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Abstract. Deep learning represents a powerful set of techniques for profiling side-
channel analysis. The results in the last few years show that neural network archi-
tectures like multilayer perceptron and convolutional neural networks give strong
attack performance where it is possible to break targets protected with various coun-
termeasures. Considering that deep learning techniques commonly have a plethora
of hyperparameters to tune, it is clear that such top attack results can come with a
high price in preparing the attack. This is especially problematic as the side-channel
community commonly uses random search or grid search techniques to look for the
best hyperparameters.
In this paper, we propose to use reinforcement learning to tune the convolutional
neural network hyperparameters. In our framework, we investigate the Q-Learning
paradigm and develop two reward functions that use side-channel metrics. We mount
an investigation on three commonly used datasets and two leakage models where
the results show that reinforcement learning can find convolutional neural networks
exhibiting top performance while having small numbers of trainable parameters.
We note that our approach is automated and can be easily adapted to different
datasets. Finally, several of our newly developed architectures outperform the current
state-of-the-art results.
Keywords: Side-channel Analysis · Deep learning · Reinforcement learning · Reward
· Q-policy · Hyperparameter tuning · Convolutional Neural Networks

1 Introduction
Deep learning-based side-channel analysis (SCA) represents a powerful option for profiling
SCA. Indeed, the results in just a few years showed the potential of such an approach, see,
e.g., [MPP16, KPH+19, ZBHV19]. This potential is so significant that most of the SCA
community actually turned away from simpler machine learning techniques, representing
the go-to approach only a few years ago. 1 Intuitively, we can find two main reasons for
such popularity of deep learning-based SCA: 1) strong performance: breaking targets
protected even with countermeasures, 2) no need for pre-processing: beyond selecting some
window of features, it seems the researchers are not interested anymore in finding the most
informative features. Simultaneously, there are also some issues in using deep learning: 1)
deep learning models are commonly much more complex than the models obtained with
simpler machine learning techniques. As such, a goal like explainable machine learning is
more difficult to reach. 2) deep learning architectures are complex, meaning there are many
hyperparameters one needs to select to find the best-performing one. In this work, we

1In the last few years, there appears to be only a handful of works investigating profiling SCA and not
using (exclusively) deep learning.
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concentrate on the second issue, and more precisely, on how to improve the hyperparameter
tuning.

Hyperparameter tuning is an important aspect and by no means unique to the SCA
domain. Indeed, without finding strong deep learning models, we cannot expect to reach
top attack performance. What is more, if we do not utilize the full power of deep learning,
why would we even use such complex techniques? Fortunately, over the years, researchers
devised a number of techniques to search for hyperparameters.

Hyperparameter tuning is also a difficult problem. While with simpler machine learning
techniques, one could do a handful of experiments and already obtain a good intuition
of the performance and the hyperparameter sensitivity, for deep learning, the process
is much more complex. Neural networks like convolutional neural networks have tens
of hyperparameters, and exhaustively testing all options is impossible. Simple tuning
techniques like random search and grid search can bring good results but depend on luck
and the machine learning designer’s experience (concerning the specificity of datasets,
countermeasures, and leakage models).

There are more powerful options for hyperparameter tuning. Some common options
include Bayesian optimization, evolutionary algorithms, and reinforcement learning. While
the first two options received (minimal) attention in the SCA community [MPP16, WPP20],
reinforcement learning for hyperparameter tuning is still left unexplored in the deep
learning-based SCA 2.

In this paper, we aim to fill in this gap by proposing the first (to the best of our
knowledge) reinforcement learning framework for deep learning-based SCA hyperparameter
tuning. We use a well-known paradigm called Q-Learning, and we devise SCA-oriented
reward functions. Our analysis includes the goal of finding top-performing convolutional
neural networks (CNNs) and CNNs that are small (in terms of trainable parameters) and
yet exhibit strong performance. More precisely, our main contributions are:
• We propose the reinforcement learning framework for hyperparameter tuning for
deep learning-based SCA. The framework enables automated and powerful search
for CNNs for profiling SCA.

• We motivate and develop custom reward functions for hyperparameter tuning in
SCA.

• We conduct extensive experimental analysis considering four datasets and two leakage
models.

• We report on a number of newly developed CNN architectures that outperform
state-of-the-art results.

2 Background
2.1 Notation
Calligraphic letters (X ) denote sets, and the corresponding upper-case letters (X) denote
random variables and random vectors X over X . The corresponding lower-case letters x
and x denote realizations of X and X, respectively. We denote the key candidate as k
where k ∈ K, and k∗ denotes the correct key.

We define a dataset as a collection of traces (measurements) T. Each trace ti is
associated with an input value (plaintext or ciphertext) di and a key ki. We divide the
dataset into three parts: profiling set consisting of N traces, validation set consisting of V
traces, and attack set consisting of Q traces.

We denote the vector of learnable parameters in our profiling models as θ and the set
of hyperparameters defining the profiling model as H.

2We are aware of one work using reinforcement learning in SCA but in a drastically different setup as
discussed in Section 3
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2.2 Machine Learning-based SCA
Commonly, when considering block ciphers, we use the supervised machine learning
paradigm, and we investigate the multi-class classification task (where there are c discrete
classes). The task is to learn a function f that maps an input to the output (f : X → Y ))
based on examples of input-output pairs. The function f is parameterized by θ ∈ Rn,
where n denotes the number of trainable parameters.

Supervised learning has two phases: training and test. We assume a setup where the
training phase corresponds to the SCA profiling phase, and the testing phase corresponds
to the attack phase in SCA. As such, we use the terms profiling and training and attacking
and testing interchangeably.

1. The profiling phase aims to learn θ′ that minimize the empirical risk represented by
a loss function L on a profiling set of size N .

2. The goal of the attack phase is to make predictions about the classes

y(x1, k
∗), . . . , y(xQ, k

∗),

where k∗ represents the secret (unknown) key on the device under the attack.
As common in deep learning-based SCA, the outcome of predicting with a model f

on the attack set is a two-dimensional matrix P with dimensions equal to Q× c. Every
element pi,v of matrix P is a vector of all class probabilities for a specific trace xi (note
that

∑c
v pi,v = 1,∀i. The probability S(k) for any key byte candidate k is used as an SCA

distinguisher (commonly the maximum log-likelihood distinguisher):

S(k) =
Q∑

i=1
log(pi,v). (1)

The value pi,v denotes the probability that for a key k and input di, the result is class v
(derived from the key and input through a cryptographic function and a leakage model l).

In SCA, an adversary is not interested in predicting the classes in the attack phase
but in revealing the secret key k∗. To estimate the effort required the break the target,
it is common to use metrics like guessing entropy (GE) [SMY09] and consider varying
number of attack traces. More precisely, given Q traces in the attack phase, an attack
outputs a key guessing vector g = [g1, g2, . . . , g|K|] in decreasing order of probability (g1 is
the most likely key candidate and g|K| the least likely key candidate). Guessing entropy is
the average position of k∗ in g.

2.3 Convolutional Neural Networks
Convolutional neural networks (CNNs) commonly consist of three types of layers: convolu-
tional layers, pooling layers, and dense layers, also known as fully connected layers. The
convolution layer computes neurons’ output connected to local regions in the input, each
computing a dot product between their weights and a small region they are connected to
in the input volume. Pooling decrease the number of extracted features by performing a
down-sampling operation along the spatial dimensions. The dense layers compute either
the hidden activations or the class scores.

2.4 Neural Network Size
We use reinforcement learning to tune the hyperparameters, and one of our goals is to
find as small as possible neural networks as measured through the number of trainable
parameters. 3.

3Profiling with a small model can dramatically increase the training speed, eventually increasing the
attack efficiency
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Hyperparameters are all configuration variables external to the model f , e.g., the
number of hidden layers or activation functions in a neural network. The parameter vector
θ are the configuration variables internal to the model f and are estimated from data. The
number of trainable parameters depends on the type of neural network and its architecture
size (thus, on hyperparameters). Let us consider a setup where each perceptron in the
multilayer perceptron (MLP) architecture receives more than one input. Then, each input
x is given its weight w, multiplied with the value of that input. The sum of the weighted
inputs is then calculated, with additional bias value b. Finally, the activation function A
is applied:

y = A(
∑

i

wi · xi + b). (2)

Extending this to the whole MLP, the number of trainable parameters equals the sum
of connections between layers summed with biases in every layer:

n = (in · r + r · out) + (r + out), (3)

where in denotes input size, r is the size of hidden layer(s), and out denotes the output
size.

For convolutional neural networks, the number of trainable parameters in one convolu-
tion layer equals:

n = [in · (fi · fi) · out] + out, (4)

where in denotes the number of input maps, fi is the filter size, and out is the number of
output maps. As CNNs commonly have dense layers, we additionally use Eqs. 2 and 3 to
calculate the full number of trainable parameters.

2.5 Datasets and Leakage Models
We investigate two leakage models:

1. The Hamming weight (HW) leakage model: the attacker assumes the leakage
proportional to the sensitive variable’s Hamming weight. When considering the AES
cipher (or more precisely, any cipher that has an 8-bit S-box), this leakage model
results in nine classes for a single intermediate byte.

2. The Identity (ID) leakage model: the attacker considers the leakage in the form of
an intermediate value of the cipher. When considering the AES cipher (8-bit S-box),
this leakage model results in 256 classes for a single intermediate byte.

2.5.1 ASCAD Datasets.

The first dataset we use is the ASCAD database [BPS+20]. It contains the measurements
from an 8-bit AVR microcontroller running a masked AES-128 implementation.

There are two versions of the ASCAD dataset: one with a fixed key with 50 000
traces for profiling/training, and 10 000 for testing. The traces in this dataset have 700
features (preselected window). We use 45 000 traces for profiling and 5 000 for validation
from the profiling set. The second version has random keys, and the dataset consists
of 200 000 traces for profiling and 100 000 for testing. This dataset has traces of 1 400
features. For both versions, we attack the first masked key byte (key byte 3). We use
5 000 traces from the attack set for validation purposes. These datasets are available at
https://github.com/ANSSI-FR/ASCAD.

https://github.com/ANSSI-FR/ASCAD
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2.5.2 CHES CTF Dataset.

This dataset consists of masked AES-128 encryption running on a 32-bit STM micro-
controller. In our experiments, we use 45 000 traces for the training set. The training
set has a fixed key. The attack set has 5 000 traces and uses a different key than
the training set. We attack the first key byte. Each trace consists of 2 200 features.
We use 2 500 traces from the attack set for validation. This dataset is available at
https://chesctf.riscure.com/2018/news.

2.6 Reinforcement Learning
Reinforcement learning attempts to teach an agent how to perform a task by letting the
agent experiment and experience the environment, maximizing some reward signal. It is
distinct from supervised machine learning, where the algorithm learns from a set of examples
labeled with the correct answers. A benefit of reinforcement learning over supervised
machine learning is that the reward signal can be constructed without prior knowledge of
the correct course of action, which is especially useful if such a dataset does not exist or
is infeasible to obtain. While, at a glance, reinforcement learning might seem similar to
unsupervised machine learning, they are decidedly different. Unsupervised machine learning
attempts to find some (hidden) structure within a dataset, whereas finding structure in
data is not a goal in reinforcement learning [SB18]. Instead, reinforcement learning aims
to teach an agent on how to perform a task through rewards and experimentation.

In reinforcement learning, there are two main categories of algorithms, value-based
algorithms, and policy-based algorithms. Value-based algorithms try to approximate or
find the value function that assigns state-action pairs a reward value. These reward values
can then be used in a policy. Policy-based algorithms, however, directly try to find this
optimal policy.

Most reinforcement learning algorithms are centered around estimating value functions,
but this is not a strict requirement for reinforcement learning. For example, methods such
as genetic algorithms, genetic programming, and simulated annealing can all be used for
reinforcement learning without ever estimating value functions [SB18]. In this research,
we only focus on Q-Learning, which belongs to the value estimation category.

2.6.1 Q-Learning

Q-Learning was first introduced in 1989 by Chris Watkins [Wat89], and it aims not only
to learn from the outcome of a set of state-action transitions but to learn from each of
them individually. Q-learning is a value-based algorithm, and it tries to estimate q∗(s, a)
by iteratively updating its stored q-value estimations using Eq. (5). The most basic form
of Q-learning stores these q-value estimations as a simple lookup table and initializes
them with some chosen value or method. This form of Q-learning is also called Tabular
Q-learning. The algorithm is illustrated in Figure 1, and the function used to update the
current q-value mappings based on the received reward is defined as follows:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
, (5)

where St, At are the state and action at time t, and Q(St, At) is the current expected
reward for taking action At in state St. α and γ are the q-learning rate and discount
factor, which are both hyperparameters of the q-learning algorithm. The q-learning rate
determines how quickly new information is learned, while the discount factor determines
how much value we assign to short term versus long term rewards. Rt+1 is the currently
observed reward for having taken action At in state St. maxaQ(St+1, a) is the maximum
of the expected reward of all the actions a that can be taken in state St+1.

https://chesctf.riscure.com/2018/news


6 Reinforcement Learning in Profiling SCA
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Figure 1: The q-learning concept where an agent chooses an action At, based on the
current state St, which affects the environment. This action is then given a reward Rt+1
and leads to state St+1. Eq. (5) is used to incorporate this reward into the saved reward
for the current state Rt, and the cycle starts again.

3 Related Works
Considering hyperparameter tuning in SCA, we can informally divide related works
into those that use machine learning and deep learning techniques. Machine learning
techniques commonly have much fewer hyperparameters to tune. For example, Naive
Bayes [PHG17] has none (the same for template attack [CRR02]), for random forest,
researchers commonly consider one hyperparameter (the number of trees) [LMBM13], and
for SVM, a few hyperparameters (the kernel type and hyperparameters stemming from that
choice. For example, with the most used radial kernel, there are two hyperparameters γ and
C) [HZ12, PHJ+17]. Additionally, we can count multilayer perceptron in machine learning
techniques, as many of the first works did not use more than one hidden layer (which would
make it deep learning) [GHO15]. Since those techniques have fewer hyperparameters, the
hyperparameter tuning was commonly only briefly mentioned or even not discussed at
all. In general, we could conclude that hyperparameter tuning did not pose significant
challenges for such techniques (it is also possible that we did not use those techniques in
the best possible way).

Maghrebi et al. introduced the convolutional neural networks into profiling SCA in
2016 [MPP16]. 4 The authors mentioned they noticed a strong hyperparameter influence
on the final results, so they tuned the architectures. While the tuning details are not clear,
the authors used genetic algorithms to find the best performing architectures.

Cagli et al. [CDP17] or Picek et al. [PHJ+18] reported very good attack performance
even in the presence of countermeasures. Interestingly, the first work did not even discuss
hyperparameter tuning, while the second one did the tuning in a manual way (defining a
number of possible values for hyperparameters and checking all possible combinations).
Kim et al. constructed VGG-like architecture that performs well over several datasets, but
they did not discuss the hyperparameter tuning involved in checking the performance of
such an architecture [KPH+19]. Benadjila et al. made an empirical evaluation of different
CNN hyperparameters for the ASCAD dataset [BPS+20]. Perin et al. used a random
search in pre-defined ranges to build deep learning models to form ensembles [PCP20].
Both of those works reported very good results, despite relatively simple methods to choose
hyperparameters.

Next, several works consider the importance of specific hyperparameters in SCA per-
4They also used some other deep learning techniques like autoencoders and LSTM, but they are

commonly not mentioned due to poor results.
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formance. For instance, L. Weissbart investigated MLP performance and hyperparameter
tuning for the number of layers and neurons, and activations functions [Wei20]. Li et al.
investigated the weight initialization for MLP and CNN architectures [LKP20]. Perin and
Picek explored the various optimizer choices for deep learning-based SCA [PP20]. We also
mention works by, e.g., Zaid et al. [ZBD+21], and Zhang et al. [ZZN+20] who introduced
new loss functions, which extended the range of hyperparameters even more.

Zaid et al. were the first to propose a methodology to select hyperparameters related to
the size (number of learnable parameters, i.e., weights and biases) of layers in CNNs. Their
approach considers the number of filters, kernel sizes, strides, and the number of neurons in
fully-connected layers [ZBHV19]. Wouters et al. [WAGP20] improved upon the work from
Zaid et al. [ZBHV19], and discussed several problems in the original work. Additionally,
Wouters et al. showed how to reach similar attack performance with significantly smaller
neural network architectures. Finally, Wu et al. proposed to use Bayesian optimization to
find optimal hyperparameters for MLP and CNN architectures [WPP20]. Their results
indicated it is possible to find excellent architectures and that even random search can
find many architectures that exhibit top performance.

As far as we are aware, there is one paper on reinforcement learning and profiling SCA.
There, the authors use reinforcement learning to select LSTM autoencoders for choosing
important features [RAD20]. As the authors consider radically different reinforcement
learning usage and attack the ASCON cipher, a comparison between our works is not
possible.

We briefly discuss the differences between Bayesian optimization and reinforcement
learning approaches. In Bayesian optimization, we consider the black-box approach and
define a surrogate function that we optimize instead of the original objective. More
precisely, we construct a posterior distribution of functions that best describes the function
to be optimized. The next hyperparameter options (values in the search space) are decided
based on the acquisition function results (i.e., the exploration strategy).

Reinforcement learning works in a different setting. There, we have an agent who
exists within some environment and can interact with it via a set of actions. The state
of the environment changes through time, based on its dynamics and the agent’s actions.
Additionally, based on the state of the environment and the agent’s action, the agent
receives a reward. The goal is to have the agent learn a policy (a function that maps
from states to actions), maximizing his rewards from the environment. Consequently, the
main differences between these two approaches are in the problem setup and the objects
involved in each task.

4 The Reinforcement Learning Framework
In this section, we start by discussing MetaQNN algorithm. Then, we give details on our
setup, reward functions, Q-Learning learning rate, and the search space of hyperparameters
that we consider.

4.1 MetaQNN
Baker et al. introduced MetaQNN, a meta-modeling algorithm, which uses reinforcement
learning to automatically generate high-performing CNN architectures in the image clas-
sification domain [BGNR17]. The algorithm considers the task of using Q-Learning in
training an agent at the task of sequentially choosing neural network layers and their
hyperparameters. When reaching a termination state (either a Softmax or global average
pooling layer), the MetaQNN algorithm evaluates the generated neural network’s perfor-
mance and, using the accuracy as the reward, uses Q-Learning to adjust the expected
reward of the choices made during the neural network generation.
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4.2 General Setup
Applying MetaQNN to side-channel analysis is not as simple as simply changing the
dataset to side-channel traces and using its accuracy as the reward function. First of all,
conventional machine learning metrics, and especially accuracy, are not a good metric for
assessing neural network performance in the SCA domain [PHJ+18]. Second, MetaQNN
uses a fixed α (learning rate) for Q-Learning, while using a learning rate schedule where α
decreases either linearly or polynomially is the normal practice [EDM04]. Finally, one of
the shortcomings of MetaQNN is that it requires either a tremendous amount of time or
computing resources to properly explore the neural network search space when we factor in
the combination of all the types of layers, their respective parameters, and neural network
depths possible. We address this by guiding our search and limiting our search space based
on choices motivated by the current state-of-the-art SCA research on SCA architecture
design.

4.3 Reward Functions
To allow MetaQNN to be used for SCA neural network generation, we use a more
complicated reward function in place of just using the network’s accuracy on the validation
dataset. This reward function incorporates the guessing entropy and is composed of four
metrics: 1) t′: the percentage of traces required to get the GE to 0 out of the fixed
maximum attack size; 2) GE′10: the GE at 10% of the maximum attack size; 3) GE′50:
the GE at 50% of the maximum attack size and 4) the accuracy of the network on the
validation set. The formal definition of the first three metrics are expressed in Eqs. (6), (7),
and (8).

t′ =
tmax −min(tmax, QtGE

)
tmax

(6)

GE′10 = 128−min(GE10, 128)
128 (7)

GE′50 = 128−min(GE50, 128)
128 (8)

Note that the first three metrics of the reward function are derived from the GE metric,
aiming to reward neural network architectures based on their attack performance using
the configured amount of traces. Furthermore, for cases that the models that require more
traces (than the maximum attack traces) to retrieve the secret, they will also be adequately
rewarded by our reward function. In terms of the fourth metric (validation accuracy),
although research [PHJ+18] indicates a low correlation between validation accuracy and
success of an attack, a higher validation accuracy could still mean a lower QtGE

(number
of traces to reach GE of 0). Therefore, the validation accuracy is added to the reward
function. Combining these four metrics, we define the reward function as in Eq. (9), which
then gives us a total reward between 0 and 1. To better reward the model that can retrieve
the secret with fewer traces, larger weights are set on t′ and GE′10. We note that the
derived reward function is based on significant experimental results.

R = t′ +GE′10 + 0.5×GE′50 + 0.5× a
3 . (9)

Besides, neural networks with fewer trainable parameters generally take less time and
traces to train. To find small but attack-efficient neural networks, an additional reward
function is designed. Specifically, the reward function shown in Eq. (9) is adapted with a
new metric defined in Eq. (10).
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if |fc_layers| < max_fc ‡

Figure 2: Original Markov Decision Process for generating a CNN architecture
in MetaQNN: The actions in the process are the addition of specific layers to the neural
network being generated. ∗Only allows transitions to layers with a smaller size than the
current representation size. †Only available if the current layer depth is smaller than the
maximum configured. ‡max_fc was set to 3 in Baker et al. [BGNR17]

p′ = max(0, pmax − p)
pmax

, (10)

where pmax is defined as a configurable maximum amount of trainable parameters to
reward and p is the amount of trainable parameters in the neural network.

Giving us a modified reward function R′ as in Eq. (11):

R′ = t′ +GE′10 + 0.5×GE′50 + 0.5× a+ p′

4 . (11)

To distinguish the reward function used for the experiments, we denote experiments
making use of the reward small reward function (R′) as defined in Eq. (11) as RS experi-
ments, while those denoted as regular experiments or without any indication make use of
the reward function (R) as defined in Eq. (9).

4.4 Q-Learning Learning Rate
Theoretically, Q-Learning converges to the optimal policy under some mild assumptions,
including that each state-action is performed infinitely many times [WD92]. However, when
using a polynomial learning rate α = 1/tω with ω ∈ (1/2, 1) and t being the Q-Learning
epoch, this convergence is polynomial [EDM04]. Even-Dar et al. experimentally found an
ω of approximately 0.85 to be optimal across multiple different MDPs, which is within their
theoretical optimal value range. Therefore, this is also the value we use for all experiments,
giving us a learning rate schedule of α = 1/t0.85.

4.5 Markov Decision Process Definition and Search Space
The actions in the environment of deciding on neural network layers and their respective
parameters is modeled as a Markov Decision Process (MDP) as shown in Figure 3. This
MDP differs from the original MetaQNN MDP to search more in the direction of existing
state-of-the-art CNNs from the SCA domain, e.g., [ZBHV19]. The original MDP used by
Baker et al. can be found in Figure 2 [BGNR17] and the version used in our experiments
in Figure 3.
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Input Conv

BN

Pool GAP

Flatten

FC SoftMax
∗

∗

†

∗

if |fc_layers| < max_fc ‡

Figure 3: Our Markov Decision Process for generating a CNN architecture:
The actions in the process are the addition of specific layers to the neural network
being generated. ∗Only allows transitions to layers with a smaller size than the current
representation size. †Only available if the transition marked with ∗ is not available due
to the current representation size. ‡max_fc was set to 3 for all experiments, which is
consistent with the state-of-the-art and helps keep the environment size down.

The first difference is that we introduce the agent’s option to select a Batch Normaliza-
tion layer between a convolutional and pooling layer, making a network converge faster
and more stable by re-centering and re-scaling the inputs [IS15]. Another difference is that
while in the original MDP, the agent can choose to transition to a SoftMax or GAP (Global
Average Pooling) layer from any of the earlier layer states, we opt for the VGG approach
as used more commonly in SCA [KPH+19, BPS+20, ZBHV19]. This means that we prefer
blocks of Convolutional and Pooling layers, only transitioning to fully connected and
SoftMax layers when in a pooling layer or when a transition from a batch normalization
layer to a pooling layer is no longer possible due to the current representation size.5 There
is an option to transition from a convolutional layer to a GAP layer as an alternative
to a Pool or Flatten layer combination. Another addition is the flatten layer found in
current state-of-the-art SCA CNNs as a transition between convolutional blocks and fully
connected layers. The hyperparameter search space is listed in Table 1.

5 Experimental Results
To assess the SCA performance, we use guessing entropy, where we average 100 independent
attacks for guessing entropy calculation. Additionally, we attack a single key byte only
(which is properly denoted as the partial guessing entropy), but we denote it as guessing
entropy for simplicity.

To assess the performance of the Q-Learning agent, we compare the average rewards per
epsilon and the rolling average of the reward with the expectation, from the principles of
Q-Learning, that the average obtained reward increases as the agent improves in selecting
neural network architectures suitable for SCA as ε reduces, and the agent starts exploiting.

In terms of computation complexity, eight CPUs and two NVIDIA GTX 1080 Ti
graphics processing unit (GPU) (with 11 Gigabytes of GPU memory and 3 584 GPU cores)
are used for each experiment. The memory assigned for each task highly depends on the
dataset to be tested. On average, we used 20GB of memory for an experiment. All of the
experiments are implemented with the TensorFlow [AAB+15] computing framework and
Keras deep learning framework [C+15]. For the time consumption, since more than 2 500
models are examined, four days on average are required to complete the search process.

5The representation size is similar to the feature size of a trace. The only difference is that the size no
longer directly corresponds to the trace features but rather to the intermediate representation of the trace
in the CNN. Therefore, this representation’s size is called the representation size, which varies throughout
a CNN based on the layer parameters.



Jorai Rijsdijk, Lichao Wu, Guilherme Perin and Stjepan Picek 11

Table 1: Hyperparameters for the neural network generation and hyperparameter options
for the generated neural networks used for all experiments.

Maximum Total Layers 14
Maximum Fully Connected Layers 3
Fully Connected Layer Size [2, 4, 10, 15, 20, 30]
Convolutional Padding Type SAME
Convolutional Layer Depth [2, 4, 8, 16, 32, 64, 128]
Convolutional Layer Kernel Size [1, 2, 3, 25, 50, 75, 100]
Convolutional Layer Stride 1
Pooling Layer Filter Size [2, 4, 7, 25, 50, 75, 100]
Pooling Layer Stride [2, 4, 7, 25, 50, 75, 100]
SoftMax Initializer Glorot Uniform
Initializer for other layers He Uniform
Activation function SeLU

Note that we do not consider multilayer perceptron architectures in this paper despite
being commonly used in SCA. We opted for this approach as reinforcement learning is
computationally expensive, and results from related works indicate that random search in
pre-defined ranges or grid search gives good results for MLP [PHJ+18, PCP20, WPP20].

Finally, we provide the results for ASCAD with a fixed key and desynchronization equal
to 50 in Appendix A and the details on the best-obtained architectures in Appendix B.

5.1 ASCAD Fixed Key Dataset
In Figure 4, we depict the scatter plot results for the HW and ID leakage models, regular
and RS reward. Notice the red lines that depict the placement of the state-of-the-
art model [ZBHV19] concerning the attack performance and the number of trainable
parameters. All dots in the lower right quadrant depict neural network architectures that
are smaller and better performing than state-of-the-art. First, we can observe that most of
the architectures are larger or worse performing than state-of-the-art. Naturally, this is to
be expected as our reinforcement learning framework starts with random architectures. At
the same time, for all settings, there are dots in the lower right quadrant, which indicates
that we managed to find better performing architectures than in related works. Notice
that many architectures are significantly larger when not including the number of trainable
parameters in the reward function than those from related work. Interestingly, forcing to
find small architectures also results in more highly-fit architectures, suggesting that we do
not require large architectures to break this target.

Next, in Tables 2 and 3, we provide a comparison of the best-obtained architectures in
this paper with results from related works for the HW and ID leakage models, respectively.
− denotes that the related work does not report on the specific value. The value QtGE

denotes the number of attack traces that are required to reach GE of 0. Notice that for
the HW leakage model, we manage to find smaller and better performing architectures
than [ZBHV19], regardless of whether we also include the size in the reward function.
[WPP20] uses Bayesian optimization and reaches better results than our setting where
we do not account for the network size. The best performing and the smallest network
is obtained with reinforcement learning (906 traces to reach GE of 0, and having only
5 506 trainable parameters). We do note that it is not fully fair to compare [WPP20]
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(a) CNN ASCAD Fixed Key HW Model (b) CNN ASCAD Fixed Key ID Model

(c) CNN ASCAD Fixed Key HW Model (RS) (d) CNN ASCAD Fixed Key ID Model (RS)

Figure 4: An overview of the number of trainable parameters, reward, and the epsilon a
neural network was first generated for the ASCAD with fixed key dataset experiments. An
epsilon of 1.0 means the network was generated completely randomly, while an epsilon of
0.1 means that the network was generated while choosing random actions 10% of the time.
The red lines indicate the amount of trainable parameters and the Q-Learning Reward of
the state-of-the-art CNNs from Zaid et al.

with regards to the network size, as this is a constraint not considered in that work. For
the ID leakage model, our results are not so good: Zaid et al. [ZBHV19], Wouters et
al. [WAGP20], and Wu et al. [WPP20] reach better performance (especially considering our
result where we do not optimize for network size). Still, our best CNN (RS) is significantly
smaller than [ZBHV19, WAGP20], while the performance difference is not so pronounced.
Note that [WAGP20] and our best small architecture have similar performance while our
network is five times smaller.

In Figure 5, we depict the GE results for our best-obtained models for both leakage
models and versions of the reward function for ASCAD with the fixed key. There is almost
no difference between the two models for the HW leakage model, indicating that reducing
the model size did not damage the model performance. The regular reward for the ID
leakage model brings somewhat faster GE convergence when considering small attack
traces set sizes.

In Figure 6, we observe three different behaviors for our Q-Learning agent. For all the
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Table 2: Comparison of the top generated CNNs for the ASCAD with a fixed key HW
leakage model experiments with the current state-of-the-art.

ASCAD
Fixed Keys

HW Model
[ZBHV19] [WPP20] Best CNN Best CNN (RS)

Trainable
Parameters 14 235 − 8 480 5 566

QtGE
1 346 ≈ 1 000 1 246 906

Table 3: Comparison of the top generated CNNs for the ASCAD with a fixed key ID
leakage model experiments with the current state-of-the-art.

ASCAD
Fixed Keys

ID Model
[ZBHV19] [WAGP20] [WPP20] Best CNN Best CNN (RS)

Trainable
Parameters 16 960 6 436 − 79 439 1 282

QtGE
191 ≈ 200 158 202 242

Figure 5: Guessing entropy for the ASCAD with the fixed key dataset.

experiments shown, the rolling average reward of 50 iterations, where at each iteration,
we generate a and evaluate a neural network architecture, remains relatively flat during
the exploration phase, where neural networks are generated randomly (ε = 1.0). This
exploration phase can also be viewed as the random search baseline. In Figure 6a, the
rolling average reward shows a steady increase in the SCA performance of the generated
neural network architectures, starting at ε = 0.6. However, this increase is not visible in
the average reward across all the generated neural network architectures in each ε until
ε = 0.1, where the average reward is approximately 0.41, compared to the average of 0.046
for ε = 1.0. Figure 6b shows the second type of behavior of the Q-Learning agent, where
the agent does not seem to show clear signs of increasing the average reward of the neural
network architectures it selects as ε decreases. There is a slight upwards trend for ε 0.5 to
0.3, but this does not continue. Fortunately, there is a clear and significant increase in the
average reward toward the final iterations of Q-Learning. Finally, we observe the third
type of behavior, in Figure 6d, and even more clearly in Figure 6c, where both the average
reward per epsilon and the rolling average reward show a clear and steady increase as ε
decreases, indicating that the agent is increasingly able to generate top-performing neural
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network architectures. It should be noted that the RS experiments have a higher baseline
average reward, which occurs due to the added p′ component of the R′ reward function.

(a) CNN ASCAD Fixed Key HW Model (b) CNN ASCAD Fixed Key ID Model

(c) CNN ASCAD Fixed Key HW Model (RS) (d) CNN ASCAD Fixed Key ID Model (RS)

Figure 6: An overview of the Q-Learning performance for the ASCAD with fixed key
dataset experiments. The blue line indicates the rolling average of the Q-Learning reward
for 50 iterations, where at each iteration, we generate and evaluate a neural network
architecture. The bars in the graph indicate the average Q-Learning reward for all neural
network architectures generated during that ε.

5.2 ASCAD Random Keys Dataset
Figure 7 depicts the results for all the obtained models for the ASCAD with random
keys dataset. We do not depict red lines for this dataset, as we are not aware of results
stating precise GE performance and the number of trainable parameters. Still, when we
do not optimize the network size, the obtained models’ largest grouping is close to the 0.0
Q-Learning reward. If the number of trainable parameters is considered, observe a smooth
curve decreasing the number of trainable parameters and increasing the reward. Again,
this suggests that while the reward function is more complicated due to an additional
term, rewarding smaller models helps find top-performing models.

Tables 4 and 5 give GE and number of trainable parameters comparisons for the HW
and ID leakage models, respectively. Interestingly, for the HW leakage model, we see
that [PCP20] requires significantly fewer traces for GE to reach 0. Still, as that paper
considers ensembles of CNNs, a direct comparison is difficult. Our results indicate slightly
better performance than [WPP20]. Finally, note that we managed to find a smaller
model, but that also comes with a significant GE result. Our result is worse for the ID
leakage model than [PCP20], but significantly better than [WPP20]. Interestingly, even
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(a) CNN ASCAD Random Key HW Model (b) CNN ASCAD Random Key ID Model

(c) CNN ASCAD Random Key HW Model
(RS) (d) CNN ASCAD Random Key ID Model (RS)

Figure 7: An overview of the number of trainable parameters, reward, and the epsilon a
neural network was first generated for the ASCAD with random key dataset experiments.
An epsilon of 1.0 means the network was generated completely randomly, while an epsilon
of 0.1 means that the network was generated while choosing random actions 10% of the
time.

the smaller model we found performs much better than the best model found with Bayesian
optimization. Again, direct comparison with [PCP20] is not possible because there, the
authors use ensembles.

Table 4: Comparison of the top generated CNNs for the ASCAD with random keys HW
leakage model experiments with the current state-of-the-art.

ASCAD
Random Keys

HW Model
[PCP20] [WPP20] Best CNN Best CNN (RS)

Trainable
Parameters − − 15 241 9 093

QtGE
470 ≈ 1 000 911 1 264
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Table 5: Comparison of the top generated CNNs for the ASCAD with random keys ID
leakage model experiments with the current state-of-the-art.

ASCAD
Random Keys

ID Model
[PCP20] [WPP20] Best CNN Best CNN (RS)

Trainable
Parameters − − 70 492 3 298

QtGE
105 ≈ 3 000 490 1 018

Figure 8 gives the GE results for our best-obtained models for both leakage models and
versions of the reward function for the ASCAD with random keys dataset. Interestingly, we
observe only marginal GE convergence differences for both HW leakage model architectures
and the ID leakage model RS architecture. This means that small models can perform
well regardless of the leakage model. Still, the architecture for the ID leakage model that
uses the regular reward does offer the best performance, especially if the number of traces
is smaller than 250.

Figure 8: Guessing entropy for the ASCAD with random keys dataset.

Finally, in Figure 9, we depict the results for the Q-Learning performance for the
ASCAD dataset with random keys. The scenario results where we do not reward small
sizes are similar to the ASCAD with the fixed key case. There is a steady increase in
rolling average reward and the average reward per epsilon for the HW leakage model, while
for the ID leakage model, the average reward slowly increases only after more than 2 000
iterations. For the HW leakage model and RS setting, the results are analogous to the
ASCAD fixed key case, where large rolling and average rewards increase with the number
of iterations. For the ID leakage model with RS, we observe a new behavior where both
rolling and average reward start to decrease after 2 200 iterations. This indicates that
reinforcement learning got stuck in local optima, and more iterations only degrade the
obtained models’ quality.

5.3 CHES CTF Dataset
Finally, we give results for the CHES CTF dataset. We present the HW leakage model
results only, as we were unable to find good-performing models in the ID leakage model
(also discussed in related works, see, e.g., [PCP20]). In Figure 10, we show results for the
HW leakage model for the CHES CTF dataset. As before, we do not show red lines as there
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(a) CNN ASCAD Random Key HW Model (b) CNN ASCAD Random Key ID Model

(c) CNN ASCAD Random Key HW Model
(RS) (d) CNN ASCAD Random Key ID Model (RS)

Figure 9: An overview of the Q-Learning performance for the ASCAD with random key
dataset Experiments. The blue line indicates the rolling average of the Q-Learning reward
for 50 iterations, where at each iteration, we generate and evaluate a neural network
architecture. The bars in the graph indicate the average Q-Learning reward for all neural
network architectures generated during that ε.

are no known results that also indicate the number of trainable parameters. Notice that
when using the regular reward, most of the models reach a small final reward, while when
using a reward with RS, there is a clear tendency toward smaller and better performing
models.

Table 6 gives the best obtained results as well as two from related works [PCP20,
WPP20]. We cannot compare the number of trainable parameters as related works do
not state that information, but we see that our models reach GE with significantly fewer
attack traces. Notice that even when we reward smaller models, our attack performance is
better than those in related works, and we use a very small architecture.

Table 6: Comparison of the top generated CNNs for the CHES CTF and HW leakage
model experiments with the current state-of-the-art.

CHES CTF
HW Model

[PCP20] [WPP20] Best CNN Best CNN (RS)

Trainable
Parameters − − 33, 788 6, 395

QtGE
310 ≈ 1 400 122 349
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(a) CNN CHES CTF HW Model (b) CNN CHES CTF HW Model (RS)

Figure 10: An overview of the number of trainable parameters, reward, and the epsilon a
neural network was first generated for the CHES CTF dataset experiments. An epsilon of
1.0 means the network was generated completely randomly, while an epsilon of 0.1 means
that the network was generated while choosing random actions 10% of the time.

Figure 11 gives the GE results for our best-obtained models for the HW leakage model
and both versions of the reward function for the CHES CTF dataset. Observe that the
model with the regular reward function performs better when the number of traces is
limited, which is in line with the previous results.

Figure 11: Guessing entropy for the CHES CTF dataset.

Finally, in Figure 12, we give results for the Q-Learning performance. Both graphs show
a steady increase in the rolling and average rewards as the number of iteration increase.
This confirms that our models learn the data and converge to top-performing and small
models, as shown in Table 6.

6 Conclusions and Future Work
In this paper, we proposed a reinforcement learning framework for deep learning-based
SCA. To accomplish that goal, we use a well-known paradigm called Q-Learning, and we
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(a) CNN CHES CTF HW Model (b) CNN CHES CTF HW Model (RS)

Figure 12: An overview of the Q-Learning performance for the CHES CTF dataset
Experiments. The blue line indicates the rolling average of the Q-Learning reward for 50
iterations, where at each iteration, we generate and evaluate a neural network architecture.
The bars in the graph indicate the average Q-Learning reward for all neural network
architectures generated during that ε.

define two versions of reward functions that are developed for SCA. Additionally, we devise
a Markov Decision Process that has a large search space of possible convolutional neural
network architectures, but at the same time, still constraints the search following the
current state-of-the-art practices in SCA. We test the reinforcement learning behavior for
CNN hyperparameter tuning on three datasets and a number of experimental settings. The
results show strong performance where we reach the best-known performance in several
scenarios, while in other settings, our performance is only moderately worse than state-of-
the-art, but our models are extremely small. Additionally, the results we obtained suggest
that we should limit the future hyperparameter tuning phases even more as small neural
networks often also resulted in the best attack performance. This is especially pronounced
for the HW leakage model as there, smaller networks did not have any performance
drawbacks over larger ones. We note that our approach is automated and can be easily
adapted to different datasets or experimental settings.

There are two research directions we consider particularly interesting for future work.
We considered the Q-Learning approach in this work, but there are more powerful (and
computationally demanding) approaches available. For instance, it would be interesting to
investigate the deep Q-Learning paradigm’s performance, especially in a trade-off between
computational efficiency and the obtained results. Next, reinforcement learning uses a large
number of models before finding the best ones. It would be interesting to consider how
well the best models obtained through reinforcement learning would behave in ensembles
of models [PCP20]. Additionally, we considered only CNN architectures as we believe
their hyperparameter tuning complexity fits into the high computational complexity of
reinforcement learning. Still, there are no reasons not to try reinforcement learning with
other neural networks, like multilayer perceptrons.
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A ASCAD Fixed Key with Desynchronization Equal to 50
In Figure 13, we give the results for the ASCAD dataset with the fixed key when there is
also desynchronization added. First, observe that this setting poses much more significant
problems for reinforcement learning compared to previous ones. Indeed, we do not find
CNNs that are better performing and smaller than state-of-the-art for the HW leakage
model. A similar observation is also valid for the ID leakage model. Fortunately, when
adding the small network constrain to the reward function, we observe much better results,
especially for the ID leakage model. We can conclude that desynchronization makes the
attack much more difficult, but there are (albeit not many) models that are small and
perform well. Constraining the search toward smaller models does improve the search
behavior and the final-obtained models’ attack performance.

In Table 7, we observe that our best model is significantly better in terms of GE
than [ZBHV19], even though it requires six times more trainable parameters. Interestingly,
for our small model, the performance is not much different than [ZBHV19], but we require
almost nine times fewer trainable parameters. Table 8 shows the comparison between
the best-generated CNNs, including the state-of-the-art reference CNN, and shows that
the top-performing value model CNN from the regular experiment does not manage to
outperform the state-of-the-art CNN in terms of QtGE

, requiring almost double the number
of traces. However, this CNN does have 0.47 times the number of trainable parameters.
The best value model CNN from the RS experiment, on the other hand, needs 69 more
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(a) CNN ASCAD N [0] = 50 HW Model (b) CNN ASCAD N [0] = 50 ID Model

(c) CNN ASCAD N [0] = 50 HW Model (RS) (d) CNN ASCAD N [0] = 50 ID Model (RS)

Figure 13: ASCAD N [0] = 50: An overview of the number of trainable parameters,
reward, and the epsilon a CNN was first generated for the ASCAD N [0] = 50 experiments.
The red lines indicate the amount of trainable parameters and the Q-Learning Reward of
the state-of-the-art CNNs from Zaid et al.

traces to retrieve the key, but it only has 0.024 times the number of trainable parameters
when compared to the state-of-the-art.

Figure 14 gives the GE results for our best-obtained models for the HW and ID leakage
models and both versions of the reward function for the ASCAD with desynchronization
equal to 50. In line with previous results, the regular reward model performs better
when the number of traces is limited. Figure 15 shows the Q-Learning performance for
these experiments where both the rolling average reward of 50 iterations and the average
reward per epsilon stays fairly constant as ε decreases, with Figure 15d showing a decrease
for ε = 0.1, which would indicate the agent is stuck in a local optimum. This lack of
improvement in average rewards can be expected when the number of top-performing
networks is as low as can be observed in Figure 13. We note that some of the resulting
best neural networks still outperform the state-of-the-art models.

B The Best Obtained Architectures
In Table 1, we present the common hyperparameters that the best-developed architectures
use. These are meant to serve as guidelines for future neural network development.
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Table 7: Comparison of the top generated CNNs for the ASCAD N [0] = 50 HW model
experiments with the current state-of-the-art.

N [0] = 50
HW Model

[ZBHV19] Best CNN Best CNN (RS)

Trainable
Parameters 82 879 516 361 9 433

QtGE

> 2, 000
GE2,000 = 0.03 1 592 > 2, 000

GE2,000 = 0.67

Table 8: Comparison of the top generated CNNs for the ASCAD N [0] = 50 ID model
experiments with the current state-of-the-art.

N [0] = 50
ID Model

[ZBHV19] [WAGP20] Best CNN Best CNN (RS)

Trainable
Parameters 87 279 41 052 41 321 2 100

QtGE
244 ≈ 250 443 313

Figure 14: Guessing entropy for the ASCAD fixed key dataset with desynchronization of
50.

We present the best obtained architectures in Tables 10 to 13. Note that all the tables
use the following notation:
Convolutional = C(filters, kernel_size, strides)
Batch Normalization = BN
Average Pooling = P(size, stride)
Flatten = FLAT
Global Average Pooling = GAP
Fully-connected = FC(size)
SoftMax = SM(classes)
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(a) CNN ASCAD N [0] = 50 HW Model (b) CNN ASCAD N [0] = 50 ID Model

(c) CNN ASCAD N [0] = 50 HW Model (RS) (d) CNN ASCAD N [0] = 50 ID Model (RS)

Figure 15: An overview of the Q-Learning performance for the ASCAD fixed key dataset
with desynchronization of 50 experiments. The blue line indicates the rolling average of
the Q-Learning reward for 50 iterations, where at each iteration, we generate and evaluate
a neural network architecture. The bars in the graph indicate the average Q-Learning
reward for all neural network architectures generated during that ε.

B.1 ASCAD Fixed Key
In Table 10, we describe the best-obtained architectures for the ASCAD with the fixed
key dataset.

B.2 ASCAD Fixed Key with Desynchronization 50
In Table 11, we describe the best-obtained architectures for the ASCAD with the fixed
key dataset and desynchronization.

B.3 ASCAD Random Keys
In Table 12, we describe the best-obtained architectures for the ASCAD with random keys
dataset.

B.4 CHES CTF
Finally, in Table 13, we describe the best-obtained architectures for the CHES CTF dataset.
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Table 9: Common hyperparameters for all the reported best architectures.
Convolutional Padding Type SAME

Pooling Type Average Pooling

SoftMax Initializer Glorot Uniform

Initializer for other layers He Uniform

Activation function SeLU

Optimizer Adam

Train Epochs 50

Learning Rate One Cycle Policy[Smi17]

Table 10: The best found architectures for the ASCAD fixed keys dataset.
Leakage Model Type Architecture

ID
CNN C(128,25,1), P(25,25), FLAT, FC(20), FC(15), SM(256)

CNN (RS) C(2,75,1), P(25,25), C(2,3,1), BN, P(4,4), C(8,2,1), P(2,2),
FLAT, FC(10), FC(4), FC(2), SM(256)

HW
CNN C(16,100,1), P(25,25), FLAT, FC(15), FC(4), FC(4), SM(9)

CNN (RS) C(2,25,1), P(4,4), FLAT, FC(15), FC(10), FC(4), SM(9)

Table 11: The best found architectures for the ASCAD fixed keys dataset with desynchro-
nization of 50.
Leakage Model Type Architecture

ID
CNN C(2,50,1), BN, P(50,2), C(16,3,1), P(25,7), C(64,25,1), P(7,7),

C(64,3,1), BN, P(4,4), GAP, FC(20), FC(15), FC(4), SM(256)

CNN (RS) C(4,50,1), P(50,4), C(2,50,1), P(2,2), C(2,50,1), P(50,50),
GAP, FC(4), SM(256)

HW
CNN C(128,1,1), BN, P(50,4), C(128,25,1), BN, P(25,4), C(32,25,1),

P(4,4), C(32,3,1), P(4,4), C(4,1,1), BN, FLAT, FC(10), SM(9)

CNN (RS) C(8,3,1), P(50,4), C(32,25,1), P(50,50), FLAT, FC(20),
FC(20), FC(20), SM(9)

Table 12: The best found architectures for the ASCAD random keys dataset.
Leakage Model Type Architecture

ID
CNN C(128,3,1), P(75,75), FLAT, FC(30), FC(2), SM(256)

CNN (RS) C(4,1,1), P(100,75), FLAT, FC(30), FC(10), FC(2), SM(256)

HW
CNN C(8,3,1), P(25,25), FLAT, FC(30), FC(30), FC(20), SM(9)

CNN (RS) C(4,50,1), P(25,25), FLAT, FC(30), FC(30), FC(30), SM(9)

Table 13: The best found architectures for the CHES CTF dataset.
Leakage Model Type Architecture

HW

CNN C(4,100,1), P(4,4), FLAT, FC(15), FC(10), FC(10),
SM(9)

CNN (RS) C(2,2,1), P(7,7), FLAT, FC(10), SM(9)
MLP FC(2), FC(10), FC(150), SM(9)
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