy. (Adversary success probability is O(q2/2c)
in q queries.)
Another example is that in a non-invertible random permutation, finding preimages
is hard. While this is known (it follows from [Zha15a]), our bound O(q2/N) for the
success probability with q queries and domain size N beats the known bound of
O(q3/N).
We also analyzed both situations with respect to adversaries that make k-parallel
queries, yielding tighter bounds O(q2k/2c) and O(q2k/N), respectively.)

• We show the collision-resistance of the sponge construction [Ber+07] when instanti-
ated with an invertible random permutation. (The sponge construction is a popular
construction of cryptographic hash functions.) Classically, this is a well-known
result. But in the post-quantum setting, the security of the sponge construction
was known only when using random functions (or non-invertible permutations).
However, most hash functions that use the sponge construction, including the
industry standard SHA3, are based on invertible permutations. Thus our result is
the first result to establish post-quantum security of SHA3. Our result is tight for
typical parameter choices (namely, when the hash output length is not larger than
the “rate” of the sponge).

Related work. Quantum random oracles. [Unr15; HRS16] showed that finding preimages
in the random oracle is hard ([Boy+98] showed this in worst-case setting.) [Bon+11]
introduced “history-free reductions” which basically amounts to replacing the random
oracle by a different function right from the start. [Zha12c] showed that random oracles
can be simulated using 2q-wise independent functions. Based on this, [Unr15] introduces
a technique for extracting preimages of the random oracle. [Zha12c] introduces the
“semi-constant distributions” technique that allows us to program the random oracle
in many random locations with a given challenge value without the adversary noticing.
[Zha12a] improves upon this with the “small-range distribution” technique that allows us
to simulate random oracles using random looking functions with a small range. [Zha15b]
shows that random oracles are collision resistant (this is generalized by [TTU16; EU18;
BES18] to the case of non-uniformly distributed functions with independently sampled
outputs). Collision-resistance of the random oracle is generalized to the “collapsing
property” which allows us to show that measuring the output of the random oracle
effectively measures the input [Unr16]. More general methods for problems in quantum
query complexity (not limited to random oracles) include the polynomial method [Bea+01]
and the adversary method [Amb02]. [ARU14] shows that the difficulties of using the
quantum random oracle are not just a matter of missing proof techniques, but that in
certain cases classically secure schemes are not secure in the quantum random oracle
model.

Compressed oracles. Compressed oracles were introduced in [Zha19] and used there
to show indifferentiability of the Merkle-Damg̊ard construction, as well as security of
the Fujisaki-Okamoto transform. [Chu+20] generalizes [Zha19] to Fourier transforms

4

over abelian groups, thus allowing random functions with a range different from {0, 1}n.
Different from [Zha19], they do not have a compression/decompression algorithm but
instead reason using invariants that are expressed in a basis different from the computa-
tional basis. This is reminiscent of our approach. The also introduce support for parallel
queries (as do we). [Cza+20] generalizes [Zha19] to non-uniformly distributed functions,
but only for the case where all outputs are independently sampled. (This is similar to
what we achieve in our reformulation of Zhandry in Section 3.1, although we additionally
get rid of the Fourier transform.) [TODO: ehsan’s paper?] [TODO: paper “zhandry with
errors”?]

Random permutations. [Zha15b] shows that random oracles are indistinguishable
from (noninvertible) random permutations. This allows us to derive results for random
permutations from results for random functions. (However, the results might not be
tight, cf. Section 4.2.) [Zha16] shows the existence of quantum-secure pseudorandom
permutations (qPRP, secure under superposition-queries of the function and its inverse)
from quantum one-way functions. In particular, this implies that a random invertible
permutation can be efficiently simulated.3 However, [Zha16] does not give us any technique
for analyzing schemes that use a qPRP; when analyzing such a scheme we typically
replace the qPRP by an invertible random function in the proof, and the techniques from
the present paper can be used.

Security of the sponge construction. The sponge construction was proposed by
[Ber+07]. In the classical random oracle model, security of the sponge construction
was shown by [Ber+08], both when the sponge is based on random functions and on
invertible random permutations. They showed indifferentiability, which implies many
other properties such as collision-resistance, pseudorandomness, and more. In the
quantum setting, collision-resistance and the collapsing property from [Unr16] were
shown in [Cza+18] in the random function case. Quantum pseudorandomness of the
sponge was shown by [CHS19] but only in the case where the underlying round function
is secret (the adversary cannot query it). Indifferentiability in the quantum setting was
shown by [Cza+20] in the random function case. All those results immediately imply
the corresponding results in the non-invertible random permutation case since random
functions and permutations are indistinguishable [Zha15b]. However, for invertible
random permutations, no quantum results are known.

Organization. In Section 2 we introduce relevant notational conventions.
In Section 3 we present compressed oracles for random functions. Specifically, in

Section 3.1 we recap and give a new view on Zhandry’s technique. In Section 3.2 we
present our new compressed oracle technique. In Sections 3.3 and 3.4 we give example
applications (preimage search, collision finding) and introduce the main theorems along
the way. In Section 3.5 we cover extensions for handling parallel queries.

In Section 4 we extend our compressed oracle technique to handle invertible permuta-

3If we implement the underlying quantum one-way function using a random oracle, and we simulate
that random oracle with the method from [Zha12c] or [Zha19], then we event get a simulation without
computational assumptions.

5

tions. Specifically, in Section 4.1 we state the technique for non-invertible permutations.
In Section 4.2 we give an example (preimage search) and introduce the main theorems
along the way. In Section 4.4 we explain how inverse queries are handled and we illustrate
this with an example in Section 4.5 (two-sided zero search). In Section 4.6 we give some
additional convenience theorems for handling classical circuits.

In Section 5, we give the proofs of all our theorems and generalize the model along
the way. See the beginning of that section for an overview. In Section 6, we show the
collision resistance of the sponge construction. In Section 7, we conclude and mention
open questions. In the back matter, we provide a list of theorems, a symbol and a
keyword index, as well as the bibliography.

2 Preliminaries

Miscellaneous notation. λ is the empty word. < (z) is the real part of the complex
number z. |x| is the absolute value of x (if x is real/complex) or the cardinality of x (if

x is a set). (a)b is the falling factorial , defined by (a)b := a!/(a− b)!, i.e., the number of

injective functions from a set of size b to a set of size a. We write {f(x) : P (x)}x for the

set of all f(x) where x ranges over all values satisfying P (x). (E.g., {x2 : x is prime}x is
the set of squares of primes.) We use underscores to emphasize that a variable ranges
over tuples, e.g., x ∈ Rk for k-tuples x. In slight abuse of notation, we also write 0 for a
tuple of zeroes, f(z) for

(
f(z1), . . . , f(zk)

)
, a⊕ b for (a1 ⊕ b1, . . . ak ⊕ bk).

Total and partial functions. Throughout this work, we will extensively deal with total
and partial functions to describe states, queries, and invariants. For sets D,R, let D → R
be the total functions from D to R, and D ↪→ R the total injections (i.e., injective total
functions) from D to R. Furthermore, D l→ R and D l↪→ R are the partial functions
and partial injections, respectively. For a partial function f : D l→ R, dom f ⊆ D is the
domain (inputs on which f is defined) and im f is the image of f . Let f(x := y) denote
the updating of f . That is f(x := y)(x) = y, and f(x := y)(x′) = f(x′) for x 6= x′.

We consider functions (total and partial) as special cases of relations between D and
R (which in turn are subsets of D ×R). E.g., a total function f : D → R is a relation
where for every x ∈ D, there is exactly one y ∈ R such that (x, y) ∈ f . In particular, ∅ is
the empty partial function (defined nowhere). And for two partial functions f, g : D l→ R,
the union f ∪ g is a relation and therefore can be a partial function itself. We say f
and g are compatible, written f ♥ g, iff f ∪ g is a partial function. (Equivalently, f, g are
compatible iff they coincide wherever both are defined.)

For k-tuples x ∈ Dk, y ∈ Rk, let x 7→ y be the relation
(
(x1, y2), . . . , (xk, yk)

)
. In

particular, if x has no duplicates, or if x has duplicates but y has duplicates in the same
places, x 7→ y is the function that maps xi to yi and has domain x. In the special case of
1-tuples, note that if x /∈ dom f , we have f ∪ (x 7→ y) = f(x := y).

6

Quantum-related notation. Quantum states are elements of a (not necessarily finite-
dimensional) Hilbert space H. We usually represent quantum states with greek letters
(e.g., ψ) and use ket-notation (|x〉) to refer to basis states of the computational basis

unless specified otherwise, and 〈x| is the adjoint of |x〉 (〈x| = |x〉†). (I.e., |x〉 for x ∈ X is

an orthonormal basis of CX .) We write the inner product of ψ, φ as 〈ψ, φ〉 . However, the

inner product of |x〉 and |y〉 is written as 〈x| y〉 instead of the awkward
〈
|x〉, |y〉

〉
. (And

analogously, for notation |f〉f and similar that we will introduce later, 〈f | g〉f is the inner
product of |f〉f and |g〉f.) ‖ψ‖ is the norm of ψ ∈ H, and ~A~ is the corresponding
operator norm of the bounded operator A : H → H′. For S ⊆ H, spanS is the (closed)
span of S, i.e., the smallest topologically closed subspace of H containing S. Projector
always means orthogonal projector.

We will often need to consider the distance between a vector and a subspace: For two

vectors ψ, ψ′ ∈ H, we write ψ
ε
≈ψ′ to denote ‖ψ − ψ′‖ ≤ ε. And if S is a closed subspace

of H, then we write ψ
ε
≈S to denote ∃ψ′ ∈ S. ψ

ε
≈ ψ′.4

Quantum oracle queries. Throughout the paper, we will frequently refer to oracle queries.
Thus, we fix some variables once and for all: D always refers to the domain and R
to the range of the function. (I.e., queries are always made to a function h : D → R.)
We will also fix once and for all the sizes of D and R as M := |D| and N := |R|. (In
particular, D,R are assumed to be finite.)

We additionally fix a set R̃. Let ⊕ : R̃×R→ R̃ be a right cancellable operation. To
make notation more familiar, we additionally fix some arbitrary element 0 ∈ R̃ (but do
not assume any specific algebraic properties of it), and we identify y ∈ R with 0⊕ y ∈ R̃.

Typically, R̃ := R is a group, and ⊕ its operation, e.g., modular addition or XOR.
But being right cancellable is sufficient for the query operation to be unitary. This gives
us some added flexibility when R does not have a natural group structure.

A reader who is not looking for generality may safely assume R = R̃ = {0, 1}n and ⊕
to be XOR.

A query to a fixed function f : D → R can then be implemented by the unitary
|x〉|y〉 7→ |x〉|y ⊕ f(x)〉. (The fact that this is unitary follows from the right cancellation
property of ⊕.) However, we will more often be interested in queries to a function that
is also stored in a quantum register: For a set Func ⊆ D → R that will always be clear
from the context, define the unitary Uquery,k on CDk ⊗ CR̃k ⊗ CFunc by:

Uquery,k

∣∣x〉|y〉|h〉 = |x〉|y ⊕ h(x)〉|h〉

For k = 1 this makes a single query (and x, y are simply elements of D, R̃). For k > 1, this
implements several queries to the function h in one go (parallel queries). We abbreviate
Uquery := Uquery,1 , i.e., Uquery |x〉|y〉|h〉 = |x〉|y ⊕ h(x)〉|h〉 for x ∈ D, y ∈ R̃, h ∈ Func.

Finally, we need the following technical definition: The projector Pr projects a
superposition of functions to those compatible with the partial function r: For a set

4Or equivalently: ‖(1− P)ψ‖ ≤ ε where P is the projector onto S.

7

Func ⊆ D → R that is clear from the context, and for r : D l→ R, define

Pr :=
∑

h∈Func
h♥r

|h〉〈h|.

3 Compressed oracles

3.1 Zhandry’s compressed oracles

We will now recapitulate and rephrase Zhandry’s compressed oracle technique [Zha19].
trying to emphasize more the separation between implementation issues (encoding via
“databases” etc.) and the core concepts. Then we proceed to give a different view on
the technique that does not involve Fourier transforms and which is, in our opinion,
conceptually simpler. This will also form the motivation for our new construction that
supports permutations.

A reader who wishes to skip this part and to directly learn our new technique can
safely skip ahead to Section 3.2.

In a nutshell, the compressed oracle technique is a way to simulate/implement a
quantum random oracle (i.e., a uniformly random function h : D → R to which an
adversary or quantum algorithm has superposition query access) in a way that has the
following crucial features:

• The adversary cannot distinguish between the original random oracle and the
simulation. This allows us to use the simulation in proofs instead of the original
oracle.

• The simulation uses an internal state that has a small representation. This is
not the case for trivial implementations of the random oracle: Those would have
to pick and store the value table of the random function at the beginning. This
value table would require |D| · log|R| classical bits which is infeasible for typical
size of the domain D. In contrast, the compressed oracle only requires roughly
q(log|D|+ log|R|) qubits after q queries to the random oracle.

• The simulation keeps track where the random oracle was already queried, and
what the result of that query is. E.g., if the adversary queries h(x) (possibly in
superposition between different values x), and gets y := h(x), then the simulation
will keep a record that a query x 7→ y was performed (or a superposition of such
records). While this is trivial in the classical case, it is highly surprising that this
is possible in the quantum case: Naively keeping a record of the queries would
entangle the adversary’s state with the state of the compressed oracle, something
the adversary might detect.5 Having this record is the arguably the main advantage

5For example, the adversary might initialize a register X with
∑
x

1√
M
|x〉, then perform a superposition

query with input x. Now the compressed oracle needs to record the query x 7→ y (in superposition
between different x). Now the register X is entangled with the compressed oracle’s record. (Or, if the
compressed oracle would measure the query input, the register X would collapse to a single value.) Now
the adversary might wish to distinguish whether the compressed oracle records its queries or not. For
that purpose, the adversary uncomputes the previous query. Now X would be in the original state with

8

of the compressed oracle technique as a proof technique. For example, it allows
us to formulate invariants such as “the adversary has not yet queried an x with
h(x) = 0”.

• The simulation is efficient. That is, its runtime is polynomial in the number of
queries performed by the adversary, and the bitlengths of the inputs and outputs
of h. This is closely related to the fact that the internal state has a small represen-
tation. Previous approaches for efficiently implementing/simulating the quantum
random oracle either required computational assumptions (simulation via quantum
pseudorandom functions [Zha12b]) or required the simulator to know the number of
queries that the adversary will perform at the outset of the simulation (simulation
via 2q-wise independent functions [Zha12d]).

Through the rest of this section, we present our reformulation of Zhandry’s technique
before explaining our technique.

Standard oracle. Consider the original quantum random oracle. This oracle initially
classically samples a random function h

$← (D → R). And then a query to the function
h is implemented by a unitary |x〉|y〉 7→ |x〉|y ⊕ h(x)〉 on the adversary’s query registers
X,Y .

It is easy to see that this is perfectly indistinguishable from the following construction
(called the standard oracle in [Zha19]):6 An additional quantum register H is initialized
with

∑
h∈D→R

1√
|D→R|

|h〉, i.e., with the uniform superposition of all possible functions.

The adversary does not get access to this register H, but instead the oracle query is
changed to be the unitary Uquery : |x〉|y〉|h〉 7→ |x〉|y ⊕ h(x)〉|h〉 on registers X,Y,H.

To better understand the following steps, imagine that the register H consists of
many separate registers Hx (x ∈ D), each Hx storing the output h(x). (That is, h is
represented as a value table in H with Hx being the table entries.) Each Hx has Hilbert
space CR.

Compressed oracle. Next, we transform the oracle into yet another representation. First,
we extend the registers Hx to allow for a value |⊥〉, i.e., the Hilbert space is CR∪{⊥}.
This means that the register H now contains not total only functions h, but can also
contain superpositions of partial functions. (⊥ denoting an undefined output.)

the original random oracle; the adversary can check whether this is the case. But if the compressed
oracle keeps a record of the query x 7→ y, the state X will not be in its original state but entangled with
the compressed oracle. So in order to be indistinguishable, the compressed oracle needs to forget the
query (i.e., erase the record x 7→ y from its state). In other words, the compressed oracle needs to not
only record queries, but also “unrecord” queries in case of uncomputations. Since the compressed oracle
does not know a priori whether a given query is a computation or an uncomputation (or something in
between), it would seem impossible to solve this problem. The surprising fact of the compressed oracle
technique is that it does solve this problem, almost as a side effect.

6The indistinguishability formally follows from the fact that the query commutes with a computational
basis measurement of the register H, and the fact that if that computational basis measurement is
performed at the beginning of the execution, then it is equivalent to uniformly (classically) sampling h.

9

Intuitively, |⊥〉 in some Hx will mean that the corresponding h-output is not yet
determined, i.e., that any value is still possible. In particular, having |⊥〉 in all registers
Hx (i.e., having the empty partial function |∅〉 in H) should correspond to the initial
state of the random oracle.

We make this more formal by defining an encoding/decoding operation to map
between states that do not use |⊥〉 (as in the standard oracle) and states that do use |⊥〉
(compressed states).

Let Q denote the quantum Fourier transform on CR. We extend it to work on
the register Hx by defining Q|⊥〉 := |⊥〉. (In [Zha19] the specific case R = {0, 1}n is
considered. In this case the quantum Fourier transform is simply a Hadamard gate on
each qubit in Hx. But in [Chu+20] the case for general abelian groups R is considered and
other quantum Fourier transforms are used.) Let U⊥ be the unitary with U⊥|⊥〉 = |0〉,
U⊥|0〉 = |⊥〉, U⊥|y〉 = |y〉 for y 6= 0. Let Decomp1 := Q · U⊥ · Q† (the decompression
operation).

In the standard oracle, Hx has initial state
∑

y
1√
|R|
|y〉. If we apply Decomp†1 to it,

we get ∑
y

1√
|R|
|y〉 Q†7−→ |0〉

U†⊥7−→ |⊥〉 Q7−→ |⊥〉.

Thus, by applying Decomp†1 to all registers Hx in the initial state of the standard oracle,
we get |⊥〉 in every Hx. This leads to the following idea: Initialize all Hx with |⊥〉.
And whenever we want to perform an oracle query, we decompress all Hx by applying
Decomp1 (for the initial state, this gives the initial state of the standard oracle). Then
we apply Uquery (the standard oracle). And then we compress all Hx again by applying

Decomp†1. This will lead to exactly the same behavior as the standard oracle (since

successive Decomp1, Decomp†1 pairs cancel out).
In other words, we define the compressed oracle to be the oracle with the initial state

|⊥〉 ⊗ · · · ⊗ |⊥〉 in register H, and that applies the following unitary to X,Y,H on each
query:

CStO := (IX ⊗ IY ⊗ Decomp†) · Uquery · (IX ⊗ IY ⊗ Decomp)

with Decomp :=
⊗
x∈D

Decomp1. (1)

Now CStO is perfectly indistinguishable from the standard oracle.

The size of the compressed oracle. So far, we have seen that the compressed oracle
CStO simulates the standard oracle. But why is it useful? To see this, we will think of
the register H as containing partial functions: The basis states of H are |yx1 , . . . , yxN 〉
for yx1 ∈ R ∪ {⊥} where D = {x1, . . . , xN}. This is the value table of a partial function
f : D l→ R. We will identify |yx1 , . . . , yxN 〉 with |f〉. In particular, the initial state of
CStO is then |⊥, . . . ,⊥〉 = |∅〉.

10

∣∣x0 = 1
〉

∣∣y0〉∣∣f(1)〉∣∣f(2)〉∣∣f(3)〉

X

Y

H1

H2

H3

Decomp1

Decomp1

Decomp1

U
Decomp

†
1

Decomp
†
1

Decomp
†
1

≡
X

Y

H1

H2

H3

Decomp1
U

Decomp
†
1

Figure 1: Operation of CStO for fixed x0 := 3. U denotes the operation |y0〉|y〉 7→
|y0 ⊕ y〉|y〉.

Consider a state |x0〉|y0〉|f〉 before a query to the compressed oracle, with |dom f | ≤ `.
(The initial state has ` = 0.)

Applying CStO to this state will decompress all Hx (which does not affect |x〉) apply
Uquery (which does not affect Hx for x 6= x0 for this particular state), and then compress
all Hx again. This is illustrated in the left side of Figure 1 for x0 := 3. On all Hx with
x 6= x0, Decomp1 and Decomp†1 cancel out (see the right side of Figure 1). Thus, no
matter what x0, y0, f are, the resulting state will be a superposition of f ′ with f ′ = f
except on x0. In particular, |dom f ′| ≤ |dom f | + 1 ≤ ` + 1. Since this holds for any
|x0, y0, f〉 with |dom f | ≤ `, this also holds for any superposition of such states. Thus we
have shown7 that any state of the compressed oracle that is a superposition of |f〉 of size
≤ ` will, after a query, be a superposition of |f〉 of size ≤ `+ 1.

In particular, after q queries, the compressed oracle state is a superposition of partial
functions of size ≤ q. Such a partial function can be represented in approximately
q(log|D| + log|R|) bits, hence the state of the compressed oracle indeed has a much
smaller representation, hence the name “compressed oracle”.

And we also can see that it indeed “records” queries in some sense: if the state of
the oracle contains |f〉, then every x ∈ dom f must have been queried. Otherwise we
would have f(x) = ⊥ as in the initial state. The converse does not hold, though, because
queries can be uncomputed and thus removed from f .

Efficient implementation. So far, we do not have an efficiently simulatable oracle because
we represent the state of the compressed oracle by giving the complete value table for the
partial functions f . (Each potential output is stored in a different register Hx.) However,
an algorithm implementing CStO is free to store the partial functions in a more efficient
way, namely as sorted lists of input/output pairs (called a database in [Zha19]), leading
to a compact state. And an efficient circuit for the unitary CStO can be constructed by
only applying Decomp1 on those entries of the database that are involved in the present
query. This then gives the oracle defined in [Zha19]. We omit the details here.

The advantage of separating definition of the efficient encoding of the compressed
oracle state from the conceptual encoding as a partial function is that proofs will have to
consider the concrete encoding with ordered association lists only when analyzing the
runtime of the simulation and can use the mathematically simpler concept of partial

7Actually, we have handwavingly sketched it but a formal proof is easy and follows the same ideas.

11

functions everywhere else. In particular, in information-theoretical proofs, we do not
need to consider the efficient encoding at all.

Getting rid of the Fourier transform. So far, we have described the compressed oracle
as in Zhandry’s original work (although with a different presentation). As presented
originally, it would seem that the Fourier transform is an integral part of the idea of
the compressed oracle.8 We will now show that there is a different view which does not
involve the Fourier transform at all. Recall the definition of Decomp1 = Q ·U⊥ ·Q†. Using
that definition, we can compute what Decomp1 does to various basis states:

|⊥〉 Q†7−→ |⊥〉 U⊥7−→ |0〉 Q7−→
∑
z

Qz0|z〉 =: |∗〉

|y〉 Q†7−→
∑
z

Qyz|z〉
U⊥7−→

∑
z

Qyz|z〉︸ ︷︷ ︸
=Q†|y〉

+ Qy0︸︷︷︸
=〈∗| y〉

(
|⊥〉 − |0〉

) Q7−→ |y〉+ 〈∗| y〉
(
|⊥〉 − |∗〉

)
.

Note that this calculation did not use that Q is the Fourier transform, only the fact that
it is unitary. And the state |∗〉 is simply the first column of Q. Which, in case of the
Fourier transform, is of course the uniform superposition |∗〉 =

∑
z

1√
N
|z〉. However, any

other unitary with the same first column would lead to the same result – the definition
of Decomp1 does not actually use the Fourier transform, and it only depends on the first
column of Q! In fact, the above calculation works even if the first column is not the
uniform superposition. For example, if we wish to analyze random oracles that use a
random function h that is not uniformly chosen, but where each h(x) is independently
chosen according to some distribution D, we take a unitary Q whose first column is
|∗〉 :=

∑
z

1√
D(z)
|z〉, and now Decomp1 still maps

Decomp1 : |⊥〉 7→ |∗〉
Decomp1 : |y〉 7→ |y〉+ 〈∗| y〉

(
|⊥〉 − |∗〉

)
.

(2)

In fact, we can just take this as the definition of Decomp1 (relative to a given |∗〉).
The operators Q and U⊥ are then just a technical tool to show that Decomp1 is indeed
unitary, and one possible way of implementing Decomp1 efficiently, but they are not part
of its definition.

We can still define an oracle CStO based on this new Decomp1 in the same way as
before via (1). Except now CStO will be indistinguishable from the standard oracle
that has the initial state |∗〉 ⊗ · · · ⊗ |∗〉. Which is indistinguishable from the original
random oracle if |∗〉 is the uniform superposition. And if |∗〉 =

∑
z αz|z〉, then it is

indistinguishable from the a random oracle where each h(x) is sampled to be y with
probability |αy|2.9 Everything discussed so far still applies. In particular, we still have

8[Zha19] considers the special case of a qubit-wise Hadamard which is the Fourier transform over the
abelian group {0, 1}n. [Chu+20] generalizes this to Fourier transforms over arbitrary abelian groups.

9We could go even farther and use a different |∗〉 for every x. This would allow us to analyze oracles
where h(x) is picked from different distributions for different x.

12

that the oracle is compressed and records queries: In the compressed state, for any x
that has not been queried, Hx will be in state |⊥〉 (with the intuitive meaning that the
value of h(x) is not sampled yet).

Thus, by removing the Fourier transform from the picture, we have generalized the
compressed oracle technique to nonuniformly distributed oracles “for free”.10 However, we
stress that this approach does not yet allow us to model random permutations because a
random permutation h does not have independently distributed h(x).11

In our opinion, this new view of the compressed oracle has multiple advantages:
• It becomes clearer what the essence of the transformation Decomp1 is (see also the

discussion below). To assume that the Fourier transform plays a relevant role in
the construction may even hinder understanding of what is really happening.

• There is no need to find a group structure on the range R of the function so
that it matches the operation ⊕ in the definition of the oracle query unitary
|x〉|y〉 7→ |x〉|y ⊕ h(x)〉. This may lead to less requirements in proofs.

• The technique becomes more general as we are not limited to uniformly distributed
functions.

Understanding Decomp. In order to better understand what the decompression opera-
tion does, let us have another look at the definition. Also, for simplicity, let us assume

10[Cza+20] also generalizes Zhandry’s technique to non-uniformly distributed functions. (With the
condition that the outputs are independently sampled, i.e., not covering permutations.) However, their
presentation still involves Fourier transforms.

11We had one failed approach how to generalize this to random permutations (and possibly other
function distributions). Since we believe that this approach might be natural, we shortly describe it here
and why we got stuck trying to use it:

For S ⊆ R, we can define DecompS1 to be the Decomp1 operation for the uniform distribution on S.
(I.e., DecompS1 is defined by (2) where |∗〉 :=

∑
y∈S

1√
|S|
|y〉.) Then we can define Decomp@x1 to apply

DecompM1 on register Hx, where M is the set of all values that are not yet used in other registers.
Formally, if D = {x1, . . . , xM}, Decomp@xi1 |y1, . . . , yM 〉 := |y1, . . . , yi−1〉 ⊗DecompSi

1 |yi〉 ⊗ |yi+1, . . . , yM 〉
where Si := R \ {y1, . . . , yi−1, yi+1, . . . , yM}. (Here all yi ∈ R ∪ {⊥}.) And then we can define a

decompression for permutations as Decompperm
1 := Decomp@xM1 Decomp

@xM−1
1 · · ·Decomp@x21 Decomp@x11 .

It is reasonably easy to verify that Decomp1|⊥ . . .⊥〉 =
∑
h:D↪→R

1√
|D↪→R|

|h〉. So decompressing the

initial state indeed leads to a uniform superposition of permutations (more precisely, of injections).
And it is also easy to define an oracle query in this model, namely CStOperm := Decompperm †⊗Uquery ⊗

Decompperm .
However, beyond that, things become difficult. First, the definition of Decomp1 depends on the ordering

of the domain D. If we would apply the Decomp@xi1 in a different order, we would get a different operator
Decompperm

1 . Second, it becomes very difficult to understand the behavior of CStOperm . We were unable
to give an explicit description of how it operates on a basis state. And it is not clear that CStOperm maps
a state |y1 . . .〉 where at most ` of the yi 6= ⊥ to a superposition of states |ỹ1 . . .〉 where at most ` + 1
of the ỹi 6= ⊥. But if this does not hold, then we do not have a compressed oracle because we have no
upper bound on the size of the oracle state.

However, we do not exclude that these problems could be solved and the approach made viable. For
example, it might be possible to find some operator that approximately implements CStOperm and that
has an easy description and that does not grow the state too much during a query. But we were unable
to find such an operator.

13

for now that |∗〉 is the uniform superposition.

Decomp1 : |⊥〉 7→ |∗〉
Decomp1 : |y〉 7→ |y〉+ 〈∗| y〉

(
|⊥〉 − |∗〉

)︸ ︷︷ ︸
correction term

(3)

And thus Decomp operates as follows:

Decomp : |y1y2y3 . . .〉 7→ |ŷ1ŷ2ŷ3 . . .〉+ correction

where ŷ := y for y ∈ R and ŷ := ∗ for y = ⊥, and where correction is a sum of tensor
products of “correction terms”.

This means that in the compressed oracle state, |⊥〉 is used to denote the uniform
superposition in Hx, i.e., an output that is completely undetermined so far. On the other
hand, |y〉 in the compressed oracle state has a somewhat more subtle meaning. Intuitively,
we might expect/want that |y〉 in the compressed oracle state means that the output is
y. I.e., |y〉 in the compressed state should translate to |y〉 in the uncompressed state.
In other words, the intuitively natural definition of Decomp1 would be the definition
with the “correction term” removed. Unfortunately, the resulting operation would not
be unitary. So the purpose of the correction terms is to stay as close to mapping |y〉 to
|y〉 as possible, while keeping the operation unitary. Note that the correction terms are
small because 〈∗| y〉 = 1/

√
N .12

This leads to a different view of how Decomp1 could be derived: Instead of constructing
it bottom-up from Q and U⊥, we could use the ansatz that Decomp is an operator defined
as:

Decomp : |⊥ . . .⊥〉 7→ |∗〉 . . . |∗〉
Decomp : |y1y2y3 . . .〉 7→ |ŷ1ŷ2ŷ3 . . .〉+ correction (4)

where correction must be chosen in such a way that Decomp becomes unitary, such that
correction is as small as possible, and – most importantly – that the correction terms do
not make the compressed oracle state bigger (i.e., when starting with |y1y2 . . .〉 where
there are at most ` non-⊥ entries, decompressing with Decomp, applying the oracle query
operation Uquery , and then recompressing with Decomp†, we should get a superposition
of states |y′1y′2 . . .〉 with at most `+ 1 non-⊥ entries). The definitions of Decomp given
above are then just one (although very natural) solution to this ansatz.

Mainly, we presented this approach to give a different view on the compressed oracle
technique (that hopefully gives some intuition about what is going on). But maybe this
approach is also one way to extend the compressed oracle technique to more complex
cases such as oracles with non-independently chosen outputs or similar. We did not
manage to do so with the random permutation case, but this view did lead us to the
approach presented in the next section.

12However, the fact that they are small does not, unfortunately, mean that we can ignore them in
calculations. They do, in many situations, add up to very relevant errors. In fact, Decomp1 without the
correction terms has operator norm 2 which means that the errors can be as big as the state itself.

14

3.2 The non-orthogonal view

In the preceding section, we saw that one way to interpret the compressed oracle technique
is the following:

We want to simulate the “standard oracle” (whose state is the equal superposition of
all functions D → R). The initial state of the standard oracle is |∅〉f :=

∑
h:D→R

1√
NM
|h〉.

(Recall from the preliminaries that M := |D| and N := |R| throughout the paper.) Other
states of interest are states where some of the function outputs are fixed (e.g., h(x1) = y1)
while other function outputs are still undetermined (in superposition between all possible
outputs). A compact way of writing such a state (that we will use extensively in the
following) is given by the following definition:

Definition 1 (Compressed function oracle states) For f : D l→ R, we define |f〉f ∈
CD→R as follows:

|f〉f :=
∑

h:D→R
h♥f

1√∣∣{h ∈ (D → R) : h ♥ f}
∣∣ |h〉.

Since h ♥ f (h compatible with f , see the preliminaries) means that h(x) = f(x) where
f is defined and h(x) can be arbitrary elsewhere, this is exactly a state that is the
superposition of all h that are fixed in some places and arbitrary in others.

The approach from the previous section was to find a basis for CD→R consisting of
states that are close to the states of the form |f〉f, and then construct an operator

Decomp : |f〉 7→ |f〉f + correction =: |̃f〉f

for a suitable correction term. (This is exactly (4), but using the notation from Def-
inition 1.) Then the state of the oracle can be represented in terms of states |f〉 (in

the compressed oracle) and mapped using Decomp to states |̃f〉f of the standard oracle.
Or alternatively, we can say that we represent the state of the standard oracle in the

orthogonal basis |̃f〉f. And the definition of this basis ensures that the size of the partial
functions f grows at most by one upon each query.

Without including the correction terms, this does not work because the |f〉f are not
orthogonal and thus Decomp would not be unitary. However, it turns out that in many

situations, we do not need to define Decomp at all! Nor do we need a basis |̃f〉f! Instead,
we simply describe the current state of the standard oracle as a superposition of states
|f〉f. This representation is not unique, but to model the fact that the oracle state has a
compact representation, we do not always need that this representation is unique!

In more detail, our variant of the compressed oracle technique is as follows:
• We want to solve a query problem. That is, we want to bound the probability that

the adversary finds some inputs to the random oracle that satisfy a certain property.
Let us call such inputs “bad”. (E.g., we might want to bound the probability that
an adversary finds a collision in the random oracle.)

15

• The oracle that we use is the standard oracle. That is, the initial state of the oracle
is |∅〉f in some register H that is not accessible to the adversary. (|∅〉f is the equal
superposition between all functions since ∅ is the empty partial function and h ♥ ∅
holds for all h.)

• When the adversary performs a query (using query registers X,Y), we model this
by applying the unitary Uquery defined in the preliminaries to X,Y,H. (Or, if we
want to model k-parallel queries, we use Uquery,k .) So far, nothing is “compressed”.

• We state an invariant that is supposed to hold during the execution of the adversary
with access to the oracle. I.e., we state an invariant Ij that supposedly applies
to the register H after the j-th query. (And I0 in the beginning.) The invariant
Ij is a subspace expressed in terms of the states |f〉f. That is, it is of the form
Ij = span{|f〉f : f ∈ A} for some set A. (For example, we could state the invariant
Ij := span{|f〉f : |dom f | ≤ j, f injective}. This would mean that there is no
collision in the part of the oracle that has been queried so far.)
(In more general cases, Ij can also refer to other registers than H, e.g., I :=
span{|s〉|f〉f : s /∈ dom f} on registers S,H would be an invariant stating that the
adversary has not yet found the value s that is stored in register S.)

• We show that if Ij−1 holds before the j-th query, then Ij holds approximately after
the j-th query. More precisely, for any state ψ ∈ Hrest ⊗ Ij−1 (where Hrest is the
Hilbert space of all registers besides H), we have that Uqueryψ is εj-close to a state
in Hrest ⊗ Ij for some εj . (Closeness is with respect to ‖·‖.)
Finding a good bound for εj is, of course, the tricky part of this recipe. Fortunately,
we present some theorems for bounding εj in terms of some purely combinatorial
expression (bounding the size of some sets of functions) that strongly facilitate this.
See also the next section for an example.

• Now we know that the final state ψfinal , after q queries, is ε := (
∑q

j=1 εj)-close
to a state in Ifinal := Iq. We then measure the final state (and in particular the
adversary’s output register Out). Assume that we formulated Ifinal in such a way
that measuring a “bad” value is 0 for a state in Ifinal . Then we know that the
probability of measuring a bad value in ψfinal is ≤ ε2.
(For example, Ifinal might be defined as span

{
|x〉|x′〉|f〉f : ¬(x 6= x′ ∧ f(x) = f(x′))

}
on registers Out, H to state that the output register does not contain a collision.)

In the following section, we will show by example how this is done in concrete cases.
Note that what we have described so far is for random function oracles, not for random
permutation oracles. (I.e., for the same oracles as Zhandry’s compressed oracle.) We
cover random permutations in Section 4.

Our “non-orthogonal view” has some advantages and disadvantages over the original
compressed oracle technique:
Pro:
• The approach is conceptually simpler.

No correction terms are needed, for
example. And no special compres-
sion/decompression operation.

Contra:
• Harder to define operations that depend

on the compressed state. Since our ap-
proach does not provide a canonical or-
thogonal basis in terms of compressed

16

• Invariants mean what they say, not just
approximately. For example, the invariant
I := span{|f〉f : f(0) = 1} is satisfied by
exactly by the oracle states that are the
superposition of |h〉 with h(0) = 1. Thus
if we measure h(0), we get 1 with probabil-
ity 1. In contrast, if Zhandry’s compressed
oracle has a state satisfying the analogous
invariant, measuring can result in h(0) 6= 1
with probability approximately 1

N which
is not intuitive when the invariant is sat-
isfied perfectly (not up to an ε-error).13

And similarly, if on an arbitrary oracle
state we measure h(0) and get y, then
in our setting we know that afterwards
the invariant span{|f〉f : f(0) = y} holds
(Theorem 4 below).
• The approach generalizes to non-uniformly

distributed oracles. It is not restricted to
functions with independently sampled out-
puts. In this work we mainly use it to im-
plement invertible random permutations,
but our central theorems also apply to
more general cases.

states, there is no canonical way to mea-
sure the content of the compressed oracle,
or to implement conditioned unitaries
that depend on it. For example, it is not
well-defined to say “measure the small-
est x such that f(x) 6= ⊥” since there is
no unique decomposition of the state into
states |f〉f.14 In contrast, in Zhandry’s
compressed oracle such a measurement
would be well-defined. (Although its be-
havior might not be exactly what we
imagine intuitively due to the fact men-
tioned in the pro-column.) This may be
a problem when tackling problems where
a simulator performs actions depending
on the content of the compressed ora-
cle, e.g., in indifferentiability proofs (e.g.,
[Zha19; Cza+20]).
• Efficient implementation unclear. The

methodology does not give rise to an
obvious way of implementing the com-
pressed oracle efficiently. We leave effi-
cient implementations to future work.

3.3 Example: Zero search

To illustrate our technique, we will show that it is hard to find a zero-preimage of a
random function. More precisely:

Lemma 2 (Hardness of zero search) Let A be an oracle algorithm that performs q queries.
Let h be sampled uniformly at random from D → R. Then p := Pr[h(x) = 0 : x ←
Ah()] ≤ 16(q+1)2

N .

Preparations. To prove this lemma, we start with some preparations to bring the game
into a form suitable for using our technique. Namely, we make sure that everything is
unitary, that we use the standard oracle, and that the success of the adversary can be
read off from the outcome of a measurement of some register.

13A state that satisfies the invariant is |0 7→ 1〉 = |0〉|⊥〉|⊥〉 After decompressing, we get(
|1〉+ 〈∗| 0〉(|⊥〉 − |∗〉)

)
⊗ |⊥〉|⊥〉 . . . where |∗〉 :=

∑
z

1√
N
|z〉. The first register has a component or-

thogonal to |0〉 of amplitude approximately 〈∗| 0〉 = 1√
N

, thus measuring this register yields 6= 1 with

probability approximately 1
N

.
14We do not say there is no such measurement in general. Only that we have no canonical definition.

Future research may provide such a canonical definition, hopefully also for the permutation case.

17

|0〉

|0〉

|0〉

|∅〉f

E

X

Y

H

ψ0

UA

ψ′0

Uquery

ψ1

UA

ψ′1

Uquery

ψ2

...

ψ′q−1

Uquery

ψq

UA

ψ′q

E

X

Y

H

|0〉

E′

ψ∗q

Uquery
Y

ψfinal

6_ y

Figure 2: Circuit describing the zero search game

First, note that without loss of generality, we can assume A to be unitary. (I.e., A
does not perform any measurements or other classical operations.) For simplicity, we
assume that the output of A is in the register X (which is also used for oracle queries).
Let UA denote the unitary that A performs between oracle queries. UA operates on
E,X, Y where X,Y are the oracle query registers (state spaces HX = CD, HY = CR),
and E is the register holding the adversary’s state (state space HE). Initially, E,X, Y
are in state |0〉.

Second, we can reformulate the game from the lemma slightly: Instead of measuring
A’s output x and classically evaluating h(x), we first run Ah. Then we query h in
superposition on input X. (I.e., we initialize Y with |0〉 and then perform a random
oracle query |x, y〉 7→ |x, y ⊕ h(x)〉 on the registers X,Y .) And then we measure Y . Then
the adversary success probability p is the probability that this measurement returns
y = 0.

Third, we use the standard oracle instead of the classically sampled h. That is, we
initialize an extra register H with the uniform superposition of all |h〉 (for h ∈ (D → R)),
i.e., with the state |∅〉f. And when A queries the oracle, we apply Uquery to X,Y,H.
(And the final query that computes y is also implemented using Uquery .)

The result of those three transformations is depicted in Figure 2.

Stating the invariants. Essentially, our invariant is that the adversary has not queried
the oracle at an input x that returns 0. In other words, the state of the oracle is a
superposition of states |f〉f with 0 /∈ im f . (Since dom f contains all x’s that have been
queried (intuitively at least), im f are the corresponding outputs.) However, the invariant
that we actually state is slightly different: we additionally include the fact that f has size
≤ j after j queries.15 Furthermore, Ij makes no claims about the state of the registers
E,X, Y . Formally:

Ij := HE ⊗HX ⊗HY ⊗ span
{
|f〉f : 0 /∈ im f, |dom f | ≤ j

}
f

for j ≤ q.

The invariant after the last query (just before the measurement of y) is slightly different:
After the last query, X contains the query input, and Y contains the query result in the

15In the present lemma, the size of f is not actually used except that the way we formulated Theorem 3
requires it. However, in other situations such as collision-resistance, or when we analyze random
permutations, the size of f plays an active role in the computation of our bounds.

18

computational basis. (In the queries performed by the adversary, we were not able to
make such a claim because there Y was not |0〉-initialized before the query.) We include
this fact in the invariant. That is,

Ifinal := HE ⊗ span
{
|x〉|f(x)〉|f〉f : x ∈ dom f, 0 /∈ im f, |dom f | ≤ q + 1

}
xf
.

Proving that the invariants are maintained. We will now show that after the j-th oracle
query, the invariant Ij holds approximately. Specifically, we will show that ψj , the state
after applying the j-th oracle query, satisfies

ψj
j
√

16/N

≈ Ij for j = 1, . . . , q + 1. (5)

(Recall from the preliminaries that this means that ψj is close in terms of norm to the
subspace Ij .)

The initial state ψ0 is |0〉|0〉|0〉|∅〉f. Since 0 /∈ im∅ and |dom∅| = 0, we trivially have

that the initial state is in I0 and thus ψ0
0
≈ I0.

Note that UA preserves the invariant (since it operates only on E,X, Y). Thus

ψ′0 = UAψ0
0
≈ I0 as well. (ψ′j is the state before the (j + 1)-st query.)

Assume we can show that ψ′j−1

ε
≈ Ij−1 implies ψj

ε+
√

16/N

≈ Ij (i.e., that the j-th

invocation of Uquery makes the invariant worse only by
√

16/N), then we get by induction
(and using the fact that UA preserves the invariant) that (5) holds for j = 0, . . . , q. (The
case j = q + 1 will need special treatment.)

We get this from the following general theorem for invariant preservation during the
compressed queries:

Theorem 3 (Random function query, simple) Fix an integer ` ≥ 0 (compressed function
size). Fix c ≥ 0. Let E,X, Y,H be subsystems with Hilbert spaces HE, HX := CD,

HY := CR̃, HH := CD→R. Let N := |R|. Assume N ≥ 16. Let {ηe}e be an orthogonal
basis of HE. For each x ∈ D and e, fix Ax,e ⊆ Bx,e ⊆ (D l→ R) (pre-/postcondition).
Assume that for all x, all e, and all compatible f, g ∈ Ax,e with |dom f |, |dom g| ≤ ` and
x /∈ dom f,dom g: ∣∣∣{z ∈ R : f(x := z), g(x := z) /∈ Bx,e}

∣∣∣
N

≤ c. (6)

Fix a unit vector ψ ∈ HE ⊗HX ⊗HY ⊗HH . If

ψ
ε
≈ span

{
ηe|x〉|y〉|f〉f : f ∈ Ax,e, |dom f | ≤ `

}
exyf

then

(IE ⊗ Uquery)ψ
ε+4
√
c

≈ span
{
ηe|x〉|y〉|f〉f : f ∈ Bx,e, |dom f | ≤ `+ 1

}
exyf

.

19

(The proofs of all theorems stated in the examples are deferred to Section 5.)
To use this theorem, we let Ax,e, Bx,e := {f : 0 /∈ im f} (independent of x, e), ` := j−1,

ψ := ψ′j−1, and ηe be an arbitrary basis. Then the conclusion of the lemma becomes

“ψ′j−1

ε
≈ Ij−1 implies ψj

ε+4
√
c

≈ Ij”.
Thus all we need to do is to find the bound c so that (6) is satisfied. This is a simple

(and purely combinatorial, i.e., non-quantum) problem. For any f, g ∈ Ax,e, we have that
0 /∈ im f, im g. The numerator in (6) is the set of value z such that f(x := z) or g(x := z)
has 0 in its image. Obviously, the only z that can potentially satisfy this is z = 0. Thus
the numerator is ≤ 1, and (6) is satisfied with c := 1/N .

Inserting this value of c, we indeed get that ψ′j−1

ε
≈ Ij−1 implies ψj

ε+
√

16/N

≈ Ij .

So we know now that ψq
q
√

16/N

≈ Iq. We want to derive the same for ψfinal but
unfortunately, we cannot use Theorem 3 for this because the invariant Ifinal does not fit
the shape of the invariants in Theorem 3: Ifinal makes a claim not only about register H,
but also about Y .

In fact, in general it would be difficult to make any conclusions about Y (such as that
Y contains the output of the oracle query) because if Y is not |0〉-initialized, its state
might be anything after the oracle query.

However, in the specific situation of the (q + 1)-st oracle query, we know what Y

contains because we initialize it with |0〉. (See Figure 2.) ψq
j
√

16/N

≈ Iq, and thus also

ψ′q
j
√

16/N

≈ Iq (the state after the last UA). But ψ∗q , the result of initializing Y with |0〉,
satisfies a stronger invariant:

ψ∗q
q
√

16/N

≈ HE′ ⊗HX ⊗ span
{
|0〉|f〉f : 0 /∈ im f, |dom f | ≤ q

}
f

=: I∗q . (7)

(Since the initialization of |0〉 is an isometry that maps Iq to this invariant.) For the
case where Y is |0〉-initialized, we have a variant of Theorem 3 that keeps track in the
postcondition of what the result of the oracle query was (we call this “non-oblivious”):

Theorem 4 (Non-oblivious random function query, simple case) In the situation of The-
orem 3, if

ψ
ε
≈ span

{
ηe|x〉|0〉|f〉f : f ∈ Ax,e, |dom f | ≤ `

}
exf

then

(IE ⊗ Uquery)ψ
ε+4
√
c

≈ span
{
ηe|x〉

∣∣f(x)
〉
|f〉f : x ∈ dom f, f ∈ Bx,e, |dom f | ≤ `+ 1

}
exf
.

Besides the pre- and postcondition, everything in this theorem is the same as before.
In particular, we can still instantiate it with Ax,e, Bx,e := {f : 0 /∈ im f}, ` := q, c := 1/N .
Then the assumption of the theorem is satisfied for ψ := ψ∗q and ε := q

√
16/N by (7),

and the conclusion is

ψfinal = (IE ⊗ Uquery)ψ∗q
q
√

16/N+4
√
c

≈ Ifinal .

Since c = 1/N , this implies (5) for j = q + 1. Thus our invariant holds till the end.

20

Concluding. The last step of the circuit in Figure 2 is a measurement of Y in the
computational basis. For a state in (not just close to) Ifinal , measuring Y gives y = 0
with probability 0. And since ψfinal is close to Ifinal , measuring Y in the circuit gives
y = 0 with probability close to 0. More precisely:

Let P denote the projector corresponding to measuring 0 in Y . By (5), there is a

ψideal with ψfinal

(q+1)
√

16/N

≈ ψideal ∈ Ifinal . Then the probability of measuring y = 0 given
ψfinal is

‖Pψfinal‖2 =
∥∥P (ψfinal − ψideal) + Pψideal︸ ︷︷ ︸

=0

∥∥2
=
∥∥P (ψfinal − ψideal)

∥∥2

≤
∥∥ψfinal − ψideal

∥∥2 ≤
(
(q + 1)

√
16/N

)2
=

16(q + 1)2

N
.

As stated in the beginning of our analysis, the probability of measuring y = 0 is the
advantage p of the adversary in Lemma 2. Thus we have shown Lemma 2.16

Of course, Lemma 2 is not a novel result. It serves mainly to illustrate our technique.

3.4 Example: Collision finding

Our next example is collision finding. One new thing it illustrates is why we need
invariants that depend on the environment state (i.e., what is it good for that we have
the basis ηe of E in Theorems 3 and 4 and that Ax,e, Bx,e can depend and e).

Lemma 5 (Collision finding) Let A be an oracle algorithm that performs q queries. Let h
be sampled uniformly at random from D→ R. Then p := Pr[h(x1) = h(x2) ∧ x1 6= x2 :

(x1, x2)← Ah()] ≤ 16(q+1)3

N .

Preparations. The preparations towards proving this lemma are similar as in the zero
search problem (Section 3.3). Namely, we make sure that everything is unitary, and that
we use the standard oracle. We assume that the adversary queries the oracle using query
registers X,Y with spaces CD, CR̃, respectively. Oracle queries are performed using
the unitary Uquery . The adversary’s behavior is modeled by a unitary UA on E,X, Y .
However, in the very last invocation of the adversary, we assume a unitary ÛA instead that
inputs registers E,X, Y but outputs registers E′, X1, X2 where X1, X2 have state space
CD. (X1, X2 contain the alleged collision x1, x2.) Then we initialize a register Y1 with |0〉
(for storing the hash of x1), perform a query on X1, Y1 using Uquery , initialize a register
Y2 with |0〉 (for storing the hash of x2), and perform a query on X2, Y2 using Uquery .
Finally, we measure X1,X2, Y1, Y2 in the computational basis, resulting in x1, x2, y1, y2.
Then p = Pr[y1 = y2 ∧ x1 6= x2]. The resulting circuit is depicted in Figure 3.

16One note: We ignored the assumption N ≥ 16 in Theorem 3 during the proof. However, Lemma 2 is
trivial for N < 16, so this does not invalidate the proof.

21

|0〉

|0〉

|0〉

|∅〉f

E

X

Y

H

ψ0

UA

ψ′0

Uquery

ψ1

UA

ψ′1

Uquery

ψ2

...

ψ′q−1

Uquery

E

X

Y

ψq

ÛA

ψ′q

E′

X1

X2

|0〉

ψ∗q

X1
Y1

H
Uquery

ψq+1

|0〉

X2
Y2

H

ψ∗q+1

Uquery

ψfinal

X1
X2
Y1
Y2

6_
x1
x2
y1
y2

Figure 3: Circuit describing the collision finding game

Stating the invariants. The invariant that we maintain is that the adversary has found
no collision so far. In other words, the oracle state is a superposition of states |f〉f where
f is injective. And we keep track of the size of f , which grows by at most one in each
query. Formally:

Ij := HE ⊗HX ⊗HY ⊗ span
{
|f〉f : f injective, |dom f | ≤ j

}
f

for j ≤ q.

We state invariant I∗q that is supposed to hold after initializing Y1 with |0〉:

I∗q := HE′ ⊗HX2 ⊗HX1 ⊗ span
{
|0〉Y1 |f〉f : f injective, |dom f | ≤ j

}
f
.

After invoking Uquery on ψ∗q , we expect the following invariant. This invariant additionally
states that X1, Y1 contain an input/output pair of f .

Iq+1 := HE′ ⊗HX2 ⊗ span
{
|x1〉X1 |f(x1)〉Y1 |f〉f :

x1 ∈ dom f, f injective, |dom f | ≤ q + 1
}
fx1

.

After initializing Y2 with |0〉, we expect the invariant:

I∗q+1 := HE′ ⊗HX2 ⊗ span
{
|x1〉X1 |f(x1)〉Y1 |0〉Y2 |f〉f :

x1 ∈ dom f, f injective, |dom f | ≤ q + 1
}
fx1

.

And in the final state, we additionally claim that the inputs/outputs are related
according to f :

Ifinal := HE′ ⊗ span
{
|x1〉X1 |f(x1)〉Y1 |x2〉X2 |f(x2)〉Y2 |f〉f :

x1, x2 ∈ dom f, f injective, |dom f | ≤ q + 2
}
fx1x2

.

Proving that the invariants are maintained. Since ∅ is injective, ψ0 ∈ I0. Since UA (or
ÛA) does not touch register H, invariant preservation during invocations of UA or ÛA is
immediate:

ψj
ε
≈ Ij =⇒ ψ′j

ε
≈ Ij for j = 1, . . . , q.

22

(In the case j = q we have a slight abuse of notation: The rhs is a state in register
E′, X1, X2,H while Ij is defined as an invariant on E,X, Y,H. But Ij only depends on
H.)

Similarly, inserting a |0〉-initialized Y1 or Y2 register changes the invariants in the
obvious way:

ψ′q
ε
≈ Iq =⇒ ψ∗q

ε
≈ I∗q

ψq+1
ε
≈ Iq+1 =⇒ ψ∗q+1

ε
≈ I∗q+1

The nontrivial steps are to show that the invariants are approximately preserved by
invocations of Uquery :

ψ′j−1

ε
≈ Ij−1 =⇒ ψj = (IE ⊗ Uquery)ψ′j−1

ε+δj
≈ Ij−1 (j = 1, . . . , q) (8)

ψ∗q
ε
≈ I∗q =⇒ ψq+1 = (IE′X2 ⊗ Uquery)ψ∗q

ε+δq+1

≈ Iq+1 (9)

ψ∗q+1

ε
≈ I∗q+1 =⇒ ψfinal = (IE′X1Y1 ⊗ Uquery)ψ∗q+1

ε+δq+2

≈ Ifinal (10)

for suitable values of δj .
All this together then implies:

ψfinal
ε
≈ Ifinal with ε :=

q+2∑
j=1

δj . (11)

To show (8), we use Theorem 3 with ` := j − 1, Ax,e, Bx,e := {f : f injective},
c := (j − 1)/N . The main task is to bound the numerator in (6), i.e., we bound∣∣∣{z ∈ R : f(x := z), g(x := z) not injective}

∣∣∣
for compatible injective f, g with |dom f |, |dom g| ≤ j − 1 and x /∈ dom f, dom g. Since
f is injective, the only z that make f(x := z) non-injective are z ∈ im f . Since
|im f | ≤ |dom f | ≤ j − 1, we have that the numerator is bounded by j − 1. Thus (6)
indeed holds with c = (j − 1)/N .

This show (8) with δj := 4
√
c =

√
16(j − 1)/N for j = 1, . . . , q.

And (9) is shown completely analogously, except that we use the non-oblivious
Theorem 4 instead of Theorem 3. The resulting bound is δq+1 :=

√
16q/N .

Finally, to show (10), we again use the non-oblivious Theorem 4. However, this time
we have to consider an additional subtlety: The invariant I∗q+1 states that x1 ∈ dom f ,
where x1 is stored in register X1 which is not involved with the current query (the query
registers are X2 and Y2). Furthermore, Y1 is supposed to contain f(x1), i.e., it refers to
the function f . And Y1 is also not involved in the query. Fortunately, invariants of this
form can still be handled by the theorems. In the present case, we instantiate Theorem 4
as follows:

23

• HE := HE′ ⊗HX1 ⊗HY1 . (The environment consists of registers E′, X1, Y1). And
HX := HX2 and HY := HY2 . (The query registers are X2, Y2.)

• The basis ηe is instantiated as: ηe′,x1,y1 := |e′〉E′ |x1〉X1 |y1〉Y1 where |e′〉E′ are an
arbitrary orthonormal basis of E′. (I.e., the indices e of the basis ηe are triples
(e′, x1, y1).)

• Ax,(e′,x1,y1), Bx,(e′,x1,y1) := {f : x1 ∈ dom f, f(x1) = y1, f injective}
• ` := q + 1, c := (q + 1)/N .

With these choices, the precondition in Theorem 4 becomes:

span
{
|e′〉E′ |x1〉X1 |y1〉Y1 |x〉X2 |0〉Y2 |f〉f : f ∈ Ax,(e′,x1,y1), |dom f | ≤ q + 1

}
e′x1y1xf

= I∗q+1.

And the postcondition becomes:

span
{∣∣e′〉

E′
|x1〉X1 |y1〉Y1 |x〉X2 |f(x)〉Y2 |f〉f :

x ∈ dom f, f ∈ Ax,(e′,x1,y1), |dom f | ≤ q + 2
}
e′x1y1xf

= Ifinal .

So Theorem 4 indeed can be used to show (10) with δq+2 := 4
√
c =

√
16(q + 1)/N . (The

bound (6) is shown completely analogously as in the proofs of (8), (9).)
Hence (11) holds.

Concluding. The last step of the circuit in Figure 3 is a measurement of X1, Y1, X2, Y2 in
the computational basis. For a state in (not just close to) Ifinal , measuring X1, Y1, X2, Y2

yields values x1, y1, x2, y2 such that y1 = f(x1), y2 = f(x2) for some injective f with
x1, x2 ∈ dom f . This implies that (x1 6= x2 ∧ y1 = y2) does not hold. Hence measuring
X1, Y1,X2, Y2 in a state in Ifinal gives (x1 6= x2 ∧ y1 = y2) with probability 0. Since

ψfinal
ε
≈ Ifinal , it follows that measuring X1, Y1, X2, Y2 in ψfinal gives (x1 6= x2 ∧ y1 = y2)

with probability ≤ ε2. Thus p ≤ ε2. (Recall that p was the advantage of the adversary
but also the probability of measuring (x1 6= x2 ∧ y1 = y2).) And since ε :=

∑q+2
j=1 δj

and δj =
√

16(j − 1)/N and in particular δ1 = 0, we have ε2 ≤ 16(q+1)3

N . This shows
Lemma 5.17

3.5 Parallel queries

(This section can be skipped by a reader who is not interested in parallel queries.)
In the preceding sections, we only considered adversaries that perform one oracle

query at a time. In some situations, it is beneficial to consider adversaries that perform
k oracle queries in parallel, and perform q rounds of such parallel queries. Of course,
such an adversary cannot do anything a qk-query adversary cannot do, but the bounds
achieved in the parallel-query model can be tighter.

Technically, the only difference between a single query and k-parallel queries to
the standard oracle is that the adversary invokes Uquery,k instead of Uquery . (See the

17One note: We ignored the assumption N ≥ 16 in Theorems 3 and 4 during the proof. However,
Lemma 5 is trivial for N < 16, so this does not invalidate the proof.

24

preliminaries for the definition of Uquery,k .) The state of the standard oracle is still the
same, a superposition between all possible functions. So all we need to support k-parallel
queries are variants of Theorems 3 and 4 that show how invariants evolve under parallel
queries.

The two theorems below are these analogues to Theorems 3 and 4. They differ from
latter theorems in the following way:

• They support k-parallel queries. To accomplish that, the query registers X,Y now
contain superpositions of k-tuples (i.e., their spaces are CD,CR̃, respectively). And
instead of values x, z, we now quantify over k-tuples x, z everywhere.
The biggest change is to the combinatorial condition (12): In the single query case
we had a simple dichotomy between x /∈ dom f (in which case f(x) can still be
updated to a new value z) and x /∈ dom f (in which case the update does not make
sense). With tuples x it becomes more difficult since part of x might be in dom f .
The correct analogue in the k-parallel query case is then (x 7→ z) ♥ f : This means
that for every entry x of x, f(x) either is undefined (and thus can be updated to
the corresponding z-entry), or it is define but already returns the right z-entry.

(The parallel-query theorems are actually a generalization of the non-parallel theorems.
We will later prove the non-parallel theorems as corollaries of the parallel-query theorems.)

Theorem 6 (Random function query) Fix integers k ≥ 0 (query parallelism), ` ≥ 0
(compressed function size). Fix c ≥ 0. Let E,X, Y,H be subsystems with Hilbert spaces

HE, CDk , CR̃k , H := CD→R. Let N := |R|. Assume N ≥ 16. Let {ηe}e be an orthogonal
basis of HE. For each x ∈ Dk and e, fix Ax,e, Bx,e ⊆ (D l→ R) (pre-/postcondition).
Assume that for all x, all e, and all compatible f, g ∈ Ax,e with |dom f |, |dom g| ≤ `:∣∣∣{z ∈ Rk : (x 7→ z) ♥ f, g and fx,z, gx,z /∈ Bx,e}

∣∣∣
N
|x\dom f\dom g| ≤ c 18 (12)

where fx,z := f ∪ (x 7→ z) and gx,z := g ∪ (x 7→ z).
Fix a unit vector ψ ∈ HE ⊗HX ⊗HY ⊗HH . If

ψ
ε
≈ span

{
ηe|x〉|y〉|f〉f : f ∈ Ax,e, |dom f | ≤ `

}
exyf

=: A

then

(IE ⊗ Uquery,k)ψ
ε+4
√
c

≈ span
{
ηe|x〉|y〉|f〉f : f ∈ Bx,e, |dom f | ≤ `+ k

}
exyf

=: B

18A note on interpreting this formula: If x contains duplicates that are mapped to different values
in z, then at a first glance it may seem that this formula may not be well-defined. (What function is
fx,z?) However, in this case, by definition of compatibility (♥, see preliminaries), (x 7→ z) ♥ f cannot hold
for any function f , thus values z that would lead to this problem are simply excluded by the condition
(x 7→ z) ♥ f, g.

If x contains duplicates but they map to matching values in z, then x 7→ z is a well-defined function
(see prelimiaries, again). Note that in that case, the cardinality |x \ dom f \ dom g| in the denominator is
a cardinality of sets, not a length of tuples. I.e., repeated elements of x are not counted twice.

25

Theorem 7 (Non-oblivious random function query) In the situation of Theorem 6, if

ψ
ε
≈ span

{
ηe|x〉|0〉|f〉f : f ∈ Ax,e, |dom f | ≤ `

}
exf

then

(IE⊗Uquery,k)ψ
ε+4
√
c

≈ span
{
ηe|x〉|f(x)〉|f〉f : x ⊆ dom f, f ∈ Bx,e, |dom f | ≤ `+ k

}
exf
.

3.5.1 Zero search with parallel queries

We quickly revisit the example of zero search (Section 3.3) and list the differences in the
analysis in the case of parallel queries. We show:

Lemma 8 (Hardness of zero search (parallel queries)) Let A be an oracle algorithm that
performs q queries. Fix an integer k ≥ 0 (query parallelism). Let h be sampled uniformly

at random from D → R. Then p := Pr[h(x) = 0 : x← Ah
k
()] ≤ 16(q

√
k+1)2

N . (As opposed

to ≤ 16(qk+1)2

N as one would get as an immediate corollary from Lemma 2.)

(Note that the adversary A gets hk, not h. I.e., each of the q queries is a k-parallel query.)

The differences to the proof of Lemma 2 are:
• In all invariants, we replace the condition |dom f | ≤ j by |dom f | ≤ jk. (And

analogously |dom f | ≤ q − 1 by |dom f | ≤ (q − 1)k.) This is because in each query,
the length increases by up to k.

• We use Theorem 6 instead of Theorem 3. (I.e., we use the theorem with parallel
query support.) For the last query (which queries only one value), we can still
use the non-oblivious Theorem 4. (Or alternatively, we could use Theorem 7 with
k := 1.)

• When applying Theorem 6, we need to bound (12) (instead of (6)) with suitable c.
Consider compatible f, g ∈ Ax,e = {f : 0 /∈ dom f} with |dom f |, |dom g| ≤ (j − 1)k.
If z ∈ Rk is in the set in the numerator, then: It coincides with (f∪g)(x) wherever the
latter is defined. And wherever x has repetitions, z has repetitions, too. (Otherwise
x 7→ z would not be a function.) That leaves only t := |x \ dom f \ dom g| entries
that are not constrained to a fixed element, i.e., N t possibilities for z. Out of
these unconstrained z-entries one must be 0, otherwise f ∪ (x 7→ z) would be in
Bx,e = {f : 0 /∈ dom f}. This means we have at most tN t−1 possibilities. Thus
the numerator is bounded by tN t−1. The denominator is N t. Thus the fraction
is bounded by t/N ≤ k/N . Thus (12) is satisfied with c := k/N . Thus the bound
4
√
c =

√
16/N must be replaced by 4

√
c =

√
16k/N .

• In the application of Theorem 4, we keep the same value of c (nothing changed
there).

• In total, we thus get ψfinal
ε
≈ Ifinal with ε := q

√
16k/N +

√
16/N . Hence p ≤ ε2 =

16(q
√
k+1)2

N .

26

4 Compressed permutations

4.1 Adapting our approach

So far, we have only studied random functions, not random permutations. However,
it turns out that it is quite simple to translate the model introduced in Section 3.2 to
permutations. (Or more generally, injective functions D ↪→ R with |R| ≥ |D|.)

In Section 3.2, we introduced the compressed oracle states |f〉f which are the super-
position of all functions h that are compatible with the partial function f . This allows us
to describe an oracle that is determined on some x1, . . . , xn by giving a partial function f
with dom f = {x1, . . . , xn}. And the initial state of the oracle was then simply described
by |∅〉f, the superposition of all |h〉.

For injective functions, we do the same, only we restrict the functions h to be injective.
This leads to the following definition:

Definition 9 (Compressed permutation oracle states) For f : D l↪→ R, we define |f〉p ∈
CD↪→R as follows:

|f〉p :=
∑

h:D↪→R
h♥f

1√
|h ∈ (D ↪→ R) : h ♥ f |

|h〉.

Note the fine differences to Definition 1: all arrows are replaced by hooked arrows,
denoting injective total/partial functions.

Now the recipe given in Section 3.2 works exactly in the same way, except that we use
|f〉p instead of |f〉f everywhere. Since |∅〉p, the initial state, is the equal superposition of
all injections, this analyzes an oracle that gives access to a random injection. Hence we
have a technique for compressed permutation oracles.

Of course, the crucial difference is that now, we need to reason about invariants
expressed in terms of states |f〉p, not |f〉f. (And about the errors introduced to them
during an oracle query Uquery .) The behavior of oracle queries on |f〉p is more complex to
analyze because |f〉p is not a tensor product. (In contrast, |f〉f = |f(x1)〉⊗ |f(x2)〉⊗ . . . if
we define |⊥〉 :=

∑
z

1√
N
|z〉.) For example, if the oracle is in state |∅〉p, the superposition

of all injective functions, and we query it on x0, getting y0, then we know that querying
x1 will not give y0. Even in the initial state, all outputs are entangled.

Fortunately, the difficulty of dealing with this can be hidden away in general-purpose
theorems for reasoning about invariants, very much like the ones we introduced for the
random function case (Theorem 3 etc.) The examples in the following sections show this.

However, note that what we have described so far handles permutation oracles, but
not invertible permutation oracles. That is, the examples in the following two sections
only give bounds on the adversary success if the adversary does not get access to the
inverse of the oracle h. Query complexity results for non-invertible permutations can be
easily achieved with existing results (but with worse concrete bounds). Namely, [Zha15a]
shows that random functions and random permutation are indistinguishable (up to a
success of O(q3/M)), hence every result for random functions carries over to random

27

permutations with an additional error of O(q3/M).19 For results about invertible random
permutations/injections, see Section 4.4.

4.2 Example: Zero search

To illustrate our technique for random permutations, we will show that it is hard to find
a zero-preimage of a random permutation (or injection). More precisely:

Lemma 10 (Hardness of zero search in permutations) Assume that N ≥ M and q <
N/2.

Let A be an oracle algorithm that performs q queries. Let h be sampled uniformly at

random from D ↪→ R (injections!). Then p := Pr[h(x) = 0 : x← Ah()] ≤ 16(q+1)2

N−2q .

Note that by symmetry, the same bound also holds when searching for some y ∈ R
other than 0, in particular also for uniformly random y.

To the best of our knowledge, the best known bound for this is O(q3/N) (as a simple
consequence of the indistinguishability of random functions and permutations [Zha15a];
in the M = N case only). That is, it was known that Ω(3

√
N) queries are needed to find

a 0-preimage, we have improved this to Ω(
√
N) queries (which is tight due to Grover’s

algorithm [Gro96]). (And we further improve on our bound in Section 4.3.1 by taking
into account parallel queries.)

The proof is in large parts similar to that in the random function case (Section 3.3).
We highlight mostly the differences.

Preparations. The preparation step is almost identical to the random function case.
The only difference is that we replace the oracle access to the random injection h not by
the standard oracle (which implements Uquery with initial state |∅〉f) but by the “standard
permutation oracle”: This oracle has a register H with space CD↪→R and is initialized
with the superposition

∑
h:D↪→R

1√
|D↪→R|

|h〉. Note that that superposition is |∅〉p, one of

the compressed permutation states.
The circuit resulting from the preparations is still as depicted in Figure 2, only the

initial state on H is |f〉p now.

Stating the invariant. Also the definition of the invariants is essentially the same and
follows the same intuition. But instead of expressing them in terms of states |f〉f, we
express them in terms of states |f〉p. Thus:

Ij := HE ⊗HX ⊗HY ⊗ span
{
|f〉p : 0 /∈ im f, |dom f | ≤ j

}
f

for j ≤ q.

and

Ifinal := HE ⊗ span
{
|x〉X |f(x)〉Y |f〉p : x ∈ dom f, 0 /∈ im f, |dom f | ≤ j

}
xf
.

19However, [Zha15a] does not show the indistinguishability of random functions and random injections
when domain and range have different sizes.

28

(Note that the use of |·〉p also implicitly means that f is quantified only over D l↪→ R, not
over D l→ R.)

And we also state the invariant I∗q that is supposed to hold right before the last query
(after initializing Y with |0〉):

I∗q := HE′ ⊗HX ⊗ span
{
|0〉Y |f〉p : 0 /∈ im f, |dom f | ≤ j

}
f

Proving that the invariant is maintained. This follows the lines of the random function
case, but the bounds are different.

In the random function case, we showed that:

ψ′j−1

ε
≈ Ij−1 =⇒ ψj = (IE ⊗ Uquery)ψ′j−1

ε+δj
≈ Ij−1 (j = 1, . . . , q) (13)

ψ∗q
ε
≈ I∗q =⇒ ψfinal = (IE ⊗ Uquery)ψ∗q

ε+δq+1

≈ Ifinal (14)

for δj :=
√

16/N .
Here we will show the same (for other choices of δj). This then implies, as before:

ψfinal

∑q+1
j=1

δj

≈ Ifinal . (15)

So all that remains to do is to find out for which δj equations (13), (14) hold.
As before, we have theorems to show invariant preservation. For (13), we use the

analogue to Theorem 3 in the permutation case:

Theorem 11 (Random permutation query, simple) Assume |D| ≤ |R|. Fix an integer
` ≥ 0 (compressed function size). Fix c ≥ 0. Let E,X, Y,H be subsystems with Hilbert

spaces HE, HX := CD, HY := CR̃, HH := CD↪→R. Let N := |R|. Assume ` ≤ N − 16.
Let {ηe}e be an orthogonal basis of HE. For each x ∈ D and e, fix Ax,e ⊆ Bx,e ⊆ (D l↪→ R)
(pre-/postcondition). Assume that for all x, all e, and all compatible f, g ∈ Ax,e with
f ∪ g injective and |dom f |, |dom g| ≤ ` and x /∈ dom f, dom g:∣∣∣{z ∈ R : z /∈ im f, im g, f(x := z), g(x := z) /∈ Bx,e}

∣∣∣
N −

∣∣dom f ∪ dom g
∣∣ ≤ c. (16)

Fix a unit vector ψ ∈ HE ⊗HX ⊗HY ⊗HH . If

ψ
ε
≈ span

{
ηe|x〉|y〉|f〉p : f ∈ Ax,e, |dom f | ≤ `

}
exyf

then

(IE ⊗ Uquery)ψ
ε+4
√
c

≈ span
{
ηe|x〉|y〉|f〉p : f ∈ Bx,e, |dom f | ≤ `+ 1

}
exyf

.

The main differences to Theorem 3 are that the theorem is stated in terms of |f〉p,
not |f〉f, and that the proof obligation (16) is different (this will lead to a different c).

29

We thus again instantiate this theorem with Ax,e, Bx,e := {f : 0 /∈ im f}, ` := j − 1,
and ψ := ψ′j−1, and an arbitrary orthonormal basis ηe of HE .

We proceed to determine c. For any f, g ∈ A, we have that 0 /∈ im f, im g. The set
in the numerator in (16) contains only values z such that f(x := z) or g(x := z) has 0
in its image. Obviously, the only z that can potentially satisfy this is z = 0. Thus the
numerator is ≤ 1. We also have |dom f |, |dom f | ≤ ` = j − 1, thus the denominator is
≥ N − 2(j − 1). Thus (6) is satisfied with c := 1/(N − 2(j − 1)).

Hence the theorem implies that (13) holds with δj :=
√

16/(N − 2(j − 1)).

And the analogue for Theorem 4 the following theorem:

Theorem 12 (Non-oblivious random permutation query, simple case) In the situation
of Theorem 11, if

ψ
ε
≈ span

{
ηe|x〉|0〉|f〉p : f ∈ Ax,e, |dom f | ≤ `

}
exf

then

(IE ⊗Uquery)ψ
ε+4
√
c

≈ span
{
ηe|x〉

∣∣f(x)
〉
|f〉p : x ∈ dom f, f ∈ Bx,e, |dom f | ≤ `+ 1

}
exf
.

This one is instantiated with Ax,e, Bx,e := {f : 0 /∈ im f}, ` := q, and ψ := ψ∗q . We
get c := 1/(N − 2q) with the same analysis as before, and it follows that (14) holds with
δq+1 :=

√
16/(N − 2q).

Thus, we have shown for which δj (15) holds. It is elementary to see that

q+1∑
j=1

δj ≤

√
16(q + 1)2

N − 2q
.

Hence from (15) we get:

ψfinal

√
16(q+1)2

N−2q

≈ Ifinal . (17)

Hence we know how far from the invariant the final state is.

Concluding. The analysis of the last step is again identical to the random function case,

except that the bound (q + 1)
√

16/N is replaced by the new bound
√

16(q+1)2

N−2q . The

probability of measuring y = 0 is the square of that bound, Lemma 10 follows.20

20One note: We ignored the assumption ` ≤ N − 16 in Theorem 11 during the proof. However, this
assumption can only be violated when q > N−16. Under the assumptions of Lemma 10, when q > N−16,

the bound 16(q+1)2

N−2q
is ≥ 1, hence the lemma is trivial in that case.

30

4.3 Parallel queries

(This section can be skipped by a reader who is not interested in parallel queries.)
Same as in the case of random functions (see Section 3.5), parallel queries to a com-

pressed permutation oracle can be handled simply by replacing the query operator Uquery

by Uquery,k . As in the case of random functions, we provide analogues to Theorems 11
and 12 that describe what happens to invariants in case of k-parallel queries. Also like in
the case of random functions, the new theorems additionally support invariants of a more
general shape. See Section 3.5 for a description of both features. The theorems are:

Theorem 13 (Random permutation query) Assume |D| ≤ |R|. Fix integers k ≥ 0 (query
parallelism), ` ≥ 0 (compressed function size). Fix c ≥ 0. Let E,X, Y,H be subsystems

with Hilbert spaces HE, CDk , CR̃k , H := CD↪→R. Let N := |R|. Assume ` ≤ N − 16. Let
{ηe}e be an orthogonal basis of HE. For each x ∈ Dk and e, fix Ax,e, Bx,e ⊆ (D l↪→ R)
(pre-/postcondition). Assume that for all x, all e, and all compatible f, g ∈ Ax,e with
f ∪ g injective and |dom f |, |dom g| ≤ `:∣∣∣{z ∈ Rk : (x 7→ z) ♥ f, g and fx,z, gx,z injective and fx,z, gx,z /∈ Bx,e}

∣∣∣(
N −

∣∣dom f ∪ dom g
∣∣)
|x\dom f\dom g|

≤ c 21 (18)

where fx,z := f ∪ (x 7→ z) and gx,z := g ∪ (x 7→ z).
Fix a unit vector ψ ∈ HE ⊗HX ⊗HY ⊗HH . If

ψ
ε
≈ span

{
ηe|x〉|y〉|f〉p : f ∈ Ax,e, |dom f | ≤ `

}
exyf

=: A

then

(IE ⊗ Uquery,k)ψ
ε+4
√
c

≈ span
{
ηe|x〉|y〉|f〉p : f ∈ Bx,e, |dom f | ≤ `+ k

}
exyf

=: B

Theorem 14 (Non-oblivious random permutation query) In the situation of Theorem 13,
if

ψ
ε
≈ span

{
ηe|x〉|0〉|f〉p : f ∈ Ax,e, |dom f | ≤ `

}
exf

then

(IE⊗Uquery,k)ψ
ε+4
√
c

≈ span
{
ηe|x〉|f(x)〉|f〉p : x ⊆ dom f, f ∈ Bx,e, |dom f | ≤ `+ k

}
exf
.

The main difference to the theorems from Section 3.5 (besides being stated for
compressed permutation states instead of compressed function states, of course) is the
combinatorial condition (18) which is somewhat more complex. (For example, the
denominator involves a falling factorial (a)b, see the preliminaries.)

21See also footnote 18 for a note on tuples x with repeated entries. And the cardinality
|x \ dom f \ dom g| in the denominator is a cardinality of sets, not a length of tuples.

31

4.3.1 Zero search with parallel queries

We shortly revisit the example of zero search in permutations (Section 4.2) and list the
differences in the analysis in the case of parallel queries. We show:

Lemma 15 (Hardness of zero search (permutations, parallel queries)) Let A be an or-
acle algorithm that performs q queries. Fix an integer k ≥ 0 (query parallelism).
Assume qk < N/2. Let h be sampled uniformly at random from D ↪→ R. Then

p := Pr[h(x) = 0 : x← Ah
k
()] ≤ 16(q

√
k+1)2

N−2qk . (As opposed to ≤ 16(qk+1)2

N−2qk as one would get
as an immediate corollary from Lemma 10.)

(Note that the adversary A gets hk, not h. I.e., each of the q queries is a k-parallel query.)
Note that by symmetry, the same bound also holds when searching for some y ∈ R

other than 0, in particular also for uniformly random y.

The differences to the proof of Lemma 10 are:
• In all invariants, we replace the condition |dom f | ≤ j by |dom f | ≤ jk. (And

analogously |dom f | ≤ q − 1 by |dom f | ≤ (q − 1)k.) This is because in each query,
the length increases by up to k.

• We use Theorem 13 instead of Theorem 11. (I.e., we use the theorem with parallel
query support.) For the last query (which queries only one value), we can still use
the non-oblivious Theorem 12. (Or alternatively, we could use Theorem 14 with
k := 1.)

• When applying Theorem 13, we need to bound (18) (instead of (16)) with suitable
c. Consider compatible f, g ∈ Ax,e = {f : 0 /∈ dom f} such that f ∪ g is injective
and |dom f |, |dom g| ≤ (j − 1)k. If z ∈ Rk is in the set in the numerator, then:

– It coincides with (f ∪ g)(x) wherever the latter is defined.
– Wherever x has repetitions, z has repetitions, too. (Otherwise x 7→ z would

not be a function.)
– The remaining t := |x \ dom f \ dom g| entries of z are distinct from each

other and from im f ∪ im g. (Otherwise fx,z or gx,z would not be injective.)
– Within the remaining t entries, z has a 0. (Otherwise fx,z and gx,z would be

in Bx,e = {f : 0 /∈ dom f}.)
– In other words, the remaining t entries form an injection from a t element set

to U := (R \ im f \ im g) 3 0 that has 0 in its image. Let u := |U |. There are
t · (u− 1)t−1 such injections.

Thus the numerator is bounded by t · (u− 1)t−1.
Note that u = |R \ im f \ im g| = N − |im f ∪ im g| = N − |dom f ∪ dom g| where
the last inequality holds because f ∪ g is an injection. Hence the denominator
in (18) is (u)t.
Thus the lhs of (18) is bounded by

t · (u− 1)t−1

(u)t
= t

(u− 1)!

(u− t)!
(u− t)!
u!

=
t

u
≤ k

N − 2(j − 1)k
.

32

Here t ≤ k follows from the definition of t and |x| = k, and u ≥ N−2(j−1)k follows
from the definition of u and |dom f |, |dom g| ≤ (j − 1)k. Thus (12) is satisfied with
c := k

N−2(j−1)k . Thus the bound 4
√
c =

√
16/(N − 2(j − 1)) must be replaced by

4
√
c =

√
16k/(N − 2(j − 1)k).

• In the application of Theorem 4, the analysis is as in the non-parallel case. (Except
that we instantiate the theorem with ` := qk instead of ` := q.) We get c =√

16/(N − 2qk) in that case.

• In total, we thus get ψfinal
ε
≈ Ifinal with ε :=

∑q
j=1

√
16k/(N − 2(j − 1)k) +√

16/(N − 2qk). Hence p ≤ ε2 ≤ 16(q
√
k+1)2

N−2qk .

4.4 Inverse queries

We now study permutations with inverse. That is, we consider the case where the
adversary gets superposition query access to a permutation h, as well as to its inverse
h−1. (We only consider the case N = M because then the inverse is always defined.)

As it turns out, with the setup we have so far, adding inverse queries is very simple.
The main observation is that performing an inverse query is equivalent to replacing h by
its inverse, performing a regular query, and then replacing h by its inverse again. This
gives rise to the following definition:

Definition 16 (Invertible standard oracle) Assume N = M . The invertible standard
oracle has an internal state register H with initial state |∅〉p ∈ CD↪→R as well as query
registers X,Y . The adversary has access to X,Y but not to H and can perform two
different queries:

• Regular query: This applies Uquery (or Uquery,k in the parallel-query variant) to
X,Y,H.

• Inversion query: This applies the unitary Invert to H which is defined by Invert :
|h〉 7→ |h−1〉.

An adversary with access to uniformly random h, h−1 can thus be replaced by an
adversary with access to the invertible standard oracle. (And if the original adversary
performs q queries, the new adversary will perform q regular queries and ≤ q+ 1 inversion
queries.

When analyzing an adversary that queries the invertible standard oracle, we can
again use the approach of maintaining invariants expressed in terms of |f〉p states (since
the initial state of the invertible standard oracle is still |∅〉p). We already have theorems
for handling the regular queries. The only new thing we need is to know is how invariants
behave under inversion queries. This is surprisingly simple:

Lemma 17 (Inversion queries)
(i) For f ∈ D l↪→ R, Invert|f〉p = |f−1〉p.

(ii) For a space H, a set A ⊆ (D l↪→ R), and an integer ` ≥ 0: If ψ
ε
≈

H ⊗ span{|f〉p : f ∈ A, |dom f | ≤ `}f =: I, then (IH ⊗ Invert)ψ
ε
≈ H ⊗

span{|f〉p : f−1 ∈ A, |dom f | ≤ `}f =: I−.

33

Lemma 17 (ii) means that if the current joint state (of the adversary and the oracle)
satisfies some invariant expressed in terms of |f〉p-states, then we can compute the next
invariant by simply inverting all the f ’s. And the error ε does not increase. (I.e., inversion
queries are for free.) In particular, if A is invariant under inversion, then inversion queries
do not change the invariant at all.

(For readability, we have not stated Lemma 17 (ii) in the most general form possible.
E.g., we do not allow the invariant to depend on the H-register. In more complex cases
where Lemma 17 (ii) is not applicable, it should be quite simple to just use Lemma 17 (i)
directly.)

This is all we need to handle random permutation oracles with inverses. The next
section will illustrate this. But first we give the simple proof of Lemma 17:

Proof. We first show (i). Let F := {h ∈ D ↪→ R : h ♥ f}. Let F− := {h−1 : h ∈ F}.
Then |F−| = |F | since inversion is an involution. Since h ♥ f iff h−1 ♥ f−1 (at least for
injective total h, injective partial f), we have that F− = {h ∈ D ↪→ R : h ♥ f−1}. Thus

Invert|f〉p = Invert
∑
h∈F

1√
|F |
|h〉 =

∑
h∈F

1√
|F |
|h−1〉

(∗)
=
∑
h∈F−

1√
|F |
|h〉 =

∑
h∈F−

1√
|F−|
|h〉(∗∗)= |f−1〉p.

Here (∗) is by index substitution h 7→ h−1 and definition of F−. And (∗∗) follows from
F− = {h ∈ D ↪→ R : h ♥ f−1} and the definition of |·〉p.

We now show (ii). We have

(IH ⊗ Invert) I = H⊗ span{Invert|f〉p : f ∈ A, |dom f | ≤ `}f
(i)
= H⊗ span{|f−1〉p : f ∈ A, |dom f | ≤ `}f
(∗)
= H⊗ span{|f〉p : f−1 ∈ A, |dom f−1| ≤ `}f

(∗∗)
= I−. (19)

Here (∗) is by index substitution f 7→ f−1, and (∗∗) follows because |dom f−1| = |dom f |
for injective f .

Finally, if ψ
ε
≈ I, then (IH ⊗ Invert)ψ

ε
≈ (IH ⊗ Invert) I since IH ⊗ Invert is unitary.

With (19), (ii) follows. �

4.5 Example: Two-sided zero search

We give a simple example for reasoning about invertible random permutations. The
previously used examples (zero search and preimage search) are not suitable because it is
trivially possibly to solve those problems with a single query to the inverse function.

Instead, we consider the following problem: Given a permutation h (and its inverse),
find values x, y ∈ {0, 1}r such that h(x‖0c) = y‖0c. More precisely, we show the following:

34

Lemma 18 (Hardness of two-sided zero search) Assume that D = R = {0, 1}r+c and
that q < 2c+r/2.

Let A be an oracle algorithm that performs q queries. Let h be sampled uniformly at
random from D ↪→ D (a random permutation). Then p := Pr[h(x‖0c) = y‖0c : (x, y)←
Ah,h

−1
()] ≤ 16(q+1)2

2c−2q/2r .

That is, finding such x, y takes Ω(
√

2c) queries. The bound is tight by Grover’s
algorithm [Gro96].

Relevance of this problem. While this is, to the best of our knowledge, not a standard
problem, we believe it is an interesting problem for several reasons. First, it is the simplest
nontrivial problem for invertible permutations that we are aware of. Second, this problem
resisted all our prior attempts (in collaboration with Alexander Belov) of solving it with
existing techniques for quantum query complexity such as the adversary method [Amb02]
or the polynomial method [Bea+01]. While this is admittedly a very subjective measure
of difficulty, the fact that this problem can be solved quite easily with our compressed
oracle technique gives evidence for the power of our technique. And third, this problem is
a special case of the security of the collision-resistance of the sponge construction: if h is
the round function, from x, y with h(x‖0c) = y‖0c, it is very easy to construct a collision.
So solving this problem, while not sufficient, is necessary for analyzing the security of the
sponge construction.

Preparations. We will call (x, y) bad iff both x, y end in 0c. We say f has no bad pair
iff there is no x ∈ dom f such that (x, f(x)) is a bad pair.

As in the examples before, we assume that A is unitary (represented by the unitary
UA). It uses two query registers X and Y with state spaces HX = HY = C2r+c (r + c
qubits), and a register E for its state. We let A output x ∈ {0, 1}r in register X (padded
with c zeroes). We do not require A to output y. (It can be recomputed from h(x‖0c)
anyway.) In the end, we initialize Y with |0r+c〉 and perform an additional oracle query.
Then we measure X and Y , resulting in values x̂, ŷ. If (x̂, ŷ) is bad, we say the adversary
wins. Let p̂ be the probability that the adversary wins. Then p̂ ≥ p, so it will be sufficient
to bound p̂. (We do not have p̂ = p because we have removed the requirement that the
adversary outputs the correct y.) Furthermore, we replace oracle access to h and h−1 by
the invertible standard oracle (Definition 16). Altogether, we get the circuit depicted in
Figure 4. Between which queries there are Invert invocations depends on the adversary,
so not all Invert invocations drawn in the figure are actually contained in the circuit.

Stating the invariant. As before, we have to state an invariant that is supposed to hold
before and after every oracle query. Since the goal of the adversary is to find an x such
that (x, h(x)) is bad, we state as an invariant that the adversary has not queried such an
x so far:

Ij := HE ⊗HX ⊗HY ⊗ span
{
|f〉p : |dom f | ≤ j, f has no bad pairs

}
f

35

|0〉

|0〉

|0〉

|∅〉p

E

X

Y

H

ψ0

UA

Invert
(optional)

ψ′0

Uquery

ψ1

UA

Invert
(optional)

ψ′1

Uquery

ψ2

...

ψq−1

UA

Invert
(optional)

ψ′q−1

Uquery

ψq

UA

Invert
(optional)

ψ′q

E

X

Y

H

|0〉

E′

ψ∗q

Uquery

X

Y

ψfinal

6_
x̂

ŷ

Figure 4: Circuit describing the two-sided zero search game. We drew an Invert be-
fore/after every query. Only a subset of these will actually be contained in the circuit.
p̂ is the probability that (x̂, ŷ) is bad.

And after the last query (which we added to the end of the circuit), we claim that
the same holds and additionally, X and Y contain the input/output of an oracle query:

Ifinal := HE′ ⊗ span
{
|x〉X |f(x)〉Y |f〉p : x ∈ dom f, |dom f | ≤ j, f has no bad pairs

}
xf

And as before, we need a variant of Iq that additionally states that we initialized Y
with |0〉:

I∗q := HE′ ⊗HX ⊗ span
{
|0〉Y |f〉p : |dom f | ≤ q, f has no bad pairs

}
f

(20)

Proving that the invariant is maintained. We will prove five facts:

ψ0
0
≈ I0 (21)

ψj
ε
≈ Ij =⇒ ψ′j

ε
≈ Ij for j = 0, . . . , q (22)

ψ′j−1

ε
≈ Ij−1 =⇒ ψj

ε+

√
16·2r

N−2(j−1)

≈ Ij for j = 1, . . . , q (23)

ψ′q
ε
≈ Iq =⇒ ψ∗q

ε
≈ I∗q (24)

ψ∗q
ε
≈ I∗q =⇒ ψfinal

ε+

√
16·2r
N−2q

≈ Ifinal (25)

By induction, and using that
∑q+1

i=1

√
16·2r
N−2q ≤

√
16(q+1)2

2c−2q/2r (recall N = 2r+c), this then

implies

ψfinal

εfinal

≈ Ifinal with εfinal :=
√

16(q+1)2

2c−2q/2r . (26)

Fact (21) follows immediately from the definitions of ψ0 and Ij .

To show (22), first note that ψ′j
ε
≈ Ij immediately implies (UA ⊗ IH)ψ′j

ε
≈ Ij because

the invariant Ij refers only to register H while UA operates only on registers other than H.
In the case that there is no inversion query Invert before the (j + 1)-st oracle query,

ψj = (UA ⊗ IH)ψ′j and we have shown (22).

36

If there is an inversion query, ψj = (IEXY ⊗ Invert)(UA ⊗ IH)ψ′j . Thus we need to
show that Invert preserves the invariant.

Note that the condition in the set comprehension in the definition of Ij is invariant
under inversion. (That is, f satisfies it iff f−1 satisfies it.) Thus, by Lemma 17 (ii) (with
H := HE ⊗HX ⊗HY , ` := j, A :=

{
f : f has no bad pairs

}
, ψ := (UA ⊗ IH)ψ′j) we have

that (UA ⊗ IH)ψ′j
ε
≈ Ij implies ψj = (IEXY ⊗ Invert)(UA ⊗ IH)ψ′j

ε
≈ Ij

This shows (22).

We now show (23). To do so, we apply Theorem 11 that we already encountered when
showing the hardness of zero search in permutations. We instantiate the theorem with
` := j − 1 and Ax,e, Bx,e :=

{
f : f has no bad pairs

}
and c := 2r

N−2(j−1) and ψ := ψ′j−1.

The premise (16) in Theorem 11 then becomes:

For all compatible f, g that have no bad pairs with |dom f |, |dom g| ≤ j − 1
and all x /∈ dom f, dom g:∣∣∣{z ∈ R : z /∈ im f, im g, f(x := z), g(x := z) have bad pairs}

∣∣∣
N −

∣∣dom f ∪ dom g
∣∣ ≤ c.

The denominator is clearly lower bounded by N − 2(j − 1). To bound the numerator,
consider that if f has no bad pairs, then f(x := z) only has a bad pair if (x, z) is a bad
pair. This can only happen if z ends in 0c. Since z ∈ {0, 1}r+c, there are 2r such values z.
Hence the numerator is upper bounded by 2r, and the fraction is upper bounded by
c = 2r

N−2(j−1) .

Thus Theorem 11 is applicable and shows that ψ′j−1

ε
≈ Ij−1 implies ψj = (IE ⊗

Uquery)ψ′j−1

ε+4
√
c

≈ Ij . Since c = 2r

N−2(j−1) , this shows (23).

We proceed to show (24). Let V denote the operation that joins E, Y in a register E′

and adds a fresh |0〉-initialized register Y . (See Figure 4.) Then ψ∗q = V ψ′q. And since V

is an isometry, ψ∗q
ε
≈ V Iq = I∗q . This shows (24).

To show (25), we use the non-oblivious query theorem (Theorem 12), otherwise the
analysis is completely analogous to that used to show (23).

Thus (26) holds.

Concluding. The last step of the circuit in Figure 4 is a measurement of X,Y in the
computational basis. Ifinal is the span of some states of the form |x〉|f(x)〉|f〉p where f
has no bad pairs. In particular, (x, f(x)) is not a bad pair. Thus measuring X,Y on a

state in Ifinal yields x̂, ŷ that is a bad pair with probability 0. We have ψfinal

εfinal

≈ Ifinal

by (26). Thus when measuring X,Y on state ψfinal , we get a bad pair with probability
p̂ ≤ ε2

final . As stated in the beginning of this analysis, p ≤ p̂ (recall that p is the winning

probability of A in Lemma 18), so we have proven Lemma 18.22

22One note: We ignored the assumption ` ≤ N − 16 in Theorem 11 during the proof. However, this
assumption can only be violated when q > N−16. Under the assumptions of Lemma 18, when q > N−16,

37

4.5.1 Two-sided zero search with parallel queries

We shortly rewrite the example of two-sided zero search and list the differences in the
analysis in the case of parallel queries. We show:

Lemma 19 (Hardness of two-sided zero search) Assume that D = R = {0, 1}r+c and
that qk < 2c+r/2. Fix an integer k ≥ 0 (query parallelism).

Let A be an oracle algorithm that performs q queries. Let h be sampled uniformly at
random from D ↪→ D (a random permutation). Then p := Pr[h(x‖0c) = y‖0c : (x, y)←
Ah

k,(h−1)k()] ≤ 16(q
√
k+1)2

2c−2qk/2r . (As opposed to ≤ 16(qk+1)2

2c−2qk/2r as one would get as an immediate

corollary from Lemma 18.)

(Note that the adversary A gets hk and (h−1)k, not h and h−1. I.e., each of the q queries
is a k-parallel query.)

The differences to the proof of Lemma 18 are:
• In all invariants, we replace the condition |dom f | ≤ j by |dom f | ≤ jk. (And

analogously |dom f | ≤ q by |dom f | ≤ qk.) This is because in each query, the length
increases by up to k.

• We use Theorem 13 instead of Theorem 11. (I.e., we use the theorem with parallel
query support.) For the last query (which queries only one value), we can still use
the non-oblivious Theorem 12. (Or alternatively, we could use Theorem 14 with
k := 1.)

• When applying Theorem 13, we need to bound (18) (instead of (16)) with suitable c.
Consider compatible f, g ∈ Ax,e = {f : f has no bad pairs} such that f ∪ g is
injective and |dom f |, |dom g| ≤ (j − 1)k. If z ∈ Rk is in the set in the numerator,
then:

– It coincides with (f ∪ g)(x) wherever the latter is defined.
– Wherever x has repetitions, z has repetitions, too. (Otherwise x 7→ z would

not be a function and hence not compatible with f, g.)
– The remaining t := |x \ dom f \ dom g| entries of z are distinct from each

other and from im f ∪ im g. (Otherwise fx,z or gx,z would not be injective.)
– Within the remaining t entries, z has an entry of the form z′‖0c. (Otherwise
fx,z and gx,z would be in Bx,e = {f : f has no bad pairs}.)

– In other words, the remaining t entries form an injection from a t element
set to U := (R \ im f \ im g) with at least one z′‖0c in its image. There are t
possible positions for that entry, ≤ 2r possibilities for the value of that entry,
and (u− 1)t−1 possibilities for the remaining entries (where u := |U |). Thus
there are ≤ t2r · (u− 1)t−1 such injections.

Thus the numerator is bounded by t2r · (u− 1)t−1.
Note that u = |R \ im f \ im g| = N − |im f ∪ im g| = N − |dom f ∪ dom g| where
the last inequality holds because f ∪ g is an injection. Hence the denominator
in (18) is (u)t.

the bound 16(q+1)2

2c−2q/2r
is ≥ 1, hence the lemma is trivial in that case.

38

Thus the lhs of (18) is bounded by

2rt · (u− 1)t−1

(u)t
= 2rt

(u− 1)!

(u− t)!
(u− t)!
u!

=
2rt

u
≤ 2rk

N − 2(j − 1)k
.

Here t ≤ k follows from the definition of t and the fact that x has
length k. And u ≥ N − 2(j − 1)k follows from the definition of u and
|dom f |, |dom g| ≤ (j − 1)k. Thus (12) is satisfied with c := 2rk

N−2(j−1)k . Thus

the bound 4
√
c =

√
16 · 2r/(N − 2(j − 1)) in (23) must be replaced by 4

√
c =√

16 · 2rk/(N − 2(j − 1)k).
• In the application of Theorem 4, the analysis is as in the non-parallel case. (Except

that we instantiate the theorem with ` := qk instead of ` := q.) We thus get√
16 · 2r/(N − 2qk) instead of

√
16 · 2r/(N − 2q) in (25).

• In total, we thus get ψfinal

εfinal

≈ Ifinal with εfinal :=∑q
j=1

√
16 · 2rk/(N − 2(j − 1)k) +

√
16 · 2r/(N − 2qk). Hence p ≤ ε2

final ≤
16(q
√
k+1)2

2c−2qk/2r .

4.6 Classical computations

As we have seen in the example in this paper, an analysis using our compressed oracle
technique usually investigates a circuits that consists of two parts. First, an execution
of the adversary. And then an invocation of a circuit that takes the adversary’s output
and checks whether it is valid. E.g., in the case of zero search (Sections 3.3 and 4.2),
this check was done by evaluating the random oracle on the adversary output register
X, and measuring the resulting hash in register Y (and checking whether that hash is
0). Or, in the case of collision finding (Section 3.4), we evaluated the random oracle
twice, on registers X1 and X2. While this postprocessing is not part of the adversary’s
attack, we still need to track the evolution of the invariants during these queries. (E.g.,
that 0 /∈ im f , or that f is injective.) And additionally we need to track the relationship
between the different registers in the invariant. (E.g., that X,Y is in state |x, f(x)〉
for some x.) In the examples described so far, this is quite simple. And even in more
complicated cases, things are conceptually very simple: If we show that oracle queries
maintain an invariant f ∈ A (up to some error), and we evaluate a circuit C involving
oracle queries, then the invariant f ∈ A is still satisfied afterwards. But we also have
to keep track in the invariant that the output registers contain whatever the circuit
computed. That is, we get an invariant roughly like this:

span
{
|x〉|B(y)〉|f〉p : f ∈ A

}
xf

where B is whatever function the circuit C computes. (In our examples so far, B was
either just f(x) (see Ifinal in Section 4.2), or f(x1), f(x2) (see Ifinal in Lemma 5).) In
the examples we saw, proving this invariant was just one or two invocations of the
nonoblivious query theorem (Theorem 4). For complex circuits, however, going through

39

the circuit step by step and tracking the change of the invariant for each gate of the
circuit is very tedious and not very rewarding, especially since we essentially already know
what the final invariant should be. For example, in the proof of the collision-resistance of
the sponge construction (Section 6), our initial proof spent four pages attempt simply
on tracking the invariants throughout a circuit that evaluates the sponge construction.
To avoid such unnecessary technical proofs, we present a corollary below that allows to
show the preservation of an invariant during the evaluation of circuit C that performs a
classical computation in superposition.

We state the corollary only for compressed permutations, but an analogous result for
compressed functions is easy to derive with almost the same proof.

Classicalish circuits. We call a quantum circuit classicalish if it operates on a number of
quantum registers R1, . . . as well as a quantum register H with Hilbert spaceHH = CD↪→R,
and if each step is one of the following:

• Apply a unitary gate U to registers other than H where U is a permutation matrix.23

(E.g., CNOT, Toffoli, swap, X.)
• Add a new register R, initialized with a fixed computational basis state |z〉.
• Add a new register Y , initialized with |0〉. Let X be any of the existing registers

except H. Apply Uquery to X,Y,H.
For a classicalish circuit C, we define the function Bh computed by C (for h ∈ D ↪→ R)
to be the unique function such that C maps |x〉|h〉H to |Bh(x)〉|h〉. (Strictly speaking,
Bh is a function family, indexed by h.)

In our definition, Bh is indexed by a total function h. For a partial function f , define
Bf (x) as follows:

• If for all h : D ↪→ R that are compatible with f , Bh(x) has the same value, then
Bf (x) := Bh(x) for some h compatible with f .

• Otherwise Bf (x) := ⊥.
(In other words, Bf (x) is a partial function defined whenever f contains enough informa-
tion about h to compute Bh(x).)

Corollary 20 (Queries in classicalish circuits) Let E,D,H be registers with Hilbert spaces
HE, HD, HH := CD↪→R. Fix c ≥ 0. Let C be a classicalish circuit on D,H, and let Bh
be the function computed by C. Let R denote the output registers of C (not including H).
Assume that C contains at most q invocations of Uquery . Assume `+ q ≤ N − 15. Fix
A ⊆ (D l↪→ R).

Assume that for all compatible f, g ∈ A with f∪g injective and dom f, dom g ≤ `+q−1:∣∣∣{z ∈ R : z /∈ im f, im g, f(x := z), g(x := z) /∈ A}
∣∣∣

N − 2(`+ q − 1)
≤ c. (27)

Fix a unit vector ψ ∈ HE ⊗HD ⊗HH . If

ψ
ε
≈ HE ⊗ span

{
|d〉D|f〉p : f ∈ A, |dom f | ≤ `

}
df

23We do allow these gates to have different input and output registers. For example, we can have a
gate that splits a 2n-qubit register X in two n-qubit registers Y,Z.

40

then

(IE⊗C)ψ
ε+4q

√
c

≈ HE⊗span
{∣∣Bf (d)

〉
R
|f〉p : Bf (d) 6= ⊥, f ∈ A, |dom f | ≤ `+ q

}
df

=: I.

Proof. We prove the theorem by induction over the length of C.
If C has zero gates, then Bh is the identity, and Bf (x) 6= ⊥ for all f . Hence the first

span in the theorem is a subspace of the second. And Cψ = ψ. Hence the theorem
follows in this case.

Now assume the theorem holds for circuits of length L. Let C be a circuit of length
L+ 1. Thus C consists of a circuit C ′ of length L followed by a single gate G. Let B′h
denote the function computed by C ′. We distinguish two cases depending on G:

• G is a unitary gate on registers other than H and G is a permutation matrix,
or G adds a register initialized with |z〉. In both cases, G|x〉 = |g(x)〉 for some
function g. (In the case of adding a register, g(x) = (x, z).) Then Bh = g ◦B′h for
all h. Since C has ≤ q invocations of Uquery , so has C ′. Thus we can apply the
induction hypothesis and get:

(IE ⊗ C ′)ψ
ε+4q

√
c

≈ HE ⊗ span
{∣∣B′f (d)

〉
|f〉p :

B′f (d) 6= ⊥, f ∈ A, |dom f | ≤ `+ q
}
df

=: I ′.

Since G operates on the registers other than H as |x〉 7→ |g(x)〉,

(IE ⊗G)I ′ = HE ⊗ span
{∣∣g(B′f (d))

〉
|f〉p :

B′f (d) 6= ⊥, f ∈ A, |dom f | ≤ `+ q
}
df
⊆ I.

Here the ⊆ uses that if B′f (x) 6= ⊥, then Bf (x) = g(B′f (x)) 6= ⊥. Since (IE ⊗

C ′)ψ
ε+4q

√
c

≈ I ′ and (IE ⊗ G)I ′ ⊆ I and G is an isometry, (IE ⊗ C)ψ = (IE ⊗

G)(IE ⊗ C ′)ψ
ε+4q

√
c

≈ (IE ⊗G)I ′ ⊆ I. Thus (IE ⊗ C)ψ
ε+4q

√
c

≈ I.
• G initializes a new register Y with |0〉 and applies Uquery to X,Y,H. For notational

ease, assume that the registers of the circuit are R,X, Y,H, in that order. C ′ has
output registers R,X,H. Let B′h(x)R denote the part of B′h(x) corresponding to
registers R, and B′h(x)X the part corresponding to register X. Then B′h(x) =(
B′h(x)R, B

′
h(x)X

)
and Bh(x) =

(
B′h(x)R, B

′
h(x)X , h(B′h(x)X)

)
. And C ′ makes at

most q − 1 invocations of Uquery . We can then apply the induction hypothesis

41

(with q − 1 instead of q) and get:

(IE ⊗ C ′)ψ
ε+4(q−1)

√
c

≈ HE ⊗ span
{∣∣B′f (d)

〉
RX
|f〉p :

B′f (d) 6= ⊥, f ∈ A, |dom f | ≤ `+ q − 1
}
df

=: I ′.

(Note that if we invoke the induction hypothesis with q−1 instead of q, the premise
(27) changes. However, (27) with q replaced by q − 1 is a weaker condition, so the
premise is satisfied in the induction hypothesis.)
Let U0 denote the isometry that maps ψ 7→ ψ ⊗ |0〉Y . Then

U0I
′ = span

{∣∣B′f (d)R
〉
R

∣∣B′f (d)X
〉
X
|0〉Y |f〉p :

B′f (d) 6= ⊥, f ∈ A, |dom f | ≤ `+ q − 1
}
df

=: I0

and thus U0(IE ⊗ C ′)ψ
ε+4(q−1)

√
c

≈ I0. By Theorem 12 (with ` := ` + q − 1 and
Ax,(e′,r), Bx,(e′,r) := {f : (x, r) ∈ imB′f , f ∈ A}), this implies

UqueryU0(IE ⊗ C ′)ψ
ε+4q

√
c

≈ span
{∣∣B′f (d)R

〉
R

∣∣B′f (d)X
〉
X

∣∣h(B′f (d)X)
〉
Y
|f〉p :

B′f (d) 6= ⊥, f(B′f (d)X) 6= ⊥, f ∈ A, |dom f | ≤ `+ q
}
df

=: I∗.

If B′f (d) 6= ⊥ and f(B′f (d)X) 6= ⊥, then Bf (d) = (B′f (d)R, B
′
f (d)X , h(B′f (d)X)) 6=

⊥. Thus I∗ ⊆ I. It follows that (IE ⊗ C)ψ = UqueryU0(IE ⊗ C ′)ψ
ε+4q

√
c

≈ I. �

5 Query theorems

In the present section, we will prove the theorems introduced throughout the text that
tell us how invariants evolve under oracle queries.

All those theorems are special cases of two theorems that handle queries and non-
oblivious queries to “generalized compressed oracles”, a generalization of both the random
function and the random permutation case that we have seen before. See Section 5.2
below for more details.

The following table gives an overview of the theorems we prove, together with page
numbers for the theorems and their proofs:

42

random
functions

random
permutations

generalized
oracles

simple
queries

regular
Theorem 3, p. 19

proof p. 60
Theorem 11, p. 29

proof p. 60 n/a

non-oblivious
Theorem 4, p. 20

proof p. 60
Theorem 12, p. 30

proof p. 61

parallel
queries

regular
Theorem 6, p. 25

proof p. 57
Theorem 13, p. 31

proof p. 58
Theorem 24, p. 47

proof p. 55

non-oblivious
Theorem 7, p. 26

proof p. 58
Theorem 14, p. 31

proof p. 59
Theorem 25, p. 48

proof p. 56

Before we prove those theorems, we give some simple properties of compressed
functions/permutations in the following section that will come in handy later.

5.1 Simple properties

In the following two lemmas, let D,R be finite sets (in Lemma 22 with |D| ≤ |R|), let
M := |D|, N := |R|. Let f, g denote partial functions (injections in Lemma 22) from
D to R. Let r denote a partial function from D to R. Let `f := |dom f |, `g := |dom g|,
`f -g := |dom f \ dom g|, `g-f := |dom g \ dom f |, `r := |dom r|, `r-f := |dom r \ dom f |.

Lemma 21 (Compressed functions)

(i) |∅〉f =
∑

h:D→R
1√
NM
|h〉.

(ii)
∥∥|f〉f∥∥ = 1.

(iii) 〈f | g〉f =

1√

N
`f-g+`g-f

(f ♥ g)

0 (f 6♥ g)

In particular, for f 6= g,
0 ≤ 〈f | g〉f ≤ 1/

√
N .

(iv) Pr|f〉f = 1√
N
`r-f
|f ∪ r〉f

if f ♥ r.
And Pr|f〉f = 0 otherwise.

Lemma 22 (Compressed permutations)

(i) |∅〉p =
∑

h:D↪→R
1√

(N)M
|h〉.

(ii)
∥∥|f〉p∥∥ = 1.

(iii) 〈f | g〉p =

1√

(N−`f)`g-f
·(N−`g)`f-g

(f♥g,f∪g inj.)

0 (otherwise)

In particular, for f 6= g,
0 ≤ 〈f | g〉p ≤ 1/

√
N −max{`f , `g}.

(iv) Pr|f〉p = 1√
(N−`f)`r-f

|f ∪ r〉f

if f ♥ r and f ∪ r injective.
And Pr|f〉p = 0 otherwise.

Proof of both lemmas. In addition to the notation stated before the lemmas, let
`fg := |dom f ∪ dom g| and `fr := |dom f ∪ dom r|.

Property (i) (in both lemmas) is immediate from the definition of |·〉f, |·〉p (see
Definitions 1 and 9, respectively), using the fact that |D → R| = NM and |D ↪→ R| =
(N)M .

Property (ii) (in both lemmas) is immediate from the definition.

For Lemma 21 (iii), first note that for any partial h : D l→ R, there are NM−|domh|

43

total functions u : D → R with u ♥ f .
Then if f ♥ g,

〈f | g〉f (∗)
=

∑
t:D→R,u:D→R

t♥f,u♥g

(
|{t ∈ (D → R) : t ♥ f}|︸ ︷︷ ︸

=N
M−`f

)− 1
2
(
|{u ∈ (D → R) : u ♥ g}|︸ ︷︷ ︸

=NM−`g

)− 1
2 〈t|u〉︸ ︷︷ ︸
=1 iff t=u

=0 else

=
∑

t:D→R
t♥f∪g

N−M+`f/2+`g/2 = NM−`fg ·N−M+`f/2+`g/2 = N−(2`fg−`f−`g)/2

(∗∗)
= N−(`f-g+`g-f)/2.

Here (∗) is by definition of |·〉f. And (∗∗) follows from the definitions of `f , `g, `fg , `f -g, `g-f
and elementary reasoning about set cardinalities.

And if f 6♥ g, then the second sum ranges over all t compatible with f and g
simultaneously, but there are no such t, hence 〈f | g〉f = 0 in that case.

The “in particular” case is immediate since for compatible f 6= g, at least one of
`f -g, `g-f is ≥ 1.

This shows Lemma 21 (iii).

For Lemma 22 (iii), first note that for any partial injection h : D l↪→ R, there are
(N − |imh|)M−|domh| = (N − |domh|)M−|domh| total injections u : D ↪→ R with u ♥ h.

Then if f ♥ g and f ∪ g injective,

〈f | g〉p (∗)
=

∑
t:D↪→R,u:D↪→R

t♥f,u♥g

(
|{t ∈ (D ↪→ R) : t ♥ f}|︸ ︷︷ ︸

=(N−`f)M−`f

)− 1
2
(
|{u ∈ (D ↪→ R) : u ♥ g}|︸ ︷︷ ︸

=(N−`g)M−`g

)− 1
2 〈t|u〉︸ ︷︷ ︸
=1 iff t=u

=0 else

(∗∗)
=

∑
t:D↪→R
t♥f∪g

√
(N−M)!
(N−`f)! ·

(N−M)!
(N−`g)! = (N − `fg)M−`fg ·

√
(N−M)!
(N−`f)! ·

(N−M)!
(N−`g)!

(∗∗∗)
=

1√
(N − `f)`g-f · (N − `g)`f-g

.

Here (∗) is by definition of |·〉p. And (∗∗) uses the definition of the falling factorial
(a)b = a!/(a− b)!. And (∗∗∗) uses the definition of the falling factorial, the fact that
`fg = `f + `g-f = `g + `f -g, and some elementary simplification on both sides.

And if f 6♥ g or f ∪ g is not injective, then the second sum ranges over all injective
total t compatible with f and g simultaneously, but there are no such t, hence 〈f | g〉p = 0
in that case.

The “in particular” case follows since for f 6= g, at least one of `f -g, `g-f is ≥ 1, and
since (a)b ≥ a for b ≥ 1.

This shows Lemma 22 (iii).

44

For Lemma 21 (iv), recall the definition of Pr from the preliminaries. In the case
that f ♥ r, we have

Pr|f〉f =
∑

t:D→R
t♥f

(
|{t ∈ D → R : t ♥ f}|

)−1/2 Pr|t〉

(∗)
=

∑
t:D→R
t♥f∪r

(
|{t ∈ D → R : t ♥ f}|︸ ︷︷ ︸

=N
M−`f

)−1/2|t〉

= N `fr/2−`f /2
∑

t:D→R
t♥f∪r

(
|{t ∈ D → R : t ♥ f ∪ r}|︸ ︷︷ ︸

=N
M−`fr

)−1/2|t〉

= N `fr/2−`f /2|f ∪ r〉f = N−`r-f /2|f ∪ r〉f.

Here (∗) uses the fact that Pr|t〉 = |t〉 if t ♥ r and = 0 otherwise. Thus the sum gets
restricted to those t with t ♥ r and t ♥ f , hence t ♥ f ∪ r. And the bounds under the
braces were already stated in the proof of (iii).

In the case that f 6♥ r, the second sum quantifies over functions t that are compatible
with both f and r but there are no such t. Thus in this case, Pr|f〉f = 0.

This shows Lemma 21 (iv).

For Lemma 22 (iv), in the case that f ♥ r and f ∪ r injective, we have

Pr|f〉p =
∑

t:D↪→R
t♥f

(
|{t ∈ D ↪→ R : t ♥ f}|

)−1/2 Pr|t〉

(∗)
=

∑
t:D↪→R
t♥f∪r

(
|{t ∈ D ↪→ R : t ♥ f}|︸ ︷︷ ︸

=(N−`f)M−`f

)−1/2|t〉

=
√

(N−`fr)!
(N−`f)!

∑
t:D↪→R
t♥f∪r

(
|{t ∈ D ↪→ R : t ♥ f ∪ r}|︸ ︷︷ ︸

=(N−`fr)M−`fr

)−1/2|t〉

=
√

(N−`fr)!
(N−`f)! · |f ∪ r〉

f (∗∗)= 1√
(N−`f)`r-f

· |f ∪ r〉f.

Here (∗) uses the fact that Pr|t〉 = |t〉 if t ♥ r and = 0 otherwise. Thus the sum gets
restricted to those t with t ♥ r and t ♥ f , hence t ♥ f ∪ r. And the bounds under the
braces were already stated in the proof of (iii). And (∗∗) uses the definition of the
falling factorial, the fact that `fr = `f + `r-f , and some elementary simplification.

In the case that f 6♥ r or f ∪ r non-injective, the second sum quantifies over injective
functions t that are compatible with both f and r but there are no such t. Thus in this
case, Pr|f〉p = 0.

This shows Lemma 22 (iv). �

45

5.2 Generalized case

In this section, we present and prove the theorems about compressed oracle queries
and their effect on invariants in the most general setting. This setting encompasses
both random functions and random permutations but is not restricted just to those two
cases. This generality is bought by having harder to prove premises in the theorems.
While the theorems that are specialized to random functions/permutations have a purely
combinatorial premise (e.g., (6)), the premises of the general theorems involve some norms
and inner products. In later sections, we derive the specialized theorems as corollaries.

First, we generalize the concept of compressed function/permutation oracles (in
particular the definitions of the states |f〉f and |f〉p) by stating some properties that
should be satisfied by these states without prescribing a specific definition:

Definition 23 (Generalized compressed oracle) A generalized compressed oracle consists
of:

• Finite sets D and R (domain and range).

• A set Func of total functions D → R. (Those correspond to the possible values of
the uncompressed oracle.)

• A set Valid of partial functions D l→ R. (We call functions in this set valid).

• A family of normalized states |f〉g ∈ CFunc for f ∈ Valid. (We do not require that
they form a basis or are orthogonal.)

such that

(i) For f ∈ Valid, and for r : D l→ R: If f 6♥ r or (f ∪ r) /∈ Valid, then Pr|f〉g = 0.

(ii) For f ∈ Valid, and for r : D l→ R: If f, r are compatible and (f ∪ r) ∈ Valid, then
there exists an F ≥ 0 such that Pr|f〉g = F |f ∪ r〉g.

(iii) For f, g ∈ Valid: If f, g are not compatible, then 〈f | g〉g = 0.

(iv) For f, g ∈ Valid: 〈f | g〉g ≥ 0.

Both the compressed function oracle and the compressed permutation oracle are
examples of generalized compressed oracles. In the case of the compressed function
oracle, Func := D → R, Valid := D l→ R,

∣∣f〉g := |f〉f. In the case of the compressed

permutation/injection oracle, Func := D ↪→ R, Valid := D l↪→ R,
∣∣f〉g := |f〉p. The fact

that these are generalized compressed oracles follows from Lemmas 21 and 22.
We can also model nonuniformly distributed oracles: For example, let D be a

distribution over D → R. Then an oracle whose state is chosen according to D can be
modeled by the following generalized compressed oracle: Func := D → R (or a suitable
subset thereof), Valid := D l→ R (or a suitable subset thereof), and∣∣f〉g :=

∑
g∈Func
g♥f

√
D(g)
Tf
|g〉 where Tf :=

∑
g∈Func
g♥f

D(g).

46

While the latter is a generalized compressed oracle, it may depend on the distribution D
whether it is a useful one because the concrete parameters achievable in Theorem 24
below will depend on D.

The following is the main theorem for the preservation of invariants under oracle
queries in the generalized setting. Its basic structure is the same as the theorems we
already saw (e.g., Theorem 13): It shows that under certain conditions, if ψ approximately
satisfies an invariant, then Uψ (the state after an oracle query) approximately satisfies a
new invariant. The shape of these invariants in exactly as in Theorem 13 (besides being
stated in terms of |f〉g instead of |f〉f), so the way how this theorem is applied follows the
same lines as we did with Theorem 13. However, there are a number of generalizations
that we will discuss after the statement of the theorem.

Theorem 24 (Oracle query) Fix a set X of tuples x ⊆ D (of possibly different lengths).
Fix c, d ≥ 0 with d < 1

3 . Fix Ax,e, Bx,e ⊆ Valid for x ∈ X and e. Fix mutually orthogonal
projectors Mx,e on a Hilbert space HE for x ∈ X and e. For every x ∈ X, e, and z ⊆ R
with |x| = |z| (same length), fix a scaled isometry24 Vx,e,z on a Hilbert space HY .

Assume that for all x ∈ X and e, and all compatible f, g ∈ Ax,e,

∑
z

(x 7→z)♥f,g
f∪(x7→z),g∪(x 7→z)∈Valid\Bx,e

�

�Vx,e,z
�

�

2 ·
∥∥Px 7→z|f〉g∥∥ · ∥∥Px 7→z|g〉g∥∥ · 〈f ∪ (x 7→ z)

∣∣ g ∪ (x 7→ z)
〉g

〈f | g〉g
≤ c.

(28)
(Using the convention 0/0 := 0, a/0 :=∞ for a 6= 0.)

Assume that for all compatible f, g ∈ Ax,e with f 6= g: 〈f | g〉g ≤ d.
Let

U :=
∑

x∈X, e, z
|x|=|z|

Mx,e ⊗ Vx,e,z ⊗ Px 7→z

Fix a unit vector ψ ∈ HE ⊗HY ⊗ CFunc. If

ψ
ε
≈

∑
x∈X, e

imMx,e ⊗HY ⊗ span{|f〉g : f ∈ Ax,e}f =: A

then

Uψ
ε+

2
√
c√

1−3d

≈
∑
x∈X, e

imMx,e ⊗HY ⊗ span{|f〉g : f ∈ Bx,e}f =: B

(
∑

is the sum of subspaces, i.e., the span of all linear combinations.)

(The theorem is shown in Section 5.2.1, page 55.) This theorem generalizes the previous
theorems (Theorems 6 and 13) in the following ways:

24That is, an isometry multiplied with a complex scalar. The most important example are isometries
and the zero-operator.

47

• It is not limited to the random function or random permutation case but applies to
generalized compressed oracles. (Using |f〉g instead of |f〉f or |f〉p.)

• It generalizes how oracle queries are formalized: Before, there was a distinguished
register X that contained the oracle input x in the computational basis. Now the
oracle input x can be encoded in an arbitrary way in the state of the environment
register E. (The register E here encompasses both the query input register X and
the environment register E from Theorems 6 and 13.) How x is derived from E
is described by a projective measurement Mx,e. (Thus Mx,e takes the role of the
environment basis ηe in Theorems 6 and 13, and the role of measuring x.)

• The output of the oracle is also handled in a more general fashion: Instead of having
a register Y that encodes a tuple of outputs y in the computational basis, we allow
the output register Y to have an arbitrary form. The operation of the oracle on Y
in dependence of the output z is then specified by an isometry Vx,e,z. For example,
instead of XORing the result onto Y , the oracle could perform a phase shift that
depends on z. Also Vx,e,z can depend on x, e, so the way the oracle operates can
depend on other parts of the state. (And Vx,e,z is actually only required to be a
scaled isometry. This might allow for oracles which have a non-zero probability of
returning, by setting Vx,e,z := 0 for some x, e, z.)

• There is no fixed length of query inputs x any more. Thus, the oracle can be queried
in superposition between different amounts of parallelism. X = Dk would mean
k-parallelism. X = D∗ would mean unbounded parallelism. Anything in between is
possible, too.

• There is no built-in requirement in the invariants that dom f ≤ ` for some integer `.
It is, of course, still possible (and in many situation necessary) to track the size
of f in the invariants, but this needs to be included manually in the sets Ax,e and
Bx,e. This means that we have more flexibility, e.g., the size of ` might depend on
e or on some outputs of f , etc.

While many of these generalizations are probably needed only in rare circumstances, we
decided to keep them in the theorem, and refer to the specialized theorems for random
functions/permutations for easier to read theorems.

Of course, analogous to the random function and permutation cases, we also need a
theorem for non-oblivious queries (compare with Theorems 7 and 14). In this theorem,
there is nothing conceptually new. The only generalization to mention is that instead of
requiring Y to be initialized with |0〉, we more generally allow Y to be initialized with
any state φY,x,e that can depend on the query input x and the state of the environment E
(via e).

Theorem 25 (Non-oblivious oracle query) In the situation of Theorem 24, fix addition-
ally some ψY,x,e ∈ HY .

If

ψ
ε
≈

∑
x∈X, e

imMx,e ⊗ span
{
ψY,x,e ⊗ |f〉g : f ∈ Ax,e

}
f

=: A

48

then

Uψ
ε+

2
√
c√

1−3d

≈
∑
x∈X, e

imMx,e ⊗ span
{
Vx,e,zψY,x,e ⊗ |f〉g : f ∈ Bx,e ∧ f(x) = z

}
zf

=: B

(The theorem is shown in Section 5.2.1, page 56.)

5.2.1 Proofs in the generalized case

We now proceed to prove Theorems 24 and 25. In order to do so, we first show two lemmas
that are limited special cases of those theorems. Namely, we are considering the case
where the input x to the oracle is fixed. (In particular, no superposition between different
inputs.) While very restricted, this case nontheless captures all the core difficulties in
the proof. The general case is then a simple corollary. (Using the fact that all |x〉 are
orthogonal.) We also express the invariant preservation slightly differently (the norm
of the projection onto the orthogonal complement of the invariant is small) which is
technically a bit simpler when used in the proof of the general case.

The lemma that is a limited special case of Theorem 24 is the following:

Lemma 26 (Oracle query (fixed input)) Let A,B ⊆ Valid (pre-/postcondition). Fix
c, d ≥ 0 with d < 1

3 . Fix a tuple x ⊆ D. For every list z ⊆ R with |z| = |x| (same length),
fix a scaled isometry Vz on Hilbert space HY . Assume that for all compatible f, g ∈ A:

∑
z

(x 7→z)♥f,g
f∪(x7→z),g∪(x 7→z)∈Valid\B

�

�Vz
�

�

2 ·
∥∥Px 7→z|f〉g∥∥ · ∥∥Px 7→z|g〉g∥∥ · 〈f ∪ (x 7→ z)

∣∣ g ∪ (x 7→ z)
〉g

〈f | g〉g
≤ c. (29)

(Using the convention 0/0 := 0, a/0 :=∞ for a 6= 0.)
Assume further that for all compatible f, g ∈ A with f 6= g: 〈f | g〉g ≤ d.
Let U :=

∑
z Vz ⊗ Px 7→z. Then for ψ ∈

(
HY ⊗ span{|f〉g : f ∈ A}f

)
, we have∥∥(1− PB)Uψ

∥∥ ≤ 2
√
c√

1−3d
· ‖ψ‖

where PB is the projector onto HY ⊗ span{|f〉g : f ∈ B}f .

Proof. Since ψ ∈
(
HY ⊗ span{|f〉g : f ∈ A}f

)
, there are scalars αyf ∈ C such that

ψ =
∑
f∈A

γf ⊗ |f〉g where γf :=
∑
y

αyf |y〉 (30)

Here |y〉 are an arbitrary orthonormal basis of HY . Let Wj for j = 0, . . . , 3 be the
quadrants of the complex plane. More precisely, Wj :=

{
retiπ/2. t ∈ [j, j + 1), r > 0

}
.

Note that the Wj form a partition of C \ {0}. Furthermore, for a, b ∈Wj , <(ab) ≥ 0.

49

We can then decompose ψ and γf as follows:

γfj :=
∑
y

αyf∈Wj

αyf |y〉, ψj :=
∑
f∈A

γfj ⊗ |f〉g. Then γf =
3∑
j=0

γfj , ψ =
3∑
j=0

ψj .

The purpose of this decomposition is the following: Inner products involving the
summands of a single ψj will have non-negative real parts. This will avoid negative
factors in inequalities later on (in Claim 3) which would make it impossible to use
monotonicity arguments.

For j = 0, . . . , 3, define:

φgood :=
∑

f∈A, z
(x 7→z)♥f

f∪(x 7→z)∈B

Vzγf ⊗ Px 7→z|f〉g.

φbad :=

3∑
j=0

φbad
j , φbad

j :=
∑

f∈A, z
(x 7→z)♥f

f∪(x 7→z)∈Valid\B

Vzγfj ⊗ Px 7→z|f〉g.

φnope :=
∑

f∈A, z
(x 7→z)6♥f

or f∪(x 7→z)/∈Valid

Vzγf ⊗ Px 7→z|f〉g.

Intuitively, φgood is the part of the final state (after the query U) that satisfies the
predicate B, φbad the part that does not satisfy B, and φnope will turn out to be 0. Note
that

φgood + φbad + φnope =
∑

f∈A, z
Vzγf ⊗ Px 7→z|f〉g =

∑
z

(
Vz ⊗ Px 7→z

)∑
f∈A

γf ⊗ |f〉g = Uψ.

(31)
Here the first equality uses that

∑
j γfj = γj (see above), and that each f ∈ A, z satisfies

the condition under exactly one of the three sums. And the last inequality follows
from (30) and the definition of U in the statement of the lemma.

The following claim shows that φgood is indeed good (namely, satisfies the postcondi-
tion B):

Claim 1 φgood ∈ HY ⊗ span{|f〉g : f ∈ B}f .

Proof of claim. Fix f ∈ A and z such that (x 7→ z) is compatible with f and
f ∪ (x 7→ z) ∈ B.

50

Since B ⊆ Valid (by assumption of the lemma), f ∪ (x 7→ z) ∈ Valid and thus by
Definition 23 (ii), Px 7→z|f〉g = F |f ∪ (x 7→ z)〉g for some F ∈ C.

Since f ∪ (x 7→ z) ∈ B, F |f ∪ (x 7→ z)〉g ∈ span{|f〉g : f ∈ B}f and hence
Vzγfj ⊗ Px 7→z|f〉g ∈ HY ⊗ span{|f〉g : f ∈ B}f .

Thus all the summands in the definition of φgood are in HY ⊗
span{|f〉g : f ∈ B}f . The claim follows. �

Claim 2 φnope = 0.

Proof of claim. By Definition 23 (i), Px 7→z|f〉g = 0 when (x 7→ z) 6♥ f or
f ∪ (x 7→ z) /∈ Valid. Thus all the summands in the definition of φnope are 0. �

The following claim is the core of this lemma: It bounds the size of the “bad” parts
of the final state.

Claim 3 ‖φbad
j ‖ ≤

√
c · ‖ψj‖.

Proof of claim. We have

‖φbad
j ‖2 = <

(
‖φbad

j ‖2
)

= <
(∑
f,g,z,z′ (∗)

〈Vzγfj , Vz′γgj〉 ·
〈
Px 7→z|f〉g,Px 7→z′ |g〉g

〉)
.

Here (∗) means that the sum ranges over all f, g, z, z′ with f, g ∈ A, (x 7→ z) ♥ f ,
(x 7→ z′) ♥ g, f ∪ (x 7→ z), g ∪ (x 7→ z′) ∈ Valid \B.

By Definition 23 (ii), and since A ⊆ Valid, we have Px 7→z|f〉g =
Ffz|f ∪ (x 7→ z)〉g for some Ffz ≥ 0 for f, z satisfying (∗). And analogously
Px 7→z′ |g〉g = Fgz′ |g ∪ (x 7→ z′)〉g for some Fgz′ ≥ 0. Thus we can continue our
calculation as:

· · · = <
(∑
f,g,z,z′ (∗)

〈Vzγfj , Vz′γgj〉 · FfzFgz′〈f ∪ (x 7→ z)| g ∪ (x 7→ z′)〉g
)

If z 6= z′, then f ∪ (x 7→ z) and g ∪ (x 7→ z′) are not compatible. Thus by
Definition 23 (iii), 〈f ∪ (x 7→ z)| g ∪ (x 7→ z′)〉g = 0. Thus all summands with
z 6= z′ vanish, thus:

· · · = <
(∑
f,g,z,(∗∗)

〈Vzγfj , Vzγgj〉 · FfzFgz〈f ∪ (x 7→ z)| g ∪ (x 7→ z)〉g
)

Here (∗∗) means that the sum ranges over all f, g, z with f, g ∈ A, (x 7→ z) ♥ f, g,
f ∪ (x 7→ z), g ∪ (x 7→ z) ∈ Valid \B. (The only change is that we removed z′ from
the indices of the sum and replaced all occurrences by z.)

51

Since Vz is a scaled isometry by assumptions of the lemma, 〈Vzγfj , Vzγgj〉 =
vz〈γfj , γgj〉 where vz := ~Vz~

2. Furthermore, when f, g, z satisfy (∗∗), for Gfgz :=
〈f ∪ (x 7→ z)| g ∪ (x 7→ z)〉g/〈f | g〉g we have Gfgz ≥ 0 by Definition 23 (iv). (We
set Gfgz := 0 in the 0/0 case, and :=∞ when only the denominator is 0. The case
Gfgz =∞ can only occur when vzFfzFgz = 0 since otherwise (29) would not hold
for finite c.) Then:

· · · = <
(∑
f,g,z,(∗∗)

〈γfj , γgj〉 · vzFfzFgzGfgz〈f | g〉g︸ ︷︷ ︸
≥0

)

We can reorder the sum:

· · · =
∑
f,g∈A

(∑
z,(∗∗∗)

vzFfzFgzGfgz

)
︸ ︷︷ ︸

≤c

· <
(
〈γfj , γgj〉

)︸ ︷︷ ︸
≥0

· 〈f | g〉g︸ ︷︷ ︸
≥0

Here (∗∗∗) means the sum ranges over all z with (x 7→ z) ♥ f, g, f ∪ (x 7→
z), g ∪ (x 7→ z) ∈ Valid \B.

We were able to pull the < into the sum because 〈γfj , γgj〉 was only multiplied
with reals.

In the previous sum, we have 〈f | g〉g ≥ 0 by Definition 23 (iv).
And <

(
〈γfj , γgj〉

)
≥ 0 follows since 〈γfj , γgj〉 =

∑
y

αyf ,αyg∈Wj

αyfαyg, and

αyfαyg has a non-negative real part (as is the case for any two elements of the
same Wj).

And the fact that the sum over z is bounded by c is by assumption (29).
(And using that f, g ∈ A and the definitions of vz, Ffz, Fgz, Gfgz. Note also that
‖Px 7→z|f〉g‖ =

∥∥Ffz|f ∪ (x 7→ z)〉g
∥∥ = |Ffz| = Ffz.)

Thus:

· · · ≤ c <
(∑
f,g∈A

〈γfj , γgj〉 · 〈f | g〉g
)

= c <
(
‖ψj‖2

)
= c ‖ψj‖2.

Thus we showed
‖φbad

j ‖2 ≤ c ‖ψj‖2.

Taking the square root on both sides proves the claim. �

Unfortunately, we cannot directly use Claim 3 to get a bound on ‖φbad‖ in terms of
‖ψ‖, only in terms of

∑
‖ψj‖. Since in general,

∑
‖ψj‖ can be much larger than ‖

∑
ψj‖

(e.g., when
∑
ψj = 0), that bound could be very loose. Fortunately the following claim

shows that, in the present setting, this is not the case:

Claim 4
∑

j‖ψj‖ ≤
2√

1−3d
· ‖ψ‖.

52

Proof of claim. For j = 0, . . . , 3 we have

‖ψj‖2 = <
(
‖ψj‖2

)
= <

(∑
f,g∈A

〈γfj , γgj〉 · 〈f | g〉g︸ ︷︷ ︸
≥0

)
=
∑
f,g∈A

<
(
〈γfj , γgj〉

)︸ ︷︷ ︸
≥0

· 〈f | g〉g︸ ︷︷ ︸
≥0

Here the fact that 〈f | g〉g ≥ 0 is by Definition 23 (iv) (using f, g ∈ A ⊆ Valid). And
<
(
〈γfj , γgj〉

)
≥ 0 by definition of γfj (this fact was already show in the proof of

Claim 3).
We can omit all summands with f 6= g and only make the sum smaller:

· · · ≥
∑
f∈A
<
(
〈γfj , γfj〉

)
· 〈f | f〉g =

∑
f∈A
‖γfj‖2. (32)

For all j 6= k, we have∣∣〈ψj , ψk〉∣∣ =
∣∣∣ ∑
f,g∈A

〈γfj , γgk〉 · 〈f | g〉g︸ ︷︷ ︸
≥0

∣∣∣ ≤ ∑
f,g∈A

∣∣〈γfj , γgk〉︸ ︷︷ ︸
=0 if f=g

∣∣ · 〈f | g〉g︸ ︷︷ ︸
≤d if f 6=g

Here 〈f | g〉 ≥ 0 is by Definition 23 (iv) (using also that f, g ∈ A ⊆ Valid). And
〈f | g〉g ≤ d for f 6= g holds by assumption of the lemma when f ♥ g and by
Definition 23 (iii) when f 6♥ g. And 〈γfj , γgk〉 = 0 for f = g holds because
by definition of γfj , we have 〈γfj , γfk〉 =

∑
y

αyf∈Wj ,αyf∈Wk

αyfαyg = 0 (the last

equality follows since Wj and Wk are disjoint and thus we have an empty sum).
We can thus continue the computation:

. . . ≤ d ·
∑
f,g∈A

∣∣〈γfj , γgk〉∣∣ ≤ d · ∑
f,g∈A

‖γfj‖ · ‖γgk‖

CSI

≤ d ·
√∑
f∈A
‖γfj‖2 ·

∑
g∈A
‖γgk‖2

(32)

≤ d · ‖ψj‖ · ‖ψk‖. (33)

Here CSI refers to the Cauchy-Schwarz inequality.

Finally, we compute:

‖ψ‖2 =
∥∥∥∑

j

ψj

∥∥∥2
=
∑
j

‖ψj‖2 +
∑
j 6=k
〈ψj , ψk〉 ≥

∑
j

‖ψj‖2 −
∑
j 6=k

∣∣〈ψj , ψk〉∣∣
(33)

≥
∑
j

‖ψj‖2 − d ·
∑
j 6=k
‖ψj‖ · ‖ψk‖ = 1+d

4

(∑
j

‖ψj‖2
)(∑

j

12
)
− d ·

(∑
j

‖ψj‖
)2

CSI

≥ 1+d
4

(∑
j

‖ψj‖ · 1
)2
− d ·

(∑
j

‖ψj‖
)2

= 1−3d
4 ·

(∑
j

‖ψj‖
)2
.

53

Since d < 1
3 by assumption of the lemma,

(∑
j‖ψj‖

)2
≤ 4

1−3d‖ψ‖
2. The claim

follows. �
We now have

‖φbad‖ =
∥∥∥∑

j

φbad
j

∥∥∥ ≤∑
j

‖φbad
j ‖

Claim 3

≤
√
c ·
∑
j

‖ψj‖
Claim 4

≤ 2
√
c√

1−3d
· ‖ψ‖. (34)

And thus∥∥(1− PB)Uψ
∥∥(31)

=
∥∥(1− PB)(φgood + φbad + φnope)

∥∥ (∗)
=
∥∥(1− PB)φbad

∥∥
(∗∗)
≤
∥∥φbad

∥∥(34)

≤ 2
√
c√

1−3d
· ‖ψ‖.

Here (∗) uses Claim 1 to show that (1 − PB)φgood = 0 and Claim 2 to show that
φnope = 0. And (∗∗) uses that 1− PB has operator norm ≤ 1 since PB is a projector.

The last inequality shows the lemma. �

And the lemma that is a limited special case of the non-oblivious Theorem 24 is the
following:

Lemma 27 (Non-oblivious oracle query (fixed input)) In the situation of Lemma 26, as-
sume additionally that ψ = ψY ⊗ ψH for some ψY , ψH . Then we have∥∥(1− P ′B)Uψ

∥∥ ≤ 2
√
c√

1−3d
· ‖ψ‖

where P ′B is the projector onto span
{
VzψY ⊗ |f〉g : f ∈ B ∧ f(x) = z

}
zf

.

This lemma is a simple corollary of the previous proof.

Proof. Since we assume all assumptions from Lemma 26, everything shown in the proof
of that lemma still applies. Furthermore, note that in that proof, when we defined γf
in (30), we used an orthonormal basis |y〉 of HY that was chosen arbitrarily. We can
therefore instead chose it such that ψY and |0〉 are colinear. Everything in the proof
still holds with that choice of basis.

We strengthen Claim 1 as follows:

Claim 1 φgood ∈ span
{
VzψY ⊗ |f〉g : f ∈ B ∧ f(x) = z

}
zf

.

Proof of claim. Fix f ∈ A and z such that (x 7→ z) is compatible with f and
f ′ := f ∪ (x 7→ z) ∈ B.

Since B ⊆ Valid (by assumption of the lemma), f ∪ (x 7→ z) ∈ Valid and thus
by Definition 23 (ii), Px 7→z|f〉g = F |f ′〉 for some F ∈ C.

Since f ′ ∈ B and f ′(x) = z, we have Vzγfj ⊗ Px7→z|f〉g = Vzγfj ⊗ F |f ′〉g ∈
span

{
VzψY ⊗ |f〉g : f ∈ B ∧ f(x) = z

}
zf

.

54

Thus all the summands in the definition of φgood are in
span

{
VzψY ⊗ |f〉g : f ∈ B ∧ f(x) = z

}
zf

. �

We can now redo the very last calculation from the proof of Lemma 26 for P ′B
instead of PB:∥∥(1− P ′B)Uψ

∥∥(31)
=
∥∥(1− P ′B)(φgood + φbad + φnope)

∥∥ (∗)
=
∥∥(1− P ′B)φbad

∥∥
(∗∗)
≤
∥∥φbad

∥∥(34)

≤ 2
√
c√

1−3d
· ‖ψ‖.

Here (∗) uses Claim 1 to show that (1 − P ′B)φgood = 0 and Claim 2 to show that
φnope = 0. And (∗∗) uses that 1−P ′B has operator norm ≤ 1 since PB is a projector. �

Proofs of the main theorems. We can now derive Theorems 24 and 25 from the preceding
lemmas:

Proof of Theorem 24. Without loss of generality, we can assume that all Mx,e are
rank-1. (Otherwise, we split them into more projectors.) Then Mx,e is the projector
onto some normalized ηx,e ∈ HE .

Since ψ
ε
≈ A by assumption, we have that ψ

ε
≈ PAψ where PA is the projector on A.

Let PB,x,e be the projector on HY ⊗ span{|f〉g : f ∈ Bx,e}f . Let Ux,e :=
∑

z Vx,e,z ⊗
Px 7→z.

Let ψx,e ∈ HY ⊗ CFunc be such that (Mx,e ⊗ I ⊗ I)PAψ = ηx,e ⊗ ψx,e. Let ψrest :=(
(I −

∑
x,eMx,e)⊗ I ⊗ I

)
PAψ.

Since the Mx,e are mutually orthogonal, we have that the ηx,e ⊗ ψx,e and ψrest are
all mutually orthogonal. And PAψ = ψrest +

∑
x,e ηx,e ⊗ ψx,e.

Since PAψ ∈ A, we have ηx,e ⊗ ψx,e = (Mx,e ⊗ I ⊗ I)PAψ ∈ imMx,e ⊗ HY ⊗
span{|f〉g : f ∈ Ax,e}f . Then ψx,e ∈ HY ⊗ span{|f〉g : f ∈ Ax,e}f .

Then by Lemma 26 (with A := Ax,e, B := Bx,e, Vz := Vz,e, ψ := ψx,e, PB := PB,x,e),
we have ∥∥(1− PB,x,e)Ux,eψx,e

∥∥ ≤ L ‖ψx,e‖ for L := 2
√
c√

1−3d
. (35)

Let PB be the projector onto B. Then∥∥(1− PB)UPAψ
∥∥2

=
∥∥∥∑
x,e

(1− PB)U(ηx,e ⊗ ψx,e) + (1− PB)Uψrest

∥∥∥2

≤
∑
x,e

∥∥∥(1− PB)U(ηx,e ⊗ ψx,e)
∥∥∥2

(∗)
=
∑
x,e

∥∥(1− PB)(I ⊗ Ux,e)(ηx,e ⊗ ψx,e)
∥∥2

(∗∗)
=
∑
x,e

∥∥(1− (I ⊗ PB,x,e)
)
(I ⊗ Ux,e)(ηx,e ⊗ ψx,e)

∥∥2

55

=
∑
x,e

∥∥ηx,e ⊗ (1− PB,x,e)Ux,eψx,e∥∥2
=
∑
x,e

∥∥(1− PB,x,e)Ux,eψx,e∥∥2

(35)

≤ L2
∑
x,e

‖ψx,e‖2 ≤ L2
(
‖ψrest‖2 +

∑
x,e

‖ηx,e ⊗ ψx,e‖2
)

(∗∗∗)
= L2

∥∥∥ψrest +
∑
x,e

ηx,e ⊗ ψx,e
∥∥∥2

= L2‖PAψ‖2 ≤ L2‖ψ‖2 = L2.

Here (∗) is by the definition of U and Ux,e, and by the fact that ηx,e is in the image of
the projector Mx,e. And (∗∗) follows since ηx,e is in the image of Mx,e and thus PB and
I ⊗ PB,x,e are equal on vectors of the form ηx,e ⊗ · · · . And (∗∗∗) follows since the ψx,e
and ψrest are all mutually orthogonal.

Thus ‖(1− PB)UPAψ‖ ≤ L. Hence

Uψ
ε
≈ UPAψ

L
≈ PBUPAψ ∈ B

(The
ε
≈ follows since ψ

ε
≈ PAψ and U is unitary.)

Thus Uψ
ε+L
≈ B. By definition of L this is the conclusion of the theorem. �

Proof of Theorem 25. The proof is identical to the proof of Theorem 24, except for the
following additions and differences:

• In the previous proof, we chose ψx,e such that (Mx,e ⊗ I ⊗ I)ψ = ηx,e ⊗ ψx,e.
Combined with the strengthened assumption ψ

ε
≈ A of the current theorem, this

means ψx,e ∈ span{ψY,x,e ⊗ |f〉g}f . This implies that ψx,e = ψY,x,e ⊗ ψH,x,e for
some ψH,x,e ∈ H.

• The definition of PB,x,e is changed to PB,x,e :=
span

{
Vx,e,zψY,x,e ⊗ |f〉g : f ∈ Bx,e ∧ f(x) = z

}
.

• Instead of Lemma 26, we use Lemma 27 (with A := Ax,e, B := Bx,e, Vz := Vz,e,
ψ := PAψx,e, P

′
B := PB,x,e, ψY := ψY,x,e, ψH := ψH,x,e). �

5.3 Random functions

We now show Theorems 6 and 7 as corollaries of the general Theorems 24 and 25.
Basically, the proofs boil down to instantiating the generalized compressed oracle

(Definition 23) with |f〉f instead of |f〉g, and then heavily simplifying the preconditions
(using the basic properties from Lemma 21).

Theorem 6 (Random function query).

56

Proof of Theorem 6. The compressed function oracle is a special case of the generalized
compressed oracle with Func := D → R and Valid := D l→ R and |f〉g := |f〉f. Thus
we show this theorem by instantiating Theorem 24. In that theorem, let X := Dk,
Ax,e := Ax,e ∩{f : |dom f | ≤ `}, Bx,e := Bx,e ∩{f : |dom f | ≤ `+ k}, HE := HE ⊗CDk ,

Mx,e := ηeη
†
e ⊗ |x〉〈x|, Vx,e,z := U⊕z which is defined by U⊕z|y〉 := |y ⊕ z〉, c := c, d := 1

4 .

To apply Theorem 24, we need to show two bounds. First, for all f 6= g, 〈f | g〉f ≤
d = 1

4 . This follows from N ≥ 16 by Lemma 21 (iii).
Second, we need to show the bound from (28). Instantiated in our setting, this

bound becomes: For all x, e and compatible f, g ∈ Ax,e with |dom f |, |dom g| ≤ `:

∑
z∈Dk (∗)

�

�U⊕z
�

�

2︸ ︷︷ ︸
=1

·
∥∥Px 7→z|f〉f∥∥︸ ︷︷ ︸

=N
−`x-f /2

·
∥∥Px 7→z|g〉f∥∥︸ ︷︷ ︸

=N−`x-g/2

·
〈
f ∪ (x 7→ z)

∣∣ g ∪ (x 7→ z)
〉f

〈f | g〉f︸ ︷︷ ︸
=N
−`fx-gx/2−`gx-fx/2+`f-g/2+`g-f /2

≤ c (36)

where (∗) means that the sum ranges over z satisfying: (x 7→ z) ♥ f, g and fx,z, gx,z /∈
Bx,e ∩ {f : |dom f | ≤ `+ k}.

The bounds under (36) come from Lemma 21 (iv) and (iii). In those bounds,
`x-f :=

∣∣x \ dom f
∣∣, `fx-gx :=

∣∣(dom f ∪ x) \ (dom g ∪ x)
∣∣, `f -g :=

∣∣dom f \ dom g
∣∣, etc.

(All |·| are cardinalities of sets here, not of multisets/tuples. I.e., x is interpreted as a
set here.)

We have

− `x-f/2− `x-g/2− `fx-gx/2− `gx-fx/2 + `f -g/2 + `g-f/2 = −`x-fg . (37)

This is seen most easily by checking that each region in the following Venn diagram
contributes the indicated amount to the lhs.

− 1
2
+ 1

2
− 1

2
+ 1

2

− 1
2
− 1

2

dom f dom g

x

0

0

− 1
2
+ 1

2
− 1

2
+ 1

2

The only non-zero region is x \ dom f \ dom g which contributes 1 to the lhs. Hence the
lhs is equal to `x-fg . This shows (37).

From (37), it follows that the summand in (36) equals N−`x-fg . Thus (36) can be
restated as Z/N−`x-fg ≤ c where Z is the number of z that satisfy (∗). Since |dom f | ≤ `
by assumption, and |x| ≤ k, we always have f ∪ (x 7→ z) ∈ (f : |dom f | ≤ `+ k). Hence
f ∪ (x 7→ z) /∈ Bx,e ∩ {f : |dom f | ≤ `+ k} iff f ∪ (x 7→ z) /∈ Bx,e. Analogously for

57

g ∪ (x 7→ z). Thus the set of z that satisfy (∗) is the set in the numerator in (12). Hence
(12) is equivalent to Z/N−`x-fg ≤ c which in turn is equivalent to (36). Since we assumed
(12), (36) holds and Theorem 24 is applicable.

Furthermore, note that for our choices of X,Mx,e, Vx,e,z, the operator U defined in
Theorem 24 is equal to IE ⊗ Uquery,k . And A,B defined in Theorem 24 are the same as
A,B defined in the present theorem.

Thus Theorem 24 shows that

(IE ⊗ Uquery,k)ψ
ε+ 2

√
c√

1−3d

≈ B.

Since d = 1
4 , we have ε+ 2

√
c√

1−3d
= ε+ 4

√
c. The theorem follows. �

Theorem 7 (Non-oblivious random function query).

Proof of Theorem 7. Analogous to Theorem 6, except using Theorem 25 instead of
Theorem 24. �

5.4 Random permutations

We now show Theorems 6 and 7 as corollaries of the general Theorems 24 and 25.
The proofs boil down to instantiating the generalized compressed oracle (Definition 23)

with |f〉p instead of |f〉g, and then heavily simplifying the preconditions (using the basic
properties from Lemma 22).

Theorem 13 (Random permutation query).

Proof of Theorem 13. The compressed permutation oracle is a special case of the
generalized compressed oracle with Func := D ↪→ R and Valid := D l↪→ R and |f〉g :=
|f〉p. Thus we show this theorem by instantiating Theorem 24. In that theorem, let
X := Dk, Ax,e := Ax,e ∩ {f : |dom f | ≤ `}, Bx,e := Bx,e ∩ {f : |dom f | ≤ `+ k}, HE :=

HE ⊗ CDk , Mx,e := ηeη
†
e ⊗ |x〉〈x|, Vx,e,z := U⊕z which is defined by U⊕z|y〉 := |y ⊕ z〉,

c := c, d := 1
4 .

To apply Theorem 24, we need to show two bounds. First, for all f 6= g, 〈f | g〉f ≤
d = 1

4 . This follows from ` ≤ N − 16 by Lemma 22 (iii).
Second, we need to show the bound from (28). Instantiated in our setting, this

bound becomes: For all x, e and compatible f, g ∈ Ax,e with |dom f |, |dom g| ≤ `:

∑
z∈Dk (∗)

�

�U⊕z
�

�

2︸ ︷︷ ︸
=1

·
∥∥Px 7→z|f〉f∥∥︸ ︷︷ ︸

= 1√
(N−`f)`x-f

·
∥∥Px 7→z|g〉f∥∥︸ ︷︷ ︸

= 1√
(N−`g)`x-g

·
〈
f ∪ (x 7→ z)

∣∣ g ∪ (x 7→ z)
〉f

〈f | g〉f︸ ︷︷ ︸
=

√
(N−`f)`g-f

·(N−`g)`f-g
(N−`fx)`gx-fx

·(N−`gx)`fx-gx

≤ c (38)

58

where (∗) means that the sum ranges over z satisfying: (x 7→ z) ♥ f, g , and fx,z, gx,z
injective and fx,z, gx,z /∈ Bx,e ∩ {f : |dom f | ≤ `+ k}.

The bounds under (38) come from Lemma 22 (iv) and (iii). In those bounds,
`fx :=

∣∣dom f ∪ x
∣∣, `x-f :=

∣∣x \ dom f
∣∣, `fx-gx :=

∣∣(dom f ∪ x) \ (dom g ∪ x)
∣∣, `f -g :=∣∣dom f \ dom g

∣∣, etc. (All |·| are cardinalities of sets here, not of multisets/tuples. I.e.,
x is interpreted as a set here.)

Unfolding the definition of the falling factorial (a)b = a!/(a− b)!, the summand in
(38) becomes√

(N−`f−`x-f)!

����(N−`f)!
(N−`g−`x-g)!

����(N−`g)!
����(N−`f)!

(N−`f−`g-f)!
����(N−`g)!

(N−`g−`f-g)!

(N−`fx−`gx-fx)!

(N−`fx)!

(N−`gx−`fx-gx)!

(N−`gx)!

(Note that all those factorials have nonnegative arguments since |dom f ∪ dom g ∪ x| ≤
|D| ≤ N .) Since |S ∪ T | = |S|+ |T \ S| for sets S, T , we can rewrite this to:√

����(N−`fx)! ����(N−`gx)! (N−`fgx)! (N−`fgx)!

(N−`fg)! (N−`fg)! ����(N−`fx)! ����(N−`gx)!
=

(N−`fgx)!

(N−`fg)! =
(N−`fg−`x-fg)!

(N−`fg)! = 1
(N−`fg)`x-fg

.

Thus the summand in (38) is 1/(N − `fg)`x-fg . Thus (38) can be restated as
Z/(N − `fg)`x-fg ≤ c where Z is the number of z that satisfy (∗). Since |dom f | ≤ ` by
assumption, and |x| ≤ k, we always have f ∪ (x 7→ z) ∈ {f : |dom f | ≤ `+ k}. Hence
f ∪ (x 7→ z) /∈ Bx,e ∩ {f : |dom f | ≤ `+ k} iff f ∪ (x 7→ z) /∈ Bx,e. Analogously for
g ∪ (x 7→ z). Thus the set of z that satisfy (∗) is the set in the numerator in (18). Hence
(18) is equivalent to Z/(N − `fg)`x-fg ≤ c which in turn is equivalent to (38). Since we
assumed (18), (38) holds and Theorem 24 is applicable.

Furthermore, note that for our choices of X,Mx,e, Vx,e,z, the operator U defined in
Theorem 24 is equal to IE ⊗ Uquery,k . And A,B defined in Theorem 24 are the same as
A,B defined in the present theorem.

Thus Theorem 24 shows that

(IE ⊗ Uquery,k)ψ
ε+ 2

√
c√

1−3d

≈ B.

Since d = 1
4 , we have ε+ 2

√
c√

1−3d
= ε+ 4

√
c. The theorem follows. �

Theorem 14 (Non-oblivious random permutation query).

Proof of Theorem 14. Analogous to Theorem 13, except using Theorem 25 instead of
Theorem 24. �

5.5 Single query case

We now show the theorems for the single query case (i.e., the non-parallel case) for random
functions and permutations. These are straightforward corollaries of the corresponding
theorems for parallel queries with k = 1.

59

Theorem 3 (Random function query, simple).

Proof of Theorem 3. This theorem is obtained as a special case of Theorem 6 with k := 1
(and thus we write x instead of x). Then (after applying elementary simplifications) we
get the present theorem, except that the bound (12) becomes:

Assume that for all x, all e, and all compatible f, g ∈ Ax,e with
|dom f |, |dom g| ≤ `:∣∣∣{z ∈ R : (x 7→ z) ♥ f, g and fxz, gxz /∈ Bx,e}

∣∣∣
N
|{x}\dom f\dom g| ≤ c

where fxz := f ∪ (x 7→ z), gxz := g ∪ (x 7→ z).
We then distinguish two cases:

• If x ∈ dom f ∪ dom g: Then for z with (x 7→ z) ♥ f, g, we have f ∪ (x 7→ z) =
f ∈ Ax,e ⊆ Bx,e or g ∪ (x 7→ z) = g ∈ Ax,e ⊆ Bx,e. (Recall that Ax,e ⊆ Bx,e by
assumption of the present theorem.) But this contradicts the last condition in the
numerator. Hence the numerator is 0 and the inequality is trivially satisfied.

• If x /∈ dom f ∪ dom g: Then (x 7→ z) ♥ f, g holds trivially, and f ∪ (x 7→ z) =
f(x := z), g ∪ (x 7→ z) = g(x := z), so the numerator is equal to the numerator
in (6). And |{x} \ dom f \ dom g| = |{x}| = 1, so the denominator becomes N .
Thus in this case, the inequality is identical to (6).

Thus the present theorem is a special case of Theorem 6. �

Theorem 4 (Non-oblivious random function query, simple case).

Proof of Theorem 4. Analogous to Theorem 3, except using Theorem 7 instead of
Theorem 6. �

Theorem 11 (Random permutation query, simple).

Proof of Theorem 11. This theorem is obtained as a special case of Theorem 13
with k := 1 (and thus we write x instead of x). Then (after applying elementary
simplifications) we get the present theorem, except that the bound (18) becomes:

Assume that for all x, all e, and all compatible f, g ∈ Ax,e with f ∪g injective
and |dom f |, |dom g| ≤ `:∣∣∣{z ∈ R : (x 7→ z) ♥ f, g and fxz, gxz inj. and fxz, gxz /∈ Bx,e}

∣∣∣(
N −

∣∣dom f ∪ dom g
∣∣)
|{x}\dom f\dom g|

≤ c

60

0r

0c

m1

f

m2

f

m3

f

m4

f

h1

f

h2

f

h3

Absorbing phase

Squeezing phase

Figure 5: The sponge construction with a four block input m1‖m2‖m3‖m4 and a three
block output h1‖h2‖h3.

where fxz := f ∪ (x 7→ z), gxz := g ∪ (x 7→ z).
We then distinguish two cases:

• If x ∈ dom f ∪ dom g: Then for z with (x 7→ z) ♥ f, g, we have f ∪ (x 7→ z) =
f ∈ Ax,e ⊆ Bx,e or g ∪ (x 7→ z) = g ∈ Ax,e ⊆ Bx,e. (Recall that Ax,e ⊆ Bx,e by
assumption of the present theorem.) But this contradicts the last condition in the
numerator. Hence the numerator is 0 and the inequality is trivially satisfied.

• If x /∈ dom f ∪dom g: Then (x 7→ z) ♥ f, g holds trivially, and fxz, gxz are injective
iff z /∈ dom f ∪ dom g, and f ∪ (x 7→ z) = f(x := z), g ∪ (x 7→ z) = g(x := z),
so the numerator is equal to the numerator in (16). And |{x} \ dom f \ dom g| =
|{x}| = 1, so the denominator becomes N − |dom f ∪ dom g|. Thus in this case,
the inequality is identical to (16).

Thus the present theorem is a special case of Theorem 13. �

Theorem 12 (Non-oblivious random permutation query, simple case).

Proof of Theorem 12. Analogous to Theorem 11, except using Theorem 14 instead of
Theorem 13. �

6 Collision-resistance of sponges

We will now give a quick overview over the sponge construction and then prove its
collision-resistance (when based on invertible permutations).

6.1 The sponge construction

In this section, we review the sponge construction introduced by [Ber+07]. The sponge
construction is parametrized by three integers: r (the rate), c (the capacity), and d
(the output length). The sponge will hash messages m consisting of r-bit blocks and
return a d-bit hash. The state of the sponge consists of r + c bits. The sponge is
further parametrized by a round function f : {0, 1}r+c → {0, 1}r+c. Given a message
m consisting of (padded) message blocks m1,m2, . . . , the message is first absorbed into

61

the state as depicted in the absorbing phase in Figure 5. Then an output h1h2 . . . is
extracted as depicted in the squeezing phase. Finally, the hash consists of the first d bits
of h1h2 (We do not make the padding function explicit, it suffices for our purposes
that it is injective.)

More formally, for a round function f and an input m = m1 . . .mn with mi ∈
{0, 1}r, we define the state Sf (m) ∈ {0, 1}r+c of the sponge by: Sf (λ) := (0, 0) and

Sf (m1 . . .mn) := f
(
Sf (m1 . . .mn−1)⊕ (mn, 0)

)
. (We write (x, y) instead of x‖y for

r-bit/c-bit strings x, y for better readability.) Then the i-th output block hi consists of
the first r bits of Sf (m‖(0, 0)i−1), and the final hash Shash

f (m) consists of the first d bits

of h1h2 (In particular, if d ≤ r, as is the case for SHA3, then Shash
f (m) is the first d

bits of Sf (m).)
Depending on the scheme instantiating the sponge construction, f is an arbitrary func-

tion (e.g., in Gluon [Ber+12]) or a permutation (e.g., in SHA3 [NIS14], Quark [Aum+10],
Photon [GPP11], and Spongent [Bog+13]). In the post-quantum setting, the security of
the sponge has been analyzed in the case that f is a random function [Cza+18; Cza+20].
This automatically implies security when f is a non-invertible random permutation, i.e.,
if the adversary can query f but not f−1, since a non-invertible random permutation
is indistinguishable from a random function [Zha15a]. However, in the case that f is
an invertible permutation (e.g., in SHA3), no post-quantum security results about the
sponge construction were known prior to this work. (This is different from the classical
case, where the sponge construction is known to be indifferentiable from a random oracle,
and thus collision-resistant, pseudorandom, and more [Ber+08].)

In the following sections, we will show that the sponge construction is collision-resistant
for invertible random permutations.

6.2 Invariant for collision-resistance

We now proceed to develop the invariant used to describe the fact that the adversary has
not yet found a collision in the sponge. At this point, the analysis is purely combinatorial,
the post-quantum aspect comes in the next section.

A reader who is interested only in the post-quantum aspects can skip this section
and read only the last paragraph which summarizes everything that is needed for the
next section.

Throughout this section, we assume that d ≤ r, i.e., the output length is no larger
than the rate. (The case d > r is covered implicitly, see the comment after Theorem 28
in the next section.)

As in the previous section, Sf (m) is the state of the sponge on input m. If f is a
partial function, we let Sf (m) := ⊥ if any of the f -invocations of the definition of Sf (m)
was undefined.

We first translate the collision problem into a graph-theoretic problem: Given a partial
injective function f : {0, 1}r+c l↪→ {0, 1}r+c, we define the following directed sponge graph:
Its nodes are bitstrings (a, b) with a ∈ {0, 1}r, b ∈ {0, 1}c. We call (0, 0) the root . The
graph has three kinds of edges:

62

rb-path

ν

ro
ot

co-rooted node ν

ro
ot

claw

ro
ot ν ν′ ν′′

non-minimal claw

gadget 1

co
-r
oo
te
d

gadget 2

rbr-rooted

gadget 3

ro
ot

gadget 4

rb
r-
ro
ot
ed

gadget 5

ro
ot

gadget 6

Figure 6: Various subgraphs related to sponges. This figure requires color.

• Blue edges: For any a, b, if f(a, b) 6= ⊥, then there is a blue edge (a, b)→ f(a, b).
• Red edges: For any a, a′, b, there is a red edge (a, b)→ (a′, b).
• Gree edges: For any a, a′, b, b′, there is a green edge (a, b) → (a′, b′) if the first d

bits of a and a′ are equal.
An rb-path is a (possibly empty) path that starts with a red edge, alternates red and
blue edges, and ends with a blue edge (see Figure 6). An rbr-path is a path that starts
with a red edge, alternates red and blue edges, and ends with a red edge (i.e., an rb-path
with one additional red edge). A rooted rb/rbr-path is an rb/rbr-path starting at the
root. An rb/rbr-rooted node is a node at the end of a rooted rb/rbr-path. A co-rooted
node is a node ν such that there is an rb-path starting at ν whose end-node is connected
by a green edge to an rb-rooted node (see Figure 6). Note that in all those definitions
(and in the definition of a claw below), we do not assume that all edges are distinct. E.g.,
an rb-path can contain the same edge several times.

We make a two observations:
• For any message m with Sf (m) 6= ⊥, there is a corresponding rooted rb-path where

the i-th red edge is (a, b)→ (a⊕mi, b), and the blue edges are defined by f . No
two messages m have the same corresponding rooted rb-path.

• If m,m′ form a collision relative to f , i.e., if m 6= m′ and Shash
f (m) = Shash

f (m′) 6= ⊥,
then the corresponding rooted rb-paths are different, and the end-nodes of the
corresponding rooted rb-paths are connected by a green edge (the green edge means
that the first d bits of the state are equal, thus Shash

f (m) = Shash
f (m′)).

Thus, if m,m′ form a collision relative to f , then the graph has a claw , which we

63

define as: Two different rooted rb-paths whose end points are connected by a green
edge. (Two examples of claws are shown in Figure 6.)
We also say“f has a claw/has no claw”to mean that the sponge graph corresponding
to f has a claw/has no claw.

• A minimal claw is a claw so that no proper subset of the vertices forms a claw as
well. In a minimal claw, the two rooted rb-paths do not have the same last blue
edge. (Compare with the “non-miminal claw” in Figure 6.) We see this as follows:
If in a claw C, the two paths have the same last blue edge ν ′ → ν ′′, then the last
red edge ν → ν ′ would be also the same (since f is injective). Then the there would
be two different rooted rb-paths to ν, and there is a green edge ν → ν (by definition
of green edges). Thus we have a smaller claw, namely C with ν, ν ′, ν ′′ removed.
Hence C is not minimal.

In our proof of collision-resistance, we will therefore show that the adversary cannot
produce a claw.

Fix a partial injective f with |dom f | ≤ ` such that the sponge graph G for f has
no claw. Fix some node x /∈ dom f , and consider a node z /∈ im f such that the sponge
graph G′ for f(x := z) will have a claw. How can I choose z? Let me count the ways. G′

has one additional blue edge x → z. If G′ has a claw (but G does not), then it has a
minimal-claw containing x→ z. Then z must be a co-rooted node in G′. Thus one of
the following cases occurs:

• There is an edge z → x. (See gadget 1 in Figure 6, the new edge x→ z is dashed.)
Since there are only 2r red edges going to x, there are at most 2r possibilities for z.

• There is a path z → ν ′ → ν ′′ where ν ′′ is co-rooted, and the edges are red and
blue, and ν ′ 6= x. (See gadget 2 in Figure 6.) Here we can assume ν ′ 6= x because
otherwise we would be in the previous case. Thus ν ′ → ν ′′ is an edge in G. Since
there are only ` blue edges in G, there are at most ` possibilities for ν ′. And
since there are only 2r red edges going to any given node ν ′, there are at most 2r`
possibilities for z.

• There is a path z → ν ′ ← ν ′′ where ν ′′ is rbr-rooted and the edges are green
and blue. (See gadget 3 in Figure 6.) Since we assumed that x → z is part of a
minimal claw, we have that the blue edge is not x→ z. (See the discussion after
the definition of minimal claws.) Thus that edge is part of G. Since there are
only ` blue edges in G, there are at most ` possibilities for ν ′. And since there
are only 2r+c−d green edges going to any given node ν ′, there are at most 2r+c−d`
possibilities for z.

• There is a green edge from z to the root. (See gadget 4 in Figure 6.) Since there
are only 2r+c−d green edges going to the root, there are at most 2r+c−d possibilities
for z.

Thus for every f : {0, 1}r+c l↪→ {0, 1}r+c with |dom f | ≤ ` that has no claw, and every
x /∈ dom f , ∣∣∣{z /∈ im f : f(x := z) has a claw}

∣∣∣ ≤ 2r+c−d(`+ 1) + 2r(`+ 1). (39)

This tells us how hard it is to get a claw using an f -query. Next we analyze the how hard

64

it is to get a claw using an f−1-query.
Fix a partial injective f with |dom f | ≤ ` such that the sponge graph G for f has

no claw. Fix some node x /∈ im f . We will bound the number of z /∈ dom f such that
the sponge graph G′ for f(z := x) has a claw. G′ has one additional blue edge z → x. If
G′ has a claw (but G does not), then z must be an rbr-rooted node in G. (If there are
several occurrences of z → x in the claw, we consider one closest to the root.) Thus one
of the following cases occurs:

• There is a path ν ′′ → ν ′ → z in G where ν ′′ is rbr-rooted, and the edges are blue
and red. (See gadget 5 in Figure 6.) Since there are only ` blue edges in G, there
are at most ` possibilities for ν ′. And since there are only 2r red edges leaving any
given node ν ′, there are at most 2r` possibilities for z.

• There is a red edge from the root to z. (See gadget 6 in Figure 6.) Since there are
only 2r red edges leaving the root, there are at most 2r possibilities for z.

Thus for every f : {0, 1}r+c l↪→ {0, 1}r+c with |dom f | ≤ ` that has no claw, and every
x /∈ im f , ∣∣∣{z /∈ dom f : f(z := x) has a claw}

∣∣∣ ≤ 2r(`+ 1).

We say f has a co-claw iff f−1 has a claw. Then the preceding bound immediately implies
(by substituting f by f−1): For every injective f : {0, 1}r+c l↪→ {0, 1}r+c with |dom f | ≤ `
that has no co-claw, and every x /∈ dom f ,∣∣∣{z /∈ im f : f(x := z) has a co-claw}

∣∣∣ ≤ 2r(`+ 1). (40)

(Not having a co-claw is the invariant whose preservation we show when the oracle is
inverted using Invert.)

For the remainder of the analysis (next section), we only need to remember: If m,m′

form a collision relative to f (i.e., their sponge-hashes are equal), then f has a claw. And
f has a co-claw iff f−1 has a claw. And bounds (39) and (40). The definition of claw,
and the graph-theoretic notions above were only needed for the derivation of these facts.

6.3 Proof of collision-resistance

We are now ready to show the collision-resistance of the sponge construction:

Theorem 28 (Collision-resistance of sponges) Let c, r, d be the parameters of the sponge
construction. Assume d ≤ r. Let f : {0, 1}r+c ↪→ {0, 1}r+c be uniformly random. Let A be
a quantum algorithm. Assume each of the messages returned by A contains ≤ b blocks of r
bits (not necessarily both of the same length, and the empty message is allowed). Assume
that A makes q+ queries to f and q− queries to f−1. (And let qtot := q+ + q− + 2b.)
Assume qtot ≤ 2r+c − 15.

65

Then

p := Pr
[
m 6= m′ ∧ Shash

f (m) = Shash
f (m′) : (m,m′)← Af,f

−1
()
]

≤ 16qtot

1− qtot2−r−c+1

(
(q+ + 2b)

√
2−d + 2−c + q−

√
2−c
)2

(∗)
≤ 34q3

tot

2min{c,d} .

where (∗) only holds under the additional condition qtot ≤ 2r+c/34.

In other words, to find a collision, we need Ω
(
min{2d/3, 2c/3}

)
queries.

Note that if d ≤ r (as is the case, e.g., with SHA3), this bound is essentially tight: If
d ≤ c, we can find a collision by running the BBHT algorithm [Boy+98] on Shash

f . This

takes Ω(2d/3) queries. And if c ≤ d, we can find an inner collision (i.e., m 6= m′ such that
the last c bits of Sf (m),Sf (m′) are equal) using BBHT in Ω(2c/3) queries. And from
an inner collision, we can trivially construct a collision by extending m,m′ by one block
each.

If d > r, the theorem as stated does not apply. However, since a collision with
output length d implies a collision with output length r, the theorem bounds the success

probability in the d > r case by
34q3tot

2min{c,r} . However, this bound may not be tight.

We now proceed to proving Theorem 28.

Preparations. As in the various examples in this paper, we first transform the game
from Theorem 28 into a suitable form:

We replace A by a unitary adversary, represented by a unitary UA acting on a state
register E, and on query registers X,Y (consisting of r + c qubits each). We replace
oracle access to f and f−1 by access to the invertible standard oracle (Definition 16).
That is, queries to f are replaced by applying Uquery on X,Y,H. And queries to f−1 are
replaced by Uinverse := (IX ⊗ IY ⊗ Invert) ·Uquery · (IX ⊗ IY ⊗ Invert). The last invocation
of the adversary uses a different unitary ÛA instead that stores the adversary’s output
m,m′ in registers M,M ′. (I.e., M,M ′ both have an orthonormal basis |m〉 where m
ranges over messages of ≤ b blocks.) The result is depicted in Figure 7 in the first half
(“adversary invocation”) of the circuit.

Next, we apply C2sponge to M,M ′,H. C2sponge is a quantum circuit that computes
the sponge hashes of M,M ′. That is,

C2sponge |m〉M |m′〉M ′ |h〉H = |m〉M |m′〉M ′ |Shash
h (m)〉S |Shash

h (m′)〉S |z〉 (41)

for some z (that may depend on m,m′, h). We do not specify a concrete circuit, but it is
easy to see that C2sponge can be implemented using at most 2b queries to Uquery (since
both m,m′ are at most b blocks long). Furthermore, C2sponge can be implemented as a
classicalish circuit (as defined in Section 4.6; basically this means that the circuit only
uses CNOT, Toffoli, X and swap gates and fresh auxiliary qubits).

66

|0〉

|0〉

|0〉

|∅〉p

E

X

Y

H

ψ0

UA

ψ′0

Uquery

or

Uinverse

ψ1

UA

ψ′1

Uquery

or

Uinverse

ψ2

...

ψ′
q++q−−1

Uquery

or

Uinverse

E

X

Y

ψq++q−

ÛA

ψ′
q++q−

E′

M

M′

H

C2sponge

ψfinal

M
M′

S
S′

Z
H

6_
m

m′
s

s′

adversary invocation

Figure 7: Circuit used in the collision-resistance proof for the sponge construction.

Finally, we measure registers M,M ′, S, S′ in the computational basis, giving m,m′, s, s′.
Then m,m′ are the outputs of the adversary, and s, s′ are the sponge hashes of m,m′.
Thus the adversary’s success probability p is:

p = Pr[m 6= m′ ∧ s = s′]. (42)

Maintaining the invariant. Let

Ij := HE ⊗HX ⊗HY ⊗ span
{
|f〉p : f has no claw, |dom f | ≤ j

}
f
.

Then by definition, ψ0 satisfies ψ0 ∈ I0, i.e., ψ0
0
≈ I0. (See Figure 7 for the definition of

ψj , ψ
′
j , etc.) And since UA does not operate on H, we have:

ψj
ε
≈ Ij =⇒ ψ′j

ε
≈ Ij for j = 0, . . . , q+ + q− − 1.

For the j-th query (i.e., the invariant preservation between ψ′j−1 and ψj , with j =
1, . . . , q+ + q−), we distinguish two cases:

• If the j-query is Uquery , then we have

ψ′j−1

ε
≈ Ij−1 =⇒ ψj = (IE ⊗ Uquery)ψ′j−1

ε+δ+≈ Ij

for δ+ := 4

√
2r+c−dqtot + 2rqtot

2r+c − 2qtot
.

This follows by Theorem 11 (with ` := j − 1, Ax,e, Bx,e := {f : f has no claw},
c := 2r+c−dj+2rj

2r+c−2(j−1)
) In this theorem, condition (16) becomes∣∣∣{z : z /∈ im f, z /∈ im g, f(x := z), g(x := z) have a claw

}∣∣∣
2r+c −

∣∣dom f ∪ dom g
∣∣ ≤ 2r+c−dj + 2rj

2r+c − 2(j − 1)

for injective f, g with |dom f |, |dom g| ≤ j − 1 and x /∈ dom f,dom g. This follows
directly from (39) and |dom f |, |dom g| ≤ j − 1. And we have 4

√
c ≤ δ+.

67

• If the j-th query is Uinverse , by Lemma 17 (ii) we have

ψ′j−1

ε
≈ Ij−1 =⇒ (IEXY ⊗ Invert)ψ′j−1

ε
≈ I−j−1

where

I−j := HE ⊗HX ⊗HY ⊗ span{|f〉p : f has no co-claw, |dom f | ≤ j}f .

And furthermore:

(IEXY ⊗ Invert)ψ′j−1

ε
≈ I−j−1 =⇒ (IE ⊗ Uquery)(IEXY ⊗ Invert)ψ′j−1

ε+δ−≈ I−j

for δ− := 4

√
2rqtot

2r+c − 2qtot
.

This follows by Theorem 11 (with ` := j−1, Ax,e, Bx,e := {f : f−1 has no co-claw},
c := 2rj

2r+c−2(j−1)
). In this theorem, condition (16) becomes∣∣∣{z : z /∈ im f, im g, f(x := z), g(x := z) have a co-claw

}∣∣∣
2r+c −

∣∣dom f ∪ dom g
∣∣ ≤ 2rj

2r+c − 2(j − 1)

for injective f, g with |dom f |, |dom g| ≤ j − 1 and x /∈ dom f,dom g. This follows
directly from (40) and |dom f |, |dom g| ≤ j − 1. And we have 4

√
c ≤ δ−.

And furthermore, by Lemma 17 (ii) again, we have

(IE ⊗ Uquery)(IEXY ⊗ Invert)ψ′j−1

ε
≈ I−j =⇒ ψj = (IE ⊗ Uinverse)ψ′j−1

ε
≈ Ij

So altogether:

ψ′j−1

ε
≈ Ij−1 =⇒ ψj

ε+δ−≈ Ij for j = 1, . . . , q+ + q−.

Combining the implications we got so far, we get:

ψq++q−

q+δ++q−δ−≈ Iq++q− .

Since ÛA does not operate on H, this implies

ψ′q++q−

q+δ++q−δ−≈ I ′q++q−

:= HE′ ⊗HM ⊗HM ′ ⊗ span{|f〉p : f has no claw, |dom f | ≤ q+ + q−}f
= HE′ ⊗ span{|m〉M |m′〉M ′ |f〉p : f has no claw, |dom f | ≤ q+ + q−}mm′f (43)

Finally, we apply Corollary 20 for the application of C2sponge in the end. By Corollary 20

(with C := IE′ ⊗ C2sponge , q := 2b, ` := q+ + q−, c := 2r+c−dqtot +2rqtot

2r+c−2(qtot−1)
, A := {f :

f has no claw}, D := MM ′, R := MM ′SS′Z), (43) implies

ψfinal = (IE′ ⊗ C2sponge)ψ′q++q−

(q++2b)δ++q−δ−≈ HE′ ⊗ span
{
|Bf (m,m′)〉MM ′SS′Z |f〉p :

Bf (m,m′) 6= ⊥, f has no claw, |dom f | ≤ qtot

}
mm′f

=: Ifinal

68

where Bf is the function computed by C2sponge (cf. Section 4.6). For the application
of Corollary 20, we need to show that (27) holds, i.e., for f, g with no claws and
dom f, dom g ≤ qtot − 1,∣∣∣{z : z /∈ im f, z /∈ im g, f(x := z), g(x := z) have a claw

}∣∣∣
2r+c − 2(qtot − 1)

≤ 2r+c−dqtot + 2rqtot

2r+c − 2(qtot − 1)

This follows directly from (39) and |dom f |, |dom g| ≤ qtot − 1. And we have 4
√
c ≤ δ+.

Concluding. The last step of the circuit in Figure 7 is a measurement of M,M ′, S, S′ in
the computational basis. Consider a state φ ∈ Ifinal (not just close to this subspace). Then,
when measuring registers M,M ′, S, S′, we get m,m′, s, s′ such that there exists an f, m̂, m̂′

so that f has no claw, and mm′ss′ are the first four components of Bf (m̂, m̂′) 6= ⊥.
Since Bh is the function computed by C2sponge , by definition of C2sponge (see (41)),
we have that Bh(m̂m̂′) = (m̂, m̂′,Shash

h (m),Shash
h (m′), z). Thus s = Shash

f (m) 6= ⊥,

s′ = Shash
f (m′) 6= ⊥. Since f has no claw, m,m′ do not form a collision relative to f (see

the last paragraph of Section 6.2), i.e., ¬
(
m 6= m′ ∧ s = s′

)
.

Summarizing, when measuring M,M ′, S, S′ on a state φ ∈ Ifinal , we get
m 6= m′ ∧ s = s′ with probability 0.

Since ψfinal

(q++2b)δ++q−δ−≈ Ifinal , measuring M,M ′, S, S′ in the circuit gives m 6=
m′ ∧ s = s′ with probability ≤

(
(q+ + 2b)δ+ + q−δ−

)2
. By (42), this probability is p.

Thus

p ≤
(
(q+ + 2b)δ+ + q−δ−

)2
=

16qtot

1− qtot2−r−c+1

(
(q+ + 2b)

√
2−d + 2−c + q−

√
2−c
)2

(∗)
≤ 34q3

tot

2min{c,d} .

where (∗) only holds when qtot ≤ 2r+c/34. This shows Theorem 28.

7 Conclusion & open questions

We extended Zhandry’s compressed oracle technique to invertible permutations. This
gives us the first proof technique for quantum hardness results for invertible random
permutations. We have analyzed the collision-resistance of the sponge construction using
this technique. (And as a consequence, we have the first post-quantum security proof
for SHA3.) However, the technique has still some limitations: it is not clear how to
efficiently simulate a random permutation, nor how to measure what oracle positions
have been queried or how to otherwise perform actions that depend on the oracle queries
performed so far. In particular, we do not know how to make indifferentiability proofs
(or similar proofs involving simulators that “look inside” the random oracle). Overcoming
these hurdles is an interesting open problem.

Our technique also allows us to reason about ideal ciphers (since an ideal cipher can
be seen as a family of independent invertible random permutations). Interesting future

69

work would be to make this explicit, e.g., by applying the technique to the analysis of
schemes involving block ciphers in the ideal cipher model.

Concerning the sponge construction, open questions are properties such as the
collapsing property, pseudorandomness, (second-)preimage resistance (this follows from
collision-resistance, but maybe a direct proof gives better parameters), the fact that the
sponge construction is a secure MAC, and of course the indifferentiability of the sponge
construction. (All in the setting with an invertible round function.)

Acknowledgments. We thank Aleksander Belov for valuable discussions on the two-sided
zero search problem. This work was supported by the ERC consolidator grant CerQuS, by
the Estonian Research Council grant PRG946, and by the Estonian Centre of Exellence
in IT (EXCITE) funded by ERDF.

List of Theorems

1 Definition (Compressed function oracle states) 15
2 Lemma (Hardness of zero search) . 17
3 Theorem (Random function query, simple) 19
4 Theorem (Non-oblivious random function query, simple case) 20
5 Lemma (Collision finding) . 21
6 Theorem (Random function query) . 25
7 Theorem (Non-oblivious random function query) 26
8 Lemma (Hardness of zero search (parallel queries)) 26
9 Definition (Compressed permutation oracle states) 27
10 Lemma (Hardness of zero search in permutations) 28
11 Theorem (Random permutation query, simple) 29
12 Theorem (Non-oblivious random permutation query, simple case) 30
13 Theorem (Random permutation query) . 31
14 Theorem (Non-oblivious random permutation query) 31
15 Lemma (Hardness of zero search (permutations, parallel queries)) 32
16 Definition (Invertible standard oracle) . 33
17 Lemma (Inversion queries) . 33
18 Lemma (Hardness of two-sided zero search) 34
19 Lemma (Hardness of two-sided zero search) 38
20 Corollary (Queries in classicalish circuits) 40
21 Lemma (Compressed functions) . 43
22 Lemma (Compressed permutations) . 43
23 Definition (Generalized compressed oracle) 46
24 Theorem (Oracle query) . 47
25 Theorem (Non-oblivious oracle query) . 48
26 Lemma (Oracle query (fixed input)) . 49
27 Lemma (Non-oblivious oracle query (fixed input)) 54
28 Theorem (Collision-resistance of sponges) 65

70

Symbol index

ε
≈ ε-close with respect to ‖·‖ 7, 7

Shash
f (m) State of sponge on input m

∅ Empty set / empty partial function 6

λ Empty word 6

Pr Projector onto functions compatible with r 8

<(c) Real part of complex number c 6

(n)m Falling factorial, n!/(n−m)! 6

Valid Set of valid compressed functions in oracle 46

C Complex numbers

D A distribution

H A Hilbert space

f ♥ g f and g are compatible partial functions 6

x 7→ y Partial function mapping x to y 6

Sf (m) State of sponge on input m 62

∪ Union of sets / functions 6

f(x := y) Function f , updated at x to output y 6

Func Set of valid uncompressed functions in oracle 46

⊕ “Group operation” used to implement quantum queries 7

U⊥ Part of Decomp1, swaps |⊥〉 and |0〉 10

Q Part of Decomp1, quantum Fourier transform (or not) 10

{f(x) : P (x)}x Set comprehension: set of f(x) for x satisfying P (x) 6

‖ψ‖ Norm of ψ 7

|x| Absolute value/cardinality 6

|x〉 Computational basis state 7

~A~ Operator norm of A 7

|f〉f Compressed function state for partial function f 15

〈x| Adjoint of computational basis state 7

|f〉g Compressed state for partial function f (generic case) 46

|f〉p Compressed injection state for partial function f 27

CStO Zhandry’s compressed oracle 10

Decomp Decompression operation in Zhandry’s compressed
oracle, all registers

10

spanX Span of vectors X 7

〈ψ, φ〉 Inner product between vectors ψ and φ 7

Uquery Unitary: Querying the oracle (not parallel), same as
Uquery,1

7

71

Uquery,k Unitary: Querying the oracle (k-parallel) 7, 9

dom f Domain of (partial) function f 6

im f Image of (partial) function f 6

D l→ R Partial functions from D to R 6

D l↪→ R Partial injective functions from D to R 6

D ↪→ R Injective functions from D to R 6

D → R Functions from D to R 6

D Domain of the random oracle 7

0 “Neutral element” used to implement quantum queries 7

Decomp1 Decompression operation in Zhandry’s compressed
oracle, one register

10

Invert Inverts the random permutation oracle 33

R̃ Range of the output register for oracle queries

M Size of the random oracle domain (M := |D|) 7

N Size of the random oracle range (N := |R|) 7

R Range of the random oracle 7

Keyword Index

absorbing phase, 62

blue edge, 63

capacity
of sponge, 61

classicalish, 40
claw, 63

minimal, 64
closed span, 7
co-rooted node, 63
collision

relative to f , 63
collision finding, 21
compressed function oracle states, 15
compressed oracle

generalized, 46
non-orthogonal view, see compressed

function oracle states
Zhandry’s, 8

compressed permutation oracle states, 27

database, 11

decompression operation, 10

edge
blue, 63
green, 63
red, 63

empty partial function, 6

factorial
falling, 6

falling factorial, 6
function computed by, 40
function oracle states

compressed, 15

generalized compressed oracle, 46
graph

sponge, 62
green edge, 63

invariant, 16
inversion query, 33
invertible standard oracle, 33

72

minimal claw, 64

node
co-rooted, 63
rb/rbr-rooted, 63

non-oblivious query, 20

oracle states
compressed function, 15
compressed permutation, 27

output length
of sponge, 61

parallel queries, 24
partial function, 6

empty, 6
partial injection, 6
permutation oracle states

compressed, 27
projector, 7

rate
of sponge, 61

rb-path, 63
rb/rbr-path

rooted, 63
rb/rbr-rooted node, 63
rbr-path, 63
red edge, 63
regular query, 33
root (of sponge graph), 62

rooted rb/rbr-path, 63

round function, 61

search

two-sided zero, 34

two-sided zero, with parallel queries, 38

zero, 17

zero, in permutations, 28

zero, with parallel queries, 26, 32

span

(closed), 7

sponge, 61

sponge graph, 62

squeezing phase, 62

standard oracle, 9

invertible, 33

permutation, 28

total function, 6

total injection, 6

two-sided zero search, 34

with parallel queries, 38

valid functions, 46

zero search, 17

in permutations, 28

two-sided, 34

two-sided, with parallel queries, 38

with parallel queries, 26, 32

References

[AHU19] A. Ambainis, M. Hamburg, and D. Unruh. “Quantum Security Proofs Using
Semi-classical Oracles”. In: Crypto 2019. Springer, 2019, pp. 269–295.

[Amb02] A. Ambainis. “Quantum Lower Bounds by Quantum Arguments”. In: J.
Comput. Syst. Sci. 64.4 (June 2002), pp. 750–767. issn: 0022-0000. doi:
10.1006/jcss.2002.1826.

[ARU14] A. Ambainis, A. Rosmanis, and D. Unruh. “Quantum Attacks on Classical
Proof Systems: The Hardness of Quantum Rewinding”. In: 55th FOCS.
Philadelphia, PA, USA: IEEE Computer Society Press, 2014, pp. 474–483.
doi: 10.1109/FOCS.2014.57.

73

https://doi.org/10.1006/jcss.2002.1826
https://doi.org/10.1109/FOCS.2014.57

[Aum+10] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia. “Quark:
A Lightweight Hash”. In: CHES 2010. Vol. 6225. LNCS. Springer, 2010,
pp. 1–15. isbn: 978-3-642-15030-2. doi: 10.1007/978-3-642-15031-9_1.

[Bea+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. “Quantum
Lower Bounds by Polynomials”. In: J. ACM 48.4 (July 2001), pp. 778–797.
issn: 0004-5411. doi: 10.1145/502090.502097.

[Ber+07] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. Sponge functions.
Ecrypt Hash Workshop, http://sponge.noekeon.org/SpongeFunctions.
pdf. May 2007.

[Ber+08] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. “On the Indifferen-
tiability of the Sponge Construction”. In: Eurocrypt 2008. Vol. 4965. LNCS.
Berlin, Heidelberg: Springer, 2008, pp. 181–197. isbn: 978-3-540-78966-6
978-3-540-78967-3. doi: 10.1007/978-3-540-78967-3_11.

[Ber+12] T. P. Berger, J. D’Hayer, K. Marquet, M. Minier, and G. Thomas. “The
GLUON Family: A Lightweight Hash Function Family Based on FCSRs”. In:
Africacrypt 2012. Ed. by A. Mitrokotsa and S. Vaudenay. Berlin, Heidelberg:
Springer, 2012, pp. 306–323. isbn: 978-3-642-31410-0. doi: 10.1007/978-3-
642-31410-0_19.

[BES18] M. Balogh, E. Eaton, and F. Song. “Quantum Collision-Finding in Non-
uniform Random Functions”. In: Post-Quantum Cryptography - 9th Inter-
national Conference, PQCrypto 2018. Ed. by T. Lange and R. Steinwandt.
Springer, Heidelberg, Germany, 2018, pp. 467–486. doi: 10.1007/978-3-
319-79063-3_22.

[Bog+13] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Ver-
bauwhede. “SPONGENT: The Design Space of Lightweight Cryptographic
Hashing”. In: IEEE Transactions on Computers 62.10 (2013), pp. 2041–2053.
issn: 0018-9340. doi: 10.1109/TC.2012.196.

[Bon+11] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M.
Zhandry. “Random Oracles in a Quantum World”. In: ASIACRYPT 2011.
Ed. by D. H. Lee and X. Wang. Vol. 7073. LNCS. Seoul, South Korea:
Springer, Heidelberg, Germany, 2011, pp. 41–69. doi: 10.1007/978-3-642-
25385-0_3.

[Boy+98] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. “Tight Bounds on Quantum
Searching”. In: Fortschritte der Physik 46.4-5 (1998). Eprint is arXiv:quant-
ph/9605034, pp. 493–505. issn: 1521-3978. doi: 10.1002/(SICI)1521-

3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P.

[BR93] M. Bellare and P. Rogaway. “Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols”. In: CCS ’93. ACM, 1993, pp. 62–73.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. “The Random Oracle Methodology,
Revisited”. In: STOC 1998. ACM, 1998, pp. 209–218.

74

https://doi.org/10.1007/978-3-642-15031-9_1
https://doi.org/10.1145/502090.502097
http://sponge.noekeon.org/SpongeFunctions.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-642-31410-0_19
https://doi.org/10.1007/978-3-642-31410-0_19
https://doi.org/10.1007/978-3-319-79063-3_22
https://doi.org/10.1007/978-3-319-79063-3_22
https://doi.org/10.1109/TC.2012.196
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
http://arxiv.org/abs/quant-ph/9605034
http://arxiv.org/abs/quant-ph/9605034
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P

[CHS19] J. Czajkowski, A. Hülsing, and C. Schaffner. “Quantum Indistinguishability
of Random Sponges”. In: Advances in Cryptology – CRYPTO 2019. Ed. by
A. Boldyreva and D. Micciancio. Cham: Springer International Publishing,
2019, pp. 296–325. isbn: 978-3-030-26951-7.

[Chu+20] K.-M. Chung, S. Fehr, Y. Huang, and T. Liao. On the Compressed-
Oracle Technique, and Post-Quantum Security of Proofs of Sequential Work.
arXiv:2010.11658 [quant-ph]. 2020.

[Cza+18] J. Czajkowski, L. Groot Bruinderink, A. Hülsing, C. Schaffner, and D.
Unruh. “Post-quantum security of the sponge construction”. In: PQCrypto
2018. Vol. 10786. LNCS. Springer, 2018, pp. 185–204.

[Cza+20] J. Czajkowski, C. Majenz, C. Schaffner, and S. Zur. Quantum Lazy Sampling
and Game-Playing Proofs for Quantum Indifferentiability. arXiv:1904.11477
[quant-ph]. 2020.

[EU18] E. E. Ebrahimi and D. Unruh.“Quantum collision-resistance of non-uniformly
distributed functions: upper and lower bounds”. In: Quantum Information &
Computation 18.15&16 (2018), pp. 1332–1349. doi: 10.26421/QIC18.15-16.

[GPP11] J. Guo, T. Peyrin, and A. Poschmann. “The PHOTON Family of Lightweight
Hash Functions”. In: Crypto 2011. Springer, 2011, pp. 222–239. isbn: 978-3-
642-22792-9. doi: 10.1007/978-3-642-22792-9_13.

[Gro96] L. K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”.
In: STOC 1006. 1996, pp. 212–219. doi: 10.1145/237814.237866.

[HRS16] A. Hülsing, J. Rijneveld, and F. Song. “Mitigating Multi-target Attacks in
Hash-Based Signatures”. In: PKC 2016 , Part I. Ed. by C.-M. Cheng, K.-M.
Chung, G. Persiano, and B.-Y. Yang. Vol. 9614. LNCS. Taipei, Taiwan:
Springer, Heidelberg, Germany, 2016, pp. 387–416. doi: 10.1007/978-3-
662-49384-7_15.

[NIS14] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. Draft FIPS 202. Available at http : / / csrc . nist . gov /

publications/drafts/fips-202/fips_202_draft.pdf. 2014.

[TTU16] E. E. Targhi, G. N. Tabia, and D. Unruh. “Quantum Collision-Resistance
of Non-uniformly Distributed Functions”. In: Post-Quantum Cryptography -
7th International Workshop, PQCrypto 2016. Ed. by T. Takagi. Springer,
Heidelberg, Germany, 2016, pp. 79–85. doi: 10.1007/978-3-319-29360-
8_6.

[Unr15] D. Unruh. “Non-Interactive Zero-Knowledge Proofs in the Quantum Random
Oracle Model”. In: EUROCRYPT 2015, Part II. Ed. by E. Oswald and M.
Fischlin. Vol. 9057. LNCS. Sofia, Bulgaria: Springer, Heidelberg, Germany,
2015, pp. 755–784. doi: 10.1007/978-3-662-46803-6_25.

75

https://arxiv.org/abs/2010.11658
https://arxiv.org/abs/1904.11477
https://doi.org/10.26421/QIC18.15-16
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
https://doi.org/10.1007/978-3-319-29360-8_6
https://doi.org/10.1007/978-3-319-29360-8_6
https://doi.org/10.1007/978-3-662-46803-6_25

[Unr16] D. Unruh. “Computationally Binding Quantum Commitments”. In: EURO-
CRYPT 2016, Part II. Ed. by M. Fischlin and J.-S. Coron. Vol. 9666. LNCS.
Vienna, Austria: Springer, Heidelberg, Germany, 2016, pp. 497–527. doi:
10.1007/978-3-662-49896-5_18.

[Zha12a] M. Zhandry. “How to Construct Quantum Random Functions”. In: 53rd
FOCS. New Brunswick, NJ, USA: IEEE Computer Society Press, 2012,
pp. 679–687. doi: 10.1109/FOCS.2012.37.

[Zha12b] M. Zhandry. “How to Construct Quantum Random Functions”. In: FOCS
2013. IEEE, 2012, pp. 679–687. doi: 10.1109/FOCS.2012.37.

[Zha12c] M. Zhandry. “Secure Identity-Based Encryption in the Quantum Random
Oracle Model”. In: CRYPTO 2012. Ed. by R. Safavi-Naini and R. Canetti.
Vol. 7417. LNCS. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
2012, pp. 758–775. doi: 10.1007/978-3-642-32009-5_44.

[Zha12d] M. Zhandry. “Secure Identity-Based Encryption in the Quantum Random
Oracle Model”. In: Crypto 2012. Vol. 7417. LNCS. Springer, 2012, pp. 758–
775. isbn: 978-3-642-32008-8. doi: 10.1007/978-3-642-32009-5_44.

[Zha15a] M. Zhandry. “A note on the quantum collision and set equality problems”. In:
Quantum Inf. Comput. 15.7&8 (2015), pp. 557–567. doi: 10.26421/QIC15.7-
8.

[Zha15b] M. Zhandry. “A Note on the Quantum Collision and Set Equality Problems”.
In: Quantum Information and Computation 15.7&8 (2015).

[Zha16] M. Zhandry. A Note on Quantum-Secure PRPs. Cryptology ePrint Archive,
Report 2016/1076. http://eprint.iacr.org/2016/1076. 2016.

[Zha19] M. Zhandry. “How to Record Quantum Queries, and Applications to Quan-
tum Indifferentiability”. In: Crypto 2019. Vol. 11693. LNCS. Springer, 2019,
pp. 239–268. doi: 10.1007/978-3-030-26951-7_9.

76

https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.26421/QIC15.7-8
https://doi.org/10.26421/QIC15.7-8
http://eprint.iacr.org/2016/1076
https://doi.org/10.1007/978-3-030-26951-7_9

	Introduction
	Preliminaries
	Compressed oracles
	Zhandry's compressed oracles
	The non-orthogonal view
	Example: Zero search
	Example: Collision finding
	Parallel queries

	Compressed permutations
	Adapting our approach
	Example: Zero search
	Parallel queries
	Inverse queries
	Example: Two-sided zero search
	Classical computations

	Query theorems
	Simple properties
	Generalized case
	Random functions
	Random permutations
	Single query case

	Collision-resistance of sponges
	The sponge construction
	Invariant for collision-resistance
	Proof of collision-resistance

	Conclusion & open questions
	Indices
	Symbol index
	Keyword Index
	References

